Modern Template Metaprogramming:

A Compendium

Revised and expanded edition

WALTER E. BROWN, PH.D.

<webrown.cpp @ gmail.com>

Copyright © 2014 by Walter E. Brown. All rights reserved.

Abstract

e “Template metaprogramming has become an important
part of a C++ programmer's toolkit. This talk will
demonstrate state-of-the-art metaprogramming tools
and techniques, applying each to obtain representative
implementations of selected standard library facilities.

e “Along the way, we will look at void_t, a recently-proposed,
extremely simple new <type_traits> candidate whose use
has been described by one expert as ‘highly advanced
(and elegant), and surprising even to experienced
template metaprogrammers.””

e Presented in two parts, with a short break between.

Copyright © 2014 by Walter E. Brown. All rights reserved.

A little about me

e B.A. (math’s); M.S., Ph.D. (computer science).

e Professional programmer for almost 50 years,
programming in C++ since 1982.

e Experienced in industry, academia, consulting,
and research:

" Founded a Computer Science Dept.; served as Professor
and Dept. Head; taught and mentored at all levels.

= Managed and mentored the programming staff for a reseller.

= |Lectured internationally as a software consultant and
commercial trainer.

= Retired from the Scientific Computing Division at Fermilab,
specializing in C++ programming and in-house consulting.

e Not dead — still available for consulting work. (Email me!)

Copyright © 2014 by Walter E. Brown. All rights reserved.

Emeritus participant in C++ standardization

e Written 85+ papers for WG21, introducing such
now-standard C++ library features as
cbegin/cend and common_type, as well as
the entirety of headers <random> and <ratio>.

e Heavily influenced such core language features as alias
templates, contextual conversions, and variable templates.

e Conceived and served as Project Editor for ISO/IEC 29124
(Int’l Standard on Mathematical Special Functions in C++);
now serving as an Associate Project Editor for C++17.

e Be forewarned: Based on my training and experience, N
| hold some rather strong opinions about computer
software and programming methodology — these opinions

_ arenot shared by all programmers, but they should be! ©/

Copyright © 2014 by Walter E. Brown. All rights reserved.

Preview of examples (not in order)

e From the std:: library:

integral_constant, true_type, false_type

is_same, is_void, is_integral, is_floating_point, is_signed
is_copy_assignable, is_move_assignable

remove_const, remove_volatile, remove_cv

conditional, enable_if

distance

e Not (yet?) from the std:: library:

abs, gcd

type_is, bool constant

is_one_of

void_t (!), has_type_member, is_valid, is_complete

Copyright © 2014 by Walter E. Brown. All rights reserved.

What is template metaprogramming?

e “Metaprogramming is the writing of computer programs:

@ “That write or manipulate other programs (or themselves)
as their data, or

@ “That do ... work at compile time that would otherwise be
done at runtime” [Wikipedia].
e C++ template metaprogramming uses template instantiation
to drive compile-time evaluation:
= When we use the name of a template where a {function, type,

variable} is expected, the compiler will instantiate (create) the
expected entity from that template.

e Example: a call f(x) where f names a function template.

= Template metaprogrammers exploit this machinery to improve
@ source code flexibility and @ runtime performance.

Copyright © 2014 by Walter E. Brown. All rights reserved.

Representative timings (2001)

std::pow() pow<> vl pow<> v2
real 11.858 s 8.081s 3.0355s
user 11.837 s 8.081 s 3.024 s
Sys 0.020s 0.020 s 0.030s

e Measured x°° repeated 10,000,000 times.
e Used gcc 2.95.2, -00, on 700 MHz PIII, Win2K.

Copyright © 2014 by Walter E. Brown. All rights reserved.

Timings with optimization (2001)

std::pow() pow<> vl pow<> v2
real 11.857 s 4.286 s 0.300 s
user 11.847 s 4.236 s 0.190 s
Sys 0.020 s 0.010s 0.010s

e Used g++ -02 to compile; otherwise identical.

e Improvements: ~47% for vl; ~ 90% for v2!

Copyright © 2014 by Walter E. Brown. All rights reserved.

Performance for increasing powers (2001)

et cossusstanatattiusstatibataatthast

0 25 o0

Exponent

Copyright © 2014 by Walter E. Brown. All rights reserved.

When metaprogramming ...

e Keep in mind that run-time == compile-time, so can’t rely
on: X mutability, X virtual functions, X other RTTI, etc.

e To put it simply,

Copyright © 2014 by Walter E. Brown. All rights reserved. 1 O

How to shift work to compile-time

e Example: a compile-time absolute value metafunction:

= template<int N > //template param used as the metafctn param
struct abs {

static_assert(N !=INT_MIN); // C++17-style guard

static constexpr auto value = (N<0) ? =N : N; // “return”

5
e Usage (a metafunction call):
= Metafunction arg(s) are supplied as the template’s arg(s).
= “Call” syntax is a request for the template’s published value.

" intconst n = ..; //could instead declare as constexpr
. abs<n>::value .. //instantiation yields a compile-time constant

Copyright © 2014 by Walter E. Brown. All rights reserved.

A C++11 constexpr function can be useful, but ...

e Example: a compile-time absolute value function:

constexpr auto abs(intN) { return (N<O) ? =N : N; }

= Usage is via familiar function call syntax:

intconst n = .. ; //could instead declare as constexpr
. abs(n) - // vields a compile-time constant

e But, as structs, metafunctions offer us more tools, e.qg.:

Public member type declarations (e.g., typedef or using).

Public member data declarations (static const/constexpr,
each initialized via a constant expression).

Public member function declarations and constexpr member
function definitions.

Public member templates, static_asserts, and more!

Copyright © 2014 by Walter E. Brown. All rights reserved.

12

Compile-time recursion with specialization as base

e Example: primary template for gcd(m, n) metafunction
(compile-time greatest common divisor calculation):
= template< unsigned M, unsigned N >

struct gcd { //per Euclid
static constexpr auto value =[gcd<N, M%N>::va|ue};

Iy
e Much like pattern matching, this partial specialization
recognizes the (base) case gcd(m, 0):

= template< unsigned M >
struct gcd<M, 0> {
static_assert(M |=0); // gcd(0, 0) is undefined, so disallow
static constexpr auto value = M;

5

Copyright © 2014 by Walter E. Brown. All rights reserved.

A metafunction can take a type as a parameter/argument

e sizeof is a built-in type function, but we can write our own.

e Example: obtain the (compile-time) rank of an array type:

= // primary template handles scalar (non-array) types as base case:
template< class T >

struct rank { static constexprsize t value = Ou; };

= // partial specialization recognizes any array type:
template< class U, size_t N >
struct rank< U[N] > {

static constexpr size_t value = 1u + rank<U>:value;

Iy
e Usage:
= using array_t = int [10] [20] [30];
- rank<array_t>::value - // vields 3u (at compile-time)

Copyright © 2014 by Walter E. Brown. All rights reserved.

A metafunction can also produce a type as its result

e Example: “remove” a type’s const-qualification:

= No real removal; “give me the equivalent type without const.”

= //primary template handles types that are not const-qualified:
template< class T >

struct remove_const { using type = T; }; // identity

= // partial specialization recognizes const-qualified types:
template< class U >

struct remove_const< U const > { using type = U; };
e Usages (call syntax):
" remove_const<T>::type t; // ensure t has a mutable type

= remove_const _t<T> t; // C++14 equivalent; more later

Copyright © 2014 by Walter E. Brown. All rights reserved.

_C++11 library metafunction convention #1

= Except for a few std:: metafunctions predating this convention.
= F.g., iterator_traits has 5 type results; none is named type.
e Example: an identity metafunction:
= template<class T >
struct type_is { using type = T; };
e Convenient to apply the convention via public inheritance:

= //primary template handles types that are not volatile-qualified:
template<class T >

struct remove_volatile : type_ is<T> { }; // identity

= // partial specialization recognizes volatile-qualified types:
template< class U >
struct remove_volatile< U volatile > : type_is<U> { };

Copyright © 2014 by Walter E. Brown. All rights reserved. 1 6

Compile-time decision-making

e Imagine a metafunction, IF/IF t, to select one of two types:

= template< bool p, class T, class F >
struct IF : type is<-> {}, //p? T:F

e Such a facility would let us write self-configuring code:
= Assume: intconst q = -; //user’s configuration parameter

" |F_t< (g<0), int, unsigned > k;
// declare k to have 1 of these 2 integer types

" IF_t< (q<0), FI G >{ }()
// instantiate and call 1 of these 2 function objects

= class D : publicIF_t<(g<0),B1,B2> {-};
// inherit from 1 of these 2 base classes

Copyright © 2014 by Walter E. Brown. All rights reserved.

17

Behind the scenes of IF

e Straightforward to implement:

= //primary template assumes the bool value is true:

template< bool, class T, class > // needn’t name unused param’s
struct IF : type is<T> { }

= // partial specialization recognizes a false value:
template< class T, class F >

struct IF<false, T, F> : type_ is<F> { };
e This IFisin C++11, named conditional:

= Augmented (C++14) by a convenience call alias, conditional _t.

= (All the C++14 standard type-returning traits have
an analogous ..._t convenience metafunction call alias.)

Copyright © 2014 by Walter E. Brown. All rights reserved.

18

A single-type variation on conditional

e “If true, use the given type; if false, use no type at all”:

= //primary template assumes the bool value is true:

template< bool, class T = void > // default is useful, not essential
struct enable if : type is<T>{ };

= // partial specialization recognizes a false value, computing nothing:
template<class T >

struct enable if<false, T> { }; // no member named type!
e Now consider a meta-call enable_if< false, - >::type :
= Always an error, right?
= No, only sometimes an error: SFINAE!

= SFINAE: Substitution Failure Is Not An Error.
(Also sometimes termed explicit overload set management.)

Copyright © 2014 by Walter E. Brown. All rights reserved.

19

SFINAE applies during implicit template instantiation

e During template instantiation, the compiler will:
@ Obtain (or figure out) the template arguments:
e Taken verbatim if explicitly supplied at template’s point of use.
e Else deduced from function arguments, if any, at point of call.
e Else taken from the declaration’s default template arguments.

@ Replace each template parameter, throughout the template,
by its corresponding template argument.

e |f these steps produce well-formed code, the instantiation
succeeds, but ...

e |f the resulting code is ill-formed, it is considered not viable

Copyright © 2014 by Walter E. Brown. All rights reserved.

20

_SFINAE in use

e Example: want one algorithm f taking integral types T, and
overload it with a second f taking floating-point types T.

e For a given type T, want at most one of the two algorithms
to be instantiated, so explicitly manage the overload set:

= template<class T >
enable_if t<is_integral<T>::value, maxint_t >

f(Tval) { -}

= template<class T >
enable_if t<is_floating_point<T>::value, long double >

f(Tval) { -}
e What if neither overload were viable?

= Calling f with, say, a string argument produces an ill-formed
program since both candidates will be SFINAE’d away.

Copyright © 2014 by Walter E. Brown. All rights reserved.

A taste of the future

e Concepts Lite seems likely to be published (as a TS) in 2015,
and thence perhaps to be integrated with C++17:

= |ts “constraints” metaprogramming feature seems likely
to reduce or obviate many current uses for SFINAE, etc.

= Based on decades of concepts work by A. Stepanov, inspired
by the founder of abstract algebra, Emmy Noether (1882-1935).

e Revisiting part of our SFINAE example:

= template<class T >

enable if t<is integral<T>::value, maxint_t > // SFINAE
f(Twval) { -~}
" template<Integral T > // constrained template (short form)
maxint_t
f(Twval) {~}

_C++11 library metafunction convention #2

e A metafunction with a value result has:

= A static constexpr member, value, giving its result, and ...
= A few convenience member types and constexpr functions.

e Canonical C++11 value-returning metafunction:

= template<class T, Tv>
struct integral_constant {
static constexpr T value = v;
constexpr operator T () const noexcept {return value;}
constexpr T operator () () const noexcept { return value; }
- // remaining members are only occasionally useful
5
" |nheriting from integral_constant provides more options
for meta-call syntax (details in just a moment).

Copyright © 2014 by Walter E. Brown. All rights reserved.

Revised rank metafunction

e Example: obtain the (compile-time) rank of an array type:

= // primary template handles scalar (non-array) types as base case:

template<class T >
struct rank : integral_constant<size t, Ou> { };

= // partial specialization recognizes bounded array types:
template<class U, size t N>
struct rank< U[N] >
. integral_constant<size t, 1u + rank<U>::value > { };

= // partial specialization recognizes unbounded array types:
template< class U >
struct rank< U[] >

. integral_constant<size_t, 1u + rank<U>::wvalue > { };

Copyright © 2014 by Walter E. Brown. All rights reserved.

Some integral constant conveniences

e A useful convenience alias:

= template< bool b >
using bool constant = integral _constant<bool, b>;

e Some useful C++11 convenience aliases:
" using true_type = bool constant<true>;
= using false_type = bool constant<false>;

e Value-returning metafunction calls have evolved:

" js_void<T>::value // since Technical Report 1

= bool(is_void<T>{}) // instantiate/cast; since C++11
= js_void<T>{ }() // instantiate/call; since C++14
= js_void v<T> // a C++14 variable template;

// planned for C++17 standard library

Copyright © 2014 by Walter E. Brown. All rights reserved.

Using inheritance + specialization together

e Example 1: given a type, is it a void type?

= // primary template handles non-void types:
template<class T > struct is_void : false_type { };

= //four specializations, one to recognize each of the four void types:

template< > struct is_void<void> : true_type { };
template< > struct is_void<void const> : true_type { };

e Example 2: given two types, are they one and the same?

= // primary template handles distinct types:
template< class T, class U > struct is_same : false type { };

= // partial specialization recognizes identical types:
template< class T > struct is_same<T, T> : true_type { };

Copyright © 2014 by Walter E. Brown. All rights reserved.

26

Aliasing == delegation + binding

e Example: given a type, is it a void type?

= template<class T >
using is_void = is_same< remove_cv_t<T>
, void
S-

I

e Where remove_cv and remove_cv_t are simply:

= template<class T >
using remove_cv = remove_volatile< remove_const_t<T> >;

= template<class T >
using remove_cv_t = typename remove_cv<T>::type;

Copyright © 2014 by Walter E. Brown. All rights reserved.

27

Dispatching to best-performing algorithm

e Example: The performance of std::distance depends on its

iterator’s capabilities:

= template< class Iter >
auto

distance(Iter b, Iter e, true type) { returne—-b; } //0(1)

= template< class Iter >
auto

distance(Iter b, Iter e, false_type) { /*loop */ } // O(N)

= template< class Iter >
inline auto
distance(Iter b, Iter e)
{ return distance(b, e, is_ random_access_iter_t<iter>{}); }

e The standard library is more finely grained than this.

Copyright © 2014 by Walter E. Brown. All rights reserved.

28

Dispatching via iterator tags

e Via iterator_traits, each iterator is associated with a type
(tag) denoting its capabilities (category):
= template< class Iter >
auto
distance(Iter b, Iter e, random_access_iterator_tag);
= template< class Iter >
auto
distance(Iter b, Iter e, input_iterator_tag);
= template< class Iter >
inline auto
distance(Iter b, Iter e)
{ return distance(b, e
, iterator_traits<Iter>::iterator_category{ }

); 1

Copyright © 2014 by Walter E. Brown. All rights reserved.

Using a parameter pack in a metafunction

e Example: generalize is_same into is_one_of:

= //primary template: is T the same as one of the types POtoN... ?
template< class T, class... POtoN >

struct is_one_of; // declare the interface only

= //base #1: specialization recognizes empty list of types:
template<class T >

struct is_one_of<T> : false type { };

= // base #2: specialization recognizes match at head of list of types:
template< class T, class... P1toN >
struct is_one of<T, T, P1toN...> : true_type { };

= // specialization recognizes mismatch at head of list of types:
template< class T, class PO, class... P1toN >
struct is_one_of<T, PO, P1toN...>
. is_one_of<T, P1toN...> { }; // go inspect list’s tail

Copyright © 2014 by Walter E. Brown. All rights reserved.

Re-revisiting is_void

e Example: given a type, is it a void type?

= template<class T >
using is_void = is one of< T
, void
, void const
, void volatile
, void const volatile
S

I

Copyright © 2014 by Walter E. Brown. All rights reserved. 31

Unevaluated operands

e Recall that operands of sizeof, alignof, typeid, decltype, and

= Implies that no code is generated (in these contexts)
for such operand expressions, and ...

= |Implies that we need a declaration only, not a definition,
to use a (function’s or object’s) name in these contexts.

e An unevaluated function call (e.g., to foo) can usefully map
one type to another:

= decltype(foo(declval<T>())) // declval is in <utility>
// gives foo’s return type, were it called with a T rvalue

= The unevaluated call std::declval<T>() is declared to give
an rvalue result of type T. (Use std::declval<T&>() for lvalue.)

Copyright © 2014 by Walter E. Brown. All rights reserved.

Example: testing for copy-assignability

e // helper alias for the result type of a valid copy assignment:
template<class T >
using copy_assign_t
= decltype(declval<T&>() = declval< T const& >());
e template<class T >
struct is_copy_assignable {
private:

4 template< class U, class = copy_assign_t<U> >)
static true_type
L try assign(U&&); // SFINAE may apply!)
static false_type)
try assign(...); // catch-all overload)
public:

using type = decltype(try_assign(declval<T>()));
Iy

Copyright © 2014 by Walter E. Brown. All rights reserved.

Ider technique

e Before C++11 introduced decltype, sizeof was (ab?)used
to obtain an unevaluated metaprogramming context:

= Useful to keep this in mind when reading earlier
(C++98/C++03) template metaprogramming code.

e |n detail:

@ In place of true_type/false_type, overloads’ return types
were crafted to have distinct sizes, e.qg.,
typedef char (&yes) [1]; and typedef char (&no) [2]; .

@ As before, call the overloaded function in an unevaluated
context: sizeof(try assign()).

® To determine which overload was chosen, embed that call:

typedef bool constant< sizeof(-) == sizeof(yes) > type; .

Copyright © 2014 by Walter E. Brown. All rights reserved.

Proposed new type trait void_t

e Near-trivial to specify:
= template<class... >

using void_t = void;

= May need a workaround (sigh), pending resolution (at next
meeting?) of CWG issue 1558 clarifying “treatment of unused
arguments in an alias template specialization”:

e template<class... > // helper to step around CWG 1558
struct voider {using type = void; };

e template< class ... TOtoN >
using void_t = typename voider< TOtoN ... >::type;

e |n either case, how does another spelling of void help us?

Copyright © 2014 by Walter E. Brown. All rights reserved.

Utility of void_t

type(s) into the (predictable!) type void:
= |nitially devised as an implementation detail while proposing

SFINAE-friendly versions of common_type and iterator_traits.

= But “a method is a device which you used twice.” — G. Polya
e Example: detect the presence/absence of a valid type

member named T::type (per the metafunction convention):

@ // primary template:
template< class, class = void >

struct has_type member : false type { };
@ // partial specialization:
template<class T >
struct has_type _member< T, void_t< typename T::type > >
. true_type { };

Copyright © 2014 by Walter E. Brown. All rights reserved.

In detall

e Called via has_type_member<T>::value or equivalent.

@ template<class T >
struct has_type_member< T,[void_t< typename T::type >}>
. true_type { };

= This specialization is well-formed and thus viable (despite a
funny spelling of the second argument, void); as the more-
specialized candidate, it will be selected by the compiler.

= T::typeisill-formed, so the specialization @ is nonviable
(SFINAE!); as the only viable candidate, primary template @
will be selected.

@ template< class, class = void > //default argument is essential
struct has_type _member : false type { };

Copyright © 2014 by Walter E. Brown. All rights reserved.

Revisiting is_copy_assignable
o //recall this helper alias for the result type of a valid copy assignment:
template<class T >
using copy_assign_t
= decltype(declval<T&>() = declvaI<[T const&}>());

e //primary template handles all non-copy-assignable types:
template< class T, class = void > // default argument is essential
struct is_copy_assignable : false type { };

e //specialization recognizes and validates only copy-assignable types:
template<class T >
struct is_copy_assignable< T, void_t< copy_assign_t<T>>>
. true_type { };

e Want is_move_assignable? Change T const& — T&&.

Copyright © 2014 by Walter E. Brown. All rights reserved. 38

Factoring the idiom

e Atemplate template parameter is a useful placeholder:

= // primary template handles all types not supporting the operation:
template< class T, template< class > class Op, class = void >
struct is_valid : false type { };

= // specialization recognizes/validates only types supporting the op:
template< class T, template< class > class Op >
struct is_valid<T, Op, void_t<Op<T>>> : true type { };

e Now can supply, for example, the earlier copy_assign_t or
move_assign_t alias as the corresponding argument:
= template<class T >
using is_copy_assighable = is_valid<T, copy_assign_t>;
= template<class T >
using is_move_assignable

is_valid<T, move_assign_t>;

Copyright © 2014 by Walter E. Brown. All rights reserved.

The idiom need not depend on void_t

e F.g., can use enable_if t to obtain void conditionally.

e Example: detect whether a given type is a signed type:

= // primary template handles non-arithmetic types and unsigned types:
template< class T, class = void >
struct is_signed : false type { };
= //specialization recognizes and validates only signed types:
template<class T >
struct is_signed< T, enable_if t< is_arithmetic<T>::value
and T(-1) < T(0)
>
> : true_type { };
= static_assert(is_signed<long>::value);
static_assert(not is_signed<unsigned>::value);

Copyright © 2014 by Walter E. Brown. All rights reserved. 40
I
I

The idiom need not depend on void either

appear in 2 places:
= As a default argument in the primary template, and also ...
= As the result of a type function in the specialization’s argument.

e Example: detect whether a given type is a complete type:

= // primary template handles all incomplete types:
template< class T, class = size_t >

struct is_complete : false _type { };

= // specialization recognizes and validates only complete types:
template<class T >
struct is_complete<T, decltype(sizeof(T))> : true_type { };

= static_assert(is_complete<long>::value);
static_assert(not is_complete<void>::value);

Copyright © 2014 by Walter E. Brown. All rights reserved. 41

Status of void_t standardization

e Proposed (document N3911) to C++ Standards Committee.

= Aimed at <type_traits> in C++17, but may be published
in a Technical Specification before then.

= On agenda for next Committee meeting.

e Early feedback includes “highly advanced (and elegant)”
and “awesome”!

e Trait’s name seems slightly contentious:
= make void t, as void t, to void t
= voidify_t, always_void
= enable_if types_exist_t, enable if valid, enable_if exist

= void_if valid, true_if valid, type check

Copyright © 2014 by Walter E. Brown. All rights reserved.

Summary of techniques and tools

Metafunction member types and static constexpr data
members for intermediate and final metafunction results.

Metafunction calls (possibly recursive), inheritance, and
aliasing to factor commonalities.

Template specializations (complete and partial) for
metafunction argument pattern-matching.

SFINAE to guide overload resolution and specialization.

Unevaluated operands, such as function calls to map types.

Parameter packs as lists (usually of types).

std:: metafunctions in <type_traits>, plus such classical
metafunctions as iterator_traits<> and numeric_limits<>.

void_t, the is_valid idiom, and more!

Copyright © 2014 by Walter E. Brown. All rights reserved.

Acknowledgements

e Thank you for technical comments:
= Stephen T. Lavavej
"= Howard Hinnant
= Eric Niebler

= Samuel Benzaquen

e Special thanks for making my tie, and for so much more:
= Carol A. Brown

Copyright © 2014 by Walter E. Brown. All rights reserved.

A final thought re template metaprogramming

“Although we're professionals now, we all started out as

humble students Back then, everything was new, and we
had no real way of knowing whether what we were looking at
was wizardry or WTF.”

— http://thedailywtf.com, 2014-09-09

Copyright © 2014 by Walter E. Brown. All rights reserved.

45

Modern Template Metaprogramming:

A Compendium

Revised and expanded edition

FIN

WALTER E. BROWN, PH.D.

<webrown.cpp @ gmail.com>

Copyright © 2014 by Walter E. Brown. All rights reserved.

