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What this talk is not

• about why we need to do multithreaded programming

• about how to do multithreaded programming

• about how to use locks, how to prevent common problems with them

• about how not to have deadlocks or livelocks

• about how to do lockfree programming
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… it is about what we need to reason about 
concurrent code

you might still learn something about 
multithreaded programming …

… maybe just that it is even more 
complicated than you thought it was …
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Your computer does not execute the program you 
wrote
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Before we start

• Computers do not execute the program you write
• the compiler will optimize your program

• loop fusion, …

• the CPU will optimize your instructions
• branch-prediction, …

• the cache will optimize your loads and stores
• prefetching, …

• They will execute a program that will behave as-if it was yours

• Can’t get any kind of performance without that

• We will never know which changes the system made because we can 
not observe them.

For us all of these optimizations look like the 
system reordered the memory accesses 
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Before we start

• So what happens when a second thread comes in?
• Now the ordering of memory access becomes observable

• At least for the data that is/might be shared

• Two options:
• System stops doing  the optimizations that have become observable

• We cope with the unpredictably ordered memory accesses

MEH!
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Can we cope?

• No!

Initial State:

f1, f2 = false, x = 0

Thread #1:

f1 = true;     // A

if(!f2){++x;} // B

Thread #1:

f2 = true; // C

if(!f1){++x;} // D

can x be 2? Yes
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Can we cope?

• No!

• No, really not!

• We cannot implement critical 
sections without consistently 
ordered memory access

• We’d lose causality!

and we really don’t want causality to go all 
wibbily wobbly timey wimey on us ... 
debugging is hard enough in a world of strict 
progression of cause to affect

Initial State:

f1, f2 = false, x = 0

Thread #1:

f1 = true;     // A

if(!f2){++x;} // B

Thread #1:

f2 = true; // C

if(!f1){++x;} // D

can x be 2?
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But we did concurrent programing, before

• We manually used platform specific primitives to synchronize our 
memory accesses
• Hardware provided special instructions to flush caches or synchronize 

memory accesses

• Compilers either used special build-in primitives or were taught to recognize 
these instructions, to prevent broken optimizations
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Memory Model

• describes the interactions of threads through memory and their 
shared use of data.

• allow the system to make optimizations to your program without 
breaking it.

not to be confused with memory addressing 
models, which have largely gone the way of the 
Dodo.

fairly new concept. Java has a formalized 
memory model since 2005, C++ since 2011
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a few boring definitions …
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Data Race

conflicting action [intro.multithread(1.10)/4] (sometimes known as race condition)

two (or more) actions that access the same memory location and at least one of 
them is a write

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent non-zero width bit-
fields 

data race [intro.multithread(1.10)/21] (sometimes known as race condition)

two conflicting actions in different threads and neither happens before the 
other.
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Data Race

conflicting action [intro.multithread(1.10)/4] (sometimes known as race condition)

two (or more) actions that access the same memory location and at least one of 
them is a write

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent non-zero width bit-
fields 

data race [intro.multithread(1.10)/21] (sometimes known as race condition)

two conflicting actions in different threads and neither happens before the 
other.

A

B
…

C

D
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Data Race

conflicting action [intro.multithread(1.10)/4] (sometimes known as race condition)

two (or more) actions that access the same memory location and at least one of 
them is a write

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent non-zero width bit-
fields 

data race [intro.multithread(1.10)/21] (sometimes known as race condition)

two conflicting actions in different threads and neither happens before the 
other.

A

B … C

D
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Data Race

conflicting action [intro.multithread(1.10)/4] (sometimes known as race condition)

two (or more) actions that access the same memory location and at least one of 
them is a write

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent non-zero width bit-
fields 

data race [intro.multithread(1.10)/21] (sometimes known as race condition)

two conflicting actions in different threads and neither happens before the 
other.

A

B … C

D
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Data Race

conflicting action [intro.multithread(1.10)/4] (sometimes known as race condition)

two (or more) actions that access the same memory location and at least one of 
them is a write

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent non-zero width bit-
fields 

data race [intro.multithread(1.10)/21] (sometimes known as race condition)

two conflicting actions in different threads and neither happens before the 
other.
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Data Race

conflicting action [intro.multithread(1.10)/4] (sometimes known as race condition)

two (or more) actions that access the same memory location and at least one of 
them is a write

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent non-zero width bit-
fields 

data race [intro.multithread(1.10)/21] (sometimes known as race condition)

two conflicting actions in different threads and neither happens before the 
other.
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Sequential Consistency

sequential consistency [Leslie Lamport, 1979]
the result  of any execution is the same as-if the operations of all threads are 
executed in some sequential order, and the operations of each thread appear in 
this sequence in the order specified by their program
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Sequential Consistency

sequential consistency [Leslie Lamport, 1979]
the result  of any execution is the same as-if the operations of all threads are 
executed in some sequential order, and the operations of each thread appear in 
this sequence in the order specified by their program

1919

A

B
C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B C

D





The C++ memory model

Here is the deal:

• We do not write data races into our program

• The system guarantees sequentially consistent execution

So how do we prevent data races?

• Do not share our data!

• Synchronize our data access

sequential consistency for data-race-free programs
SC-DRF
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synchronize (the easy way)…

21



Locks

lock shared memory location for exclusive access while in use

+ leaves intra-thread optimization alone
• but what happens in the critical section stays in the critical section

• => critical sections prevent memory access reordering across them

+ synchronizes with other threads

+ it “just works” …

- requires care on every use of a memory location

- prone to races, deadlocks and livelocks
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Locks

int fun_money = atm.get(limit);

{ auto in_lasVegas = std::lock_guard<std::mutex>(lasVegas);

fun_money = gamble(fun_money);

}

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

Good time
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Locks

int fun_money = atm.get(limit);

fun_money = gamble(fun_money);  

{ auto in_lasVegas = std::lock_guard<std::mutex>(lasVegas);

}

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

Good time?

24

// lost all my money before even

// getting to vegas 



Locks

int fun_money = atm.get(limit);

{ auto in_lasVegas = std::lock_guard<std::mutex>(lasVegas);

}

fun_money = gamble(fun_money); 

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

Good time?

25
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Locks

int fun_money = atm.get(limit);

{ auto in_lasVegas = std::lock_guard<std::mutex>(lasVegas);

fun_money = gamble(fun_money);

}

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

Good time – as long as we respect the borders
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Locks

int fun_money = atm.get(limit);

{ lasVegas.lock(); // entering Las Vegas

fun_money = gamble(fun_money);

lasVegas.unlock(); // leaving Las Vegas

}

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

Good time – as long as we respect the borders
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Locks

int fun_money = atm.get(limit);

{ lasVegas.lock(); // entering Las Vegas – no reordering allowed!

fun_money = gamble(fun_money);

lasVegas.unlock(); // leaving Las Vegas – no reordering allowed!

}

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

Good time – as long as we respect the borders
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Locks

{ lasVegas.lock(); // entering Las Vegas

int fun_money = atm.get(limit);

fun_money = gamble(fun_money);

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

lasVegas.unlock(); // leaving Las Vegas

}

Good time?
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Locks

{ lasVegas.lock(); // entering Las Vegas – no gambling before this

int fun_money = atm.get(limit);

fun_money = gamble(fun_money);

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

lasVegas.unlock(); // leaving Las Vegas – no gambling after this

}

Good time – sure no problem
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Locks and barriers

• locks imply barriers
• full barriers would be too restrictive

• acquire on locking / release on unlocking is sufficient

• the C++ threading library provides locks with the appropriate 
acquire/release semantics

• if you use locks to correctly protect your shared memory locations the 
system guarantees sequentially consistent execution.
• What is strange about the previous example?
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Lockfree data structures

try to update a shared memory location and retry if someone else 
interfered

• based on std::atomic<>
• needs hardware support

• not all platforms provide lockfree atomics

+ tag the shared variable not every place it is used

- harder than it looks
- lockfree data structures are still a frontier in research

Don’t do this at Work!
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Lockfree data structures

Don’t do this at Work!

• if you use std::atomic<> with default memory order for all your 
shared memory locations your program will be sequentially 
consistent

template<typename T> class stack {

struct node{T data; node* next; node(T const& data_):data(data_){}};

std::atomic<node*> head;

public:

void push(T const& data) {

node* const newNode = new node(data);

newNode->next = head.load(); // equiv: …->next = head;

while(!head.compare_exchange_weak(newNode->next, newNode))

;

}

};

operations on atomics are indivisible

Expected Desired

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Lockfree data structures

try to update a shared memory location and retry if someone else 
interfered

• based on std::atomic<>
• needs hardware support

• not all platforms provide lockfree atomics

+ tag the shared variable not every place it is used

- harder than it looks
- lockfree data structures are still a frontier in research

Don’t do this at Work!

• in C++ the concept is spelled 
std::atomic<>

• volatile is for “talking” to 
stuff that lives outside the 
memory model (e.g. Hardware 
Registers)

• provides even fewer guarantees 
than atomics

• does not provide inter-thread 
synchronization

• it is “just like IO”

These are not the volatiles
you are looking for!
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Are we there yet?

• If you stay in this world you are fine
• as long as you apply locks correctly

• and/or as long as you implement your lockfree data structures correctly

• SC-DRF is the default C++ memory model
• also the (only) memory model of Java and C#

• On modern hardware you will almost always get nearly optimal 
performance
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No, and there is still a long way to go

• This wouldn’t be C++ if we couldn’t make it a bit more complex
• to tell the system that we still know its job better than it does

• so that we can squeeze the last ounce of performance out of it

• Some of us are just not happy if we cannot twiddle all the knobs
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Memory Order

Why stop at one memory model when we can have 3 (and a half)?

sequentially consistent 
(SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

memory_order_*memory model

*

re
la

xe
d

 m
o

d
e

ls
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sequentially consistent 
(SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

down to the bottom – no memory model
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Initial State:

int c = 0

Thread #1,#2, …:

for (int i=0;i<100;++i) {

…

++c;

…

}

Thread main:

start_n_threads();

join_n_threads();

assert(100*n == c);

safe?

Because the system may implement ++c as:

for (int i=0;i<100;++i) {

…

{ // ++c;

register int tmp = c;

tmp = tmp + 1;

c = tmp;

}

…

}

No, classical data race
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Enter std::atomic<> for basic guarantees

• atomics guarantee that loads and stores are done atomically
• think: std::atomic<BigBigInt> =

9’000’000’000’000’000’000’000’000;

• provide facilities to atomically implement Read-Modify-Write 
operations

• provide common RMW operations:
• increment, logic operations, fetch_add/fetch_sub

oldval = c;

while(!c.compare_exchange_weak(oldval, oldval+1)) 

;

Expected Desired

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sequentially consistent 
(SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

The relaxed model
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The relaxed model guarantees scarcely 
anything
• operations on the same memory location in the same thread will not 

be reordered

• once a thread has seen a value subsequent reads on the same thread 
cannot see an earlier value
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Initial State:

atomic<int> c = 0

Thread #1,#2, …:

for (int i=0;i<100;++i) {

…

c.fetch_add(1, memory_order_relaxed);

…

}

Thread main:

start_n_threads();

join_n_threads();

assert(100*n == c);

safe? Yes
Initial State:

atomic<int> c = 0

Thread #1,#2, …:

for (int i=0;i<100;++i) {

…

c.fetch_add(1, memory_order_relaxed);

…

}

Thread main:

int old_c = c;

start_n_threads();

int c_now = c.load(memory_order_relaxed);

assert(old_c <= c_now);

old_c = c_now;

join_n_threads();

assert(100*n == c);

progress guaranteed? Yes

43
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Initial State:

f1, f2 = false, x = 0

Thread #1:

f1.store(true, memory_order_relaxed); //A

f2.store(true, memory_order_relaxed); //B

Thread #2:

while(!f2.load(memory_order_relaxed)); //C

if(f1.load(memory_order_relaxed)){++x;}//D

0 or 1? cannot be 
sure!
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The relaxed model guarantees scarcely 
anything
• operations on the same memory location in the same thread will not 

be reordered

• once a thread has seen a value subsequent reads on the same thread 
cannot see an earlier value

• No (automatic) inter-thread synchronization!
• needs to be done manually with fences(aka barriers)

• std::atomic_thread_fence(memory_order)

• manual fences are fairly expensive, they force all memory operations over all 
threads to synchronize
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A note of caution:

“don’t fall into the trap of thinking that synchronize is a relationship 
between statements in your source code. It isn’t! It’s a relationship 
between operations which occur at runtime, based on those 
statements”
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sequentially consistent 
(SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

The consume/release model
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What does consume mean?

• a read-consume operation R is correctly paired with a write-release
operation W.

• All Operations in the releasing thread preceding the write-release 
inter-thread-happen-before an operation X in the acquiring thread,
if R carries-a-dependency-to X.

Typical examples for R carries-a-dependency-to X:

• X dereferences a pointer obtained by R

• X is accessing array at index obtained R
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A

C

D

c

x

X::i

px

…

E

F

B

G

Setup:

struct X { int i; }

int c;

std::atomic<X*> px;

Thread #1:

c = 42;                               //A

auto x = new X;                       //B

x->i = 42;                            //C

px.store(x, memory_order_release);    //D

Thread #2:

X* y;                             //  E   

while(!y=px.load(memory_order_consume)); 

assert(42 == y->i);                   //F

assert(42 == c);                      //G

who has the answer? y->i does

y
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sequentially consistent 
(SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

The acquire/release model
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What does acquire/release mean

• a read-acquire operation that is correctly paired with a write-release
operation introduces synchronization between those two threads

• All Operations in the releasing thread preceding the write-release 
inter-thread-happen-before all operations following the read-acquire
in the acquiring thread.

• Read-Modify-Write operations can have acquire, release or 
both(acq_rel) semantics
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A

C

D

c

x

X::i

px

…

E

F

B

G

Setup:

struct X { int i; }

int c;

std::atomic<X*> px;

Thread #1:

c = 42;                               //A

auto x = new X;                       //B

x->i = 42;                            //C

px.store(x, memory_order_release);    //D

Thread #2:

X* y;                             //  E   

while(!y=px.load(memory_order_acquire)); 

assert(42 == y->i);                   //F

assert(42 == c);                      //G

who has the answer? y->i does

y

and so does c
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A

C

D

f1

f2

x

…

E

F

B

Initial State:

f1, f2 = false, x = 0

Thread #1:

x = 42;                               //A

f1.store(true, memory_order_release); //B

Thread #2:

while(!f1.load(memory_order_acquire));//C

f2.store(true, memory_order_release); //D

Thread #3:

while(!f2.load(memory_order_acquire));//E

assert(42 == x);                      //F

is x the answer? Yes
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A

B

C

f1

f2

x

…

F

D
Initial State:

f1, f2 = false, x = 0

Thread #1:

f1.store(true, memory_order_release);//A

Thread #2:

while(!f1.load(memory_order_acquire));  //B

if(f2.load(memory_order_acquire)){++x;} //C

Thread #3:

while(!f2.load(memory_order_acquire)); //E

if(f1.load(memory_order_acquire)){++x;} //F

Thread #4:

f2.store(true, memory_order_release);//D

value of x?

A < B < C D < E < F

x = 2? D < C && A < F
x = 1? D > C XOR A > F
x = 0? D > C && A > F

0,1 or 2
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Wait, what? 
A variable can ever have more than one value?

it is just a memory location, a bunch of bits at a specific location in 
memory 

• quick Q:  how many MB of Cache do you have? 

• L2-Cache?

• how many L3-Caches do you have?

• How do those interact?

• What if cores share data?

the pointer is a lie!
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f1

f2

x

…

A

B

C

f1

f2

x

…

E

F

D

f1

f2

x

…

Initial State:

f1, f2 = false, x = 0

Thread #1:

f1.store(true, memory_order_release);//A

Thread #2:

while(!f1.load(memory_order_acquire));  //B

if(f2.load(memory_order_acquire)){++x;} //C

Thread #3:

while(!f2.load(memory_order_acquire)); //E

if(f1.load(memory_order_acquire)){++x;} //F

Thread #4:

f2.store(true, memory_order_release);//D

value of x?
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f1

f2

x

…

A

B

C

f1

f2

x

…

E

F

D

f1

f2

x

…

Initial State:

f1, f2 = false, x = 0

Thread #1:

f1.store(true, memory_order_release);//A

Thread #2:

while(!f1.load(memory_order_acquire));  //B

if(f2.load(memory_order_acquire)){++x;} //C

Thread #3:

while(!f2.load(memory_order_acquire)); //E

if(f1.load(memory_order_acquire)){++x;} //F

Thread #4:

f2.store(true, memory_order_release);//D

value of x?
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Depending which cache you ask the value 
of a memory location may be different



Why is that

• the acquire/release model does not guarantee that a store to an 
atomic value becomes visible to all threads at the same time

• on some systems skipping this value propagation can have a positive 
performance impact

58



Legitimate use-cases for the relaxed models?

• target platform is ARM (<v8)  or PowerPC

• operation counters

• some reference counters

• lazy initialization
• but for this C++ also brings std::call_once

If that is the case:

• wrap the code in nice encapsulations
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sequentially consistent 
(SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

so let us now return into the nice, cozy, sane land of 
the default memory model
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A

B

C

f1

f2

x

…

E

F

D

Initial State:

f1, f2 = false, x = 0

Thread #1:

f1.store(true);         // A

Thread #2:

while (!f1.load()) ;    // B

if (f2.load()) { ++x;}  // C

Thread #3:

while (!f2.load()) ;    // E

if (f1.load()) { ++x;}  // F

Thread #4:

f2.store(true); // D

value of x?

A < B < C D < E < F

x = 2? D < C && A < F
x = 1? D > C XOR A > F

x = 0? D > C && A > F 

1 or 2
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A

B

C

f1

f2

x

…

E

F

D

Initial State:

f1, f2 = false, x = 0

Thread #1:

f1.store(true);         // A

Thread #2:

while (!f1.load()) ;    // B

if (f2.load()) { ++x;}  // C

Thread #3:

while (!f2.load()) ;    // E

if (f1.load()) { ++x;}  // F

Thread #4:

f2.store(true); // D

value of x?

A < B < C D < E < F

x = 2? D < C && A < F
x = 1? D > C XOR A > F

x = 0? D > C && A > F 

1 or 2

At any given time each memory 
location has only one value*

* in the sequentially consistent memory 
model!
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Wrap up 

• The C++ memory model allows us to reason about multithreaded 
code

• It is gives reasonable guarantees to implement performant algorithms

• It allows us to derivate from the default model if we need to
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Questions?
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