
C++ Memory Model
C++ User Group Berlin 17/12/2013

Valentin Ziegler

Fabio Fracassi

What this talk is not

• about why we need to do multithreaded programming

• about how to do multithreaded programming

• about how to use locks, how to prevent common problems with them

• about how not to have deadlocks or livelocks

• about how to do lockfree programming

2

… it is about what we need to reason about
concurrent code

you might still learn something about
multithreaded programming …

… maybe just that it is even more
complicated than you thought it was …

3

Your computer does not execute the program you
wrote

4

Before we start

• Computers do not execute the program you write
• the compiler will optimize your program

• loop fusion, …

• the CPU will optimize your instructions
• branch-prediction, …

• the cache will optimize your loads and stores
• prefetching, …

• They will execute a program that will behave as-if it was yours

• Can’t get any kind of performance without that

• We will never know which changes the system made because we can
not observe them.

For us all of these optimizations look like the
system reordered the memory accesses

5

Before we start

• So what happens when a second thread comes in?
• Now the ordering of memory access becomes observable

• At least for the data that is/might be shared

• Two options:
• System stops doing the optimizations that have become observable

• We cope with the unpredictably ordered memory accesses

MEH!

6

Can we cope?

• No!

Initial State:

f1, f2 = false, x = 0

Thread #1:

f1 = true; // A

if(!f2){++x;} // B

Thread #1:

f2 = true; // C

if(!f1){++x;} // D

can x be 2? Yes

7

Can we cope?

• No!

• No, really not!

• We cannot implement critical
sections without consistently
ordered memory access

• We’d lose causality!

and we really don’t want causality to go all
wibbily wobbly timey wimey on us ...
debugging is hard enough in a world of strict
progression of cause to affect

Initial State:

f1, f2 = false, x = 0

Thread #1:

f1 = true; // A

if(!f2){++x;} // B

Thread #1:

f2 = true; // C

if(!f1){++x;} // D

can x be 2?

8

But we did concurrent programing, before

• We manually used platform specific primitives to synchronize our
memory accesses
• Hardware provided special instructions to flush caches or synchronize

memory accesses

• Compilers either used special build-in primitives or were taught to recognize
these instructions, to prevent broken optimizations

9

Memory Model

• describes the interactions of threads through memory and their
shared use of data.

• allow the system to make optimizations to your program without
breaking it.

not to be confused with memory addressing
models, which have largely gone the way of the
Dodo.

fairly new concept. Java has a formalized
memory model since 2005, C++ since 2011

10

a few boring definitions …

11

Data Race

conflicting action [intro.multithread(1.10)/4] (sometimes known as race condition)

two (or more) actions that access the same memory location and at least one of
them is a write

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent non-zero width bit-
fields

data race [intro.multithread(1.10)/21] (sometimes known as race condition)

two conflicting actions in different threads and neither happens before the
other.

12

Data Race

conflicting action [intro.multithread(1.10)/4] (sometimes known as race condition)

two (or more) actions that access the same memory location and at least one of
them is a write

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent non-zero width bit-
fields

data race [intro.multithread(1.10)/21] (sometimes known as race condition)

two conflicting actions in different threads and neither happens before the
other.

A

B
…

C

D

13

Data Race

conflicting action [intro.multithread(1.10)/4] (sometimes known as race condition)

two (or more) actions that access the same memory location and at least one of
them is a write

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent non-zero width bit-
fields

data race [intro.multithread(1.10)/21] (sometimes known as race condition)

two conflicting actions in different threads and neither happens before the
other.

A

B … C

D

14

Data Race

conflicting action [intro.multithread(1.10)/4] (sometimes known as race condition)

two (or more) actions that access the same memory location and at least one of
them is a write

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent non-zero width bit-
fields

data race [intro.multithread(1.10)/21] (sometimes known as race condition)

two conflicting actions in different threads and neither happens before the
other.

A

B … C

D

15

Data Race

conflicting action [intro.multithread(1.10)/4] (sometimes known as race condition)

two (or more) actions that access the same memory location and at least one of
them is a write

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent non-zero width bit-
fields

data race [intro.multithread(1.10)/21] (sometimes known as race condition)

two conflicting actions in different threads and neither happens before the
other.

16

A

B

C

D

…

Data Race

conflicting action [intro.multithread(1.10)/4] (sometimes known as race condition)

two (or more) actions that access the same memory location and at least one of
them is a write

memory location [intro.memory(1.7)/3]
an object of scalar type or a maximal sequence of adjacent non-zero width bit-
fields

data race [intro.multithread(1.10)/21] (sometimes known as race condition)

two conflicting actions in different threads and neither happens before the
other.

17

Sequential Consistency

sequential consistency [Leslie Lamport, 1979]
the result of any execution is the same as-if the operations of all threads are
executed in some sequential order, and the operations of each thread appear in
this sequence in the order specified by their program

18

Sequential Consistency

sequential consistency [Leslie Lamport, 1979]
the result of any execution is the same as-if the operations of all threads are
executed in some sequential order, and the operations of each thread appear in
this sequence in the order specified by their program

1919

A

B
C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B C

D



The C++ memory model

Here is the deal:

• We do not write data races into our program

• The system guarantees sequentially consistent execution

So how do we prevent data races?

• Do not share our data!

• Synchronize our data access

sequential consistency for data-race-free programs
SC-DRF

20

synchronize (the easy way)…

21

Locks

lock shared memory location for exclusive access while in use

+ leaves intra-thread optimization alone
• but what happens in the critical section stays in the critical section

• => critical sections prevent memory access reordering across them

+ synchronizes with other threads

+ it “just works” …

- requires care on every use of a memory location

- prone to races, deadlocks and livelocks

22

Locks

int fun_money = atm.get(limit);

{ auto in_lasVegas = std::lock_guard<std::mutex>(lasVegas);

fun_money = gamble(fun_money);

}

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

Good time

23

Locks

int fun_money = atm.get(limit);

fun_money = gamble(fun_money);

{ auto in_lasVegas = std::lock_guard<std::mutex>(lasVegas);

}

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

Good time?

24

// lost all my money before even

// getting to vegas 

Locks

int fun_money = atm.get(limit);

{ auto in_lasVegas = std::lock_guard<std::mutex>(lasVegas);

}

fun_money = gamble(fun_money);

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

Good time?

25

// got jailed for illegal gambling 

Locks

int fun_money = atm.get(limit);

{ auto in_lasVegas = std::lock_guard<std::mutex>(lasVegas);

fun_money = gamble(fun_money);

}

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

Good time – as long as we respect the borders

26

Locks

int fun_money = atm.get(limit);

{ lasVegas.lock(); // entering Las Vegas

fun_money = gamble(fun_money);

lasVegas.unlock(); // leaving Las Vegas

}

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

Good time – as long as we respect the borders

27

Locks

int fun_money = atm.get(limit);

{ lasVegas.lock(); // entering Las Vegas – no reordering allowed!

fun_money = gamble(fun_money);

lasVegas.unlock(); // leaving Las Vegas – no reordering allowed!

}

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

Good time – as long as we respect the borders

28

Locks

{ lasVegas.lock(); // entering Las Vegas

int fun_money = atm.get(limit);

fun_money = gamble(fun_money);

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

lasVegas.unlock(); // leaving Las Vegas

}

Good time?

29

Locks

{ lasVegas.lock(); // entering Las Vegas – no gambling before this

int fun_money = atm.get(limit);

fun_money = gamble(fun_money);

socialNet.post(“Had fun in Vegas, won $” + (fun_money - limit));

lasVegas.unlock(); // leaving Las Vegas – no gambling after this

}

Good time – sure no problem

30

Locks and barriers

• locks imply barriers
• full barriers would be too restrictive

• acquire on locking / release on unlocking is sufficient

• the C++ threading library provides locks with the appropriate
acquire/release semantics

• if you use locks to correctly protect your shared memory locations the
system guarantees sequentially consistent execution.
• What is strange about the previous example?

31

Lockfree data structures

try to update a shared memory location and retry if someone else
interfered

• based on std::atomic<>
• needs hardware support

• not all platforms provide lockfree atomics

+ tag the shared variable not every place it is used

- harder than it looks
- lockfree data structures are still a frontier in research

Don’t do this at Work!

32

Lockfree data structures

Don’t do this at Work!

• if you use std::atomic<> with default memory order for all your
shared memory locations your program will be sequentially
consistent

template<typename T> class stack {

struct node{T data; node* next; node(T const& data_):data(data_){}};

std::atomic<node*> head;

public:

void push(T const& data) {

node* const newNode = new node(data);

newNode->next = head.load(); // equiv: …->next = head;

while(!head.compare_exchange_weak(newNode->next, newNode))

;

}

};

operations on atomics are indivisible

Expected Desired


33

Lockfree data structures

try to update a shared memory location and retry if someone else
interfered

• based on std::atomic<>
• needs hardware support

• not all platforms provide lockfree atomics

+ tag the shared variable not every place it is used

- harder than it looks
- lockfree data structures are still a frontier in research

Don’t do this at Work!

• in C++ the concept is spelled
std::atomic<>

• volatile is for “talking” to
stuff that lives outside the
memory model (e.g. Hardware
Registers)

• provides even fewer guarantees
than atomics

• does not provide inter-thread
synchronization

• it is “just like IO”

These are not the volatiles
you are looking for!

34

Are we there yet?

• If you stay in this world you are fine
• as long as you apply locks correctly

• and/or as long as you implement your lockfree data structures correctly

• SC-DRF is the default C++ memory model
• also the (only) memory model of Java and C#

• On modern hardware you will almost always get nearly optimal
performance

35

No, and there is still a long way to go

• This wouldn’t be C++ if we couldn’t make it a bit more complex
• to tell the system that we still know its job better than it does

• so that we can squeeze the last ounce of performance out of it

• Some of us are just not happy if we cannot twiddle all the knobs

36

Memory Order

Why stop at one memory model when we can have 3 (and a half)?

sequentially consistent
(SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

memory_order_*memory model

*

re
la

xe
d

 m
o

d
e

ls

37

sequentially consistent
(SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

down to the bottom – no memory model

38

Initial State:

int c = 0

Thread #1,#2, …:

for (int i=0;i<100;++i) {

…

++c;

…

}

Thread main:

start_n_threads();

join_n_threads();

assert(100*n == c);

safe?

Because the system may implement ++c as:

for (int i=0;i<100;++i) {

…

{ // ++c;

register int tmp = c;

tmp = tmp + 1;

c = tmp;

}

…

}

No, classical data race

39



Enter std::atomic<> for basic guarantees

• atomics guarantee that loads and stores are done atomically
• think: std::atomic<BigBigInt> =

9’000’000’000’000’000’000’000’000;

• provide facilities to atomically implement Read-Modify-Write
operations

• provide common RMW operations:
• increment, logic operations, fetch_add/fetch_sub

oldval = c;

while(!c.compare_exchange_weak(oldval, oldval+1))

;

Expected Desired


40

sequentially consistent
(SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

The relaxed model

41

The relaxed model guarantees scarcely
anything
• operations on the same memory location in the same thread will not

be reordered

• once a thread has seen a value subsequent reads on the same thread
cannot see an earlier value

42

Initial State:

atomic<int> c = 0

Thread #1,#2, …:

for (int i=0;i<100;++i) {

…

c.fetch_add(1, memory_order_relaxed);

…

}

Thread main:

start_n_threads();

join_n_threads();

assert(100*n == c);

safe? Yes
Initial State:

atomic<int> c = 0

Thread #1,#2, …:

for (int i=0;i<100;++i) {

…

c.fetch_add(1, memory_order_relaxed);

…

}

Thread main:

int old_c = c;

start_n_threads();

int c_now = c.load(memory_order_relaxed);

assert(old_c <= c_now);

old_c = c_now;

join_n_threads();

assert(100*n == c);

progress guaranteed? Yes

43







Initial State:

f1, f2 = false, x = 0

Thread #1:

f1.store(true, memory_order_relaxed); //A

f2.store(true, memory_order_relaxed); //B

Thread #2:

while(!f2.load(memory_order_relaxed)); //C

if(f1.load(memory_order_relaxed)){++x;}//D

0 or 1? cannot be
sure!

44

The relaxed model guarantees scarcely
anything
• operations on the same memory location in the same thread will not

be reordered

• once a thread has seen a value subsequent reads on the same thread
cannot see an earlier value

• No (automatic) inter-thread synchronization!
• needs to be done manually with fences(aka barriers)

• std::atomic_thread_fence(memory_order)

• manual fences are fairly expensive, they force all memory operations over all
threads to synchronize

45

A note of caution:

“don’t fall into the trap of thinking that synchronize is a relationship
between statements in your source code. It isn’t! It’s a relationship
between operations which occur at runtime, based on those
statements”

46

sequentially consistent
(SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

The consume/release model

47

What does consume mean?

• a read-consume operation R is correctly paired with a write-release
operation W.

• All Operations in the releasing thread preceding the write-release
inter-thread-happen-before an operation X in the acquiring thread,
if R carries-a-dependency-to X.

Typical examples for R carries-a-dependency-to X:

• X dereferences a pointer obtained by R

• X is accessing array at index obtained R

48

A

C

D

c

x

X::i

px

…

E

F

B

G

Setup:

struct X { int i; }

int c;

std::atomic<X*> px;

Thread #1:

c = 42; //A

auto x = new X; //B

x->i = 42; //C

px.store(x, memory_order_release); //D

Thread #2:

X* y; //  E

while(!y=px.load(memory_order_consume));

assert(42 == y->i); //F

assert(42 == c); //G

who has the answer? y->i does

y

49





sequentially consistent
(SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

The acquire/release model

50

What does acquire/release mean

• a read-acquire operation that is correctly paired with a write-release
operation introduces synchronization between those two threads

• All Operations in the releasing thread preceding the write-release
inter-thread-happen-before all operations following the read-acquire
in the acquiring thread.

• Read-Modify-Write operations can have acquire, release or
both(acq_rel) semantics

51

A

C

D

c

x

X::i

px

…

E

F

B

G

Setup:

struct X { int i; }

int c;

std::atomic<X*> px;

Thread #1:

c = 42; //A

auto x = new X; //B

x->i = 42; //C

px.store(x, memory_order_release); //D

Thread #2:

X* y; //  E

while(!y=px.load(memory_order_acquire));

assert(42 == y->i); //F

assert(42 == c); //G

who has the answer? y->i does

y

and so does c

52





A

C

D

f1

f2

x

…

E

F

B

Initial State:

f1, f2 = false, x = 0

Thread #1:

x = 42; //A

f1.store(true, memory_order_release); //B

Thread #2:

while(!f1.load(memory_order_acquire));//C

f2.store(true, memory_order_release); //D

Thread #3:

while(!f2.load(memory_order_acquire));//E

assert(42 == x); //F

is x the answer? Yes

53



A

B

C

f1

f2

x

…

F

D
Initial State:

f1, f2 = false, x = 0

Thread #1:

f1.store(true, memory_order_release);//A

Thread #2:

while(!f1.load(memory_order_acquire)); //B

if(f2.load(memory_order_acquire)){++x;} //C

Thread #3:

while(!f2.load(memory_order_acquire)); //E

if(f1.load(memory_order_acquire)){++x;} //F

Thread #4:

f2.store(true, memory_order_release);//D

value of x?

A < B < C D < E < F

x = 2? D < C && A < F
x = 1? D > C XOR A > F
x = 0? D > C && A > F

0,1 or 2

54

E

Wait, what?
A variable can ever have more than one value?

it is just a memory location, a bunch of bits at a specific location in
memory

• quick Q: how many MB of Cache do you have?

• L2-Cache?

• how many L3-Caches do you have?

• How do those interact?

• What if cores share data?

the pointer is a lie!

55

f1

f2

x

…

A

B

C

f1

f2

x

…

E

F

D

f1

f2

x

…

Initial State:

f1, f2 = false, x = 0

Thread #1:

f1.store(true, memory_order_release);//A

Thread #2:

while(!f1.load(memory_order_acquire)); //B

if(f2.load(memory_order_acquire)){++x;} //C

Thread #3:

while(!f2.load(memory_order_acquire)); //E

if(f1.load(memory_order_acquire)){++x;} //F

Thread #4:

f2.store(true, memory_order_release);//D

value of x?

56

f1

f2

x

…

A

B

C

f1

f2

x

…

E

F

D

f1

f2

x

…

Initial State:

f1, f2 = false, x = 0

Thread #1:

f1.store(true, memory_order_release);//A

Thread #2:

while(!f1.load(memory_order_acquire)); //B

if(f2.load(memory_order_acquire)){++x;} //C

Thread #3:

while(!f2.load(memory_order_acquire)); //E

if(f1.load(memory_order_acquire)){++x;} //F

Thread #4:

f2.store(true, memory_order_release);//D

value of x?

57

Depending which cache you ask the value
of a memory location may be different

Why is that

• the acquire/release model does not guarantee that a store to an
atomic value becomes visible to all threads at the same time

• on some systems skipping this value propagation can have a positive
performance impact

58

Legitimate use-cases for the relaxed models?

• target platform is ARM (<v8) or PowerPC

• operation counters

• some reference counters

• lazy initialization
• but for this C++ also brings std::call_once

If that is the case:

• wrap the code in nice encapsulations

59

sequentially consistent
(SC)

acquire-release

relaxed

consume-release

seq_cst

acquire

release

acq_rel

relaxed

consume

release

acq_rel

*

so let us now return into the nice, cozy, sane land of
the default memory model

60

A

B

C

f1

f2

x

…

E

F

D

Initial State:

f1, f2 = false, x = 0

Thread #1:

f1.store(true); // A

Thread #2:

while (!f1.load()) ; // B

if (f2.load()) { ++x;} // C

Thread #3:

while (!f2.load()) ; // E

if (f1.load()) { ++x;} // F

Thread #4:

f2.store(true); // D

value of x?

A < B < C D < E < F

x = 2? D < C && A < F
x = 1? D > C XOR A > F

x = 0? D > C && A > F 

1 or 2

61

A

B

C

f1

f2

x

…

E

F

D

Initial State:

f1, f2 = false, x = 0

Thread #1:

f1.store(true); // A

Thread #2:

while (!f1.load()) ; // B

if (f2.load()) { ++x;} // C

Thread #3:

while (!f2.load()) ; // E

if (f1.load()) { ++x;} // F

Thread #4:

f2.store(true); // D

value of x?

A < B < C D < E < F

x = 2? D < C && A < F
x = 1? D > C XOR A > F

x = 0? D > C && A > F 

1 or 2

At any given time each memory
location has only one value*

* in the sequentially consistent memory
model!

62

Wrap up

• The C++ memory model allows us to reason about multithreaded
code

• It is gives reasonable guarantees to implement performant algorithms

• It allows us to derivate from the default model if we need to

63

Questions?

Bibliography

• C++ Concurrency in Action – Anthony Williams – 2012

• Atomic Weapons – Herb Sutter – 2012

• Pershing on Programming – Jeff Pershing – http://preshing.com
accessed Dec. 2013

• ISO C++ Working Draft N3337 – 2012

• Foundations of the C++ Concurrency Memory Model –
H. Boehm, S. V. Adve – 2008

• How to make a Multiprocessor Computer that correctly executes
Multiprocess Programs – Leslie Lamport – 1979

65

http://preshing.com/

Thank You
C++ Memory Model

Valentin Ziegler

Fabio Fracassi

