We define an interaction between feature j and feature k to mean that changes
in g(-) when we perturb both features are non-additive (for some instances)
(equation (2) in the paper):
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For our simulated model under no noise, for non-interacting features j and k,
Vi we have:
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In the implementation, when testing outputs, we compare:
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Without noise, these are identical and equal to ¢(”). When noise is added, these
become:
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where yj(.i) ~ N(0,0?). Thus these terms are distributed according to N (¢, )
and N (c(i), 302) respectively. When we compare the two quantities in a paired
statistical test, we take their difference, i.e.:
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Since they both have equal mean, the statistical test returns an insignificant
p-value.

When comparing losses, we're using RMSE, so for the i**instance the loss is
simply the absolute value of difference between the target y(*) and the model
output. Hence we compare (without noise added):
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Let y — ¢ = d® Vi Adding noise, we compare:
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The terms inside the absolute value are distributed according to N (d¥), ¢2) and
N(d%,30?) respectively. But the absolute value results in a folded normal dis-
tribution, which results in a different mean for each term (since the mean of a
folded normal incorporates the variance of its corresponding normal). Hence the
statistical test always results in a significant p-value, even for non-interacting
features.

One way around this to rearrange the terms in equation (2) before computing
losses, so that each term being compared has equal variance. Namely:
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