Lab Guide

CreatorConl/ Pune

Building and debugging
outbound REST API Integrations

Bryan Barnard

Lab instance: http://clabs.link/debug-api-pnq
Default Login / Password:
admin / png-cc17
itil / png-cc17

employee / png-ccl7



This
Page
Intentionally
Left
Blank




Lab Goal

Before we get started building and debugging outbound REST API Lab Setu P
integrations we need to get our lab instance setup. In this lab you
will be modifying an existing scoped application. Start out by
importing the CCW3970 application from Source Control. Follow
the directions below to fork this application to your GitHub
account and begin working.

Prerequisites

In order to complete this lab, you must:

1. Create a GitHub account if you do not already have one.
2. Install Postman from https://getpostman. comif you do not already have it installed.

Fork the Lab GitHub Repository

3. Login to your GitHub account at:
https://github.com/login

O

Sign in to GitHub

Username or emall address

Password Forgot password?

New to GitHub? Create an account.

4. Navigate to:
https://github.com/CreatorConl7/CCW3970-Build-Debug-Outbound-REST-App

© 2017 ServiceNow, Inc. All rights reserved. 3



5. Click Fork. To fork the repository.

Owaens 1 ks o

6. Note in the upper left that the repository has been copied to your account. You now have a

copy of the lab material for reference after the conference!

7. Click on Clone or download button and locate the HTTPS field then click the clipboard to the
right. This action copies the URL in the clipboard.

IMPORTANT: Be sure to copy the HTTPS repo URL in GitHub.

w file  Upload files = Find file [ Clone or download v ]

Clone with HTTPS ® Use SSH
Use Git or checkout with SVN using the web URL.

https://github.com/w /CCW3970-Build-|

Copy to clipboard
Open in Deskto Download ZIP

Import the CCW3970 Application from Source Control

8. Login to your lab instance with the admin credentials provided on the cover sheet of this
document.
9. Navigate to System Applications > Studio.

System Applications

Studio

10. Click on Studio.
11. Click Import from Source Control.

Load Application

You have not created any applications. Why not create one? Alternatively, you can import a valid ServiceNow application from a git repository.

Create A New Application Import From Source Control »

© 2017 ServiceNow, Inc. All rights reserved. 4



12. In the Import Application window, paste the URL copied in step 5 and provide your GitHub
credentials. Click Import.

Import Application

Importing an application from source control will result in a new application being created in this ServiceNow instance based on the remote repository you
specify. The account credentials you supply must have read access to the remote repository. The remote repository you specify must contain a valid
ServiceNow application. For more information on requirements refer to ServiceNow product documentation.

> URL https://github.com/CreatorCon17/CCW3970-Build-Debug-Outbound-REST-App.git

User name ‘ | ‘

Password

13. When the import completes, click Select Application.

Import Application

Successfully applied commit f46f7019e8090de045f3511f87eef8328927ale6 from source control

Select Application

14. Click on the CCW3970 application you just imported to load this application into Studio.

Load Application

Create Application Import From Source Control

Applications (4)
O\
Status Application Vendor Version Created on Updated On |,
& CCW3370 1.0.0 2017-04-17 2017-04-17 20:47:18
"y My Work \ 2.0.0 2016-03-14 2016-03-14 12:01:04
@ SND Xplore 4.1 2016-09-30 2016-09-3002:31:36
@ Demo API 3.0 2015-12-11 2015-12-1107:23:12

You’ve now successfully imported your forked version of the application for use in this
workshop.

© 2017 ServiceNow, Inc. All rights reserved. 5



Get ready for Lab 2 — Create a new branch from Lab2-start tag in Studio

1. Yes, you read that correctly, we won’t be using ServiceNow again until Lab2, but we want to
get you ready ahead of time.

NOTE: This is worth mentioning, not a typo, you are importing and opening this application
in Studio but we will not be using ServiceNow again until you start Lab

2. In Studio, navigate to Source Control > Create Branch.

Source Control Search

/ Edit Repository Configuration

Apply Remote Changes
[4] CommitChanges

Stash Local Changes

000 Create Branch

&? Create Tag

3. In the pop-up window, enter a branch name, then select Lab2-start from the Create from Tag
menu, and click Create Branch.

Branch: my-Lab2-branch
Create from Tag: Lab2-start

Create Branch

This operation creates a new branch based on a tagged revision of your application. If you do not stash or commit your local changes beforehand, they will be

lost.

>k Branch Name my-Lab2-branch

Create from Tag ‘ Lab2-start /

<

4. When the switch is complete, click Close Dialog in the Create Branch pop-up.
5. Verify Studio is on branch my-Lab2-branch (bottom right hand corner).

© 2017 ServiceNow, Inc. All rights reserved. 6



STUDIO File Source Control Window Search ! 0

=+ Create Application File
) Exple

OGoTo [:Code Search

¥ Server Development
v Business Rules
Publish Update Insert PubNub

Y Outbound Inegrations Welcome to Studio
¥ REST Messages
PubNub
Keyboard shortcuts
8+ 0 + 0 Q. GoTo Open any file in your application.
® |+ 0 +C -+ Create New Create a new file of any type.
B+ 0 +F Code Search Search files in any of your applications.
8+ 0+ X X Close Current Tab Close Current Tab

1.0.0 2Files (0 unsaved

my-Lab2-branch ¢§

6. Lab setupis complete. You are now ready to start Lab 1.

Progress Report

1. Navigate to Lab Management> Report Lab Progress.

W =

Lab Management

77 Report Lab Progress

2. Click I am done!

© 2017 ServiceNow, Inc. All rights reserved. 7



Let instructor know how you are doing on the lab(s) by selecting the appropriate button.




Lab Goal

The purpose of this workshop is to familiarize yourself with Lab 1
ServiceNow Outbound Messaging capabilities available to you for Publish
building integrations with 3" party REST APIs as well as how you can

debug your integrations. Message

with

In this first lab you’ll familiarize yourself with the PubNub 3" party
REST APl we’ll be working with for the rest of this workshop and use Postman
Postman (an API testing tool) to build requests you can execute and “Hello
review from your localhost.

Prerequisites

* Knowledge of REST APIs
* Knowledge of HTTP clients

* Postman API testing tool installed. If you still need to install the Postman go to:
https://www.getpostman.com/

Check out PubNub

When building an integration between cloud based service providers it’s a good idea to start
out by mocking up your requests with a tool that you can run on your localhost such as cURL,
Postman or Paw. Each of these tools allow you to build and execute HTTP requests from your
localhost (laptop, desktop, etc....). This enables you to build and execute your requests in a very
agile way and also provides you with a working example to reference when you start building
your integration in ServiceNow.

In this lab we’ll be working with PubNub, PubNub is a 3" party streaming data service. You'll
start getting familiar with the APl by using Postman to make a request to the Publish Message
operation of the PubNub REST API. This operation allows you to publish messages via HTTP.

PubNub offers a rich set of functionality but for the purposes of this workshop we’ll only be
using their Publish Message capabilities. If you are interested in finding out more about PubNub
and PubSub services you should check out their website and API docs.

Start out by briefly review the API for PubNub at:
https://www.pubnub.com/docs/pubnub-rest-api-documentation#publish-subscribe-publish-v1-

via-post-post

© 2017 ServiceNow, Inc. All rights reserved. 9



Specifically look at the Publish via POST operation.

®  ® / pN PubNub REST API Document

Guest

& C | @& Secure https://www.pubnub.com/docs/pubnub-rest-api-documentation#publish-subscribe-publish-v1-via-post-post

PubNub

Overview

Common REST Query String Parameters
Common HTTP Request Headers

Common HTTP Status Codes

Publish / Subscribe

Publish JSON to channel via GET
Publish JSON to channel via POST
Subscribe V1

Subscribe V2

History

Fetch History

Channel Groups

Listing All Registered Channel Groups
Listing all channels for a channel group
Adding Channels // New Channel Group
Removing channels

Deleting a Channel Group

PubNub Access Manager - PAM

Applying PAM

Presence
Identifying Users with UUID
Presence Events

Presence States

O, | JobsatPubNub | Blog | Support | Network Status

USE CASES PRODUCTS & FEATURES BLOCKS CATALOG DEVELOPERS PRICING PLANS CUSTOMERS

PubNub REST API Documentation E=S

- /publish/{pub_key}/{sub_key}/8/{channel}/{callback}{?store,uuid} Publish JSON to channel via POST

Example URI
POST https://pubsub.pubnub.com/publish/myPubKey/mySubKey/0/ch1/myCallback?store=0&uuid=db9c5e39-7¢95-40f5-8d71-125765b6561

URI Parameters
f
pub_key string (required) Example: myPubKey
the publish key to use ’
sub_key string (required) Example: mySubKey 3
the subscriber key )
in
channel  string (required) Example: ch
the destination of the message
callback  string (required) Example: myCallback g
response will be wrapped in JSONP function, @ for no JSONP E

store  number (optional) Example: 0
this parameter overrides default account configuration on message saving. 1 to save, 0 to not save.

auth  string (optional) Example: authKey
If the channel is protected by PAM, auth must be passed with a key which is authorized to write to the channel.

meta object (optional) Example: ‘cool”: 'meta
used to send additional information about the message which can be used on stream filtering.

uuid | string (required) Example: db9c5e39-7¢95-40f5-8d71-125765b6f561
A unique alphanumeric ID for identifying the client to the PubNub Presence System, as well as for PubNub Analytics.
Request without JSONP
Headers

Content-Type: application/json
Location: /publish/myPubKey/mySubKey/ch1/@

Body

{

"message”: "All your base are belong to us."

}
The Nifferent Tunes nf Presence Nalls n

You'll be using the Postman to make a request to the PubNub REST APl and publish a message
to a channel. The PubNub REST API provides an endpoint that accepts a POST request to publish
a message onto a channel that other clients can subscribe to. Per the documentation this
method requires the parameters pub_key, sub_key, and channel be specified as URL path
parameters and a uuid be provided as a query parameter.

Example URI
POST https://pubsub.pubnub.com/publish/{pub_key}/{sub_key}/0/{channel}/0?store=1&uui
d={client}

Build and Send a Request to Publish with Postman

Let’s begin by building a request to publish a message to PubNub in Postman. We’ve built and
made a prebuilt Postman collection to help you get started.

1. Open the Postman application on your laptop.

© 2017 ServiceNow, Inc. All rights reserved. 10



Postman

[ Runner  mport [} Builder

No Environment
New Tab

Collections
GET Params Send Vv Save
Al
Authorization Cookies Code
Type No Auth

2. Import the Postman collection we will be using for this workshop. In Postman, click Import.

[ JON ) Postman

Builder

New Tab

Collections

GET
All

Authorization

Type No Auth

3. Postman Collection Link:
https://www.getpostman.com/collections/25a87e008d055aec5496

© 2017 ServiceNow, Inc. All rights reserved. 11



Paste the link to our Postman collection in the Import From Link input box.

IMPORT X

Import a Postman Collection, Environment, data dump, curl command, or a RAML /
WADL / Swagger(v1/v2) / Runscope file.

Import From Link

https://www.getpostman.com/collections/a872c3162495ec77c946

© 2017 ServiceNow, Inc. All rights reserved. 12



4. Verify you have the CCW3970-PubNub collection loaded by searching for it in the

navigator on the left hand side.

(XX ] Postman
uj Runner  Import D, Builder (Y4 @ sgnin B £ @
No Environment
Publish To Channel
Collections » Publish To Channel 4 -
Al
POST https://pubsub.pubnub.com/publish/{pub_key}/{sub_key}/0/{channel}/0?store=1&uuid={client}... Params Send V. Save
CCW3970-PubNub s
1 request Headers (1) o | | | Cookies Code
Publish To Channel Key ‘ ‘ Value ‘ Bulk
Content-Type application/json
PubNub Keys:
.

pub_Kkey: pub-c-11b9ede6-f9ee-4da8-a829-944a45f29eb8
sub_key: sub-c-dafe9b8c-1ae1-11e7-bc52-02ee2ddab7fe

5. In the CCW3970-PubNub collection select the Publish To Channel operation.

a. Replace the {pub_key} parameter with the pub_key provided in this lab doc.

b. Replace the {sub_key} parameter with the sub_key provided in this lab doc.

c. Replace the {client} parameter with your lab instance name (e.g., if your lab instance
is lab1.service-now.com, replace the {client} param as ‘lab1’.

d. Replace the {channel} parameter with “CCW3970 {instance-name}” where
{instance-name} is the name of your lab instance (e.g., CCW3970 labl).

Example:

https://pubsub.pubnub.com/publish/pub-c-11b9ede6-f9ee-4da8-a829-

944a345f29eb8/sub-c-dafte9b8c-1ael-11e7-bc52-
02ee2ddab7fe/0/CCW3970_labl/@?store=1&1labl

e. Verify the headers specify ‘Content-Type: application/json’.
f. Verify the body includes the following as JSON.



{"message": "Hello PubNub from ServiceNow CCW3970 Lab Instance"}

i No Environment
Publish To Channe

» Publish To Channel

POST https://pubsub.pubnub.com/publish/{pub_key}/{sub_key}/0/{channel}/0?store=18&uuid={client}... Params Send v Save

(1) Body ® Cookies Code

form-data x-www-form-urlencoded @ raw binary SON (application/jso
ik

2 "message": "Hello PubNub from ServiceNow CCW397@ Lab Instance”
3

g. Click Send to send the HTTP Request.

» Publish To Channel

POST https://pubsub.pubnub.com/publish/pub-c-11bSede6-fIee-4da8-aB829-944a45f29eb8/sub-c-dafedb... Params Send v Save |

(1) Body @ ookies Code




6. Verify the request was successful by looking for the 200 OK status code and that the
response payload contains “sent” as shown.

No Environment
Publish To Channel

» Publish To Channel

POST https://pubsub.pubnub.com/publish/pub-c-11b9ede6-fIee-4da8-a829-944a45f29eb8/sub-c-dafe9b8c-1ae1-11e7-bc52-02ee2ddab7fe/0/CCW3970._.... Params Send v Save

1) Body ®

form-data x-www-form-urlencoded raw binary

i
2 "message": "Hello PubNub from ServiceNow CCW397@ Lab Instance"

3}

Body @ Status: 2000K  Time: 81 ms  Size: 2708

Pretty Auto = Save Response

1 [1,"Sent","14925822833898580"]

If you see 200 OK you’ve now successfully published a message to PubNub using Postman
from your local host. If you had errors check your URI and parameters or ask a Lab Guru for
assistance.

This is an important step in building an integration because using a tool like Postman allows
you to quickly familiarize yourself with a 3" party APl so that when you build your
integration in ServiceNow you know that you’ve had a working request, understand how to
format your request to send successfully and can refer back to this when building and
testing your request in ServiceNow. In addition, it is becoming common for REST API
providers to provide either cURL or Postman samples for consuming their APls which can
speed this process along.

In the next lab you’ll use ServiceNow to issue HTTP requests to PubNub to publish messages
from ServiceNow similar to how you used Postman in this lab.



Progress Report

1. Navigate to Lab Management> Report Lab Progress.

Lab Management

7 Report Lab Progress

2. Click | am done!

Let instructor know how you are doing on the lab(s) by selecting the appropriate button.




Lab Goal

Lab 2

In the first lab you used Postman to publish messages to PubNub Publish
using their REST API. In this lab you’ll use the ServiceNow
RESTMessage capabilities to publish messages to PubNub. You'll Message
start by configuring a RESTMessage record and testing your .

Y RemeR e e , . with
configuration using scripts background. Next you'll use business
rules to trigger messages publishing to PubNub when Incident ServiceNow

records are mutated. In addition, you'll use the outbound http
request logs in ServiceNow to debug your requests.

Create Lab 2 starting branch

1. If you completed the lab setup, proceed to the next step. If you haven’t yet completed lab
setup, follow the steps in lab setup to create the my-Lab2-branch from the Lab2-start git
tag.

Configure and Test with RESTMessage

In your ServiceNow lab instance navigate to System Web Services -> REST Message
Navigate to PubNub-> Publish Message. This message has been partially configured to send
messages to the same PubNub REST APl operation we sent a request in Postman. Note the
variables we’ve specified in the Endpoint field and the Variable Substitutions that exist in
the related list at the bottom. This will allow us to easily specify these variables as
parameters when using this RESTMessage HTTP Method from script.

3. Verify method is POST.

© 2017 ServiceNow, Inc. All rights reserved. 17



< = HTTP Method

-
= Publish Message @ = oo Update | Delete
Name Publish Message
HTTP method POST 4
Epaffoint https://pubsub.pubnub.com/publish/${pub_key}/${sub_key}/0/${channel}/0?store=1&S{client}

Authentication = HTTP Request

Authentication type Inherit from parent 4 Use mutual authentication

Update | | Delete

Related Links
Auto-generate variables
Preview Script Usage
Set HTTP Log level

Test

Variable Substitutions (4) | TestRuns

= Variable Substitutions m Goto | Name v 44 4« 1 to4ofs p pp [
S’ Method = Publish Message
b3 (o} = Name A = Escape type = Testvalue

channel No escaping

lient No escaping

© 0 ©

pub_key No escaping

©

sub_key No escaping

Actions on selected rows... $ << < 1 to4ofs p pp

4. Populate Header “Content-Type” : “application/json”

Authentication | HTTP Request

Use MID Server Q

HTTP Headers << < 1/tolofl B PP E

b = Name A = value

X (i) _content-type _application/json

Insert a new row...

HTTP Query Parameters
& = Name

= Value = Order A

Insert a new row...

Content

5. Click Preview Script Usage in the list of Related Links, and you’ll see auto generated sample
script that can be used to execute this request from anywhere in ServiceNow where you can
use Server Side script (e.g., Business Rules, Workflows, Script Actions).



Related Links
Auto-generate variables
Preview Script Usage

Set HTTP Log level \
Test

6. Now set the HTTP Log level for this record to All. This allows you to control what level of
detail is logged when outbound messages are sent from ServiceNow.
7. Note: For more information about what is included in each log level see Outbound HTTP

Logging in the ServiceNow docs. No additional info about logging levels is necessary for this
lab.

Related Links
Auto-generate variables
Preview Script Usage

Set HTTP Log leve
Test

HTTP Log level

Basic
Elevated
v All

PubNub Keys:
pub_key: pub-c-11b9ede6-f9ee-4da8-a829-944a45f29eb8
sub_key: sub-c-dafe9b8c-1ae1-11e7-bc52-02ee2ddab7fe

8. Populate Test Variables in Variable Substitution for:
a. pub_key, specify pub_key provided in this lab guide
b. sub_key, specify sub_key provided in this lab guide
c. client, specify your lab instance name

2017 ServiceNow, Inc. All rights reserved. 19



d. channel, specify “CCW3970_{you lab instance name} (e.g, if your instance name

iscc17d-brb-332-001, for the channel you would specify “CCW3970_cc17d-brb-332-
001”.

Variable Substitutions (4) = Test Runs (3) ‘

‘ = | Variable Substitutions m Goto ‘ Name v | Search 44 < 1| t4ofs » PP [
? Method = Publish Message
b3 Q = Name A = Escape type = Test value
@ channel No escaping CCW3970_cc17d-brb-332-001
(D client No escaping cc17d-brb-332-001
@ pub_key No escaping pub-c-11bSede6-fiee-4das-a829-944a45f29eb8
@ sub_key No escaping sub-c-dafe9b8c-1ael-11e7-bc52-02ee2ddab7fe
Actions on selected rows... 3 < L ‘ e 2 [As

9. Click Test

Related Links
Auto-generate variables
Preview Script Usage
Set HTTP Log level

Test

10. Verify the request fails with HTTP status 404, (this is expected).

= TestRuns
<

= @ == ooco Update | Delete
== Created 2017-04-19 13:39:41 = P! Delet:
Name Publish Message ‘
HTTP status 404
Endpoint

332-001/07store=18&cc17d-brb-332-001

Parameters store=1&cc17d-brb-332-001

Content

Response 0

11. Now let’s figure out why. Go to the system logs to get a better idea of the request we sent
and the response we received from PubNub. This will allow us to compare the request sent

from ServiceNow with the successful request we sent from Postman and determine what
we need to change.



12. Navigate to System Logs -> Outbound HTTP Requests.

= * O

System Logs
Outbound HTTP Requests
System Mailboxes
Vv Outbound
Outbox

Sent

Skipped

Failed

13. Review the list of recent outbound http requests.

= | Outbound HTTP Logs Goto | Created v ‘ << <« 1tolofl B Bh
? All>Created >= 2017-04-19 09:12:00
@ O\ = Created ¥ = Sequence = URL hostname = Response status = Response time {ms)
@ 2017-04-19 09:12:12 4 pubsub.pubnub.com 404 11
Actions on selected rows...$ / < < 11l b pp
14. Find the last sent message and view the log contents including:
- Method
- URL
- Response Status
- Response Time
- Headers
- Body
© 2017 ServiceNow, Inc. All rights reserved. 21



¢ | = OutboundHTTP Log = oo J
== Created 2017-04-19 13:39:41 —

HTTP method POST Response status 404
Created 2017-04-19 13:39:41 Response time (ms) 61
URL https://pubsub.pubnub.com/publish/pub-c-11bSede6-f9ee-4da8-a829-944a45f29eb8/sub-c-dafeSb8c-1ael-11e7-bc52-02ee2ddab7fe/0/CCW3970_cc17d-brb-

332-001/07store=1&cc17d-brb-332-001

Loglevel | Source Request | Response

Response length 2

Response headers {Date=Wed, 19 Apr 2017 20:39:41 GMT, Content-Type=text/javascript; charset="UTF-8", Content-Length=2, Connection=keep-alive, Cache-Control=no-cache,
Access-Control-Allow-Origin=*, Access-Control-Allow-Methods=GET}

Response body 0

15. Compare the request sent from ServiceNow that failed with the successful request sent
from Postman. What differs? Are there any messages in the response that indicate what the
problem was? (Hint: look at the request body you sent from Postman and the one you sent

from ServiceNow).




16. Go back to the Publish Message record in Studio and specify content of

{"message": "Hello PubNub from ServiceNow CCW3970 Lab Instance"}

17. Save the record and run another test and verify your HTTP status is now 200.

Use RESTMessage from Script

1. Now let’s use the usage script to make a request and include a request body. First grab the
usage script at by clicking Preview Script Usage.

Related Links
Auto-generate variables
Preview Script Usage
Set HTTP Log level

Test

2. Review the Preview REST Message script usage from the RESTMessage Record. This
provides you with an auto-generated script that you can use as a basis for script you use
elsewhere (server side) to trigger this RESTMessage (e.g., business rule, script action, scripts




background).

Preview REST Message script usage

try {

var r = new sn_ws.RESTMessageV2('x_snc_ccw3970.PubNub', 'Publish Message');
r.setStringParameterNoEscape( 'sub_key', 'sub-c-dafe9b8c-lael-lle7-bc52-02ee
r.setStringParameterNoEscape('client', 'ccl7d-brb-332-001');
r.setStringParameterNoEscape( 'pub_key', 'pub-c-11b9ede6-f9ee-4da8-aB829-944a
r.setStringParameterNoEscape( 'channel', 'CCW397@_ccl7d-brb-332-001");

//override authentication profile
//authentication type ='basic'/ 'oauth2'
//r.setAuthentication(authentication type, profile name);

var response = r.execute();

var responseBody = response.getBody();

var httpStatus = response.getStatusCode();
}

catch(ex) {

var message = ex.getMessage();

}

3. Inanew browser tab navigate to the following link and copy the script. We've slightly
modified the auto generated script from the RESTMessage record to add a message body.
https://raw.githubusercontent.com/CreatorConl7/CCW3970-Build-Debug-
Outbound-REST-

Snippets/master/ccw3970 scripts background restmessage hello pubnub.ijs

4. Let’s try it out now. Outside of Studio navigate to System Definition -> Scripts — Background
and paste it into the script box (as shown below).

© 2017 ServiceNow, Inc. All rights reserved. 24



Run script (JavaScript d on server)

I
Advanced Business Rule Script to publish message to PubNub Service Using RESTMessageV2 AP to issue HTTP Request

(function executeBusinessRule() {
try {

var instanceName = gs,getProperty(‘instance_name’);

var instanceld = gs,getProperty(‘instance_id");

var reg = new sn.ws.RESTMessageV2('PubNub’, 'Publish Message');
req.setStringParameterNoEscape('pub_key', 'nuh:£-1109ede6-fAee-4daB8-2829-:944245f29e08");
req.setStringParameterNoEscape('client’, instanceName + '~ + instanceld );
req.setStringParameter ‘sub_key', 'suh=G- oBc-1ael-11e7-be52-02ee20dab7fe’);
req.setStringParameterNoEscape('channel’, 'CCW3970_' + instanceName);

var body = '{"message":"hello PubNub from CCW3970 Lab Instance '+ instanceName +"}';
req.setRequestBody(body);

var res = req.execute();

var responseBody = res.getBody();
var httpStatus = res.getStatusCode();
gs.debug(nttpStatus);

caten(ex) {
var message = ex.getMessage();
gs.debug(message);

no;

Run script | 1N SCOpe  x_snc_cew3970 [ Cancel after 4 hours

5. Send the request by clicking Run Script.

6. You should see a debug message indicating the response status code is 200 indicating a
successful request. Let’s look at the Outbound HTTP Log to see a bit more detail about the
request and response.

7. Navigate to System Logs -> Outbound HTTP Requests.

Open the most recently sent message and review the sent request details. This allows you to
see all the details of the sent request from ServiceNow to PubNub and the corresponding
response. Having access to this level of detail is invaluable when trying to debug or verify
communication between cloud based systems.

9. Let’s also verify the message was received on PubNub. In a new browser tab navigate to
https://ccw3970-demo.glitch.me/

Enter the channel name you specified when sending the request (e.g., CCW3970_cc17d-brb-
332-001) and click Subscribe. This is a lightweight web application that can subscribe to the
PubNub channels and will automatically update when messages are published to the
channel it’s subscribed to.

Specify a channel to see a list of messages published to it streamed live:

 Subscribe |

Subscribed to channel: CCW3970_cc17d-brb-332-001

Live Messages ordered newest on top:

channel: CCW3970_cc17d-brb-332-001

timetoken: 14926349421604694

message:

{"message":"Hello PubNub from ServiceNow CCW3970 Lab Instance"}




10. Issue another request using Scripts Background and then and you should see your message
show up in the PubNub Channel Log at https://ccw3970-demo.glitch.me/ without
needing to update (page will auto update when new messages are published).

11. Now that you’ve seen how you can publish a message (send a HTTP request) from a script
let’s put this to use and configure a business rule to publish messages to PubNub when an
Incident is either inserted or updated in your lab instance.




Configure Business rule to Publish Messages to PubNub
1. In Studio open the Publish Update Insert PubNub business rule which is part of the

CCW3970 application.

STUDIO  File  SourceControl  Window  Search

+ Create Application File OGoTo

=, Code Search

v Server Development

v Business Rules
Publish Update Insert PubNub
v Outbound Integrations
¥ REST Messages. Name Publish Update Insert PUbNUD g Application CCW3970
PubNub -

— Business Rule .
= publish Update Insert PubNub @ - = oo Update | Delete

Table Incident [incident] v Active v

Priority 100 Advanced v/

Whentorun | Actions = Advanced

When async 4 nsert |V

Order 100 Update v/

Delete

Query

Role conditions 7/

Update | | Delete

2. Verify the business rule is configured to run on insert and update, advanced is checked and
when is set to run aysnc. You will be making changes to this business rule so that when it is
triggered, on insert or update, of an Incident record a message will be published to PubNub.

3. Inthe business rule set the advanced script by copying and pasting values from.
https://raw.githubusercontent.com/CreatorConl7/CCW3970-Build-Debug-

Outbound-REST-
Snippets/master/ccw3970 advanced business rule publish updates to pubnub.js

© 2017 ServiceNow, Inc. All rights reserved. 27



2/Qvia 20866

Advanced Business Rule Script to publish message to PubNub Service Using RESTMessageV2 API to issue HTTP
Request

Publish message containing select subset of fields from the incident record that has been updated or

inserted

*/

(function executeBusinessRule() {

try {

var instanceName = gs.getProperty('instance_name');
var req = new sn_ws.RESTMessageV2('PubNub', 'Publish Message');
req.setStringParameterNoEscape('pub_key', 'pub-c-11b9ede6-fIee-4da8-a829-944a45f29eb8");
req.setStringParameterNoEscape('client', instanceName);
req.setStringParameterNoEscape('sub_key', 'sub-c-dafe9b8c-lael-1le7-bc52-02ee2ddab7fe’);
req.setStringParameterNoEscape('channel', 'CCW397@_' + instanceName);

// Build a data transfer object representing the incident record to be sent as JSON to PubNub
DTOIncident = {
‘assigned_to': current.getDisplayValue('assigned_to'),
'category': current.getValue('category'),
‘created_on': current.getValue('sys_created_on'),
‘number': current.getValue('number'),
‘priority': current.getDisplayValue('priority'),
'state': current.getDisplayValue('state'),
'sys_id': current.getValue('sys_id'),
‘updated_by': current.getValue('sys_updated_by'),
'updated_on': current.getValue('sys_updated_on'),
‘caller_id': current.getDisplayValue('caller_id'),

4. Save the record and review this Script. Note we are still using the RESTMessage record but
now we are populating the body with values from the inserted or updated Incident.

© 2017 ServiceNow, Inc. All rights reserved. 28



VES

Advanced Business Rule Script to publish message to PubNub Service Using RESTMessageV2 API to issue HTTP Request
Publish message containing select subset of fields from the incident record that has been updated or inserted

*/

(function executeBusinessRule() {

try {

var
var
req.
req.
req.
req.

instanceName = gs.getProperty('instance_name');

req = new sn_ws.RESTMessageV2('PubNub', 'Publish Message');
setStringParameterNoEscape('pub_key', 'pub-c-11b9ede6-f9ee-4da8-a829-944a45729%eb8');

setStringParameterNoEscape('client', instanceName);

setStringParameterNoEscape('sub_key', 'sub-c-dafe9b8c-lael-1le7-bc52-02ee2ddab7fe’);

setStringParameterNoEscape( 'channel’, 'CCW3970_' + instanceName);

//

Build a data transfer object representing the incident record to be sent as JSON to PubNub

var

i

DT0Incident = {

'assigned_to': current.getDisplayValue('assigned_to'),
'category': current.getValue('category'),
'created_on': current.getValue('sys_created_on'),
'number': current.getValue('number'),

'priority': current.getDisplayValue('priority'),
'state': current.getDisplayValue('state'),
'sys_id': current.getValue('sys_id'),
'updated_by': current.getValue('sys_updated_by'),
'updated_on': current.getValue('sys_updated_on'),
‘caller_id': current.getDisplayValue('caller_id'),
‘active': current.getValue('active')

//

Convert DTO to JSON string

var
req.

body = JSON.stringify(DTOIncident); =

setRequestBody (body) ; convertitoJ

//

Execute request

var
var
var

gs.debug(httpStatus);

res = req.execute();
responseBody = res.getBody();

httpStatus = res.getStatusCode(); Publish message

}
catch (ex) {

var

message = ex.getMessage();

gs.debug(message);

Build request

}
1IN

5.

The business rule is now configured to publish the JSON (data transfer object)
representation of the Incident to PubNub whenever an Incident record is created or
updated.

Try it out, update an Incident Record. Change the Caller to David Loo. Save the incident
record and be sure to note the Incident Number.

Go to the Outbound HTTP Logs and verify that a request with a payload including this
Incident number was sent to PubNub and that the response status was 200.

Verify on PubNub that the message was received. If you still have your other browser tab
open to https://ccw3970-demo.glitch.me/ then you should see a new message has

been added to the top of the log. If you closed your browser tab then you’ll need to reopen
it and subscribe to the appropriate channel. Note: The channel name should be
“CCW3970_{your lab instance_name}. You can always go back to your advanced business
rule script and find it as well. Channel names are case sensitive.

In my example shown below. | updated INC20001, setting the caller to David Loo. My
instance name was bbarnscl and the corresponding channel name that | subscribed to was
CCW3970_bbarnscl. You should see something similar.




Specify a channel to see a list of messages published to it streamed live:

|
| Subscribe |

Subscribed to channel: CCW3970_bbarnsc1

Live M ges ordered t on top:

channel: CCW3970_bbarnsc1

timetoken: 14926372053231464

message:

{"assigned_to":"David Loo","category":"hardware","created_on":"2009-09-10 02:25:40","number":"INC20001","priority":"3 -
Moderate","state":"Resolved","sys_id":"a1c35b5e0a0a0b6400afb27a259556a3","updated_by":"admin","updated_on":"2017-04-19 21:26:41","caller_id":"David
Loo","active":"1"}

channel: CCW3970_bbarnsc1

timetoken: 14926371957634739

message:

{"assigned_to":"David Loo","category":"hardware","created_on":"2009-09-10 02:25:40","number":"INC20001","priority":"3 -
Moderate","state":"Resolved","sys_id":"a1c35b5e0a0a0b6400afb27a259556a3","updated_by":"admin","updated_on":"2017-04-19 21:26:31","caller_id":"Sam
Sorokin","active":"1"}

channel: CCW3970_bbarnsc1

timetoken: 14926371858632028

message:

{"assigned_to":"David Loo","category":"hardware","created_on":"2009-09-10 02:25:40","number":"INC20001","priority":"3 -
Moderate","state":"Resolved","sys_id":"a1c35b5e0a0a0b6400afb27a259556a3","updated_by":"admin”,"updated_on":"2017-04-19 21:26:23","caller_id":"David
Loo","active":"1"}

If you see your messages great! You’ve successfully completed this lab and you’ve now configured
your ServiceNow instance to publish messages to PubNub using Business Rules, and the
RESTMessageV2 APl when Incidents are created or updated in your lab instance.

If You don’t see these messages in the outbound HTTP log or in the PubNub Channel Log then
review your script for variances or ask a lab guru for help.

In the next lab we’ll see how we can do this using ServiceNow Workflow and Orchestration.

Catch Up

1. If you had problems with this lab and want to fast forward to the end of lab 2 to review the
completed updates you can follow the same process, you followed in Lab Setup to create a
branch from the Lab2-end tag. This will update your application to a state that you would be
if you successfully completed Lab2.

2. In Studio, navigate to Source Control > Create Branch.

3. In the pop-up window, enter a branch name, then select Lab2-end from the Create from Tag
menu, and click Create Branch.

Branch: my-Lab2-end-branch
Create from Tag: Lab2-end



Progress Report

1. Navigate to Lab Management> Report Lab Progress.

Lab Management

7 Report Lab Progress

2. Click | am done!

Let instructor know how you are doing on the lab(s) by selecting the appropriate button.




Lab Goal

Now we’re going to implement the same use case as the previous lab,
but using Orchestration and Workflow. Orchestration is a powerful
tool for building low-code and no-code integrations. Workflow enables
the simple automation of processes and tying together actions in Use

ServiceNow. Orchestration

We’'ll start with a simple “Hello, world” PubNub REST Activity, then
expand it to be triggered from an Incident being created in
ServiceNow using Workflow.

Lab 3

Create Lab 3 starting branch

1. If you completed the lab setup, proceed to the next step.
If you haven’t yet completed lab setup, follow the steps in lab setup to create the

my-Lab3-branch from the Lab3-start git tag.

Create a REST Activity for PubNub

1. Open the Orchestration > Workflow Editor.

2. From the Custom tab, click the ‘+" icon to create a new REST Web Service activity.

Workflows = Core Packs | Custom Data

O m 1

: SOAP Web Service
JDBC

=

JavaScript Probe

> @ Global Powershell
» (S] Active Direc REST Web Service

> (S] AzureAD [ SFTP
» (S] Exchange Probe
> @ F5 Network Run Script
g ssH
> Infoblox DD
8 (I Jvs
> @ PowerShell

¥ (C3) Custom Activitie

This will open the Activity Designer using the REST Web Service template.

Give the activity a name such as “Send to PubNub Hello World” and click Continue.

© 2017 ServiceNow, Inc. All rights reserved. 32



3. On the Inputs tab, click ‘+’ to define an input variable.

Welcome | ¢ Send to PubNub "

= Activity Designer - Send to PubNub ooo | TestInputs Delete Save Publish Continue
General Inputs Execution Command Outputs Conditions @

Click the + to create a new input variable.

Name Type Mandatory Default

{} oo ——p ©

Go to Pre-Processing Continue

Define the following input variables:

pub_key (default value: pub-c-11b9ede6-f9ee-4da8-a829-944a45f29eh8)
sub_key (default value: sub-c-dafe9b8c-1ael-11e7-bc52-02ee2ddab7fe)
channel (default value: CCW3970_{lab instance name})

client (default value: {lab instance name})

Welcome | ¢ Send to PubNub Hello World
= Activity Designer - Send to PubNub Hello World ooo | Testlnputs | Delete | | Save | Publish | Continy
General Inputs Execution Command Outputs Conditions @
Name Type Mandatory Default

{ } Input @
ABc pub_key String No pub-c-11b9ede6-foee-4dag-a829-944a45f29eb8 [©)
ABC sub_key String No sub-c-dafe9b8c-lael-11e7-bc52-02ee2ddab7fe S
ABc channel String No CCW3970_instance1234 @
Agc client String No instance1234 ©)]

Go to Pre-Processing
Test Inputs Delete Save Publish Continue

4. On the Execution Command tab, select your REST Message and function. Reference the
REST Message and HTTP Method created in the previous lab.

NOTE: if the REST Message defined Variable Substitutions, then they will be automatically

imported into the REST Activity. But if not, you can click the ‘+’ button to just define them
here.



General Inputs Execution Command Outputs Conditions @
{ } nput REST| | PubNub alle
ABC pub_key Message
ABG sub_key REST| | Publish Message QO
- Message
aBc channel Function
aBc client Endpoint &
Variable | Name Value Additional attribute
Substitutions
pub_key None S @
sub_key None RSN %)
Imported from REST Message
channel None OO0
client None YO0
5. Drag & drop the message and channel input variables to the corresponding Variable
substitution field.
General Inputs Execution Command Outputs Conditions @
{ } mput REST | PubNub o e
ABC pub_key Message
aBC sub_key REST | Publish Message Q@
Message
aBc channel Function
aBc client Drag tO text bOX &
Variable | Name Value Additional attribute
Substitutions
pub_key None {00
sub_key None v @ @
channel None OS] @
client None HRCN%
General Inputs Execution Command Qutputs Conditions

{ } Input

REST
ABC pub_key Message
ABC sub_ke REST
ub_Key Message Function
aBc channel End t
ndpoin

ABC client
Variable

Substitutions

PubNub

Publish Message

Name Value
pub_key ${activitylnput.pub_key}
sub_key ${activitylnput.sub_key}
channel ${activitylnput.channel}
client ${activitylnput.client}

Additional attribute

None

None

None

None

© 0
© 0
© 0
© 0o

®

®




Then click Continue.

6. On the Outputs tab, add the HTTP status code as an output variable

= Activity Designer - Send to PubNub ooo | Testinputs | Delete | | Save | Publish | | Continue
General Inputs Execution Command Outputs Conditions @
Name Type Drag a variable into the Parsing rules table to create an output field mapping.
{ } Local ® Parsing rules
Variable name  Description Source Parsing type
Name Type

@
6\ ®

Go to Post-Processing m

{ } Output

’

Name the variable ‘status_code

= Activity Designer - Send to PubNub ooo | TestInputs Delete Save Publish Continue
General Inputs Execution Command Outputs Conditions @
Name Type Drag a variable into the Parsing rules table to create an output field mapping.
{ } Local ©) Parsing rules
Variable name  Description Source Parsing type
Name Type

%)
{ } Output 1 @ @

ABC status_code| String @ Go to Post-Processing m

7. Drag the status_code variable to the parsing rules field

= Activity Designer - Send to PubNub coo | TestInputs Delete Save Publish Continue
General Inputs Execution Command Outputs Conditions @
Name Type Drag a variable into the Parsing rules table to create an output field mapping.
{ } Local ® Parsing rules
Variablename  Description Source Parsing type
Name Type @
{ } Output d rag @
ABC status_code String @ Go to Post-Processing

8. In the Parsing rule popup:

Parsing source: executionResult.status_code
Parsing Type: Direct



Parsing rule for status_code

Parsing source Variable Name

|[ executionResult.status_code #] | activityOutput.status_code

Parsing Type Short Description

Direct

9. Now click Continue on the Qutputs tab

= Activity Designer - Send to PubNub coo | TestInputs Delete | Save Publish Continue
General Inputs Execution Command Outputs Conditions @
Name Type Drag a variable into the Parsing rules table to create an output field mapping.
{ } Local ® Parsing rules
Parsing
Name Type Variable name Description  Source type
{ } Output @ activityOutput.status_code executic Direct e @
ABC status_code String @ e @
then, @
Go to Post-Processing

10. On the Conditions tab, add the following two conditions, then click Save.

Name: Success

Condition: activityOutput.status_code == 200
Else: false

Order: 100

Name: Failure
Condition: (empty)
Else: true

Order: 200

© 2017 ServiceNow, Inc. All rights reserved. 36



General Inputs Execution Command Qutputs Conditions @

Condition defaults << < ‘ 1]t20f2 p PP E
b0 = Name = Condition = Else = Order A

X (i) | Success activityOutput.status_code == 200 false 100
X () | Eailure true 200

Insert a new row...

*ﬂ

11. Note that your new REST Activity is defined as a Custom activity in the right-hand pane.

Workflows = Core | Packs = Custom = Data

o | Testinputs | Delete = Save | Publish | Continue
Q @ +

¥ (C3 custom Activities
» (S Global
mmand Outputs Conditions @ > (S] Active Directory
> (S] AzureAD
> Exchange
> F5 Network Management
SEse = Order & » (5] Infoblox DI
> (S] Powershell
> (S] Probe
m > System Center Configuration Manager (SCCM)
» (S] SFTPFile Transfer
> (S] ssH
> Workday Orchestration
v ccw3970_demo_app
» [ Publish message to PubNub - v1 Checked out

Test the REST Activity

1. Toview the message that was received by PubNub. In your browser navigate to
https://ccw3970-demo.glitch.me/ and enter values for the channel name you plan to use

and click Subscribe. Now send the test.

This should be the default value, CCW3970_<lab instance name>, but can be specified ad-
hoc.

2. Click Test Inputs. On the popup, enter values for the input fields. These should already be
populated from default values from the Activity, but if not, enter as below.

activitylnput.pub_key: pub-c-11b9edeb6-f9ee-4da8-a829-944a45f29eb8
activitylnput.sub_key: sub-c-dafe9b8c-lael-11e7-bc52-02ee2ddab7fe
activitylnput.channel: CCW3970_instancel234

activitylnput.client: instance1234



Welcome | & Send to PubNub Hello World

Fill in your test values

Filter | All Inputs % | Resetdefaultvalues Clear values

Input Source Substitute Value

activityinput.pub_key pub-c-11b9ede6-fee-4da8-a829-944a45f29eb8

activityinput.sub_key sub-c-dafe9b8c-1ael-11e7-bc52-02ee2ddab7fe

activityinput.channel CCW3970_instance1234

activitylnput.client instance1234

3. On the Response page, verify the status code is 200 and that the message was sent.

Response X

Raw Output | status_code | header ' body | error Save for parsing rules @ Auto-Map to Local Auto-Map to Output

Map payload to local or output variables

{

"header":
"Cache-Control": "no-cache",
"Access-Control-Allow-Origin": "*",
"Access-Control-Allow-Methods": "GET",
"Connection": "keep-alive",
"Content-Length": "30",
"Date": "Tue, 18 Apr 2017 04:50:36 GMT",
"Content-Type": "text/javascript; charset=\"UTF-8\""

L

"body": "[1,\"Sent\",\"14924910364873248\"]",

"error": null

}

4. Navigate to System Logs > Outbound HTTP Requests again to view the most recent HTTP
request. Verify the request is listed.

5. Verify the message was received for the channel at https://ccw3970-demo.glitch.me/.

NOTE: You need to subscribe to the channel you are publishing to BEFORE the message is
sent in order to see it in the PubNub Channel Log app.
6. You can repeat the test steps above as many times as you'd like.

© 2017 ServiceNow, Inc. All rights reserved. 38



7. When the REST Activity is behaving as expected, Publish the Activity.

Welcome | ¢ Send to PubNub
= Activity Designer - Send to PubNub ooo | TestlInputs Delete Save Publish Continue
General Inputs Execution Command Outputs / Conditions @
Condition defaults <4< < 1 t020f2 p PP =
503 = Name = Condition = Else = Order A

Mid-way Catch Up

4. This is the midpoint of lab 4. If you had problems with this lab up to this point and want to
fast forward to catch up to review the completed updates you can follow the same process,
you followed in Lab Setup to create a branch from the Lab3-mid tag. This will update your
application to a state that you would be if you successfully completed Lab 3 up to the current
midpoint.

5. In Studio, navigate to Source Control > Create Branch.

6. In the pop-up window, enter a branch name, then select Lab3-mid from the Create from
Tag
menu, and click Create Branch.

Branch: my-Lab3-mid-branch
Create from Tag: Lab3-mid

Use the Hello World REST Activity in a Workflow

1. Click the Workflow tab, then click the ‘+’ icon to create a new Workflow.

Workflows = Core | Packs | Custom | Data

ooo | TestInputs Delete Save Publish Continue
¥ ® +
°§ ADActivityTest-AddUserToADGroup ;
@ ADActivityTest-RemoveUserFromADGFfoup
Outputs Conditions @ § Azure Create User

°§ Azure Delete User

@ Change Request - Emergency

»§ Change Request - Emergency change tasks
=Else = Order a °§ Change Request - Normal
@ Change Request - Normal change tasks
8 Change Request - Standard

w § Change Request - Standard change tasks

°@ Comprehensive Change

2. On the New Workflow page, give the Workflow a Name and configure as follows, then click
Submit.



Table: Incident
Condition: Active is true

New Workflow  (2)

Workflow Version [New Workflow view*] Submit

7

Name PubNub Hello Workflow

Table Incident [incident] v
Description
Conditions
If condition | Run the workflow v
matches

Condition Add Filter Condition || Add "OR" Clause

Active v is v | true

«

3. From the Custom tab, Drag and drop the PubNub REST Activity to the Workflow. Drop it on
the Workflow when the line turns blue.

Welcome | @ Send to PubNub HelloWorX | off PubNub Hello Workflow Workflows = Core = Packs | Custom | Data

= PubNub Hello Workflow - Checked out by me ® ¥ ® o ® +

\

@ Begin ) ¥ (73] Custom Activities

Bogin Drop when line turns blue > (5] clobal

L > Active Directory
Azure AD

Exchange

F5 Network Management
Infoblox DDI

PowerShell

Probe

System Center Configuration Manager (SC(

Always

Drag to line

SFTP File Transfer
SSH
Workday Orchestration

ccw3970_demo_app
> Send to PubNub - v7

4 VYV Y Y VY VY VY VYVYYVYY

I > Send to PubNub Hello World - v1

4. Give the Workflow Activity a name, and enter the Activity inputs as before.

Name: PubNub Hello Activity
Pub Key: pub-c-11b9ede6-f9ee-4da8-a829-944a45f29eb8

© 2017 ServiceNow, Inc. All rights reserved. 40



Sub Key: sub-c-dafe9b8c-1lael-11e7-bc52-02ee2ddab7fe
Channel: CCW3970_instancel234
Client: instance1234

5. Drag a line to connect from the Failure condition to the End state.

Welcome 00 Send to PubNub Hello World | off PubNub Hello Workflow
= PubNub Hello Workflow - Checked out by me
@ Begin
Begin [e=] Send to PubNub @
R Hello World
PubNub Hello Activity
Success &
failure :\
F2 End
End

In a real application, handling failure is critical. You can imagine how receiving an HTTP 400
error response might result in the failure being logged somewhere, and the call NOT being
retried since that is an unrecoverable condition.

What should be the behavior if an HTTP 500 error is received? Hint: retry. Limit the number
of retries, and consider an exponential back-off (wait) period between retries. You can
implement this retry logic in the workflow logic.

Test the Workflow

1. Getready to view the message was received by PubNub. In your browser navigate to
https://ccw3970-demo.glitch.me/ and enter values for the channel name you plan to use

to send the test.

This should be the default value, CCW3970_<lab instance name>, but can be specified ad-
hoc.

2. Create a new Incident record.

3. Navigate to System Logs > Outbound HTTP Requests again to view the most recent HTTP
request. Verify the request is listed.

4. Verify the message was received for the channel at https://ccw3970-demo.glitch.me/.

NOTE: You need to subscribe to be subscribed to the channel BEFORE the message is sent in



order to receive it in the glitch app.

5. You can repeat the test steps above as many times as you’d like.

Update the REST Activity to pull data from the Incident record

1. To save time, we’ve pre-built a REST Activity. Now we need to modify it to include an
additional field caller_id in the payload message.

In Studio, Open the PubNub REST Message. We're going to make further use of REST
Message template variables e.g. ${sys_created_on}.

Open the HTTP Method “Publish Message”, and select the HTTP Request tab. Note the
Content field still contains the message payload from before.

{"message": "Hello PubNub from ServiceNow CCW3970 Lab Instance"}

2. Replace the Content field with this payload. Note that it contains template variables.

= HTTP Method - Al
Sh= Publish Message ;@ o+ ©coo | Update D|
’,C‘ = Name A = Value
X (i) ContentType application/json

Insert a new row...

HTTP Query Parameters
.7::“1? = Name = Value = Order A

Insert a new row...

Content {
"active": "${int_active}",

"assigned_to": "${int_assigned_to}",
"caller_id": ${int_caller_id}",
"category™: "${int_category}",
"created_on": "${int_sys_created_on}",
": "${int_number}",

ity": "${int_priority}",

"state": "${int_state}",

"sys_id"™: "${int_sys_id}",

"updated_by": "${int_sys ubdated by},
"updated_on": "${int_sys_updated_on}"

Note the payload can be copy/pasted from the GitHub snippets repo (file
ccw3970_restmessage_content_body.json) or directly from:



https://raw.githubusercontent.com/CreatorConl7/CCW3970-Build-Debug-
Outbound-REST-Snippets/master/ccw3970 restmessage content body.json

3. From REST Message, click Test to test the new payload is sent correctly to PubNub. Verify
channel settings are correct in the “Test Value” field.

4. Go back to the Orchestration > Workflow Editor. Open the Send Record to PubNub Activity.

Workflows = Core | Packs & Custom | Data

o ® +

¥ (72 Custom Activities
» (S] Global

Active Directory

Azure AD

Exchange

F5 Network Management

(S) Infoblox DDI

@ PowerShell

Probe

System Center Configuration Manager (SC(
SFTP File Transfer

SSH

Workday Orchestration
ccw3970_demo_app

I » <5 send Record to PubNub - v8

4 VY Y VYVYVYVYVvYVYYVYY

> @ Send to PubNub Hello World -v1

5. Click Checkout to edit the Activity.

& Send Record to PubNi X

ooo | TestInputs Checkout Continue

bn Command Outputs Conditions @

Execution template REST Web Service

Application | ccw3970_demo_app ®

6. On the Inputs tab, we need to add a new input field to the curr_record Object. Expand the
curr_record Object.




o VP TTETTOTTOTY ToToTTe

{ }Input

aBC pub_key String No pub-c-11b9ede6-fdee-4da8-a829-944a45f29eb8
ABC sub_key String No sub-c-dafe9b8c-1ael-11e7-bc52-02ee2ddab7fe
asc channel String No channel-instance1234

asc client String No client-instance1234

{ } curr_record

7. Note that caller_id is not currently defined. Click the ‘+" icon to add a new field to the Object

definition.
Welcome | @ Send to PubNub HelloWorld | off PubNub Hello Workflow | ¢ Send Record to PubNub ~
E Activity Designer - Send Record to PubNub ooo | TestInputs Delete Save Publish Continue
General nputs Execution Command Outputs Conditions @
Name Type Mandatory Default
{ } nput ®

ABC pub_key String No pub-c-11b3ede6-f9ee-4da8-a829-944a45f29eb8 @

ABC sub_key String No sub-c-dafe9b8c-1ael-11e7-bc52-02ee2ddab7fe @

aBc channel String No channel-instance1234 @

aBc client String No client-instance1234 @

{ } curr_record ‘@
TIF active Boolean No @
ABC assigned_to String No (j)
ABC category String No @
ABC created_on String No @
ABC number String No @
ABC priority String No @
ABC state String No @
ABC sys_id String No @
aBc updated_by String No @
ABC updated_on String No @

Go to Pre-Processing m




8. Give the field the name “caller_id” and press Enter key, then click Continue.

aBc sys_id String No ®
aBc updated_by String No ®
aBC updated_on String No E)
asc |caller_id String No @

Go to Pre-Processing m

9. On the Execution Command tab, click ‘+’ to add a new Variable substitution. The variable
name is “int_caller_id” defined on the REST message, so it needs to match here.

Then drag the new caller_id input to the variable value. Here is the finished state.

®
-/

i ivi + A
aBc caller_id int_sys_created_on S{activitylnput.curr_ None A

~
(
=/

int_number ${activitylnput.curr_ None s

Drag

«
~
)

(-

int_priority ${activitylnput.curr_ None

® @
@O0 0|00 00 60 0 0

«
~
)

int_state ${activitylnput.curr_ None

/
C

>
N
J

int_sys_id ${activitylnput.curr. None v

,
\

ys_updated_by ${activitylnput.curr_ None

/‘\\
/

U

S{activitylnput.curr_ None )

int_active ${activitylnput.curr_ None IO
int_caller_id ${activitylnput.curr_ None IS

10. Save and Publish the REST Activity.

Use the new REST Activity in a Workflow

1. Open the PubNub Workflow previously created. You can find it in the Workflow navigation
tab by typing “PubNub”.

Workflows Core Packs Custom Data

O\ PubNub| @ +

*d PubNub Hello Workflow




2. If necessary, Checkout the Workflow. (It may already be checked out from before)

Welcome | off PubNub Hello Workflow

ack ‘ — Vth Halla Warkflaw - Pyblished

- New Workflow

Open Existing

roll ( Copy .
E“ [=) send to PubNub Hello
‘| Checkout | — World

Delete PubNub Hello Activity

Success =
Set Inactive Failure &
Expand Transitions
Validate Workflow

End
Show Contexts @
End

Properties

Workflow Canvas Help

3. Hover and click the X icon to delete the Hello World Activity from the Workflow.

4. From the Custom tab, Drag the Send Record to PubNub Activity to the Workflow.

~ 0 T

@ Begin

Begin ¥ (T3 custom Activities
S » (S) Global
Active Directory
Azure AD
Exchange
F5 Network Management
Infoblox DDI
PowerShell
Probe

System Center Configuration Manager (S|

BB End

End

SFTP File Transfer

(8] ssH

@ Workday Orchestration

4 Y Y Y VY VY VY VYVYVYYVYY

E] ccw3970_demo_app

| > Send Record to PubNub - v3
» (i< Send to PubNub Hello World - v1

5. Now you need to reference the values from the current record (the Incident that was
created), to bind them to the Input variables from the REST Activity.




New Activity: Send Record to PubNub-v3 (2 X

¢ | = Workilow Activity & = ooo | Submit

== New record [Diagrammer view]

Name Then

Stage @ Q
PubKey | pub-c-11b9edes-foee-4da8-a829-944a45f29ebs
Sub Key sub-c-dafeSb8c-1ael-11e7-bc52-02ee2ddab7fe
Channel channel-instance1234
Client client-instance1234

CurrRecord | Name Type Value

{ } curr_record

TIF active Boolean ${current.active}

ABC assigned_to String ${current.getDisplayValue('assigned_to')}
aBc caller_id String, ${current.getDisplayValue('caller_id')}
ABC category String ${current.category}

Double=click to

ABC number String
ABC priority String input eaCh entry
ABC state String
aBC sys_id String
aBc updated_by String
aBc updated_on String

Note the needed values can be copy/pasted one-by-one from the GitHub snippets repo (file
ccw3970_rest_activity_current_inputs.txt) repo or directly from:
https://raw.githubusercontent.com/CreatorConl7/CCW3970-Build-Debug-
Outbound-REST-Snippets/master/ccw3970 rest activity current inputs.txt
Then click Submit.

6. Test the Workflow again by creating a new Incident record. Be sure to fill out the various
fields such as Caller, Assigned To, etc in order to see the values for those fields be extracted
and sent to PubNub.

Verify the message are received on your PubNub channel and that they’re fully populated
with data from the Incident record.

Remember, you can view the HTTP Outbound Request Log to see what was sent from
ServiceNow.

© 2017 ServiceNow, Inc. All rights reserved. 47



Catch Up

1. If you had problems with this lab and want to fast forward to the end of lab 3 to review the
completed updates you can follow the same process, you followed in Lab Setup to create a
branch from the Lab3-end tag. This will update your application to a state that you would be
if you successfully completed Lab3.

2. In Studio, navigate to Source Control > Create Branch.

3. In the pop-up window, enter a branch name, then select Lab3-end from the Create from Tag
menu, and click Create Branch.

Branch: my-Lab3-end-branch
Create from Tag: Lab3-end

Progress Report

1. Navigate to Lab Management> Report Lab Progress.

Lab Management

7 Report Lab Progress

2. Clicklam done!

Let instructor know how you are doing on the lab(s) by selecting the appropriate button.




--Intentionally
Left Blank—






REFERENCE
PAGES




