
	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 1

	

	

	

Lab	Guide	
	

CreatorCon17	Pune	

Building	and	debugging	
outbound	REST	API	Integrations	

	

Bryan	Barnard		

	
Lab	instance:	http://clabs.link/debug-api-pnq	

Default	Login	/	Password:	

admin	/	pnq-cc17	

itil	/	pnq-cc17	

employee	/	pnq-cc17	 	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 2

	

	

	

	

This	

Page	

Intentionally	

Left	

Blank	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 3

	

Lab	Goal	
Before	we	get	started	building	and	debugging	outbound	REST	API	
integrations	we	need	to	get	our	lab	instance	setup.	In	this	lab	you	
will	be	modifying	an	existing	scoped	application.	Start	out	by	
importing	the	CCW3970	application	from	Source	Control.	Follow	
the	directions	below	to	fork	this	application	to	your	GitHub	
account	and	begin	working.	

Prerequisites	
In	order	to	complete	this	lab,	you	must:	

1. Create	a	GitHub	account	if	you	do	not	already	have	one.	
2. Install	Postman	from	https://getpostman.com	if	you	do	not	already	have	it	installed.	

	

Fork	the	Lab	GitHub	Repository	

3. Log	in	to	your	GitHub	account	at:	
 https://github.com/login

	
	

4. Navigate	to:	
 https://github.com/CreatorCon17/CCW3970-Build-Debug-Outbound-REST-App

Lab	Setup	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 4

	

	

5. Click	Fork.	To	fork	the	repository.	

	

6. Note in the upper left that the repository has been copied to your account. You now have a
copy of the lab material for reference after the conference!

7. Click	on	Clone	or	download	button	and	locate	the	HTTPS	field	then	click	the	clipboard	to	the	
right.	This	action	copies	the	URL	in	the	clipboard.	

IMPORTANT: Be sure to copy the HTTPS repo URL in GitHub.

	

Import the CCW3970 Application from Source Control

8. Log	in	to	your	lab	instance	with	the	admin	credentials	provided	on	the	cover	sheet	of	this	
document.	

9. Navigate	to	System	Applications	>	Studio.	

	

10. Click	on	Studio.	
11. Click	Import	from	Source	Control.		

	
	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 5

	

12. In	the	Import	Application	window,	paste	the	URL	copied	in	step	5	and	provide	your	GitHub	
credentials.	Click	Import.	

	

	
13. When	the	import	completes,	click	Select	Application.		

	
14. Click	on	the	CCW3970	application	you	just	imported	to	load	this	application	into	Studio.	

	

You’ve	now	successfully	imported	your	forked	version	of	the	application	for	use	in	this	
workshop.	
	 	 	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 6

	

Get ready for Lab 2 – Create a new branch from Lab2-start tag in Studio

1. Yes, you read that correctly, we won’t be using ServiceNow again until Lab2, but we want to
get you ready ahead of time.

NOTE: This is worth mentioning, not a typo, you are importing and opening this application
in Studio but we will not be using ServiceNow again until you start Lab

2. In Studio, navigate to Source Control > Create Branch.

	

3. In the pop-up window, enter a branch name, then select Lab2-start from the Create from Tag
menu, and click Create Branch.

Branch: my-Lab2-branch
Create from Tag: Lab2-start

	
	

4. When	the	switch	is	complete,	click	Close	Dialog	in	the	Create	Branch	pop-up.	
5. Verify	Studio	is	on	branch	my-Lab2-branch	(bottom	right	hand	corner).	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 7

	

	

6. Lab	setup	is	complete.	You	are	now	ready	to	start	Lab	1.	

	

Progress	Report	
1. Navigate	to	Lab	Management>	Report	Lab	Progress.	

	

	

2. Click	I	am	done!	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 8

	

	

	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 9

	

Lab	Goal	
The	purpose	of	this	workshop	is	to	familiarize	yourself	with	
ServiceNow	Outbound	Messaging	capabilities	available	to	you	for	
building	integrations	with	3rd	party	REST	APIs	as	well	as	how	you	can	
debug	your	integrations.		

In	this	first	lab	you’ll	familiarize	yourself	with	the	PubNub	3rd	party	
REST	API	we’ll	be	working	with	for	the	rest	of	this	workshop	and	use	
Postman	(an	API	testing	tool)	to	build	requests	you	can	execute	and	
review	from	your	localhost.	

Prerequisites	

 • Knowledge of REST APIs
 • Knowledge of HTTP clients
 • Postman API testing tool installed. If you still need to install the Postman go to:
 https://www.getpostman.com/

	
Check	out	PubNub	

	

When	building	an	integration	between	cloud	based	service	providers	it’s	a	good	idea	to	start	
out	by	mocking	up	your	requests	with	a	tool	that	you	can	run	on	your	localhost	such	as	cURL,	
Postman	or	Paw.	Each	of	these	tools	allow	you	to	build	and	execute	HTTP	requests	from	your	
localhost	(laptop,	desktop,	etc.…).	This	enables	you	to	build	and	execute	your	requests	in	a	very	
agile	way	and	also	provides	you	with	a	working	example	to	reference	when	you	start	building	
your	integration	in	ServiceNow.	

In	this	lab	we’ll	be	working	with	PubNub,	PubNub	is	a	3rd	party	streaming	data	service.	You’ll	
start	getting	familiar	with	the	API	by	using	Postman	to	make	a	request	to	the	Publish	Message	
operation	of	the	PubNub	REST	API.	This	operation	allows	you	to	publish	messages	via	HTTP.	

PubNub	offers	a	rich	set	of	functionality	but	for	the	purposes	of	this	workshop	we’ll	only	be	
using	their	Publish	Message	capabilities.	If	you	are	interested	in	finding	out	more	about	PubNub	
and	PubSub	services	you	should	check	out	their	website	and	API	docs.	
	
Start	out	by	briefly	review	the	API	for	PubNub	at:		
https://www.pubnub.com/docs/pubnub-rest-api-documentation#publish-subscribe-publish-v1-
via-post-post	
	

Lab	1		
Publish	

Message	
with	

Postman	
“Hello	

world!”		

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 10

	

Specifically	look	at	the	Publish	via	POST	operation.	

	

You’ll	be	using	the	Postman	to	make	a	request	to	the	PubNub	REST	API	and	publish	a	message	
to	a	channel.	The	PubNub	REST	API	provides	an	endpoint	that	accepts	a	POST	request	to	publish	
a	message	onto	a	channel	that	other	clients	can	subscribe	to.	Per	the	documentation	this	
method	requires	the	parameters	pub_key,	sub_key,	and	channel	be	specified	as	URL	path	
parameters	and	a	uuid	be	provided	as	a	query	parameter.		
	
Example	URI	
POST https://pubsub.pubnub.com/publish/{pub_key}/{sub_key}/0/{channel}/0?store=1&uui
d={client}

Build	and	Send	a	Request	to	Publish	with	Postman	
Let’s	begin	by	building	a	request	to	publish	a	message	to	PubNub	in	Postman.	We’ve	built	and	
made	a	prebuilt	Postman	collection	to	help	you	get	started.	
	

1. Open	the	Postman	application	on	your	laptop.	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 11

	

	
	
2. Import	the	Postman	collection	we	will	be	using	for	this	workshop.	In	Postman,	click	Import.	

	

	

3. Postman	Collection	Link:		
https://www.getpostman.com/collections/25a87e008d055aec5496	
	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 12

	

Paste	the	link	to	our	Postman	collection	in	the	Import	From	Link	input	box.	
	

	

	 	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 13

	

	
4. Verify you have the CCW3970-PubNub collection loaded by searching for it in the

navigator on the left hand side.

PubNub Keys:

pub_key: pub-c-11b9ede6-f9ee-4da8-a829-944a45f29eb8
sub_key: sub-c-dafe9b8c-1ae1-11e7-bc52-02ee2ddab7fe

5. In the CCW3970-PubNub collection select the Publish To Channel operation.

a. Replace the {pub_key} parameter with the pub_key provided in this lab doc.
b. Replace the {sub_key} parameter with the sub_key provided in this lab doc.
c. Replace the {client} parameter with your lab instance name (e.g., if your lab instance

is lab1.service-now.com, replace the {client} param as ‘lab1’.
d. Replace the {channel} parameter with “CCW3970_{instance-name}” where

{instance-name} is the name of your lab instance (e.g., CCW3970_lab1).
Example:
https://pubsub.pubnub.com/publish/pub-c-11b9ede6-f9ee-4da8-a829-
944a45f29eb8/sub-c-dafe9b8c-1ae1-11e7-bc52-
02ee2ddab7fe/0/CCW3970_lab1/0?store=1&lab1

e. Verify the headers specify ‘Content-Type: application/json’.
f. Verify the body includes the following as JSON.

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 14

	

{"message": "Hello PubNub from ServiceNow CCW3970 Lab Instance"}

g. Click Send to send the HTTP Request.

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 15

	

6. Verify	the	request	was	successful	by	looking	for	the	200	OK	status	code	and	that	the	

response	payload	contains	“sent”	as	shown.	

	

	

If	you	see	200	OK	you’ve	now	successfully	published	a	message	to	PubNub	using	Postman	
from	your	local	host.	If	you	had	errors	check	your	URI	and	parameters	or	ask	a	Lab	Guru	for	
assistance.		

This	is	an	important	step	in	building	an	integration	because	using	a	tool	like	Postman	allows	
you	to	quickly	familiarize	yourself	with	a	3rd	party	API	so	that	when	you	build	your	
integration	in	ServiceNow	you	know	that	you’ve	had	a	working	request,	understand	how	to	
format	your	request	to	send	successfully	and	can	refer	back	to	this	when	building	and	
testing	your	request	in	ServiceNow.	In	addition,	it	is	becoming	common	for	REST	API	
providers	to	provide	either	cURL	or	Postman	samples	for	consuming	their	APIs	which	can	
speed	this	process	along.	

In	the	next	lab	you’ll	use	ServiceNow	to	issue	HTTP	requests	to	PubNub	to	publish	messages	
from	ServiceNow	similar	to	how	you	used	Postman	in	this	lab.	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 16

	

Progress	Report	
1. Navigate	to	Lab	Management>	Report	Lab	Progress.	

	

	

2. Click	I	am	done!	
	

	

	 	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 17

	

Lab	Goal	
	
In	the	first	lab	you	used	Postman	to	publish	messages	to	PubNub	
using	their	REST	API.	In	this	lab	you’ll	use	the	ServiceNow	
RESTMessage	capabilities	to	publish	messages	to	PubNub.	You’ll	
start	by	configuring	a	RESTMessage	record	and	testing	your	
configuration	using	scripts	background.	Next	you’ll	use	business	
rules	to	trigger	messages	publishing	to	PubNub	when	Incident	
records	are	mutated.	In	addition,	you’ll	use	the	outbound	http	
request	logs	in	ServiceNow	to	debug	your	requests.	

	
Create	Lab	2	starting	branch	
	

1. If	you	completed	the	lab	setup,	proceed	to	the	next	step.	If	you	haven’t	yet	completed	lab	
setup, follow the steps in lab setup to create the my-Lab2-branch from the Lab2-start git
tag.	

	
Configure	and	Test	with	RESTMessage	
	

1. In	your	ServiceNow	lab	instance	navigate	to	System	Web	Services	->	REST	Message	
2. Navigate	to	PubNub->	Publish	Message.	This	message	has	been	partially	configured	to	send	

messages	to	the	same	PubNub	REST	API	operation	we	sent	a	request	in	Postman.	Note	the	
variables	we’ve	specified	in	the	Endpoint	field	and	the	Variable	Substitutions	that	exist	in	
the	related	list	at	the	bottom.	This	will	allow	us	to	easily	specify	these	variables	as	
parameters	when	using	this	RESTMessage	HTTP	Method	from	script.	

3. Verify	method	is	POST.	

Lab	2		
Publish	

Message	
with	

ServiceNow	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 18

	

	

	

	

4. Populate	Header	“Content-Type”	:	“application/json”	

	

5. Click	Preview	Script	Usage	in	the	list	of	Related	Links,	and	you’ll	see	auto	generated	sample	
script	that	can	be	used	to	execute	this	request	from	anywhere	in	ServiceNow	where	you	can	
use	Server	Side	script	(e.g.,	Business	Rules,	Workflows,	Script	Actions).		

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 19

	

	

6. Now	set	the	HTTP	Log	level	for	this	record	to	All.	This	allows	you	to	control	what	level	of	
detail	is	logged	when	outbound	messages	are	sent	from	ServiceNow.		

7. Note:	For	more	information	about	what	is	included	in	each	log	level	see	Outbound	HTTP	
Logging	in	the	ServiceNow	docs.	No	additional	info	about	logging	levels	is	necessary	for	this	
lab.	
	

	
	

	
	

PubNub Keys:
pub_key: pub-c-11b9ede6-f9ee-4da8-a829-944a45f29eb8
sub_key: sub-c-dafe9b8c-1ae1-11e7-bc52-02ee2ddab7fe

	

8. Populate	Test	Variables	in	Variable	Substitution	for:	
a. pub_key,	specify	pub_key	provided	in	this	lab	guide	
b. sub_key,	specify	sub_key	provided	in	this	lab	guide	
c. client,	specify	your	lab	instance	name	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 20

	

d. channel,	specify	“CCW3970_{you	lab	instance	name}	(e.g,	if	your	instance	name	
iscc17d-brb-332-001,	for	the	channel	you	would	specify	“CCW3970_cc17d-brb-332-
001”.	

	

9. Click	Test	

	
	

10. Verify	the	request	fails	with	HTTP	status	404,	(this	is	expected).	

	

11. Now	let’s	figure	out	why.	Go	to	the	system	logs	to	get	a	better	idea	of	the	request	we	sent	
and	the	response	we	received	from	PubNub.	This	will	allow	us	to	compare	the	request	sent	
from	ServiceNow	with	the	successful	request	we	sent	from	Postman	and	determine	what	
we	need	to	change.	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 21

	

12. Navigate	to	System	Logs	->	Outbound	HTTP	Requests.	

	
	

13. Review	the	list	of	recent	outbound	http	requests.	
	

	
14. Find	the	last	sent	message	and	view	the	log	contents	including:	

- Method	
- URL	
- Response	Status	
- Response	Time	
- Headers	
- Body	

	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 22

	

	

	
	
15. Compare	the	request	sent	from	ServiceNow	that	failed	with	the	successful	request	sent	

from	Postman.	What	differs?	Are	there	any	messages	in	the	response	that	indicate	what	the	
problem	was?	(Hint:	look	at	the	request	body	you	sent	from	Postman	and	the	one	you	sent	
from	ServiceNow).	

	 	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 23

	

16. Go	back	to	the	Publish	Message	record	in	Studio	and	specify	content	of		
	
{"message": "Hello PubNub from ServiceNow CCW3970 Lab Instance"}

17. Save	the	record	and	run	another	test	and	verify	your	HTTP	status	is	now	200.	
	

Use	RESTMessage	from	Script	
	

1. Now	let’s	use	the	usage	script	to	make	a	request	and	include	a	request	body.	First	grab	the	
usage	script	at	by	clicking	Preview	Script	Usage.	

	
	

2. Review	the	Preview	REST	Message	script	usage	from	the	RESTMessage	Record.	This	
provides	you	with	an	auto-generated	script	that	you	can	use	as	a	basis	for	script	you	use	
elsewhere	(server	side)	to	trigger	this	RESTMessage	(e.g.,	business	rule,	script	action,	scripts	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 24

	

background).			

	

	

3. In	a	new	browser	tab	navigate	to	the	following	link	and	copy	the	script.	We’ve	slightly	
modified	the	auto	generated	script	from	the	RESTMessage	record	to	add	a	message	body.	
https://raw.githubusercontent.com/CreatorCon17/CCW3970-Build-Debug-
Outbound-REST-
Snippets/master/ccw3970_scripts_background_restmessage_hello_pubnub.js	

	

4. Let’s	try	it	out	now.	Outside	of	Studio	navigate	to	System	Definition	->	Scripts	–	Background	
and	paste	it	into	the	script	box	(as	shown	below).		

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 25

	

	

5. Send	the	request	by	clicking	Run	Script.	
6. You	should	see	a	debug	message	indicating	the	response	status	code	is	200	indicating	a	

successful	request.	Let’s	look	at	the	Outbound	HTTP	Log	to	see	a	bit	more	detail	about	the	
request	and	response.	

7. Navigate	to	System	Logs	->	Outbound	HTTP	Requests.	
8. Open	the	most	recently	sent	message	and	review	the	sent	request	details.	This	allows	you	to	

see	all	the	details	of	the	sent	request	from	ServiceNow	to	PubNub	and	the	corresponding	
response.	Having	access	to	this	level	of	detail	is	invaluable	when	trying	to	debug	or	verify	
communication	between	cloud	based	systems.	

9. Let’s	also	verify	the	message	was	received	on	PubNub.	In	a	new	browser	tab	navigate	to	
 https://ccw3970-demo.glitch.me/	
	
Enter	the	channel	name	you	specified	when	sending	the	request	(e.g.,	CCW3970_cc17d-brb-
332-001)	and	click	Subscribe.		This	is	a	lightweight	web	application	that	can	subscribe	to	the	
PubNub	channels	and	will	automatically	update	when	messages	are	published	to	the	
channel	it’s	subscribed	to.	

	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 26

	

	
10. Issue	another	request	using	Scripts	Background	and	then	and	you	should	see	your	message	

show	up	in	the	PubNub	Channel	Log	at	https://ccw3970-demo.glitch.me/	without	
needing	to	update	(page	will	auto	update	when	new	messages	are	published).	

11. Now	that	you’ve	seen	how	you	can	publish	a	message	(send	a	HTTP	request)	from	a	script	
let’s	put	this	to	use	and	configure	a	business	rule	to	publish	messages	to	PubNub	when	an	
Incident	is	either	inserted	or	updated	in	your	lab	instance.	

	 	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 27

	

Configure	Business	rule	to	Publish	Messages	to	PubNub	
1. In	Studio	open	the	Publish	Update	Insert	PubNub	business	rule	which	is	part	of	the	

CCW3970	application.	

	

2. Verify	the	business	rule	is	configured	to	run	on	insert	and	update,	advanced	is	checked	and	
when	is	set	to	run	aysnc.	You	will	be	making	changes	to	this	business	rule	so	that	when	it	is	
triggered,	on	insert	or	update,	of	an	Incident	record	a	message	will	be	published	to	PubNub.	

3. In	the	business	rule	set	the	advanced	script	by	copying	and	pasting	values	from.	
https://raw.githubusercontent.com/CreatorCon17/CCW3970-Build-Debug-
Outbound-REST-
Snippets/master/ccw3970_advanced_business_rule_publish_updates_to_pubnub.js

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 28

	

	

4. Save	the	record	and	review	this	Script.	Note	we	are	still	using	the	RESTMessage	record	but	
now	we	are	populating	the	body	with	values	from	the	inserted	or	updated	Incident.	

	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 29

	

	
	

5. 	The	business	rule	is	now	configured	to	publish	the	JSON	(data	transfer	object)	
representation	of	the	Incident	to	PubNub	whenever	an	Incident	record	is	created	or	
updated.	

6. Try	it	out,	update	an	Incident	Record.	Change	the	Caller	to	David	Loo.	Save	the	incident	
record	and	be	sure	to	note	the	Incident	Number.	

7. Go	to	the	Outbound	HTTP	Logs	and	verify	that	a	request	with	a	payload	including	this	
Incident	number	was	sent	to	PubNub	and	that	the	response	status	was	200.	

8. Verify	on	PubNub	that	the	message	was	received.	If	you	still	have	your	other	browser	tab	
open	to		https://ccw3970-demo.glitch.me/	then	you	should	see	a	new	message	has	
been	added	to	the	top	of	the	log.	If	you	closed	your	browser	tab	then	you’ll	need	to	reopen	
it	and	subscribe	to	the	appropriate	channel.	Note:	The	channel	name	should	be	
“CCW3970_{your	lab	instance_name}.	You	can	always	go	back	to	your	advanced	business	
rule	script	and	find	it	as	well.	Channel	names	are	case	sensitive.	

9. In	my	example	shown	below.	I	updated	INC20001,	setting	the	caller	to	David	Loo.	My	
instance	name	was	bbarnsc1	and	the	corresponding	channel	name	that	I	subscribed	to	was	
CCW3970_bbarnsc1.	You	should	see	something	similar.	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 30

	

	

	
If	you	see	your	messages	great!	You’ve	successfully	completed	this	lab	and	you’ve	now	configured	
your	ServiceNow	instance	to	publish	messages	to	PubNub	using	Business	Rules,	and	the	
RESTMessageV2	API	when	Incidents	are	created	or	updated	in	your	lab	instance.		
	
If	You	don’t	see	these	messages	in	the	outbound	HTTP	log	or	in	the	PubNub	Channel	Log	then	
review	your	script	for	variances	or	ask	a	lab	guru	for	help.	
	
In	the	next	lab	we’ll	see	how	we	can	do	this	using	ServiceNow	Workflow	and	Orchestration.	
	
	

Catch	Up	
	

1. If you had problems with this lab and want to fast forward to the end of lab 2 to review the
completed updates you can follow the same process, you followed in Lab Setup to create a
branch from the Lab2-end tag. This will update your application to a state that you would be
if you successfully completed Lab2.

2. In Studio, navigate to Source Control > Create Branch.
3. In the pop-up window, enter a branch name, then select Lab2-end from the Create from Tag

menu, and click Create Branch.

Branch: my-Lab2-end-branch
Create from Tag: Lab2-end

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 31

	

	

Progress	Report	
1. Navigate	to	Lab	Management>	Report	Lab	Progress.	

	

	

2. Click	I	am	done!	
	

	

	 	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 32

	

Lab	Goal	
Now	we’re	going	to	implement	the	same	use	case	as	the	previous	lab,	
but	using	Orchestration	and	Workflow.	Orchestration	is	a	powerful	
tool	for	building	low-code	and	no-code	integrations.	Workflow	enables	
the	simple	automation	of	processes	and	tying	together	actions	in	
ServiceNow.	

We’ll	start	with	a	simple	“Hello,	world”	PubNub	REST	Activity,	then	
expand	it	to	be	triggered	from	an	Incident	being	created	in	
ServiceNow	using	Workflow.	

Create	Lab	3	starting	branch	
1. If	you	completed	the	lab	setup,	proceed	to	the	next	step.	

	
If	you	haven’t	yet	completed	lab	setup, follow the steps in lab setup to create the

my-Lab3-branch from the Lab3-start git tag.	

	

Create	a	REST	Activity	for	PubNub	
1. Open	the	Orchestration	>	Workflow	Editor.	

	
2. From	the	Custom	tab,	click	the	‘+’	icon	to	create	a	new	REST	Web	Service	activity.	

	
	
This	will	open	the	Activity	Designer	using	the	REST	Web	Service	template.	
	
Give	the	activity	a	name	such	as	“Send	to	PubNub	Hello	World”	and	click	Continue.	
	

Lab	3		
Use	

Orchestration	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 33

	

3. On	the	Inputs	tab,	click	‘+’	to	define	an	input	variable.	

	
	
Define	the	following	input	variables:	
	
pub_key	(default	value:	pub-c-11b9ede6-f9ee-4da8-a829-944a45f29eb8)	
sub_key	(default	value:	sub-c-dafe9b8c-1ae1-11e7-bc52-02ee2ddab7fe)	
channel	(default	value:	CCW3970_{lab	instance	name})	
client	(default	value:	{lab	instance	name})	
	

	
	

4. 	On	the	Execution	Command	tab,	select	your	REST	Message	and	function.	Reference	the	
REST	Message	and	HTTP	Method	created	in	the	previous	lab.	
	
NOTE:	if	the	REST	Message	defined	Variable	Substitutions,	then	they	will	be	automatically	
imported	into	the	REST	Activity.	But	if	not,	you	can	click	the	‘+’	button	to	just	define	them	
here.	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 34

	

	
	

5. Drag	&	drop	the	message	and	channel	input	variables	to	the	corresponding	Variable	
substitution	field.	

	
	

	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 35

	

	
Then	click	Continue.	
	

6. On	the	Outputs	tab,	add	the	HTTP	status	code	as	an	output	variable	

	
	
Name	the	variable	‘status_code’	

	
	

7. Drag	the	status_code	variable	to	the	parsing	rules	field	

	
	

8. In	the	Parsing	rule	popup:	
	
Parsing	source:	executionResult.status_code	
Parsing	Type:	Direct	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 36

	

	
	

9. Now	click	Continue	on	the	Outputs	tab	

	
	

10. On	the	Conditions	tab,	add	the	following	two	conditions,	then	click	Save.	
	
Name:	Success	
Condition:	activityOutput.status_code	==	200	
Else:	false	
Order:	100	
	
Name:	Failure	
Condition:	(empty)	
Else:	true	
Order:	200	
	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 37

	

	
	

11. Note	that	your	new	REST	Activity	is	defined	as	a	Custom	activity	in	the	right-hand	pane.	

	
	

Test	the	REST	Activity	
1. To	view	the	message	that	was	received	by	PubNub.	In	your	browser	navigate	to	

https://ccw3970-demo.glitch.me/	and	enter	values	for	the		channel	name	you	plan	to	use	
and	click	Subscribe.	Now	send	the	test.	
	
This	should	be	the	default	value,	CCW3970_<lab	instance	name>,	but	can	be	specified	ad-
hoc.	
	

2. Click	Test	Inputs.	On	the	popup,	enter	values	for	the	input	fields.	These	should	already	be	
populated	from	default	values	from	the	Activity,	but	if	not,	enter	as	below.	
	
activityInput.pub_key:	pub-c-11b9ede6-f9ee-4da8-a829-944a45f29eb8	
activityInput.sub_key:	sub-c-dafe9b8c-1ae1-11e7-bc52-02ee2ddab7fe	
activityInput.channel:	CCW3970_instance1234	
activityInput.client:	instance1234	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 38

	

	

	
	

3. On	the	Response	page,	verify	the	status	code	is	200	and	that	the	message	was	sent.	

	
	

4. Navigate	to	System	Logs	>	Outbound	HTTP	Requests	again	to	view	the	most	recent	HTTP	
request.	Verify	the	request	is	listed.	
	

5. Verify	the	message	was	received	for	the	channel	at	https://ccw3970-demo.glitch.me/.	
	
NOTE:	You	need	to	subscribe	to	the	channel	you	are	publishing	to	BEFORE	the	message	is	
sent	in	order	to	see	it	in	the	PubNub	Channel	Log	app.	

6. You	can	repeat	the	test	steps	above	as	many	times	as	you’d	like.	
	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 39

	

7. When	the	REST	Activity	is	behaving	as	expected,	Publish	the	Activity.	

	
	

Mid-way	Catch	Up	
	

4. This is the midpoint of lab 4. If you had problems with this lab up to this point and want to
fast forward to catch up to review the completed updates you can follow the same process,
you followed in Lab Setup to create a branch from the Lab3-mid tag. This will update your
application to a state that you would be if you successfully completed Lab 3 up to the current
midpoint.

5. In Studio, navigate to Source Control > Create Branch.
6. In the pop-up window, enter a branch name, then select Lab3-mid from the Create from

Tag
menu, and click Create Branch.

Branch: my-Lab3-mid-branch
Create from Tag: Lab3-mid

Use	the	Hello	World	REST	Activity	in	a	Workflow	
1. Click	the	Workflow	tab,	then	click	the	‘+’	icon	to	create	a	new	Workflow.	

	
	

2. On	the	New	Workflow	page,	give	the	Workflow	a	Name	and	configure	as	follows,	then	click	
Submit.	
	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 40

	

Table:	Incident	
Condition:	Active	is	true	
	

	
	

3. From	the	Custom	tab,	Drag	and	drop	the	PubNub	REST	Activity	to	the	Workflow.	Drop	it	on	
the	Workflow	when	the	line	turns	blue.	

	
	

4. Give	the	Workflow	Activity	a	name,	and	enter	the	Activity	inputs	as	before.	
	
Name:	PubNub	Hello	Activity	
Pub	Key:	pub-c-11b9ede6-f9ee-4da8-a829-944a45f29eb8	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 41

	

Sub	Key:	sub-c-dafe9b8c-1ae1-11e7-bc52-02ee2ddab7fe	
Channel:	CCW3970_instance1234	
Client:	instance1234	
	

5. Drag	a	line	to	connect	from	the	Failure	condition	to	the	End	state.	

	
	
NOTE:		
In	a	real	application,	handling	failure	is	critical.	You	can	imagine	how	receiving	an	HTTP	400	
error	response	might	result	in	the	failure	being	logged	somewhere,	and	the	call	NOT	being	
retried	since	that	is	an	unrecoverable	condition.	
	
What	should	be	the	behavior	if	an	HTTP	500	error	is	received?	Hint:	retry.	Limit	the	number	
of	retries,	and	consider	an	exponential	back-off	(wait)	period	between	retries.	You	can	
implement	this	retry	logic	in	the	workflow	logic.	
	

Test	the	Workflow	

1. Get	ready	to	view	the	message	was	received	by	PubNub.	In	your	browser	navigate	to	
https://ccw3970-demo.glitch.me/	and	enter	values	for	the		channel	name	you	plan	to	use	
to	send	the	test.	
	
This	should	be	the	default	value,	CCW3970_<lab	instance	name>,	but	can	be	specified	ad-
hoc.	
	

2. Create	a	new	Incident	record.	
	

3. Navigate	to	System	Logs	>	Outbound	HTTP	Requests	again	to	view	the	most	recent	HTTP	
request.	Verify	the	request	is	listed.	
	

4. Verify	the	message	was	received	for	the	channel	at	https://ccw3970-demo.glitch.me/.	
	
NOTE:	You	need	to	subscribe	to	be	subscribed	to	the	channel	BEFORE	the	message	is	sent	in	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 42

	

order	to	receive	it	in	the	glitch	app.	
	

5. You	can	repeat	the	test	steps	above	as	many	times	as	you’d	like.	
	

Update	the	REST	Activity	to	pull	data	from	the	Incident	record	
1. To	save	time,	we’ve	pre-built	a	REST	Activity.	Now	we	need	to	modify	it	to	include	an	

additional	field	caller_id	in	the	payload	message.	
	
In	Studio,	Open	the	PubNub	REST	Message.	We’re	going	to	make	further	use	of	REST	
Message	template	variables	e.g.	${sys_created_on}.	
	
Open	the	HTTP	Method	“Publish	Message”,	and	select	the	HTTP	Request	tab.	Note	the	
Content	field	still	contains	the	message	payload	from	before.	
	
{"message": "Hello PubNub from ServiceNow CCW3970 Lab Instance"}

2. Replace	the	Content	field	with	this	payload.	Note	that	it	contains	template	variables.	

	
	
Note	the	payload	can	be	copy/pasted	from	the	GitHub	snippets	repo	(file	
ccw3970_restmessage_content_body.json)	or	directly	from:		

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 43

	

https://raw.githubusercontent.com/CreatorCon17/CCW3970-Build-Debug-
Outbound-REST-Snippets/master/ccw3970_restmessage_content_body.json	
	

3. From	REST	Message,	click	Test	to	test	the	new	payload	is	sent	correctly	to	PubNub.	Verify	
channel	settings	are	correct	in	the	“Test	Value”	field.	
	

4. Go	back	to	the	Orchestration	>	Workflow	Editor.	Open	the	Send	Record	to	PubNub	Activity.	

	
	

5. Click	Checkout	to	edit	the	Activity.	

	
	

6. On	the	Inputs	tab,	we	need	to	add	a	new	input	field	to	the	curr_record	Object.	Expand	the	
curr_record	Object.	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 44

	

	
	

7. Note	that	caller_id	is	not	currently	defined.	Click	the	‘+’	icon	to	add	a	new	field	to	the	Object	
definition.	

	
	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 45

	

8. Give	the	field	the	name	“caller_id”	and	press	Enter	key,	then	click	Continue.	

	
	

9. On	the	Execution	Command	tab,	click	‘+’	to	add	a	new	Variable	substitution.	The	variable	
name	is	“int_caller_id”	defined	on	the	REST	message,	so	it	needs	to	match	here.	
	
Then	drag	the	new	caller_id	input	to	the	variable	value.	Here	is	the	finished	state.	

	
	

10. Save	and	Publish	the	REST	Activity.	
	

Use	the	new	REST	Activity	in	a	Workflow	
1. Open	the	PubNub	Workflow	previously	created.	You	can	find	it	in	the	Workflow	navigation	

tab	by	typing	“PubNub”.	

	
	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 46

	

2. If	necessary,	Checkout	the	Workflow.	(It	may	already	be	checked	out	from	before)	

	
	

3. Hover	and	click	the	X	icon	to	delete	the	Hello	World	Activity	from	the	Workflow.	
	

4. From	the	Custom	tab,	Drag	the	Send	Record	to	PubNub	Activity	to	the	Workflow.	

	
	

5. Now	you	need	to	reference	the	values	from	the	current	record	(the	Incident	that	was	
created),	to	bind	them	to	the	Input	variables	from	the	REST	Activity.	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 47

	

	
	
Note	the	needed	values	can	be	copy/pasted	one-by-one	from	the	GitHub	snippets	repo	(file	
ccw3970_rest_activity_current_inputs.txt)	repo	or	directly	from:	
https://raw.githubusercontent.com/CreatorCon17/CCW3970-Build-Debug-
Outbound-REST-Snippets/master/ccw3970_rest_activity_current_inputs.txt	
Then	click	Submit.	
	

6. Test	the	Workflow	again	by	creating	a	new	Incident	record.	Be	sure	to	fill	out	the	various	
fields	such	as	Caller,	Assigned	To,	etc	in	order	to	see	the	values	for	those	fields	be	extracted	
and	sent	to	PubNub.	
	
Verify	the	message	are	received	on	your	PubNub	channel	and	that	they’re	fully	populated	
with	data	from	the	Incident	record.	
	
Remember,	you	can	view	the	HTTP	Outbound	Request	Log	to	see	what	was	sent	from	
ServiceNow.	
	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 48

	

Catch	Up	
	

1. If you had problems with this lab and want to fast forward to the end of lab 3 to review the
completed updates you can follow the same process, you followed in Lab Setup to create a
branch from the Lab3-end tag. This will update your application to a state that you would be
if you successfully completed Lab3.

2. In Studio, navigate to Source Control > Create Branch.
3. In the pop-up window, enter a branch name, then select Lab3-end from the Create from Tag

menu, and click Create Branch.

Branch: my-Lab3-end-branch
Create from Tag: Lab3-end

	

Progress	Report	
1. Navigate	to	Lab	Management>	Report	Lab	Progress.	

	

	

2. Click	I	am	done!	
	

	

	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 49

	

	
	
	
	
	
--Intentionally	
Left	Blank—	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 50

	

	 	

	

©	2017	ServiceNow,	Inc.	All	rights	reserved.			 51

	

	

	

	
REFERENCE	
PAGES	

