
CyanBot python-ev3dev Documentation

Release 2.0

Author: Sai Tanuj Karavadi

6/1/2023

CyanBot python-ev3devDocumentation

Chapter 0

Table of Contents

Chapter 0 2

Table of Contents 2

Chapter 1 4

https://github.com/CyanCheetah/CyanBot 2

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

What is EV3DEV? 4

Chapter 2 6

Why am I using EV3Dev? 7

Chapter 3 12

What is an EV3? 12

Chapter 4 15

The hardware on CyanBot. 15

Chapter 5 20

The Color Sensor Program 20

Chapter 6 24

TheWebcam Programs 24

Chapter 7 36

The Recording Programs 37

Chapter 8 44

https://github.com/CyanCheetah/CyanBot 3

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

The Display Programs 44

Chapter 9 56

The Video Programs 56

Chapter 10 63

Hearing Sensor Programs 63

Chapter 11 67

Connecting to the Internet 67

Chapter 12 71

Using the Internet to play the radio 71

Chapter 13 76

Using Artifical Intelligence to generate responses 76

Chapter 14 88

All the Sudo Lines to execute the Programs 89

Chapter 15 93

https://github.com/CyanCheetah/CyanBot 4

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Extra Pictures and Important Information 93

Chapter 16 96

More Sudo Lines for Reference 96

Chapter 17 100

List of the things I have installed 100

Chapter 18 102

Reference Links 102

Chapter 18 104

Ways to Contact Me 104

https://github.com/CyanCheetah/CyanBot 5

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 1

What is EV3DEV?

ev3dev is an open-source operating system for LEGOMINDSTORMS EV3

robotics kits. It allows users to program and control their EV3 robots using a

variety of programming languages, including Python, C++, and Java, and

provides access to a wide range of sensors, motors, and other components.

ev3dev is designed to be easy to use and flexible, with a large community of

users and developers contributing to its ongoing development and

https://github.com/CyanCheetah/CyanBot 6

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

improvement. It also offers advanced features such as remote control, wireless

networking, and support for custom hardware, making it a powerful tool for

building sophisticated and innovative robotics projects. I am using the

python version of ev3dev, running python using Visual Studio Code (VS

Code). Using the ev3dev addon and libraries, I am able to program the EV3

brick through my computer.

https://github.com/CyanCheetah/CyanBot 7

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 2

Why am I using EV3Dev?

There are several reasons why I am using ev3dev. For one, the default

programming language of the Ev3 brick is Mindstorms blocks, which is quite

severely limited and lacking in structure. Also, blocks puts severe restrictions

on what you can and cannot do. Though ev3dev supports a variety of

languages; anything from Lua, C libraries, Java, Go, Rust, and many more

https://github.com/CyanCheetah/CyanBot 8

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

(https://www.ev3dev.org/docs/programming-languages/ for more language

options). But I chose python as it was the language I was most familiar with

and I was not planning on learning Rust anytime this year. With ev3dev, the

possibilities are (almost) endless. I will come back to the problems in another

chapter. With ev3dev, I was able to use the webcam, the microphone inside

the webcam, display images, use all the sensors and motors, all while not

using that much storage inside the ev3 brick. Also, one of the most crucial

features of Visual Studio code is saving on Github. With the default

Mindstorms programming language, I could not save it on github since it is

proprietary and Github does not support it. Here are some images of the

default Mindstorms Programming Language:

https://github.com/CyanCheetah/CyanBot 9

https://www.ev3dev.org/docs/programming-languages/
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

As you can see, it takes quite a lot of blocks to program something as simple

as a color detecting program. In comparison, here is the same program in

python using ev3dev on Visual Studio Code:

https://github.com/CyanCheetah/CyanBot 10

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

It takes much less effort to program on ev3dev python. Not only is it faster

and easier to program on ev3dev, but it actually performs better on ev3dev as

well. The color detection algorithm I have made here is more reliable than

that of the Mindstorms program.

https://github.com/CyanCheetah/CyanBot 11

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

In conclusion, ev3dev is much easier and faster to program on. Once you

install ev3dev there is actually a completely different UI (User Interface) as

well on the brick meaning it has a more streamlined process.

https://github.com/CyanCheetah/CyanBot 12

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 3

What is an EV3?

LEGOMindstorms EV3 is a robotics kit designed for educational and

hobbyist purposes. It consists of a programmable brick, motors, sensors, and

LEGOTechnic building elements that allow users to build and program

their own robots. The EV3 brick is the central component of the kit,

https://github.com/CyanCheetah/CyanBot 13

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

providing a microcontroller, a color LCD screen, and ports for connecting

motors, sensors, and other accessories.The kit includes several sensors, such as

touch, color, ultrasonic, and gyroscopic sensors, which allow the robot to

interact with its environment and perform tasks such as detecting obstacles,

following lines, and measuring distances. The motors included in the kit can

be used to drive the robot's movement, control arms, and other mechanical

components.

One of the key features of the Mindstorms EV3 kit is its programmability.

The EV3 brick can be programmed using a variety of programming

languages, including a drag-and-drop programming language called EV3-G, a

text-based language called RobotC, and popular programming languages like

Python, Java, and C++. This flexibility allows users to program their robots

at different levels of complexity, from simple behaviors to advanced

algorithms.

Another feature of the EV3 kit is its versatility. Users can create a wide range

of robots, from simple models to complex machines, by combining different

sensors, motors, and building elements. The kit also supports wireless

https://github.com/CyanCheetah/CyanBot 14

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

communication and can be connected to other devices, such as smartphones

or computers, for remote control or data exchange.

The Ev3 is a decade old now, so while it was powerful when it released, it has

the processing power of a calculator meaning there is quite a bit of

limitations to its usage. Thats why many buy a Raspberry Pi and use the ev3

addon to plug in motors, and still be able to program them.

The hardware on the EV3 is amazing and will talk about it in the next

chapter.

https://github.com/CyanCheetah/CyanBot 15

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 4

Thehardware on CyanBot.

https://github.com/CyanCheetah/CyanBot 16

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

I am using quite a bit of hardware on the CyanBot. The hardware list is:

These parts are connected to the LegoMindstorms EV3:

● 1 EV3 Programmable Brick

● EV3Motors:

○ 2 EV3 Large Motors

○ 1 EV3MediumMotor

● 1 Logitech C310Webcam withMicrophone

● 1 EV3 Remote Control

● EV3 Sensors:

○ 1 EV3 Color Sensor

https://github.com/CyanCheetah/CyanBot 17

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

○ 1 EV3 Touch Sensor

○ 1 Ev3 Infrared Sensor (IR Sensor)

These parts are not connected to the LegoMindstorms EV3, but are instead

controlled by a remote control, meaning that these are non-programmable:

● 1 Power Functions Battery Box

● 1 Power Funtions Large Motor

● 2 Power FunctionMediumMotors

● 1 Power Function Small Motor

● 1 Power Function Switch

● 1 Power Function IR Reciever

https://github.com/CyanCheetah/CyanBot 18

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

● 1 Power Function Remote Control

These parts are Pneumatics parts, meaning they are not controlled by motors

(Though the pump is using a small Power Function motor):

● 1Medium Pneumatic Cylinder

● 1 Small Pneumatic Pump

● 2 Large Pneumatic Cylinders

https://github.com/CyanCheetah/CyanBot 19

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 5

The Color Sensor Program

The Color Sensor Program uses the Color Sensor in the EV3 to detect color.

I use the color sensor to measure the color value that is inputted through the

sensor, then I use the ev3dev sound class to output the name. I created 2

https://github.com/CyanCheetah/CyanBot 20

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

different programs, one with a touch sensor one without. Here is the

program without the touch sensor called ColorName.py:

https://github.com/CyanCheetah/CyanBot 21

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

What this program does is when the program runs, it says the color that it

detects. And after that it just loops meaning that the program will not stop

until we take the batteries out. The pre-programmed colors in the EV3 are:

1: 'Black',

2: 'Blue',

3: 'Green',

4: 'Yellow',

5: 'Red',

6: 'White',

7: 'Brown'

So these colors and another color that is not mentioned here, ‘no color’ are

the pre-programmed colors that the EV3 sensor can detect. Theoretically, it

can detect 16 million colors though what that requires is a program that

outputs RGB values (Red, Green, and Blue) so it would not output a name

but rather a number. Also for both programs it moves the mouth so that it

seems like it is speaking when it says the color out loud.

https://github.com/CyanCheetah/CyanBot 22

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Here is the second ColorName program called ColorNameTouch.py:

https://github.com/CyanCheetah/CyanBot 23

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

What this program does is the same as above but instead of looping it will

only loop until the touch sensor is pressed, and once the touch sensor is

pressed the program will terminate. Meaning that I do not have to take the

batteries out.

https://github.com/CyanCheetah/CyanBot 24

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 6

TheWebcam Programs

There are 3 different Webcam programs that I have created. We will look over

each one.

https://github.com/CyanCheetah/CyanBot 25

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

For all 3 of these programs, we use something called Subprocess.run. What

Subprocess is, is it runs commands in the SSH terminal using a programming

language called Bash.

Here is a Subprocess.call line:

import subprocess

subprocess.call(['fswebcam', '-r', '100x100',

'--no-banner', filename])

So all 3 of these programs use a linux-based webcam capturing process called

fswebcam. Fswebcam is a debian-linux-based software that uses the webcam

and sets a resolution, and file save path as well.

Furthermore, subprocess.call can also be used for many other programs, not

only for fswebcam. We will showmore subprocess.call commands later on.

So keep in mind this line for the 4 webcam programs.

https://github.com/CyanCheetah/CyanBot 26

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

First up is the Webcam.py program, the first one I ever created that actually

worked:

https://github.com/CyanCheetah/CyanBot 27

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

What this Webcam.py program does is it uses the touch sensor again. Each

time you press the touch sensor, it saves the image as a .jpg formatted image

directly onto the ev3 brick. Not only that, but due to the fact that we have to

specify a filename to save it as, each time we click the button it would

overwrite the original image.jpg that we named it. Instead, a clever solution

to that problem was to save each image with the timestamp after the image

name. Using:

import time

timestamp =

time.strftime('%Y%m%d-%H%M%S')

We are able to import the time and save the image with a slew of numbers

after it. Once we terminate the program we can use a computer plugged into

the ev3 and get an image out of it. Here is an example of such image:

https://github.com/CyanCheetah/CyanBot 28

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

The next program is calledWebcamDisplay.py:

https://github.com/CyanCheetah/CyanBot 29

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

https://github.com/CyanCheetah/CyanBot 30

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Nowwhat WebcamDisplay does is pretty cool. Once you hit the touch

sensor and capture an image, it refreshes and then displays the image directly

onto the ev3 screen!

This uses 2 new subprocess.run lines:

import subprocess

subprocess.run(['sudo', 'service',

'udev', 'restart'])

And:

import subprocess

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-a', '/home/robot/image.bmp'])

What the first one does is after it captures the image, it refreshes the directory

of the ev3 storage so that the program can access the lates image.jpg file.

https://github.com/CyanCheetah/CyanBot 31

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

What the second one does is after it refreshes, it uses the fbi

debian-linux-based software to project it onto the ev3 screen. The characters

after that is the path of the image, and the projection fittings of the ev3

screen.

Here is what a captured image looks like on the ev3 screen:

https://github.com/CyanCheetah/CyanBot 32

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

https://github.com/CyanCheetah/CyanBot 33

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

As you can see, the captured image is not of the best resolution, Due to the

limitations of the ev3 display, it cannot project high quality images.

The default resolution of the ev3 screen is 178x128 pixels, so worse than the

lowest resolution that youtube offers.

Not only that, but it is monochrome. You get a few shades of grey, black, and

green. That is it. It is basically a non-color graphing calculator display.

https://github.com/CyanCheetah/CyanBot 34

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Finally, we have the WebcamStream.py program:

https://github.com/CyanCheetah/CyanBot 35

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

What theWebcamStream.py program does is quite cool as well. It takes an

image every 3-4 seconds and displays it on the ev3 screen. Kind of like a

live-stream. Due to the limitations of the Ev3 screen and the lack of access to

the highly coveted Python PIL (pillow) Python Image Library, there is

restrictions. But this basically tries to combine it all using:

from multiprocessing import Process

p1 = Process(target=capture_image)

p2 = Process(target=display_image)

https://github.com/CyanCheetah/CyanBot 36

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 7

The Recording Programs

https://github.com/CyanCheetah/CyanBot 37

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

There are 2 different Recording programs that I have created. We will look

over each one.

For both of these programs, we use something called Subprocess.run. What

Subprocess is, is it runs commands in the SSH terminal using a programming

language called Bash.

Here is a Subprocess.call line:

import subprocess

cmd = ['arecord', '-D', 'hw:1,0', '-f',

'S16_LE', '-c', '1', '-r', '44100',

'/home/robot/myvoice.wav']

recording_process = subprocess.Popen(cmd)

is_recording = True

So both of these programs use a linux-based webcammicrophone capturing

process called Arecord. Arecord is a debian-linux-based software that uses the

webcammicrophone and sets a frequency and wavelength to record it in.

https://github.com/CyanCheetah/CyanBot 38

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Furthermore, subprocess.call can also be used for many other programs, not

only for fswebcam. We will showmore subprocess.call commands later on.

So keep in mind this line for both the webcam programs.

First up, we have the Recording.py Program:

https://github.com/CyanCheetah/CyanBot 39

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

What the Recording.py program does is it uses the touch sensor, and once

you press the touch sensor it records audio using the webcammicrophone.

Once you press the touch sensor again, it stops the recording and saves it

directly onto the ev3 brick as a .wav file. You can plug the ev3 to the

computer and download the audio file and play it back using VLC or any

popular playback software.

The RecordingPlayback.py Program:

https://github.com/CyanCheetah/CyanBot 40

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

https://github.com/CyanCheetah/CyanBot 41

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

What theWebcamRecording.py program does is pretty cool as well. It does

the same thing as the Recording program:

What the Recording.py program does is it uses the touch sensor, and

once you press the touch sensor it records audio using the webcam

microphone. Once you press the touch sensor again, it stops the

recording and saves it directly onto the ev3 brick as a .wav file. You can

plug the ev3 to the computer and download the audio file and play it

back using VLC or any popular playback software.

But once you touch the touch sensor again, it plays it back. The way this is

achieved is using something called mpg123.

What mpg123 is a popular command-line audio player and decoder that is

available for multiple platforms, including Linux, Windows, and macOS. It

is capable of playing a variety of audio file formats, includingMP3, Ogg

Vorbis, andWAV.

Mpg123 uses a highly optimized audio decoding engine that is designed to

run efficiently on a range of hardware, from low-powered embedded devices

to high-performance servers. It can decode audio in real-time or pre-decode

https://github.com/CyanCheetah/CyanBot 42

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

audio files for faster playback. In addition to playing audio files from the

command line, mpg123 can be used as a library in other software projects.

This allows developers to build audio playback functionality into their

applications using the highly optimized decoding engine provided by

mpg123.

Mpg123 includes a range of command-line options that allow users to

customize the audio playback experience. These options include things like

setting the playback volume, adjusting the playback speed, and modifying the

audio equalizer.

We use the subprocess.run for mpg123 as well:

import subprocess

subprocess.run(['sudo', 'service', 'udev',

'restart'])

sound.speak('Playing recorded audio!')

cmd = ['aplay', '-V', '100',

'/home/robot/myvoice.wav']

https://github.com/CyanCheetah/CyanBot 43

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

We refresh the directory of the ev3 to access the myvoice.wav file, then play it

back using mpg123 on maximum volume.

https://github.com/CyanCheetah/CyanBot 44

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 8

TheDisplay Programs

There are a few display programs. These use fbi as well. Some play the

BlendS intro while one plays Seisyun Complex. These programs are a heavy

https://github.com/CyanCheetah/CyanBot 45

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

heavy work in progress as I am figuring out how to put music and video at

same time. Also ev3 slow so not much video but mostly a slideshow.

https://github.com/CyanCheetah/CyanBot 46

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

SeisyunComplex.py:

#!/usr/bin/env python3

import subprocess

import time

import threading

from ev3dev2.button import Button

btn = Button()

mp3_file_path =

"/home/robot/ev3/seisyun_complex.mp3"

subprocess.Popen(["mpg123", "-b", "8192",

mp3_file_path])

#Ctrl+C --> Ctrl+Shift+V into SSH

Terminal

sudo python3

/home/robot/ev3/ev3/tests/code/SeisyunComplex.py

https://github.com/CyanCheetah/CyanBot 47

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Seis.py:
import time

import ev3dev2.auto as ev3

import ev3dev2.fonts as fonts

import subprocess

from ev3dev2.motor import LargeMotor, OUTPUT_A,

OUTPUT_B, SpeedPercent, MoveTank

from ev3dev2.sensor import INPUT_4

from ev3dev2.sensor.lego import TouchSensor

from ev3dev2.led import Leds

from ev3dev2.sound import Sound

from ev3dev2.button import Button

btn = Button()

sound = Sound()

screen = ev3.Display()

https://github.com/CyanCheetah/CyanBot 48

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

screen.clear()

sound.speak('Hello!')

sound.speak('Make a sound to capture an image')

screen.clear()

screen.draw.text((0,0), 'Make a sound',

font=fonts.load('ncenI24'))

screen.draw.text((0,12), 'to capture',

font=fonts.load('ncenI24'))

screen.draw.text((0,24), 'an image',

font=fonts.load('ncenI24'))

while not btn.down:

Wait for sound event

sound.wait()

sound.speak('capturing image')

timestamp = time.strftime('%Y%m%d-%H%M%S')

filename = 'image.bmp'

subprocess.call(['fswebcam', '-r', '160x90',

'--no-banner', filename])

time.sleep(5)

subprocess.run(['sudo', 'service', 'udev',

'restart'])

time.sleep(5)

https://github.com/CyanCheetah/CyanBot 49

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-a', '/home/robot/image.bmp'])

time.sleep(10)

sudo python3

/home/robot/ev3/ev3/tests/code/Seis.py

BlendS,py:
#!/usr/bin/env python3

import subprocess

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_000.jpg'])

https://github.com/CyanCheetah/CyanBot 50

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_001.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_002.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_003.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_004.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_005.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_006.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_007.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_008.jpg'])

https://github.com/CyanCheetah/CyanBot 51

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_009.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_010.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_011.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_012.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_013.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_014.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_015.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_016.jpg'])

https://github.com/CyanCheetah/CyanBot 52

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_017.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_018.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_019.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_020.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_021.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_022.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_023.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_024.jpg'])

https://github.com/CyanCheetah/CyanBot 53

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_025.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_026.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_027.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_028.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_029.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_030.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_031.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_032.jpg'])

https://github.com/CyanCheetah/CyanBot 54

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_033.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_034.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-nocomments', '-a',

'/home/robot/ev3/mp4_000/mp4_035.jpg'])

#Ctrl+C --> Ctrl+Shift+V into SSH

Terminal

sudo python3

/home/robot/ev3/ev3/tests/code/BlendS.py

Blend2.py:
#!/usr/bin/env python3

import subprocess

https://github.com/CyanCheetah/CyanBot 55

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

cmd = ['aplay', '-V', '100',

'/home/robot/ev3/seisyun_complex.mp3']

for i in range(50):

subprocess.run(['sudo', 'fbi', '-T', '1',

'-noverbose', '-a',

'/home/robot/ev3/SeisyunOpening_000/SeisyunOpenin

g_'+str(i).zfill(3)+'.jpg'])

sudo python3

/home/robot/ev3/ev3/tests/code/Blend2.py

https://github.com/CyanCheetah/CyanBot 56

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 9

The Video Programs

Video programs can do many things. First off, using mplayer, we can play

gifs and video files.

But I struggled in making it play videos and music at the same time.

https://github.com/CyanCheetah/CyanBot 57

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

That is when I discovered compression. Compressing a video to play it on

the EV3 was a struggle to test many different combinations, but in the

end:

● .JPG Format

● Use 178x128 resolution

● 44100 Hertz Audio

● 10-15 Frames Per Second for the Video

● Lowest Video compression

● Mono Audio

● If the video is under 4 Megabytes it should be good

Here is a video of my EV3 Playing Bad Apple:

https://www.youtube.com/watch?v=qsX8IqXMkZ0&t=103s

https://github.com/CyanCheetah/CyanBot 58

https://www.youtube.com/watch?v=qsX8IqXMkZ0&t=103s
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Here is the code for the Video Programs:

brickrun --

/home/robot/ev3/ev3/tests/code/Radio.py

#brickrun -- mpg123 -l 1 --loop -1 -@

http://icecast.omroep.nl/radio1-bb-mp3 -b 1024

https://github.com/CyanCheetah/CyanBot 59

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

#brickrun -- mpg123 -@

http://us3.streamingpulse.com:7015/live -b 100000

#brickrun -- mpg123 -@

"http://91.232.4.33:7028/stream?type=http&nocach

e=185776" -l 1

#brickrun -- mplayer -afm mp3lib -acodec mp3 -bps

128 -srate 44100

"http://91.232.4.33:7028/stream?type=http&nocach

e=185776"

#brickrun -- mplayer

/home/robot/ev3/Chika-Dance.mp4 -vo

fbdev2:/dev/fb0 -framedrop

#brickrun -- mplayer

/home/robot/ev3/output_file.mp4 -vo

fbdev2:/dev/fb0 -framedrop

https://github.com/CyanCheetah/CyanBot 60

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

#brickrun -- mplayer

/home/robot/ev3/YourNameScenery.gif -vo

fbdev2:/dev/fb0 -framedrop

#brickrun -- mpg123

/home/robot/ev3/BadAppleSong.mp3

#brickrun -- mplayer

/home/robot/ev3/output_file.mp4 --autosync 5vo

fbdev2:/dev/fb0 -framedrop

#brickrun -- ffmpeg -i

/home/robot/ev3/BadAppleSong.mp3

/home/robot/ev3/BadAppleSong.wav

#brickrun -- mpg123

/home/robot/ev3/BadAppleSong.mp3 -b 10000

#brickrun -- aplay

/home/robot/ev3/BadAppleSong.wav

#brickrun -- mplayer /home/robot/ev3/YLIA.gif

https://github.com/CyanCheetah/CyanBot 61

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

#brickrun -- mplayer

/home/robot/ev3/BadApple.mp4 -vo

fbdev2:/dev/fb0

#brickrun -- mplayer

/home/robot/ev3/BadApple.mp4 -framedrop -vo

fbdev2:/dev/fb0 -autosync 5

#brickrun -- mplayer

/home/robot/ev3/output_file.mp4 -framedrop -vo

fbdev2:/dev/fb0 -autosync 5 -vfm ffmpeg -lavdopts

lowres=1:fast:skiploopfilter=all -cache 16000

-nocache

#brickrun -- mplayer

/home/robot/ev3/BadApple.mp4 -vo

fbdev2:/dev/fb0 -autosync 5

#brickrun -- mplayer

/home/robot/ev3/BadApple2.mpg -vo

fbdev2:/dev/fb0 -autosync 5

#ffmpeg -i /home/robot/ev3/BadAppleSong.wav -ac 1

-ar 16000 /home/robot/ev3/output.wav

https://github.com/CyanCheetah/CyanBot 62

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

#ffmpeg -i /home/robot/ev3/BadApple.mp4 -i

/home/robot/ev3/BadAppleSong.wav -c:v copy -c:a

copy /home/robot/ev3/output_file.mp4

#brickrun -- mplayer

/home/robot/ev3/Y2Mate_1.mpg -vo

fbdev2:/dev/fb0 -autosync 5

#brickrun -- mplayer -vo fbdev2:/dev/fb0 -ao sdl

/home/robot/ev3/YLIA.gif -loop 0 & brickrun --

mplayer -ao sdl /home/robot/ev3/.mp3

#brickrun -- mplayer

/home/robot/ev3/output_file.mp4 -vo

fbdev2:/dev/fb0 -lavdopts lowres=1 -noborder

-nomouseinput -quiet

#brickrun -- ffmpeg -i

/home/robot/ev3/BadApple.mp4 -vf

https://github.com/CyanCheetah/CyanBot 63

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

"fps=10,scale=178:128:flags=lanczos"

/home/robot/ev3/BadApple.gif

#brickrun -- mplayer -fps 15 -demuxer lavf -lavfdopts

format=mjpeg -vo fbdev2:/dev/fb0 -quiet

/home/robot/webcam.jpg

Chapter 10

Hearing Sensor Programs

https://github.com/CyanCheetah/CyanBot 64

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

I have also used Hearing sensors in the robot. Using NXTHearing

Sensors, I have implemented a program to use the hearing sensor.

What the program does is that using the head turning motor, the 2

hearing sensors the robot waits for a loud sound near the sensor, and then

turns its head towards that sound.

The program uses Decibels mode to compare the decibels heard during the

hearing sensor. Also there is a minimum threshold the hearing sensor has

to hear so that it does not turn for background noise.

Here is the sensor program:

https://github.com/CyanCheetah/CyanBot 65

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

#!/usr/bin/env python3

from ev3dev2.sensor.lego import SoundSensor

from ev3dev2.sensor import INPUT_2, INPUT_1

from ev3dev2.motor import OUTPUT_C, LargeMotor

import time

from time import sleep

import ev3dev2.auto as ev3

from ev3dev2.display import Display

sound_sensor_left = SoundSensor('in2')#left ear is 2

sound_sensor_right = SoundSensor('in1')#right ear is

1

sound_sensor_left.mode = 'DB'

threshold = 92

sound_sensor_right.mode = 'DB'

import ev3dev2.fonts as fonts

motor = LargeMotor(OUTPUT_C)#head turning is C

display = ev3.Display()

MOTOR_SPEED = 50

initial_position = motor.position

target_position = int(360 * .6)#360 is the angle

negtarget_position = int(360 * 1 * -1)#360 is the

angle

while True:

sound_value_left =

sound_sensor_left.sound_pressure

https://github.com/CyanCheetah/CyanBot 66

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

sound_value_right =

sound_sensor_right.sound_pressure

if sound_value_left > threshold:

motor.run_to_abs_pos(position_sp= int(360 *

.8), speed_sp= 50)

time.sleep(3)

motor.run_to_abs_pos(position_sp= -int(360 *

.8), speed_sp=50)

motor.wait_until_not_moving()

elif sound_value_right > threshold:

motor.run_to_abs_pos(position_sp= -int(360 *

.8), speed_sp=50)

time.sleep(3)

motor.run_to_abs_pos(position_sp= int(360 *

.8), speed_sp=50)

motor.wait_until_not_moving()

else:

motor.stop()

#sudo python3

/home/robot/ev3/ev3/tests/code/Hearing.py

https://github.com/CyanCheetah/CyanBot 67

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 11

Connecting to the Internet

Using EV3DEV, you can connect to the internet.

https://github.com/CyanCheetah/CyanBot 68

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

This has many use scenarios, such as:

● Downloading classes into the EV3 environment

● If you cannot download a class, using the internet you can get entire

repositories onto the EV3 so that you can download the classes from

the repositories.

● You can get information from the internet, such as time, weather,

stocks, news, and much more. It can even say it!

● It can play music from the internet.

● It can play an internet-based radio.

To connect to the internet, there are a few steps you have to take:

1. First off, power on the EV3 and your computer.

https://github.com/CyanCheetah/CyanBot 69

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

2. Second, this method only works if the EV3 is connected to the

computer via a USB cable.

3. Third, connect the USB cable to the EV3.

4. Fourth, open Control Panel > Hardware and Sound > Devices and

Printers > and then Right click your EV3 Device (Remote NDIS

Device)

5. Fifth, go to Go to Network Settings > Left tab Network Settings.

6. Sixth, right click your home wifi, then go to the 3rd tab. Click the

checkmark on both of them and on the first option make sure it

connects to the EV3.

7. Seventh, go to the EV3 > Connections >Wired > Click connect.

Wait for a few minutes and it should say online.

8. That is it! You are connected to the internet!

https://github.com/CyanCheetah/CyanBot 70

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

9. If it does not, there is one thing you do. Repeat step 6 by unchecking

both options, wait for a few minutes, recheck them and then

continue from there. Be patient! It is very old hardware!

That is how you connect to the internet!

https://github.com/CyanCheetah/CyanBot 71

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 12

Using the Internet to play the radio

Using EV3DEV, you can connect to the internet. Using the internet, you

can play the radio!

Here are a few things. The EV3 doesNOT have a Radio antenna. So you

will have to use a radio link!

Here is an example of a radio link. Beware, it is German haha!

http://icecast.omroep.nl/radio1-bb-mp3

https://github.com/CyanCheetah/CyanBot 72

http://icecast.omroep.nl/radio1-bb-mp3
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Using this radio link, we can use MPG123 or aplay to play it on the ev3. It

does take time to load since it uses the internet and depends on internet

speed. Also can lag after some time.

Here is a command for the internet radio:

brickrun -- mpg123 -l 1 --loop -1 -@

http://icecast.omroep.nl/radio1-bb-mp3 -b 10000

That's it!

Here is a radio program:

https://github.com/CyanCheetah/CyanBot 73

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

from

ev3dev2.dis

play import

Display

from ev3dev2 import ev3

import subprocess

screen = Display()

process = subprocess.Popen(

['brickrun', '--', 'mpg123',

'-@',

'http://us3.streamingpulse.com:701

5/live', '-b', '100000'],

stdout=subprocess.PIPE,

universal_newlines=True

)

https://github.com/CyanCheetah/CyanBot 74

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

for line in

iter(process.stdout.readline, ''):

if 'ICY-NAME' in line:

station_name =

line.split('ICY-NAME:

')[1].strip()

screen.draw.text((10, 10),

f"Station:"+station_name)

screen.update()

if 'ICY-META: StreamTitle' in

line:

song_name =

line.split("StreamTitle='")[1].spl

it("';")[0]

screen.draw.text((10, 50),

f"Song: {song_name}")

screen.update()

if ev3.Button().middle:

break

https://github.com/CyanCheetah/CyanBot 75

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Close the subprocess

process.stdout.close()

process.wait()

#sudo python3

/home/robot/ev3/ev3/tests/code/Rad

io.py

https://github.com/CyanCheetah/CyanBot 76

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 13

Using Artifical Intelligence to generate responses

This one is a long one. So bear with me.

Introduction

The purpose of this document is to provide an in-depth explanation of the

usage of ChatGPT in generating responses based on the provided code

snippet. ChatGPT, developed by OpenAI, is a state-of-the-art language

https://github.com/CyanCheetah/CyanBot 77

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

model that utilizes deep learning techniques to generate human-like text

responses. The code snippet showcases the integration of ChatGPT with a

speech recognition system and an EV3 robot, enabling the creation of an

interactive voice-based chatbot. This document will delve into the various

aspects of the code and the underlying mechanisms of ChatGPT.

Code Explanation - Recording and Transcribing Audio

The code begins by importing the necessary libraries and initializing the

sound and touch sensors. The "record_audio" function is responsible for

capturing audio input. It uses the "arecord" command-line utility to

record audio from the default microphone and saves it as "voice.wav". The

"transcribe_audio" function leverages the Google Cloud Speech-to-Text

API for transcribing the recorded audio. It reads the audio file, configures

the recognition settings such as encoding, sample rate, language code, and

https://github.com/CyanCheetah/CyanBot 78

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

model, and sends the audio data to the API for transcription. Finally, the

function retrieves the transcribed text for further processing.

Code Explanation - Generating Response

The "generate_response" function utilizes the OpenAI API to generate a

response based on the provided text prompt. It takes the transcribed text

as input and constructs a prompt by formatting the text accordingly. The

function then utilizes the OpenAI Completion API to send the prompt

and receive a response. The "davinci" engine is specified for generating the

response, which represents the most powerful variant of the GPT family.

Additionally, the function sets parameters such as the maximum number

of tokens, temperature, and the number of responses to generate. The API

returns a list of choices, and the function extracts the first choice as the

generated response.

https://github.com/CyanCheetah/CyanBot 79

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Code Explanation - Speaking the Response

The "speak_response" function incorporates the EV3 sound module to

audibly communicate the generated response. It takes the response text as

input and utilizes the "speak" method of the sound object to play the

response as speech output. This functionality enhances the interaction

between the EV3 robot and users by enabling the robot to provide spoken

responses, thereby creating a more engaging and interactive user

experience.

Main Loop and Interaction

The main loop of the code snippet ensures continuous monitoring of the

touch sensor's state. When the touch sensor is pressed and recording is not

https://github.com/CyanCheetah/CyanBot 80

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

in progress, the code triggers a beep sound and initiates the audio

recording process. Conversely, if the touch sensor is pressed again while

recording is in progress, another beep sound is triggered, and the

recording is stopped. Subsequently, the transcribed text is printed to

provide a visual representation of the user's input. The generate_response

function is then called to generate a response based on the transcribed

text. The generated response is printed, spoken out using the

speak_response function, and the recording state is reset to prepare for

future interactions.

ChatGPT - An Overview

ChatGPT is a powerful language model developed by OpenAI. It is

trained using a massive amount of text data and employs deep learning

techniques, specifically transformer neural networks, to understand and

https://github.com/CyanCheetah/CyanBot 81

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

generate text. The model is designed to engage in natural language

conversations and generate coherent and contextually appropriate

responses. It has been trained on a wide variety of internet text sources,

enabling it to capture the nuances of language and provide human-like

interactions.

OpenAI API Integration

To leverage the capabilities of ChatGPT, the code snippet integrates with

the OpenAI API. The "openai.api

Page 7 (continued):

_key" is used to set the API key required for authentication. It is

recommended to store the API key securely and access it using

environment variables for security purposes. The "generate_response"

function utilizes the OpenAI Completion.create() method to interact with

https://github.com/CyanCheetah/CyanBot 82

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

the API. It specifies the "davinci" engine for response generation, sets

parameters such as maximum tokens, temperature, and the number of

responses to generate. The API responds with a list of choices, and the

function extracts the first choice as the generated response.

Speech Output and Interaction

The "speak_response" function utilizes the EV3 sound module to convert

the generated response into audible speech. It takes the response text as

input and invokes the "speak" method of the sound object to play the

response as speech output. This capability enables the EV3 robot to

communicate with users in a more interactive and human-like manner. By

speaking the response, the robot enhances the overall user experience and

fosters a more natural and engaging conversation.

https://github.com/CyanCheetah/CyanBot 83

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Enhancing the User Interface

The code snippet can be extended to incorporate additional user interface

elements. For example, a graphical interface could be implemented to

display the transcribed text and the generated response in a more

user-friendly manner. This could include using text boxes or speech

bubbles to visually represent the conversation between the user and the

EV3 robot. Such enhancements can make the interaction more intuitive

and visually appealing, providing a seamless user experience.

Conclusion

This document has provided a comprehensive explanation of the usage of

ChatGPT in generating responses based on the provided code snippet. By

integrating ChatGPT with a speech recognition system and an EV3 robot,

https://github.com/CyanCheetah/CyanBot 84

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

users can engage in interactive voice-based communication with the robot.

The combination of advanced language modeling and robotic technology

opens up exciting possibilities for creating intelligent and conversational

applications. Leveraging the power of ChatGPT and the OpenAI API,

developers can create chatbots, virtual assistants, and other applications

that provide natural and contextually relevant responses. The provided

code snippet serves as a starting point for exploring the potential of

ChatGPT and its integration with robotics. With further customization

and refinement, the application can be enhanced to deliver even more

immersive and engaging conversational experiences.

Here is the code for it:

https://github.com/CyanCheetah/CyanBot 85

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

#!/usr/bin/env python3

import subprocess

import io

import os

from ev3dev2.sensor import INPUT_4

from google.cloud import speech

from google.cloud.speech import enums

from google.cloud.speech import types

import openai

import time

from ev3dev2.sound import Sound

from ev3dev2.sensor.lego import TouchSensor

sound = Sound()

touch_sensor = TouchSensor(INPUT_4)

def record_audio():

subprocess.call("arecord -D hw:1,0 -f S16_LE -r

16000 voice.wav", shell=True)

def transcribe_audio():

client = speech.SpeechClient()

with io.open("voice.wav", "rb") as audio_file:

content = audio_file.read()

audio = types.RecognitionAudio(content=content)

config = types.RecognitionConfig(

https://github.com/CyanCheetah/CyanBot 86

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

encoding=enums.RecognitionConfig.AudioEncoding.LINEA

R16,

sample_rate_hertz=16000,

language_code="en-US",

model="video"

)

operation =

client.long_running_recognize(config=config,

audio=audio)

response = operation.result(timeout=90)

return

response.results[0].alternatives[0].transcript

def generate_response(text):

openai.api_key = os.environ["OPENAI_API_KEY"]

prompt = "Your prompt here: {}".format(text)

response = openai.Completion.create(

engine="davinci",

prompt=prompt,

max_tokens=2048,

temperature=0.5,

n=1,

stop=None,

)

return response.choices[0].text.strip()

https://github.com/CyanCheetah/CyanBot 87

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

def speak_response(response):

sound.speak(response)

recording = False

while True:

if touch_sensor.is_pressed and not recording:

sound.beep()

recording = True

record_audio()

elif touch_sensor.is_pressed and recording:

sound.beep()

text = transcribe_audio()

print("You said: {}".format(text))

response = generate_response(text)

print("GPT Says: {}".format(response))

speak_response(response)

recording = False

time.sleep(0.1)

#sudo python3

/home/robot/ev3/ev3/tests/code/Talking.py

https://github.com/CyanCheetah/CyanBot 88

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 14

All the Sudo Lines to execute the Programs

https://github.com/CyanCheetah/CyanBot 89

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

For most of the programs, we need to use the SSH terminal to execute the

programs. Here is a convenient place to put all the lines that we need to

execute the programs.

*Remember to do Ctrl+Shift+C and then Ctrl+Shift+V into the SSH

Terminal otherwise it will not paste*

ColorName:

sudo python3

/home/robot/ev3/ev3/tests/code/ColorName.py

ColorNameTouch:

sudo python3

/home/robot/ev3/ev3/tests/code/ColorNameTouch.py

Webcam:

sudo python3

/home/robot/ev3/ev3/tests/code/Webcam.py

WebcamDisplay:

https://github.com/CyanCheetah/CyanBot 90

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

sudo python3

/home/robot/ev3/ev3/tests/code/WebcamDisplay.py

WebcamStream:

sudo python3

/home/robot/ev3/ev3/tests/code/WebcamStream.py

Recording:

sudo python3

/home/robot/ev3/ev3/tests/code/Recording.py

RecordingPlayback:

sudo python3

/home/robot/ev3/ev3/tests/code/RecordingPlayback.

py

Blend2:

sudo python3

/home/robot/ev3/ev3/tests/code/Blend2.py

BlendS:

https://github.com/CyanCheetah/CyanBot 91

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

sudo python3

/home/robot/ev3/ev3/tests/code/BlendS.py

Seis:

sudo python3

/home/robot/ev3/ev3/tests/code/Seis.py

SeisyunComplex:

sudo python3

/home/robot/ev3/ev3/tests/code/SeisyunComplex.py

https://github.com/CyanCheetah/CyanBot 92

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

https://github.com/CyanCheetah/CyanBot 93

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 15

Extra Pictures and Important Information

Username: robot
Password: maker

https://github.com/CyanCheetah/CyanBot 94

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Sudo apt-get install

https://github.com/CyanCheetah/CyanBot 95

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Github User: CyanCheetah

https://github.com/CyanCheetah/ev3

https://github.com/CyanCheetah/CyanBot 96

https://github.com/CyanCheetah/ev3
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 16

More Sudo Lines for Reference

https://github.com/CyanCheetah/CyanBot 97

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

#sudo python3

/home/robot/ev3/ev3/tests/code/Radio.py

brickrun --

/home/robot/ev3/ev3/tests/code/Radio.py

#brickrun -- mpg123 -l 1 --loop -1 -@

http://icecast.omroep.nl/radio1-bb-mp3 -b 1024

#brickrun -- mpg123 -@

http://us3.streamingpulse.com:7015/live -b 100000

#brickrun -- mpg123 -@

"http://91.232.4.33:7028/stream?type=http&nocache=18

5776" -l 1

#brickrun -- mplayer -afm mp3lib -acodec mp3 -bps

128 -srate 44100

"http://91.232.4.33:7028/stream?type=http&nocache=18

5776"

#brickrun -- mplayer /home/robot/ev3/Chika-Dance.mp4

-vo fbdev2:/dev/fb0 -framedrop

#brickrun -- mplayer /home/robot/ev3/output_file.mp4

-vo fbdev2:/dev/fb0 -framedrop

#brickrun -- mplayer

/home/robot/ev3/YourNameScenery.gif -vo

https://github.com/CyanCheetah/CyanBot 98

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

fbdev2:/dev/fb0 -framedrop

#brickrun -- mpg123 /home/robot/ev3/BadAppleSong.mp3

#brickrun -- mplayer /home/robot/ev3/output_file.mp4

--autosync 5vo fbdev2:/dev/fb0 -framedrop

#brickrun -- ffmpeg -i

/home/robot/ev3/BadAppleSong.mp3

/home/robot/ev3/BadAppleSong.wav

#brickrun -- mpg123 /home/robot/ev3/BadAppleSong.mp3

-b 10000

#brickrun -- aplay /home/robot/ev3/BadAppleSong.wav

#brickrun -- mplayer /home/robot/ev3/YLIA.gif

#brickrun -- mplayer /home/robot/ev3/BadApple.mp4

-vo fbdev2:/dev/fb0

#brickrun -- mplayer /home/robot/ev3/BadApple.mp4

-framedrop -vo fbdev2:/dev/fb0 -autosync 5

#brickrun -- mplayer /home/robot/ev3/output_file.mp4

-framedrop -vo fbdev2:/dev/fb0 -autosync 5 -vfm

ffmpeg -lavdopts lowres=1:fast:skiploopfilter=all

-cache 16000 -nocache

#brickrun -- mplayer /home/robot/ev3/BadApple.mp4

-vo fbdev2:/dev/fb0 -autosync 5

#brickrun -- mplayer /home/robot/ev3/BadApple2.mpg

-vo fbdev2:/dev/fb0 -autosync 5

#ffmpeg -i /home/robot/ev3/BadAppleSong.wav -ac 1

-ar 16000 /home/robot/ev3/output.wav

#ffmpeg -i /home/robot/ev3/BadApple.mp4 -i

https://github.com/CyanCheetah/CyanBot 99

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

/home/robot/ev3/BadAppleSong.wav -c:v copy -c:a copy

/home/robot/ev3/output_file.mp4

#brickrun -- mplayer /home/robot/ev3/Y2Mate_1.mpg

-vo fbdev2:/dev/fb0 -autosync 5

#brickrun -- mplayer -vo fbdev2:/dev/fb0 -ao sdl

/home/robot/ev3/YLIA.gif -loop 0 & brickrun --

mplayer -ao sdl /home/robot/ev3/.mp3

#brickrun -- mplayer /home/robot/ev3/output_file.mp4

-vo fbdev2:/dev/fb0 -lavdopts lowres=1 -noborder

-nomouseinput -quiet

#brickrun -- ffmpeg -i /home/robot/ev3/BadApple.mp4

-vf "fps=10,scale=178:128:flags=lanczos"

/home/robot/ev3/BadApple.gif

#brickrun -- mplayer -fps 15 -demuxer lavf

-lavfdopts format=mjpeg -vo fbdev2:/dev/fb0 -quiet

/home/robot/webcam.jpg

https://github.com/CyanCheetah/CyanBot 100

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 17

List of the things I have installed

● PIL (python image library)

● Mplayer

● Fbi

● Fswebcam

● EV3DEV

● MPG123

https://github.com/CyanCheetah/CyanBot 101

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

● MPG321

● Aplay

● Openai

● Sphynx

● Debian

● And more! Will update as I go along

https://github.com/CyanCheetah/CyanBot 102

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 18

Reference Links

● https://github.com/CyanCheetah

○ My Github Profile

● https://github.com/CyanCheetah/CyanBot

○ This programs Github

https://github.com/CyanCheetah/CyanBot 103

https://github.com/CyanCheetah
https://github.com/CyanCheetah/CyanBot
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

● https://www.youtube.com/watch?v=alDYm5ZyAks

○ The Robot Overview Video

● https://www.youtube.com/@cyancheetah7034

○ My Youtube Channel (Subscribe!)

● https://www.youtube.com/watch?v=qsX8IqXMkZ0&t=103s

○ EV3 Plays Bad Apple

https://github.com/CyanCheetah/CyanBot 104

https://www.youtube.com/watch?v=alDYm5ZyAks
https://www.youtube.com/@cyancheetah7034
https://www.youtube.com/watch?v=qsX8IqXMkZ0&t=103s
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

Chapter 18

Ways to ContactMe

Discord: CyanCheetah#6013

Email: saitanuj12@gmail.com

Linkedln: https://www.linkedin.com/in/sai-tanuj-karavadi-0b6b54265/

https://github.com/CyanCheetah/CyanBot 105

mailto:saitanuj12@gmail.com
https://www.linkedin.com/in/sai-tanuj-karavadi-0b6b54265/
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

That is about it!

Thanks for reading!

https://github.com/CyanCheetah/CyanBot 106

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

https://github.com/CyanCheetah/CyanBot 107

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3devDocumentation

https://github.com/CyanCheetah/CyanBot 108

https://github.com/CyanCheetah/CyanBot

