CyanBot python-ev3dev Documentation

Release 2.0

Ruthor: Sai Tanuj Karavadi

6/1/2023

CyanBot python-ev3dev Documentation

Chapter 0

TABLE OF CONTENTS
Chapter 0 2
Table of Contents 2
Chapter 1 4

https://github.com/CvanCheetah/CyanBot 2

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

What is EV3DEV?
Chapter 2

Why am I using EV3Dev?
Chapter 3

What is an EV3?

Chapter 4

The hardware on CyanBot.

Chapter 5

The Color Sensor Program
Chapter 6

The Webcam Programs
Chapter 7

The Recording Programs

Chapter 8

12

12

15

15

20

20

24

24

36

37

44

https://github.com/CvanCheetah/CyanBot

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

The Display Programs
Chapter 9

The Video Programs
Chapter 10

Hearing Sensor Programs
Chapter 11

Connecting to the Internet
Chapter 12

Using the Internet to play the radio
Chapter 13

Using Artifical Intelligence to generate responses
Chapter 14

All the Sudo Lines to execute the Programs

Chapter 15

44

56

56

63

63

67

67

71

71

76

76

88

89

93

https://github.com/CyvanCheetah/CyanBot

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

Extra Pictures and Important Information
Chapter 16
More Sudo Lines for Reference
Chapter 17
List of the things I have installed
Chapter 18
Reference Links
Chapter 18

Ways to Contact Me

93

96

926

100

100

102

102

104

104

https://github.com/CvanCheetah/CyanBot

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 1

WHAT IS EV3DEV?

ev3dev is an open-source operating system for LEGO MINDSTORMS EV3
robotics kits. It allows users to program and control their EV3 robots using a
variety of programming languages, including Python, C++, and Java, and
provides access to a wide range of sensors, motors, and other components.
ev3dev is designed to be easy to use and flexible, with a large community of

users and developers contributing to its ongoing development and

https://github.com/CyvanCheetah/CvanBot 6

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

improvement. It also offers advanced features such as remote control, wireless
networking, and support for custom hardware, making it a powerful tool for
building sophisticated and innovative robotics projects. I am using the
python version of ev3dev, running python using Visual Studio Code (VS
Code). Using the ev3dev addon and libraries, I am able to program the EV3

brick through my computer.

https://github.com/CyvanCheetah/CvanBot 7

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 2

WHY AM I USING EV3DEV?

There are several reasons why I am using ev3dev. For one, the default
programming language of the Ev3 brick is Mindstorms blocks, which is quite
severely limited and lacking in structure. Also, blocks puts severe restrictions
on what you can and cannot do. Though ev3dev supports a variety of

languages; anything from Lua, C libraries, Java, Go, Rust, and many more

https://github.com/CvanCheetah/CyanBot H

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

(https://www.ev3dev.org/docs/programming-languages/ for more language
options). But I chose python as it was the language I was most familiar with
and I was not planning on learning Rust anytime this year. With ev3dev, the
possibilities are (almost) endless. I will come back to the problems in another
chapter. With ev3dev, I was able to use the webcam, the microphone inside
the webcam, display images, use all the sensors and motors, all while not
using that much storage inside the ev3 brick. Also, one of the most crucial
features of Visual Studio code is saving on Github. With the default
Mindstorms programming language, I could not save it on github since it is
proprietary and Github does not support it. Here are some images of the

default Mindstorms Programming Language:

https://github.com/CyanCheetah/CvanBot 9

https://www.ev3dev.org/docs/programming-languages/
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

L.l P s
om0 |
I
‘ S0P ‘
S
= |
x| T ‘
w@ard |
FLD Al F o P o)l)l P ol P o) il) o
iRy eyt Ay p ey ey ey e
a
G
P
oy
her
i
v
S
25
G
i
=@l P
o
Gy
onin
.l
o
-
et)
i
=L
&
Savlimard L ~ - gy
& o= il Em) Sasai i
— i

As you can see, it takes quite a lot of blocks to program something as simple

as a color detecting program. In comparison, here is the same program in

python using ev3dev on Visual Studio Code:

https://github.com/CvanCheetah/CyanBot 10

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

ame.py 2 ..
nsor import INPUT_2

tor import OUTFUT_B

color_value = color_sensor.color

if color_value color_names:
m.on_for_ rotations({-58, ©.25)
s.speak(color_names[color_value])
time.sleep(8.15)
m.on_for_ rotations({58, 8.25)

It takes much less effort to program on ev3dev python. Not only is it faster
and easier to program on ev3dev, but it actually performs better on ev3dev as
well. The color detection algorithm I have made here is more reliable than

that of the Mindstorms program.

https://github.com/CvanCheetah/CyanBot 11

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

In conclusion, ev3dev is much easier and faster to program on. Once you
install ev3dev there is actually a completely different UI (User Interface) as

well on the brick meaning it has a more streamlined process.

https://github.com/CyanCheetah/CvanBot 12

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 3

WHAT IS AN EV3?

LEGO Mindstorms EV3 is a robotics kit designed for educational and
hobbyist purposes. It consists of a programmable brick, motors, sensors, and
LEGO Technic building elements that allow users to build and program

their own robots. The EV3 brick is the central component of the kit,

https://github.com/CvanCheetah/CyanBot 13

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

providing a microcontroller, a color LCD screen, and ports for connecting
motors, sensors, and other accessories. The kit includes several sensors, such as
touch, color, ultrasonic, and gyroscopic sensors, which allow the robot to
interact with its environment and perform tasks such as detecting obstacles,
following lines, and measuring distances. The motors included in the kit can
be used to drive the robot's movement, control arms, and other mechanical

COIl’lpOIlﬁIltS.

One of the key features of the Mindstorms EV3 kit is its programmability.
The EV3 brick can be programmed using a variety of programming
languages, including a drag-and-drop programming language called EV3-G, a
text-based language called RobotC, and popular programming languages like
Python, Java, and C++. This flexibility allows users to program their robots
at different levels of complexity, from simple behaviors to advanced

algorithms.

Another feature of the EV3 kit is its versatility. Users can create a wide range
of robots, from simple models to complex machines, by combining different

sensors, motors, and building elements. The kit also supports wireless

https://github.com/CyanCheetah/CvanBot 14

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

communication and can be connected to other devices, such as smartphones

or computers, for remote control or data exchange.

The Ev3 is a decade old now, so while it was powerful when it released, it has
the processing power of a calculator meaning there is quite a bit of
limitations to its usage. Thats why many buy a Raspberry Pi and use the ev3

addon to plug in motors, and still be able to program them.

The hardware on the EV3 is amazing and will talk about it in the next

chapter.

https://github.com/CyanCheetah/CyvanBot 15

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 4

THE HARDWARE ON CYANBOT.

https://github.com/CvanCheetah/CvanBot 16

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

I am using quite a bit of hardware on the CyanBot. The hardware list is:

These parts are connected to the Lego Mindstorms EV3:
® 1 EV3 Programmable Brick
e EV3 Motors:
o 2 EV3 Large Motors
o 1EV3 Medium Motor
® 1 Logitech C310 Webcam with Microphone
e 1 EV3 Remote Control
e EV3Sensors:

o 1 EV3 Color Sensor

https://github.com/CvanCheetah/CyanBot

17

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

o 1 EV3 Touch Sensor

o 1 Ev3 Infrared Sensor (IR Sensor)

These parts are not connected to the Lego Mindstorms EV3, but are instead
controlled by a remote control, meaning that these are non-programmable:
® 1 Power Functions Battery Box
® 1 Power Funtions Large Motor
e 2 Power Function Medium Motors
® 1 Power Function Small Motor
® 1 Power Function Switch

® 1 Power Function IR Reciever

https://github.com/CyvanCheetah/CvanBot 18

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

® 1 Power Function Remote Control

These parts are Pneumatics parts, meaning they are not controlled by motors
(Though the pump is using a small Power Function motor):

® 1 Medium Pneumatic Cylinder

® 1 Small Pneumatic Pump

® 2 Large Pneumatic Cylinders

https://github.com/CyvanCheetah/CvanBot 19

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 5

THE COLOR SENSOR PROGRAM

The Color Sensor Program uses the Color Sensor in the EV3 to detect color.
I use the color sensor to measure the color value that is inputted through the

sensor, then I use the ev3dev sound class to output the name. I created 2

https://github.com/CvanCheetah/CyanBot 20

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

different programs, one with a touch sensor one without. Here is the

program without the touch sensor called ColorName.py:

r import INPUT 2

r import OUTPUT B

color value = color sensor.color
if color_value color_nam

m.on_tor_rotations(-58, 8.25)

s.speak({color_names[color_value])
time.sleep(©.15)
m.on_for rotations(5@, 8.25)

https://github.com/CvanCheetah/CyanBot 21

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

What this program does is when the program runs, it says the color that it
detects. And after that it just loops meaning that the program will not stop

until we take the batteries out. The pre-programmed colors in the EV3 are:

So these colors and another color that is not mentioned here, ‘no color’ are

the pre-programmed colors that the EV3 sensor can detect. Theoretically, it
can detect 16 million colors though what that requires is a program that
outputs RGB values (Red, Green, and Blue) so it would not output a name
but rather a number. Also for both programs it moves the mouth so that it

seems like it is speaking when it says the color out loud.

https://github.com/CvanCheetah/CyanBot 22

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

Here is the second ColorName program called ColorNameTouch.py:

color_names {1: ° ‘s 2: 'Blue’,

while touch_sensor.is_pressed:

co

m.on_for_rotations(-58, 8.25)
eak(color_names[color_value])
e.sleep(8.15)

m.on_for_rotations(58, 6.25)

https://github.com/CyanCheetah/CyvanBot 23

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

What this program does is the same as above but instead of looping it will
only loop until the touch sensor is pressed, and once the touch sensor is
pressed the program will terminate. Meaning that I do not have to take the

batteries out.

https://github.com/CyanCheetah/CvanBot 24

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 6

THE WEBCAM PROGRAMS

There are 3 different Webcam programs that I have created. We will look over

each one.

https://github.com/CvanCheetah/CyanBot 25

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

For all 3 of these programs, we use something called Subprocess.run. What
Subprocess is, is it runs commands in the SSH terminal using a programming

language called Bash.

Here is a Subprocess.call line:

import subprocess

subprocess.call(['fswebcam', '-r', '100x100"',

'-—-no-banner', filename])

So all 3 of these programs use a linux-based webcam capturing process called
fswebcam. Fswebcam is a debian-linux-based software that uses the webcam

and sets a resolution, and file save path as well.

Furthermore, subprocess.call can also be used for many other programs, not

only for fswebcam. We will show more subprocess.call commands later on.

So keep in mind this line for the 4 webcam programs.

https://github.com/CyanCheetah/CyvanBot 26

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

First up is the Webcam.py program, the first one I ever created that actually

worked:

ound import Sound

sound =
screen

sound.speak('C

while
screen.clear()
screen.draw.text((8,8), 'Cli tton', font=fonts
screen B), 't o t s.1lo
screen

timestamp

filename
no-banner’, filename])
sound
screen.update()

https://github.com/CyanCheetah/CyvanBot 27

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

What this Webcam.py program does is it uses the touch sensor again. Each
time you press the touch sensor, it saves the image as a .jpg formatted image
directly onto the ev3 brick. Not only that, but due to the fact that we have to
specity a filename to save it as, each time we click the button it would
overwrite the original image.jpg that we named it. Instead, a clever solution
to that problem was to save each image with the timestamp after the image

name. Using:

import time

timestamp =

time.strftime ('3YSm3d-SHSMSS ')

We are able to import the time and save the image with a slew of numbers
after it. Once we terminate the program we can use a computer plugged into

the ev3 and get an image out of it. Here is an example of such image:

https://github.com/CyanCheetah/CyvanBot 28

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

The next program is called WebcamDisplay.py:

https://github.com/CvanCheetah/CvanBot

29

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

btn
sound =

sCreen = e
screen.clear()

sCreean.
screean.
sCreen.

https://github.com/CyanCheetah/CyvanBot 30

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

Now what WebcamDisplay does is pretty cool. Once you hit the touch
sensor and capture an image, it refreshes and then displays the image directly

onto the ev3 screen!

This uses 2 new subprocess.run lines:

import subprocess

subprocess.run(['sudo', 'service',

'udev', 'restart'])

And:

import subprocess

subprocess.run(['sudo', 'fbi', '-T', '1"',

'-noverbose', '-a', '/home/robot/image.bmp'])

What the first one does is after it captures the image, it refreshes the directory

of the ev3 storage so that the program can access the lates image.jpg file.

https://github.com/CyanCheetah/CyvanBot 31

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

What the second one does is after it refreshes, it uses the fbi
debian-linux-based software to project it onto the ev3 screen. The characters
after that is the path of the image, and the projection fittings of the ev3

screen.

Here is what a captured image looks like on the ev3 screen:

https://github.com/CyanCheetah/CvanBot 32

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

https://github.com/CvanCheetah/CyanBot

33

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

As you can see, the captured image is not of the best resolution, Due to the

limitations of the ev3 display, it cannot project high quality images.

The default resolution of the ev3 screen is 178x128 pixels, so worse than the

lowest resolution that youtube offers.

Not only that, but it is monochrome. You get a few shades of grey, black, and

green. That s it. It is basically a non-color graphing calculator display.

https://github.com/CyanCheetah/CvanBot 34

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

Finally, we have the WebcamStream.py program:

ev3 > tests » code > % WebcamStream.py > ...
1

T
t ev3idev2.auto as ev3
t evidev2.fonts as

rt subprocess
ev3dev2.motor import
evidev2.sensor import
ev3dev2.sensor.lego import
evidev2.led import
ev3dev2.sound import
evidev2.button imp

rom multiprocessing import Process

om
rom
rom

hththhohhoh e
333

btn = Button()

sound = Sound()

screen = ev3.Display()
screen.clear()

sound. speak('Hello! This is a streaming program. This will stream the photos to the

capture_image():
while btn.down:
subprocess.call([' fswebcam', °- 8x58', '--no-banner’', "image.bmp'])

display_image():
while btn.down:
subprocess.Popen(["sudo’, ‘fbi", '-T° ", "-noverbo "-a’, '/home/robot/image.bmp"]

if __name_ == '_ main_ ':
pl = Process(target=capture_image)
p2 = Process(target=display_image)
pl.start()
p2.start()
pl.join()
p2.join()

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

What the WebcamStream.py program does is quite cool as well. It takes an
image every 3-4 seconds and displays it on the ev3 screen. Kind of like a
live-stream. Due to the limitations of the Ev3 screen and the lack of access to
the highly coveted Python PIL (pillow) Python Image Library, there is

restrictions. But this basically tries to combine it all using:

from multiprocessing import Process

Process (target=capture image)

Process (target=display image)

https://github.com/CyanCheetah/CyvanBot 36

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 7

THE RECORDING PROGRAMS

https://github.com/CvanCheetah/CvanBot 37

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

There are 2 different Recording programs that I have created. We will look

over each one.

For both of these programs, we use something called Subprocess.run. What
Subprocess is, is it runs commands in the SSH terminal using a programming

language called Bash.

Here is a Subprocess.call line:

import subprocess

cmd = ['arecord', '-D', 'hw:1,0', '-f',
'sle LE', '-c', '1', '-r', '44100°',
' /home/robot/myvoice.wav']

recording process = subprocess.Popen (cmd)

is recording =

So both of these programs use a linux-based webcam microphone capturing
process called Arecord. Arecord is a debian-linux-based software that uses the

webcam microphone and sets a frequency and Wavelength to record it in.

https://github.com/CyanCheetah/CyvanBot 38

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

Furthermore, subprocess.call can also be used for many other programs, not

only for fswebcam. We will show more subprocess.call commands later on.

So keep in mind this line for both the webcam programs.

First up, we have the Recording.py Program:

sound

r(INPUT_4)

elif ts.is pressed is_recording:

recording_|

sleep(g.l)

https://github.com/CyanCheetah/CyvanBot 39

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

What the Recording.py program does is it uses the touch sensor, and once
you press the touch sensor it records audio using the webcam microphone.
Once you press the touch sensor again, it stops the recording and saves it
directly onto the ev3 brick as a .wav file. You can plug the ev3 to the
computer and download the audio file and play it back using VLC or any
popular playback software.

The RecordingPlayback.py Program:

https://github.com/CyvanCheetah/CvanBot 40

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

~(INPUT_4)

if ts.is_pressed is_recording:

cmd = [
sound.spe

sleep(8.1)

if ts.wait_for_press

sound .speak(Pl
cmd = ["apl

(cemd) .wait()

https://github.com/CvanCheetah/CyanBot 41

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

What the WebcamRecording.py program does is pretty cool as well. It does

the same thing as the Recording program:
What the Recording.py program does is it uses the touch sensor, and
once you press the touch sensor it records audio using the webcam
microphone. Once you press the touch sensor again, it stops the
recording and saves it directly onto the ev3 brick as a .wav file. You can
plug the ev3 to the computer and download the audio file and play it
back using VLC or any popular playback software.

But once you touch the touch sensor again, it plays it back. The way this is

achieved is using something called mpg123.

What mpg123 is a popular command-line audio player and decoder that is
available for multiple platforms, including Linux, Windows, and macOS. It
is capable of playing a variety of audio file formats, including MP3, Ogg
Vorbis, and WAV.

Mpg123 uses a highly optimized audio decoding engine that is designed to
run efficiently on a range of hardware, from low-powered embedded devices

to high-performance servers. It can decode audio in real-time or pre-decode

https://github.com/CyanCheetah/CvanBot 42

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

audio files for faster playback. In addition to playing audio files from the
command line, mpg123 can be used as a library in other software projects.
This allows developers to build audio playback functionality into their
applications using the highly optimized decoding engine provided by
mpg123.

Mpg123 includes a range of command-line options that allow users to
customize the audio playback experience. These options include things like
setting the playback volume, adjusting the playback speed, and modifying the

audio equalizer.

We use the subprocess.run for mpg123 as well:

import subprocess

subprocess.run(['sudo', 'service', 'udev',
'restart'])

sound.speak ('Playing recorded audio!"')

cmd = ['aplay', '-v', '100"',

' /home/robot/myvoice.wav']

https://github.com/CyanCheetah/CyvanBot 43

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

We refresh the directory of the ev3 to access the myvoice.wav file, then play it

back using mpg123 on maximum volume.

https://github.com/CvanCheetah/CyanBot 44

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 8

THE DISPLAY PROGRAMS

There are a few display programs. These use fbi as well. Some play the

BlendsS intro while one plays Seisyun Complex. These programs are a heavy

https://github.com/CvanCheetah/CyanBot 45

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

heavy work in progress as I am figuring out how to put music and video at
vy prog guring p

same time. Also ev3 slow so not much video but mostly a slideshow.

https://github.com/CvanCheetah/CyanBot 406

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

SeisyunComplex.py:

import subprocess
import time
import threading

from ev3devZ2.button import Button

btn = Button ()

mp3 file path =

"/home/robot/ev3/seisyun complex.mp3"

subprocess.Popen (["mpgl23", "-b", "8192",
mp3 file path])

https://github.com/CyvanCheetah/CyanBot

A7

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

Seis.py:

import time
import ev3dev2.auto as ev3
import ev3dev2.fonts as fonts

import subprocess

from ev3devZ.motor import LargeMotor, OUTPUT A,

OUTPUT B, SpeedPercent, MoveTank

from ev3devZ.sensor import INPUT 4
ev3devZ.sensor.lego import TouchSensor
ev3dev2.led import Leds
ev3dev2.sound import Sound

ev3dev2.button import Button

Button ()
Sound ()
ev3.Display ()

https://github.com/CyanCheetah/CyvanBot 418

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

screen.clear ()

sound.speak ('Hello!")

sound. speak ('Make a sound to capture an image')
screen.clear ()

screen.draw.text ((0,0), 'Make a sound',
font=fonts.load ('ncenlI24"'))

screen.draw.text ((0,12), 'to capture’,
font=fonts.load('ncenlI24"'))

screen.draw.text ((0,24), 'an image',

font=fonts.load ('ncenI24'))

while not btn.down:

sound.wait ()

sound.speak ('capturing image')

timestamp = time.strftime ('3YSmSd-SHSMSS")

filename = 'image.bmp'

subprocess.call (['fswebcam', '-r', '160x90',
'-—no-banner', filename])

time.sleep (5)

subprocess.run(['sudo', 'service', 'udev',
'restart'])

time.sleep (5)

https://github.com/CyvanCheetah/CvanBot

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

subprocess.run(["'sudo', 'fbi', '-T7', '1"',

'-noverbose', '-a', '/home/robot/image.bmp'])

time.sleep (10)

BlendS,py:

import subprocess

subprocess.run(['sudo', 'fbi',

'-noverbose', '-nocomments', ' ,

' /home/robot/ev3/mp4 000/mp4 000.jpg'])

https://github.com/CyanCheetah/CyvanBot a0

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',
'/home/robot/ev3/mp4 000/mp4 001.jpg'])
subprocess.run(['sudo', 'fbai', '-T7', '1"',
'-noverbose', '-nocomments', '-a',
'/home/robot/ev3/mp4 000/mp4 002.jpg'])
subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 003.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1"',

'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 004.jpg'])

subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 005.jpg'])
subprocess.run(['sudo', 'fbai', '-T', '1',
'-noverbose', '-nocomments', '-a',
'/home/robot/ev3/mp4 000/mp4 006.jpg'])
subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 007.jpg'])
subprocess.run(['sudo', 'fbai', '-T', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 008.jpg'l)

https://github.com/CyvanCheetah/CvanBot

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 009.jpg'l)
subprocess.run(['sudo', 'fbai', '-T7', '1"',
'-noverbose', '-nocomments', '-a',
'/home/robot/ev3/mp4 000/mp4 010.jpg'])
subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 011l.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1"',

'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 012.jpg'])

subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 013.jpg'])
subprocess.run(['sudo', 'fbai', '-T', '1',
'-noverbose', '-nocomments', '-a',
'/home/robot/ev3/mp4 000/mp4 014.jpg'])
subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 015.jpg'])
subprocess.run(['sudo', 'fbai', '-T', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 016.3pg']l)

https://github.com/CyvanCheetah/CvanBot

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 017.jpg'])
subprocess.run(['sudo', 'fbai', '-T7', '1"',
'-noverbose', '-nocomments', '-a',
'/home/robot/ev3/mp4 000/mp4 018.jpg'])
subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 019.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1"',

'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 020.jpg'])

subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 021.jpg'])
subprocess.run(['sudo', 'fbai', '-T', '1',
'-noverbose', '-nocomments', '-a',
'/home/robot/ev3/mp4 000/mp4 022.jpg'])
subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 023.jpg'])
subprocess.run(['sudo', 'fbai', '-T', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 024.jpg'])

https://github.com/CyvanCheetah/CvanBot

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',
'/home/robot/ev3/mp4 000/mp4 025.jpg'])
subprocess.run(['sudo', 'fbai', '-T7', '1"',
'-noverbose', '-nocomments', '-a',
'/home/robot/ev3/mp4 000/mp4 026.jpg'])
subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 027.jpg'])

subprocess.run(['sudo', 'fbi', '-T', '1"',

'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 028.jpg'])

subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 029.jpg'])
subprocess.run(['sudo', 'fbai', '-T', '1',
'-noverbose', '-nocomments', '-a',
'/home/robot/ev3/mp4 000/mp4 030.jpg'])
subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 031.jpg'])
subprocess.run(['sudo', 'fbai', '-T', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 032.jpg'l)

https://github.com/CyvanCheetah/CvanBot

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',
' /home/robot/ev3/mp4 000/mp4 033.jpg'l)

subprocess.run(['sudo', 'fbi', '-T', '1"',

'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 034.jpg'])

subprocess.run(['sudo', 'fbi', '-T7', '1"',
'-noverbose', '-nocomments', '-a',

' /home/robot/ev3/mp4 000/mp4 035.jpg'])

Blend2.py:

import subprocess

https://github.com/CyanCheetah/CyvanBot 39

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

cmd = ['aplay', '-v', '100"',
'/home/robot/ev3/seisyun complex.mp3']
for 1 in range (50) :

subprocess.run(['sudo', 'fbai', '-T7', '1"',

'-noverbose', '-a',

' /home/robot/ev3/SeisyunOpening 000/SeisyunOpenin
g '"+str(i).z£fill(3)+'.jpg'])

https://github.com/CyanCheetah/CyvanBot 26

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 9

THE VIDEO PROGRAMS

Video programs can do many things. First off, using mplayer, we can play

gifs and video files.

But I struggled in making it play videos and music at the same time.

https://github.com/CvanCheetah/CyanBot 97

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

That is when I discovered compression. Compressing a video to play it on
the EV3 was a struggle to test many different combinations, but in the

end:

JPG Format

e Use 178x128 resolution

® 44100 Hertz Audio

® 10-15 Frames Per Second for the Video

® Lowest Video compression

e Mono Audio

e If the video is under 4 Megabytes it should be good

Here is a video of my EV3 Playing Bad Apple:

https://www.youtube.com/watch?v=qsX8IqXMkZ0&t=103s

https://github.com/CyvanCheetah/CvanBot 28

https://www.youtube.com/watch?v=qsX8IqXMkZ0&t=103s
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

Here is the code for the Video Programs:

/home/robot/ev3/ev3/tests/code/Radio.p

#brickrun -- mpg123 -11 --loop -1 -@

http://icecast.omroep.nl/radiol-bb-mp3 -b 102

https://github.com/CvanCheetah/CyanBot

99

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

#brickrun -- mpgl123 -@

http://us3.streamingpulse.com:7015/live -b 100000
#brickrun -- mpgl23 -@

"http://91.232.4.33:7028/stream?type=http&nocach

e=185776"-11

#brickrun -- mplayer -afm mp3lib -acodec mp3 -bps

128 -srate 44100

"http://91.232.4.33:7028/stream?type=http&nocach

e=185776"

#brickrun -- mplayer
/home/robot/ev3/Chika-Dance.mp4 -vo
tbdev2:/dev/fb0 -framedrop

#brickrun -- mplayer

/home/robot/ev3/output_file.mp4 -vo

tbdev2:/dev/fb0 -framedrop

https://github.com/CyanCheetah/CvanBot 60

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

#brickrun -- mplayer

/home/robot/ev3/YourNameScenery.gif -vo

tbdev2:/dev/tb0 -framedrop

home/robot/ev3/Bad AppleSong.mp3

++ ~ +H:=
o on
- -
ot @ -y
(@) O
~ ~
- -
c c
=) =)

\ \

\ \
et p—t
= =
i S
orQ
& —t
o \S)
= (9

/home/robot/ev3/output_file.mp4 --autosync 5vo

tbdev2:/dev/tb0 -framedrop
r fimpeg -i
home/robot/ev3/Bad AppleSong.mp3
home/robot/ev3/Bad AppleSong.wa
crun -- mpg123
home/robot/ev3/Bad AppleSong.mp3 -b 10000

<

S I+ N 3+ Y S~ +
o o lon
-t - =)
et o o —t o
(@) (@) (@)
- e o
(O = =
c : c
(=) (o

\ \
\ \
<)

ge)
J—
X

home/robot/ev3/Bad AppleSong.wa

#brickrun -- mplayer /home/robot/ev3/YLIA.gi

https://github.com/CvanCheetah/CyanBot

61

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

#brickrun -- mplayer
/home/robot/ev3/Bad Apple.mp4 -vo
fbdev2:/dev/fb0)

#brickrun -- mplayer

/home/robot/ev3/BadApple.mp4 -framedrop -vo

fbdev2:/dev/tb0 -autosync 5
#brickrun -- mplayer

/home/robot/ev3/output_file.mp4 -framedrop -vo

fbdev2:/dev/fb0 -autosync 5 -vfm fimpeg -lavdopts

lowres=1:fast:skiploopfilter=all -cache 16000

“nocache

#brickrun -- mplayer
/home/robot/ev3/Bad Apple.mp4 -vo
fbdev2:/dev/fb0 -autosync 5
#brickrun -- mplayer

/home/robot/ev3/Bad Apple2.mpg -vo

fbdev2:/dev/fb0 -autosync 5

#ftmpeg -i /home/robot/ev3/Bad AppleSong.wav -ac 1

-ar 16000 /home/robot/ev3/output.wa

https://github.com/CyvanCheetah/CyanBot 62

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

#ftmpeg -i /home/robot/ev3/Bad Apple.mp4 -i

/home/robot/ev3/Bad AppleSong.wav -c:v copy -c::

copy /home/robot/ev3/output_file.mp
#brickrun -- mplayer
/home/robot/ev3/Y2Mate_1.mpg -vo
fbdev2:/dev/tb0 -autosync 5

#brickrun -- mplayer -vo fbdev2:/dev/fb0 -ao sdl

/home/robot/ev3/YLIA.gif -loop 0 & brickrun --

mplayer -ao sdl /home/robot/ev3/.mp3
#brickrun -- mplayer
/home/robot/ev3/output_file.mp4 -vo

tbdev2:/dev/tb0 -lavdopts lowres=1 -noborde

—nomouseinput —quiet

#brickrun -- ffmpeg -

/home/robot/ev3/Bad Apple.mp4 -v

https://github.com/CyvanCheetah/CyanBot 63

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

"fps=10,scale=178:128:flags=lanczos"

/home/robot/ev3/Bad Apple.gif

#brickrun -- mplayer -fps 15 -demuxer lavf -lavfdopts

format=mjpeg -vo fbdev2:/dev/fb0 -quiet

/home/robot/webcam.jpg

CHAPTER 10

HEARING SENSOR PROGRAMS

https://github.com/CvanCheetah/CyanBot 64

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

I have also used Hearing sensors in the robot. Using NXT Hearing

Sensors, I have implemented a program to use the hearing sensor.

What the program does is that using the head turning motor, the 2
hearing sensors the robot waits for a loud sound near the sensor, and then

turns its head towards that sound.

The program uses Decibels mode to compare the decibels heard during the

hearing sensor. Also there is a minimum threshold the hearing sensor has

to hear so that it does not turn for background noise.

Here is the sensor program:

https://github.com/CyanCheetah/CyvanBot 65

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

from ev3dev2.sensor.lego import SoundSensor
from ev3dev2.sensor import INPUT_2, INPUT_1
from ev3dev2.motor import OUTPUT_C, LargeMotor
import time

from time import sleep

import ev3dev2.auto as ev3

from ev3dev2.display import Display
sound_sensor_left = SoundSensor('in2')
sound_sensor_right = SoundSensor('inl")

sound _sensor_left.mode = 'DB’
threshold =
sound_sensor_right.mode = 'DB'
import ev3dev2.fonts as fonts
motor = LargeMotor(OUTPUT_C)
display = ev3.Display()
MOTOR_SPEED =

initial position = motor.position
target position = int(&)
negtarget position = int(&

while True:
sound_value left =
sound_sensor_left.sound pressure

https://github.com/CvanCheetah/CvanBot

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

sound_value right =
sound_sensor_right.sound pressure
if sound value left > threshold:
motor.run_to abs pos(position_sp=
), speed sp= 50)
time.sleep(3)
motor.run_to abs pos(position_sp=
), speed sp=50)
motor.wait_until not_moving()
elif sound_value right > threshold:
motor.run_to abs pos(position_sp=
), speed sp=50)
time.sleep(3)
motor.run_to abs pos(position_sp=
), speed sp=50)
motor.wait _until not moving()
else:
motor.stop()

https://github.com/CvanCheetah/CyanBot 67

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 11

CONNECTING TO THE INTERNET

Using EV3DEYV, you can connect to the internet.

https://github.com/CvanCheetah/CyanBot 63

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

This has many use scenarios, such as:

Downloading classes into the EV3 environment

® If you cannot download a class, using the internet you can get entire
repositories onto the EV3 so that you can download the classes from
the repositories.

® You can get information from the internet, such as time, weather,
stocks, news, and much more. It can even say it!

® It can play music from the internet.

® It can play an internet-based radio.

To connect to the internet, there are a few steps you have to take:

1. First off, power on the EV3 and your computer.

https://github.com/CyanCheetah/CyvanBot 69

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

2. Second, this method only works if the EV3 is connected to the
computer via a USB cable.

3. Third, connect the USB cable to the EV3.

4. Fourth, open Control Panel > Hardware and Sound > Devices and
Printers > and then Right click your EV3 Device (Remote NDIS
Device)

5. Fifth, go to Go to Network Settings > Left tab Network Settings.
6. Sixth, right click your home wifi, then go to the 3rd tab. Click the
checkmark on both of them and on the first option make sure it

connects to the EV3.

7. Seventh, go to the EV3 > Connections > Wired > Click connect.
Wiait for a few minutes and it should say online.

8. That is it! You are connected to the internet!

https://github.com/CyanCheetah/CyvanBot 70

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

9. If it does not, there is one thing you do. Repeat step 6 by unchecking
both options, wait for a few minutes, recheck them and then

continue from there. Be patient! It is very old hardware!

That is how you connect to the internet!

https://github.com/CyanCheetah/CvanBot 71

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 12

USING THE INTERNET TO PLAY THE RADIO

Using EV3DEYV, you can connect to the internet. Using the internet, you

can play the radio!

Here are a few things. The EV3 does NOT have a Radio antenna. So you

will have to use a radio link!

Here is an example of a radio link. Beware, it is German haha!

http://icecast.omroep.nl/radiol-bb-mp3

https://github.com/CvanCheetah/CyanBot 72

http://icecast.omroep.nl/radio1-bb-mp3
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

Using this radio link, we can use MPG123 or aplay to play it on the ev3. It

does take time to load since it uses the internet and depends on internet

speed. Also can lag after some time.

Here is a command for the internet radio:

brickrun -- mpg123 -1 1 --loop -1 -@

http://icecast.omroep.nl/radiol-bb-mp3 -b 10000

That's it!

Here is a radio program:

https://github.com/CyanCheetah/CyvanBot 3

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

from
ev3dev2.dis
play import
Display

from ev3dev?2 import ev3

import subprocess

screen = Display ()

process = subprocess.Popen (
['brickrun', '--', 'mpgl23',
—@r,
'http://us3.streamingpulse.com: 701
5/1live', '-b', '100000'7,
stdout=subprocess.PIPE,

universal_newlines=True

https://github.com/CvanCheetah/CyanBot A

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

for line in
iter (process.stdout.readline, ''):
if '"ICY-NAME' in line:
station name =
line.split ('ICY-NAME:
")[1].strip()
screen.draw.text ((10, 10),
f"Station:"+station name)

screen.update ()

if '"ICY-META: StreamTitle' in
line:
song name =
line.split ("StreamTitle="")[1].spl
it("';") [0]
screen.draw.text ((10, 50),
f"Song: {song name}")

screen.update ()

if ev3.Button() .middle:

break

https://github.com/CvanCheetah/CyanBot 63

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

Close the subprocess
process.stdout.close ()

process.wait ()

#sudo python3
/home/robot/ev3/ev3/tests/code/Rad

10.py

https://github.com/CvanCheetah/CyanBot 706

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 13

USING ARTIfiCAL INTELLIGENCE TO GENERATE RESPONSES

This one is a long one. So bear with me.

Introduction
The purpose of this document is to provide an in-depth explanation of the
usage of ChatGPT in generating responses based on the provided code

snippet. ChatGPT, developed by OpenAl, is a state-of-the-art language

https://github.com/CvanCheetah/CyanBot 77

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

model that utilizes deep learning techniques to generate human-like text
responses. The code snippet showcases the integration of ChatGPT with a
speech recognition system and an EV3 robot, enabling the creation of an
interactive voice-based chatbot. This document will delve into the various

aspects of the code and the underlying mechanisms of ChatGPT.

Code Explanation - Recording and Transcribing Audio

The code begins by importing the necessary libraries and initializing the
sound and touch sensors. The "record_audio” function is responsible for
capturing audio input. It uses the "arecord” command-line utility to
record audio from the default microphone and saves it as "voice.wav”. The
"transcribe_audio” function leverages the Google Cloud Speech-to-Text
API for transcribing the recorded audio. It reads the audio file, configures

the recognition settings such as encoding, sample rate, language code, and

https://github.com/CyanCheetah/CyvanBot 738

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

model, and sends the audio data to the API for transcription. Finally, the

function retrieves the transcribed text for further processing.

Code Explanation - Generating Response

The "generate_response” function utilizes the OpenAI API to generate a
response based on the provided text prompt. It takes the transcribed text
as input and constructs a prompt by formatting the text accordingly. The
function then utilizes the OpenAI Completion API to send the prompt
and receive a response. The "davinci” engine is specified for generating the
response, which represents the most powerful variant of the GPT family.
Additionally, the function sets parameters such as the maximum number
of tokens, temperature, and the number of responses to generate. The API
returns a list of choices, and the function extracts the first choice as the

generated response.

https://github.com/CyanCheetah/CyvanBot 79

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

Code Explanation - Speaking the Response

The "speak_response” function incorporates the EV3 sound module to
audibly communicate the generated response. It takes the response text as
input and utilizes the "speak” method of the sound object to play the
response as speech output. This functionality enhances the interaction
between the EV3 robot and users by enabling the robot to provide spoken
responses, thereby creating a more engaging and interactive user

experience.

Main Loop and Interaction
The main loop of the code snippet ensures continuous monitoring of the

touch sensor's state. When the touch sensor is pressed and recording is not

https://github.com/CyanCheetah/CyvanBot 380

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

in progress, the code triggers a beep sound and initiates the audio
recording process. Conversely, if the touch sensor is pressed again while
recording is in progress, another beep sound is triggered, and the
recording is stopped. Subsequently, the transcribed text is printed to
provide a visual representation of the user's input. The generate_response
function is then called to generate a response based on the transcribed
text. The generated response is printed, spoken out using the
speak_response function, and the recording state is reset to prepare for

future interactions.

ChatGPT - An Overview
ChatGPT is a powerful language model developed by OpenAl It is
trained using a massive amount of text data and employs deep learning

techniques, specifically transformer neural networks, to understand and

https://github.com/CyanCheetah/CyvanBot tH |

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

generate text. The model is designed to engage in natural language
conversations and generate coherent and contextually appropriate
responses. It has been trained on a wide variety of internet text sources,
enabling it to capture the nuances of language and provide human-like

interactions.

OpenAl API Integration

To leverage the capabilities of ChatGPT, the code snippet integrates with
the OpenAI API. The "openai.api

Page 7 (continued):

_key" is used to set the API key required for authentication. It is
recommended to store the API key securely and access it using
environment variables for security purposes. The "generate_response”

function utilizes the OpenAl Completion.create() method to interact with

https://github.com/CyanCheetah/CyvanBot 82

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

the API. It specifies the "davinci” engine for response generation, sets
parameters such as maximum tokens, temperature, and the number of
responses to generate. The API responds with a list of choices, and the

function extracts the first choice as the generated response.

Speech Output and Interaction

The "speak_response” function utilizes the EV3 sound module to convert
the generated response into audible speech. It takes the response text as
input and invokes the "speak” method of the sound object to play the
response as speech output. This capability enables the EV3 robot to
communicate with users in a more interactive and human-like manner. By
speaking the response, the robot enhances the overall user experience and

fosters a more natural and engaging conversation.

https://github.com/CyanCheetah/CyvanBot 383

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

Enhancing the User Interface

The code snippet can be extended to incorporate additional user interface
elements. For example, a graphical interface could be implemented to
display the transcribed text and the generated response in a more
user-friendly manner. This could include using text boxes or speech
bubbles to visually represent the conversation between the user and the
EV3 robot. Such enhancements can make the interaction more intuitive

and visually appealing, providing a seamless user experience.

Conclusion
This document has provided a comprehensive explanation of the usage of
ChatGPT in generating responses based on the provided code snippet. By

integrating ChatGPT with a speech recognition system and an EV3 robot,

https://github.com/CyanCheetah/CyvanBot 84

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

users can engage in interactive voice-based communication with the robot.
The combination of advanced language modeling and robotic technology
opens up exciting possibilities for creating intelligent and conversational
applications. Leveraging the power of ChatGPT and the OpenAI API,
developers can create chatbots, virtual assistants, and other applications
that provide natural and contextually relevant responses. The provided
code snippet serves as a starting point for exploring the potential of
ChatGPT and its integration with robotics. With further customization
and refinement, the application can be enhanced to deliver even more

immersive and engaging conversational experiences.

Here is the code for it:

https://github.com/CyanCheetah/CyvanBot 85

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

impo
impo
impo
from
from
from
from
impo
impo

from
from

soun
touc

def
1600

def

rt subprocess

rt io

rt os

ev3dev2.sensor import INPUT 4
google.cloud import speech
google.cloud.speech import enums
google.cloud.speech import types
rt openai

rt time

ev3dev2.sound import Sound
ev3dev2.sensor.lego import TouchSensor

d = Sound()
h_sensor = TouchSensor(INPUT_4)

record_audio():
subprocess.call("arecord -D hw:1,0 -f S16 LE -r
© voice.wav", shell=True)

transcribe_audio():

client = speech.SpeechClient()

with io.open("voice.wav", "rb") as audio file:
content = audio file.read()

audio = types.RecognitionAudio(content=content)

config = types.RecognitionConfig(

https://github.com/CvanCheetah/CvanBot

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

encoding=enums.RecognitionConfig.AudioEncoding.LINEA
R16,

sample rate_ hertz=

language code="en-US",

model="video"

)

operation =
client.long _running recognize(config=config,
audio=audio)

response = operation.result(timeout=90)

return
response.results[@].alternatives[0].transcript

def generate response(text):
openai.api_key = os.environ["OPENAI API KEY"]
prompt = "Your prompt here: {}".format(text)
response = openai.Completion.create(
engine="davinci",
prompt=prompt,
max_tokens=
temperature=
n=.,
stop=None,

)

return response.choices[@].text

https://github.com/CvanCheetah/CvanBot

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

def speak _response(response):
sound.speak(response)

recording = False

while True:
if touch _sensor.is pressed and not recording:
sound.beep()
recording = True
record_audio()
elif touch_sensor.is pressed and recording:
sound.beep()

text = transcribe_audio()
print("You said: {}".format(text))

response = generate_response(text)
print("GPT Says: {}".format(response))

speak response(response)
recording = False
time.sleep()

https://github.com/CvanCheetah/CyanBot 3838

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 14

ALL THE SUDO LINES TO EXECUTE THE PROGRAMS

https://github.com/CvanCheetah/CvanBot 389

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

For most of the programs, we need to use the SSH terminal to execute the
programs. Here is a convenient place to put all the lines that we need to

execute the programs.

“Remember to do Ctri+Shift+C and then Ctri+Shift+V into the SSH

Terminal otherwise it will not paste*

ColorName:

ColorNameTouch:

WebcamDisplay:

https://github.com/CyanCheetah/CyvanBot 90

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

WebcamStream:

Recording:

RecordingPlayback:

Blend2:
BlendS:

https://github.com/CyanCheetah/CyvanBot 91

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

SeisyunComplex:

https://github.com/CyanCheetah/CyvanBot 92

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

https://github.com/CvanCheetah/CvanBot

93

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 15

EXTRA PICTURES AND IMPORTANT INFORMATION

Username: robot

Password: maker

https://github.com/CvanCheetah/CyanBot 91

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

:27f5:a412%usbl
sudo apt-get
] password for robot:
I httpredir.debi

led to fetch
ed to fetch

http:
=bian.or
wve.evidev.or

download. They

1
led to used in

evi~% fortune

Truth is the most valuable thi

-— Mark Twain

19 we have —-—

robot@ev3dev:~§
robot@ev3 g
[sudo] password

sudo apt-get update
for robot:

m

mom u
oot

]

stretch 7 B]
updates/m Packages [TSO
wn-free armel Packages
armel Packages
armel Packages
on-free armel

m m

m

main

M

of of ot ot of of ot ot

G
G
G
G
G
G
G
G

ontrib armel

g package lists...

The followi ditional packages will be
libaudioZ libmpgl23-0 likopenal-data
Suggested packages:
nas sndiod jackd oss-compat

installed:
libopenall liboutl23-0 libsndio6.l libxté
assd-base pulseaudio

1 ke installed:

1al-data libopenall liboutl23-0

0 to remove and 141 not upgraded.

o06.1 libxté mp
0 upgraded,
NHeed to get

litional disk space will be

]

]

armel

armel

oo W W
o

m

of ot of of ot ot

]
m

1d not

resolwve
d not resolwve
not
stead.

resolwve

gl23

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

Github User: CyanCheetah

https://github.com/CyanCheetah/ev3

https://github.com/CvanCheetah/CyanBot

96

https://github.com/CyanCheetah/ev3
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 16

MORE SUDO LINES FOR REFERENCE

https://github.com/CvanCheetah/CvanBot 97

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

#sudo python3
/home/robot/ev3/ev3/tests/code/Radio.py

brickrun --
/home/robot/ev3/ev3/tests/code/Radio.py
#brickrun -- mpgl23 -1 1 --loop -1 -@
http://icecast.omroep.nl/radiol-bb-mp3 -b 1024

#brickrun -- mpgl23 -@
http://us3.streamingpulse.com:7015/1live -b 100000
#brickrun -- mpgl23 -@
"http://91.232.4.33:7028/stream?type=http&nocache=18
5776" -1 1

#brickrun -- mplayer -afm mp3lib -acodec mp3 -bps
128 -srate 44100
"http://91.232.4.33:7028/stream?type=http&nocache=18
5776"

#brickrun -- mplayer /home/robot/ev3/Chika-Dance.mp4
-vo fbdev2:/dev/fbo -framedrop

#brickrun -- mplayer /home/robot/ev3/output file.mp4
-vo fbdev2:/dev/fbe -framedrop

#brickrun -- mplayer
/home/robot/ev3/YourNameScenery.gif -vo

https://github.com/CyanCheetah/CyvanBot 98

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

fbdev2:/dev/fbO -framedrop

#brickrun -- mpgl23 /home/robot/ev3/BadAppleSong.mp3
#brickrun -- mplayer /home/robot/ev3/output file.mp4
--autosync 5vo fbdev2:/dev/fbe@ -framedrop

#brickrun -- ffmpeg -i
/home/robot/ev3/BadAppleSong.mp3
/home/robot/ev3/BadAppleSong.wav

#brickrun -- mpgl23 /home/robot/ev3/BadAppleSong.mp3
-b 10000

#brickrun -- aplay /home/robot/ev3/BadAppleSong.wav
#brickrun -- mplayer /home/robot/ev3/YLIA.gif

#brickrun -- mplayer /home/robot/ev3/BadApple.mp4
-vo fbdev2:/dev/fbo

#brickrun -- mplayer /home/robot/ev3/BadApple.mp4
-framedrop -vo fbdev2:/dev/fb@ -autosync 5
#brickrun -- mplayer /home/robot/ev3/output file.mp4
-framedrop -vo fbdev2:/dev/fb@ -autosync 5 -vfm
ffmpeg -lavdopts lowres=1:fast:skiploopfilter=all
-cache 16000 -nocache

#brickrun -- mplayer /home/robot/ev3/BadApple.mp4
-vo fbdev2:/dev/fbO -autosync 5

#brickrun -- mplayer /home/robot/ev3/BadApple2.mpg
-vo fbdev2:/dev/fbe@ -autosync 5

#ffmpeg -i /home/robot/ev3/BadAppleSong.wav -ac 1
-ar 16000 /home/robot/ev3/output.wav

#ffmpeg -i /home/robot/ev3/BadApple.mp4 -i

https://github.com/CyanCheetah/CyvanBot 99

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

/home/robot/ev3/BadAppleSong.wav -c:v copy -c:a copy
/home/robot/ev3/output file.mp4

#brickrun -- mplayer /home/robot/ev3/Y2Mate 1.mpg
-vo fbdev2:/dev/fbO -autosync 5

#brickrun -- mplayer -vo fbdev2:/dev/fbo -ao sdl
/home/robot/ev3/YLIA.gif -loop © & brickrun --
mplayer -ao sdl /home/robot/ev3/.mp3

#brickrun -- mplayer /home/robot/ev3/output file.mp4
-vo fbdev2:/dev/fbeO -lavdopts lowres=1 -noborder
-nomouseinput -quiet

#brickrun -- ffmpeg -i /home/robot/ev3/BadApple.mp4
-vf "fps=10,scale=178:128:flags=1anczos"”
/home/robot/ev3/BadApple.gif

#brickrun -- mplayer -fps 15 -demuxer lavf
-lavfdopts format=mjpeg -vo fbdev2:/dev/fbO -quiet
/home/robot/webcam. jpg

https://github.com/CyanCheetah/CyvanBot 100

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 17

LIST OF THE THINGS I HAVE INSTALLED

e PIL (python image library)
e Mplayer

e Fbi

® Fswebcam

e EV3DEV

e MPG123

https://github.com/CvanCheetah/CyanBot 101

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

MPG321

e Aplay
® Openai
® Sphynx

e Decbian

And more! Will update as I go along

https://github.com/CvanCheetah/CyanBot 102

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 18

REFERENCE LINKS

® https://github.com/CyanCheetah
o My Github Profile

® https://github.com/CyanCheetah/CyanBot

o This programs Github

https://github.com/CvanCheetah/CvanBot 103

https://github.com/CyanCheetah
https://github.com/CyanCheetah/CyanBot
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

® https://www.youtube.com/watch?v=alDYm5ZyAks

o The Robot Overview Video

® https://www.youtube.com/@cyancheetah7034

o My Youtube Channel (Subscribe!)

® https://www.youtube.com/watch?v=qsX8IqXMkZ0&t=103s

o EV3 Plays Bad Apple

https://github.com/CvanCheetah/CyanBot 104

https://www.youtube.com/watch?v=alDYm5ZyAks
https://www.youtube.com/@cyancheetah7034
https://www.youtube.com/watch?v=qsX8IqXMkZ0&t=103s
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

CHAPTER 18

WAYS TO CONTACT ME

Discord: CyanCheetah#6013

Email: saitanujl2@gmail.com

Linkedln: https://www.linkedin.com/in/sai-tanuj-karavadi-0b6b54265/

https://github.com/CvanCheetah/CvanBot 105

mailto:saitanuj12@gmail.com
https://www.linkedin.com/in/sai-tanuj-karavadi-0b6b54265/
https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

That is about it!

Thanks for reading!

https://github.com/CyanCheetah/CyvanBot 106

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

https://github.com/CvanCheetah/CyanBot 107

https://github.com/CyanCheetah/CyanBot

CyanBot python-ev3dev Documentation

https://github.com/CvanCheetah/CyanBot 108

https://github.com/CyanCheetah/CyanBot

