Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
file 934 lines (806 sloc) 23.246 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/**
* Implementation of associative arrays.
*
* Copyright: Copyright Digital Mars 2000 - 2010.
* License: <a href="http://www.boost.org/LICENSE_1_0.txt">Boost License 1.0</a>.
* Authors: Walter Bright, Sean Kelly
*/

/* Copyright Digital Mars 2000 - 2010.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
module rt.aaA;

private
{
    import core.stdc.stdarg;
    import core.stdc.string;
    import core.stdc.stdio;
    import core.memory;

    // Convenience function to make sure the NO_INTERIOR gets set on the
    // bucket array.
    Entry*[] newBuckets(in size_t len) @trusted pure nothrow
    {
        auto ptr = cast(Entry**) GC.calloc(
            len * (Entry*).sizeof, GC.BlkAttr.NO_INTERIOR);
        return ptr[0..len];
    }
}

// Auto-rehash and pre-allocate - Dave Fladebo

static immutable size_t[] prime_list = [
              31UL,
              97UL, 389UL,
           1_543UL, 6_151UL,
          24_593UL, 98_317UL,
          393_241UL, 1_572_869UL,
        6_291_469UL, 25_165_843UL,
      100_663_319UL, 402_653_189UL,
    1_610_612_741UL, 4_294_967_291UL,
// 8_589_934_513UL, 17_179_869_143UL
];

/* This is the type of the return value for dynamic arrays.
* It should be a type that is returned in registers.
* Although DMD will return types of Array in registers,
* gcc will not, so we instead use a 'long'.
*/
alias void[] ArrayRet_t;

struct Array
{
    size_t length;
    void* ptr;
}

struct Entry
{
    Entry *next;
    size_t hash;
    /* key */
    /* value */
}

struct Impl
{
    Entry*[] buckets;
    size_t nodes; // total number of entries
    TypeInfo _keyti;
    Entry*[4] binit; // initial value of buckets[]

    @property const(TypeInfo) keyti() const @safe pure nothrow
    { return _keyti; }
}

/* This is the type actually seen by the programmer, although
* it is completely opaque.
*/
struct AA
{
    Impl* impl;
}

/**********************************
* Align to next pointer boundary, so that
* GC won't be faced with misaligned pointers
* in value.
*/
size_t aligntsize(in size_t tsize) @safe pure nothrow
{
    version (D_LP64) {
        // align to 16 bytes on 64-bit
        return (tsize + 15) & ~(15);
    }
    else {
        return (tsize + size_t.sizeof - 1) & ~(size_t.sizeof - 1);
    }
}

extern (C):

/****************************************************
* Determine number of entries in associative array.
*/
size_t _aaLen(in AA aa) pure nothrow
in
{
    //printf("_aaLen()+\n");
    //_aaInv(aa);
}
out (result)
{
    size_t len = 0;

    if (aa.impl)
    {
        foreach (const(Entry)* e; aa.impl.buckets)
        {
            while (e)
            { len++;
                e = e.next;
            }
        }
    }
    assert(len == result);

    //printf("_aaLen()-\n");
}
body
{
    return aa.impl ? aa.impl.nodes : 0;
}


/*************************************************
* Get pointer to value in associative array indexed by key.
* Add entry for key if it is not already there.
*/
void* _aaGetX(AA* aa, const TypeInfo keyti, in size_t valuesize, in void* pkey)
in
{
    assert(aa);
}
out (result)
{
    assert(result);
    assert(aa.impl !is null);
    assert(aa.impl.buckets.length);
    //assert(_aaInAh(*aa.a, key));
}
body
{
    size_t i;
    Entry *e;
    //printf("keyti = %p\n", keyti);
    //printf("aa = %p\n", aa);
    immutable keytitsize = keyti.tsize;

    if (aa.impl is null)
    { aa.impl = new Impl();
        aa.impl.buckets = aa.impl.binit[];
    }
    //printf("aa = %p\n", aa);
    //printf("aa.a = %p\n", aa.a);
    aa.impl._keyti = cast() keyti;

    auto key_hash = keyti.getHash(pkey);
    //printf("hash = %d\n", key_hash);
    i = key_hash % aa.impl.buckets.length;
    auto pe = &aa.impl.buckets[i];
    while ((e = *pe) !is null)
    {
        if (key_hash == e.hash)
        {
            auto c = keyti.compare(pkey, e + 1);
            if (c == 0)
                goto Lret;
        }
        pe = &e.next;
    }

    {
        // Not found, create new elem
        //printf("create new one\n");
        size_t size = Entry.sizeof + aligntsize(keytitsize) + valuesize;
        e = cast(Entry *) GC.malloc(size);
        e.next = null;
        e.hash = key_hash;
        ubyte* ptail = cast(ubyte*)(e + 1);
        memcpy(ptail, pkey, keytitsize);
        memset(ptail + aligntsize(keytitsize), 0, valuesize); // zero value
        *pe = e;

        auto nodes = ++aa.impl.nodes;
        //printf("length = %d, nodes = %d\n", aa.a.buckets.length, nodes);
        if (nodes > aa.impl.buckets.length * 4)
        {
            //printf("rehash\n");
            _aaRehash(aa,keyti);
        }
    }

Lret:
    return cast(void *)(e + 1) + aligntsize(keytitsize);
}


/*************************************************
* Get pointer to value in associative array indexed by key.
* Returns null if it is not already there.
*/
inout(void)* _aaGetRvalueX(inout AA aa, in TypeInfo keyti, in size_t valuesize, in void* pkey)
{
    //printf("_aaGetRvalue(valuesize = %u)\n", valuesize);
    if (aa.impl is null)
        return null;

    auto keysize = aligntsize(keyti.tsize);
    auto len = aa.impl.buckets.length;

    if (len)
    {
        auto key_hash = keyti.getHash(pkey);
        //printf("hash = %d\n", key_hash);
        size_t i = key_hash % len;
        inout(Entry)* e = aa.impl.buckets[i];
        while (e !is null)
        {
            if (key_hash == e.hash)
            {
                auto c = keyti.compare(pkey, e + 1);
                if (c == 0)
                    return cast(inout void *)(e + 1) + keysize;
            }
            e = e.next;
        }
    }
    return null; // not found, caller will throw exception
}


/*************************************************
* Determine if key is in aa.
* Returns:
* null not in aa
* !=null in aa, return pointer to value
*/
inout(void)* _aaInX(inout AA aa, in TypeInfo keyti, in void* pkey)
in
{
}
out (result)
{
    //assert(result == 0 || result == 1);
}
body
{
    if (aa.impl)
    {
        //printf("_aaIn(), .length = %d, .ptr = %x\n", aa.a.length, cast(uint)aa.a.ptr);
        auto len = aa.impl.buckets.length;

        if (len)
        {
            auto key_hash = keyti.getHash(pkey);
            //printf("hash = %d\n", key_hash);
            const i = key_hash % len;
            inout(Entry)* e = aa.impl.buckets[i];
            while (e !is null)
            {
                if (key_hash == e.hash)
                {
                    auto c = keyti.compare(pkey, e + 1);
                    if (c == 0)
                        return cast(inout void *)(e + 1) + aligntsize(keyti.tsize);
                }
                e = e.next;
            }
        }
    }

    // Not found
    return null;
}

/*************************************************
* Delete key entry in aa[].
* If key is not in aa[], do nothing.
*/
bool _aaDelX(AA aa, in TypeInfo keyti, in void* pkey)
{
    Entry *e;

    if (aa.impl && aa.impl.buckets.length)
    {
        auto key_hash = keyti.getHash(pkey);
        //printf("hash = %d\n", key_hash);
        size_t i = key_hash % aa.impl.buckets.length;
        auto pe = &aa.impl.buckets[i];
        while ((e = *pe) !is null) // null means not found
        {
            if (key_hash == e.hash)
            {
                auto c = keyti.compare(pkey, e + 1);
                if (c == 0)
                {
                    *pe = e.next;
                    aa.impl.nodes--;
                    GC.free(e);
                    return true;
                }
            }
            pe = &e.next;
        }
    }
    return false;
}


/********************************************
* Produce array of values from aa.
*/
inout(ArrayRet_t) _aaValues(inout AA aa, in size_t keysize, in size_t valuesize) pure nothrow
{
    size_t resi;
    Array a;

    auto alignsize = aligntsize(keysize);

    if (aa.impl !is null)
    {
        a.length = _aaLen(aa);
        a.ptr = cast(byte*) GC.malloc(a.length * valuesize,
                                      valuesize < (void*).sizeof ? GC.BlkAttr.NO_SCAN : 0);
        resi = 0;
        foreach (inout(Entry)* e; aa.impl.buckets)
        {
            while (e)
            {
                memcpy(a.ptr + resi * valuesize,
                       cast(byte*)e + Entry.sizeof + alignsize,
                       valuesize);
                resi++;
                e = e.next;
            }
        }
        assert(resi == a.length);
    }
    return *cast(inout ArrayRet_t*)(&a);
}


/********************************************
* Rehash an array.
*/
void* _aaRehash(AA* paa, in TypeInfo keyti) pure nothrow
in
{
    //_aaInvAh(paa);
}
out (result)
{
    //_aaInvAh(result);
}
body
{
    //printf("Rehash\n");
    if (paa.impl !is null)
    {
        auto len = _aaLen(*paa);
        if (len)
        {
            Impl newImpl;
            Impl* oldImpl = paa.impl;

            size_t i;
            for (i = 0; i < prime_list.length - 1; i++)
            {
                if (len <= prime_list[i])
                    break;
            }
            len = prime_list[i];
            newImpl.buckets = newBuckets(len);

            foreach (e; oldImpl.buckets)
            {
                while (e)
                { auto enext = e.next;
                    const j = e.hash % len;
                    e.next = newImpl.buckets[j];
                    newImpl.buckets[j] = e;
                    e = enext;
                }
            }
            if (oldImpl.buckets.ptr == oldImpl.binit.ptr)
                oldImpl.binit[] = null;
            else
                GC.free(oldImpl.buckets.ptr);

            newImpl.nodes = oldImpl.nodes;
            newImpl._keyti = oldImpl._keyti;

            *paa.impl = newImpl;
        }
        else
        {
            if (paa.impl.buckets.ptr != paa.impl.binit.ptr)
                GC.free(paa.impl.buckets.ptr);
            paa.impl.buckets = paa.impl.binit[];
        }
    }
    return (*paa).impl;
}

/********************************************
* Produce array of N byte keys from aa.
*/
inout(ArrayRet_t) _aaKeys(inout AA aa, in size_t keysize) pure nothrow
{
    auto len = _aaLen(aa);
    if (!len)
        return null;

    immutable blkAttr = !(aa.impl.keyti.flags & 1) ? GC.BlkAttr.NO_SCAN : 0;
    auto res = (cast(byte*) GC.malloc(len * keysize, blkAttr))[0 .. len * keysize];

    size_t resi = 0;
    foreach (inout(Entry)* e; aa.impl.buckets)
    {
        while (e)
        {
            memcpy(&res[resi * keysize], cast(byte*)(e + 1), keysize);
            resi++;
            e = e.next;
        }
    }
    assert(resi == len);

    Array a;
    a.length = len;
    a.ptr = res.ptr;
    return *cast(inout ArrayRet_t*)(&a);
}

unittest
{
    int[string] aa;

    aa["hello"] = 3;
    assert(aa["hello"] == 3);
    aa["hello"]++;
    assert(aa["hello"] == 4);

    assert(aa.length == 1);

    string[] keys = aa.keys;
    assert(keys.length == 1);
    assert(memcmp(keys[0].ptr, cast(char*)"hello", 5) == 0);

    int[] values = aa.values;
    assert(values.length == 1);
    assert(values[0] == 4);

    aa.rehash;
    assert(aa.length == 1);
    assert(aa["hello"] == 4);

    aa["foo"] = 1;
    aa["bar"] = 2;
    aa["batz"] = 3;

    assert(aa.keys.length == 4);
    assert(aa.values.length == 4);

    foreach(a; aa.keys)
    {
        assert(a.length != 0);
        assert(a.ptr != null);
        //printf("key: %.*s -> value: %d\n", a.length, a.ptr, aa[a]);
    }

    foreach(v; aa.values)
    {
        assert(v != 0);
        //printf("value: %d\n", v);
    }
}

unittest // Test for Issue 10381
{
    alias II = int[int];
    II aa1 = [0: 1];
    II aa2 = [0: 1];
    II aa3 = [0: 2];
    assert(aa1 == aa2); // Passes
    assert( typeid(II).equals(&aa1, &aa2));
    assert(!typeid(II).equals(&aa1, &aa3));
}


/**********************************************
* 'apply' for associative arrays - to support foreach
*/
// dg is D, but _aaApply() is C
extern (D) alias int delegate(void *) dg_t;

int _aaApply(AA aa, in size_t keysize, dg_t dg)
{
    if (aa.impl is null)
    {
        return 0;
    }

    immutable alignsize = aligntsize(keysize);
    //printf("_aaApply(aa = x%llx, keysize = %d, dg = x%llx)\n", aa.impl, keysize, dg);

    foreach (e; aa.impl.buckets)
    {
        while (e)
        {
            auto result = dg(cast(void *)(e + 1) + alignsize);
            if (result)
                return result;
            e = e.next;
        }
    }
    return 0;
}

// dg is D, but _aaApply2() is C
extern (D) alias int delegate(void *, void *) dg2_t;

int _aaApply2(AA aa, in size_t keysize, dg2_t dg)
{
    if (aa.impl is null)
    {
        return 0;
    }

    //printf("_aaApply(aa = x%llx, keysize = %d, dg = x%llx)\n", aa.impl, keysize, dg);

    immutable alignsize = aligntsize(keysize);

    foreach (e; aa.impl.buckets)
    {
        while (e)
        {
            auto result = dg(e + 1, cast(void *)(e + 1) + alignsize);
            if (result)
                return result;
            e = e.next;
        }
    }

    return 0;
}


/***********************************
* Construct an associative array of type ti from
* length pairs of key/value pairs.
*/
Impl* _d_assocarrayliteralTX(const TypeInfo_AssociativeArray ti, void[] keys, void[] values)
{
    const valuesize = ti.next.tsize; // value size
    const keyti = ti.key;
    const keysize = keyti.tsize; // key size
    const length = keys.length;
    Impl* result;

    //printf("_d_assocarrayliteralT(keysize = %d, valuesize = %d, length = %d)\n", keysize, valuesize, length);
    //printf("tivalue = %.*s\n", typeid(ti.next).name);
    assert(length == values.length);
    if (length == 0 || valuesize == 0 || keysize == 0)
    {
    }
    else
    {
        result = new Impl();
        result._keyti = cast() keyti;

        size_t i;
        for (i = 0; i < prime_list.length - 1; i++)
        {
            if (length <= prime_list[i])
                break;
        }
        auto len = prime_list[i];
        result.buckets = newBuckets(len);

        size_t keytsize = aligntsize(keysize);

        for (size_t j = 0; j < length; j++)
        { auto pkey = keys.ptr + j * keysize;
            auto pvalue = values.ptr + j * valuesize;
            Entry* e;

            auto key_hash = keyti.getHash(pkey);
            //printf("hash = %d\n", key_hash);
            i = key_hash % len;
            auto pe = &result.buckets[i];
            while (1)
            {
                e = *pe;
                if (!e)
                {
                    // Not found, create new elem
                    //printf("create new one\n");
                    e = cast(Entry *) cast(void*) new void[Entry.sizeof + keytsize + valuesize];
                    memcpy(e + 1, pkey, keysize);
                    e.hash = key_hash;
                    *pe = e;
                    result.nodes++;
                    break;
                }
                if (key_hash == e.hash)
                {
                    auto c = keyti.compare(pkey, e + 1);
                    if (c == 0)
                        break;
                }
                pe = &e.next;
            }
            memcpy(cast(void *)(e + 1) + keytsize, pvalue, valuesize);
        }
    }
    return result;
}


const(TypeInfo_AssociativeArray) _aaUnwrapTypeInfo(const(TypeInfo) tiRaw) pure nothrow
{
    const(TypeInfo)* p = &tiRaw;
    TypeInfo_AssociativeArray ti;
    while (true)
    {
        if ((ti = cast(TypeInfo_AssociativeArray)*p) !is null)
            break;

        if (auto tiConst = cast(TypeInfo_Const)*p) {
            // The member in object_.d and object.di differ. This is to ensure
            // the file can be compiled both independently in unittest and
            // collectively in generating the library. Fixing object.di
            // requires changes to std.format in Phobos, fixing object_.d
            // makes Phobos's unittest fail, so this hack is employed here to
            // avoid irrelevant changes.
            static if (is(typeof(&tiConst.base) == TypeInfo*))
                p = &tiConst.base;
            else
                p = &tiConst.next;
        } else
            assert(0); // ???
    }

    return ti;
}


/***********************************
* Compare AA contents for equality.
* Returns:
* 1 equal
* 0 not equal
*/
int _aaEqual(in TypeInfo tiRaw, in AA e1, in AA e2)
{
    //printf("_aaEqual()\n");
    //printf("keyti = %.*s\n", typeid(ti.key).name);
    //printf("valueti = %.*s\n", typeid(ti.next).name);

    if (e1.impl is e2.impl)
        return 1;

    size_t len = _aaLen(e1);
    if (len != _aaLen(e2))
        return 0;

    // Bug 9852: at this point, e1 and e2 have the same length, so if one is
    // null, the other must either also be null or have zero entries, so they
    // must be equal. We check this here to avoid dereferencing null later on.
    if (e1.impl is null || e2.impl is null)
        return 1;

    // Check for Bug 5925. ti_raw could be a TypeInfo_Const, we need to unwrap
    // it until reaching a real TypeInfo_AssociativeArray.
    const TypeInfo_AssociativeArray ti = _aaUnwrapTypeInfo(tiRaw);

    /* Algorithm: Visit each key/value pair in e1. If that key doesn't exist
* in e2, or if the value in e1 doesn't match the one in e2, the arrays
* are not equal, and exit early.
* After all pairs are checked, the arrays must be equal.
*/

    const keyti = ti.key;
    const valueti = ti.next;
    const keysize = aligntsize(keyti.tsize);

    assert(e2.impl !is null);
    const len2 = e2.impl.buckets.length;

    int _aaKeys_x(const(Entry)* e)
    {
        do
        {
            auto pkey = cast(void*)(e + 1);
            auto pvalue = pkey + keysize;
            //printf("key = %d, value = %g\n", *cast(int*)pkey, *cast(double*)pvalue);

            // We have key/value for e1. See if they exist in e2

            auto key_hash = keyti.getHash(pkey);
            //printf("hash = %d\n", key_hash);
            const i = key_hash % len2;
            const(Entry)* f = e2.impl.buckets[i];
            while (1)
            {
                //printf("f is %p\n", f);
                if (f is null)
                    return 0; // key not found, so AA's are not equal
                if (key_hash == f.hash)
                {
                    //printf("hash equals\n");
                    auto c = keyti.compare(pkey, f + 1);
                    if (c == 0)
                    { // Found key in e2. Compare values
                        //printf("key equals\n");
                        auto pvalue2 = cast(void *)(f + 1) + keysize;
                        if (valueti.equals(pvalue, pvalue2))
                        {
                            //printf("value equals\n");
                            break;
                        }
                        else
                            return 0; // values don't match, so AA's are not equal
                    }
                }
                f = f.next;
            }

            // Look at next entry in e1
            e = e.next;
        } while (e !is null);
        return 1; // this subtree matches
    }

    foreach (e; e1.impl.buckets)
    {
        if (e)
        { if (_aaKeys_x(e) == 0)
                return 0;
        }
    }

    return 1; // equal
}


/*****************************************
* Computes a hash value for the entire AA
* Returns:
* Hash value
*/
hash_t _aaGetHash(in AA* aa, in TypeInfo tiRaw) nothrow
{
    import rt.util.hash;

    if (aa.impl is null)
     return 0;

    hash_t h = 0;
    const TypeInfo_AssociativeArray ti = _aaUnwrapTypeInfo(tiRaw);
    const keyti = ti.key;
    const valueti = ti.next;
    const keysize = aligntsize(keyti.tsize);

    foreach (const(Entry)* e; aa.impl.buckets)
    {
while (e)
{
auto pkey = cast(void*)(e + 1);
auto pvalue = pkey + keysize;

// Compute a hash for the key/value pair by hashing their
// respective hash values.
hash_t[2] hpair;
hpair[0] = e.hash;
hpair[1] = valueti.getHash(pvalue);

// Combine the hash of the key/value pair with the running hash
// value using an associative operator (+) so that the resulting
// hash value is independent of the actual order the pairs are
// stored in (important to ensure equality of hash value for two
// AA's containing identical pairs but with different hashtable
// sizes).
h += hashOf(hpair.ptr, hpair.length * hash_t.sizeof);

e = e.next;
}
    }

    return h;
}

unittest
{
    string[int] key1 = [1: "true", 2: "false"];
    string[int] key2 = [1: "false", 2: "true"];

    // AA lits create a larger hashtable
    int[string[int]] aa1 = [key1: 100, key2: 200];

    // Ensure consistent hash values are computed for key1
    assert((key1 in aa1) !is null);

    // Manually assigning to an empty AA creates a smaller hashtable
    int[string[int]] aa2;
    aa2[key1] = 100;
    aa2[key2] = 200;

    assert(aa1 == aa2);

    // Ensure binary-independence of equal hash keys
    string[int] key2a;
    key2a[1] = "false";
    key2a[2] = "true";

    assert(aa1[key2a] == 200);
}

// Issue 9852
unittest
{
    // Original test case (revised, original assert was wrong)
    int[string] a;
    a["foo"] = 0;
    a.remove("foo");
    assert(a == null); // should not crash

    int[string] b;
    assert(b is null);
    assert(a == b); // should not deref null
    assert(b == a); // ditto

    int[string] c;
    c["a"] = 1;
    assert(a != c); // comparison with empty non-null AA
    assert(c != a);
    assert(b != c); // comparison with null AA
    assert(c != b);
}


/**
* _aaRange implements a ForwardRange
*/
struct Range
{
    Impl* impl;
    Entry* current;
}


Range _aaRange(AA aa)
{
    typeof(return) res;
    if (aa.impl is null)
        return res;

    res.impl = aa.impl;
    foreach (entry; aa.impl.buckets)
    {
        if (entry !is null)
        {
            res.current = entry;
            break;
        }
    }
    return res;
}


bool _aaRangeEmpty(Range r)
{
    return r.current is null;
}


void* _aaRangeFrontKey(Range r)
in
{
    assert(r.current !is null);
}
body
{
    return cast(void*)r.current + Entry.sizeof;
}


void* _aaRangeFrontValue(Range r)
in
{
    assert(r.current !is null);
    assert(r.impl.keyti !is null); // set on first insert
}
body
{
    return cast(void*)r.current + Entry.sizeof + aligntsize(r.impl.keyti.tsize);
}


void _aaRangePopFront(ref Range r)
{
    if (r.current.next !is null)
    {
        r.current = r.current.next;
    }
    else
    {
        immutable idx = r.current.hash % r.impl.buckets.length;
        r.current = null;
        foreach (entry; r.impl.buckets[idx + 1 .. $])
        {
            if (entry !is null)
            {
                r.current = entry;
                break;
            }
        }
    }
}
Something went wrong with that request. Please try again.