Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

967 lines (876 sloc) 27.681 kb
/**
* This module describes the digest APIs used in Phobos. All digests follow these APIs.
* Additionally, this module contains useful helper methods which can be used with every _digest type.
*
$(SCRIPT inhibitQuickIndex = 1;)
$(DIVC quickindex,
$(BOOKTABLE ,
$(TR $(TH Category) $(TH Functions)
)
$(TR $(TDNW Template API) $(TD $(MYREF isDigest) $(MYREF DigestType) $(MYREF hasPeek)
$(MYREF ExampleDigest) $(MYREF _digest) $(MYREF hexDigest) $(MYREF makeDigest)
)
)
$(TR $(TDNW OOP API) $(TD $(MYREF Digest)
)
)
$(TR $(TDNW Helper functions) $(TD $(MYREF toHexString))
)
$(TR $(TDNW Implementation helpers) $(TD $(MYREF digestLength) $(MYREF WrapperDigest))
)
)
)
* APIs:
* There are two APIs for digests: The template API and the OOP API. The template API uses structs
* and template helpers like $(LREF isDigest). The OOP API implements digests as classes inheriting
* the $(LREF Digest) interface. All digests are named so that the template API struct is called "$(B x)"
* and the OOP API class is called "$(B x)Digest". For example we have $(D MD5) <--> $(D MD5Digest),
* $(D CRC32) <--> $(D CRC32Digest), etc.
*
* The template API is slightly more efficient. It does not have to allocate memory dynamically,
* all memory is allocated on the stack. The OOP API has to allocate in the finish method if no
* buffer was provided. If you provide a buffer to the OOP APIs finish function, it doesn't allocate,
* but the $(LREF Digest) classes still have to be created using $(D new) which allocates them using the GC.
*
* The OOP API is useful to change the _digest function and/or _digest backend at 'runtime'. The benefit here
* is that switching e.g. Phobos MD5Digest and an OpenSSLMD5Digest implementation is ABI compatible.
*
* If just one specific _digest type and backend is needed, the template API is usually a good fit.
* In this simplest case, the template API can even be used without templates: Just use the "$(B x)" structs
* directly.
*
* License: $(WEB www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
* Authors:
* Johannes Pfau
*
* Source: $(PHOBOSSRC std/_digest/_digest.d)
*
* CTFE:
* Digests do not work in CTFE
*
* TODO:
* Digesting single bits (as opposed to bytes) is not implemented. This will be done as another
* template constraint helper (hasBitDigesting!T) and an additional interface (BitDigest)
*/
/* Copyright Johannes Pfau 2012.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
module std.digest.digest;
import std.traits;
import std.typetuple : allSatisfy;
public import std.ascii : LetterCase;
///
unittest
{
import std.digest.crc;
//Simple example
char[8] hexHash = hexDigest!CRC32("The quick brown fox jumps over the lazy dog");
assert(hexHash == "39A34F41");
//Simple example, using the API manually
CRC32 context = makeDigest!CRC32();
context.put(cast(ubyte[])"The quick brown fox jumps over the lazy dog");
ubyte[4] hash = context.finish();
assert(toHexString(hash) == "39A34F41");
}
///
unittest
{
//Generating the hashes of a file, idiomatic D way
import std.digest.crc, std.digest.sha, std.digest.md;
import std.stdio;
// Digests a file and prints the result.
void digestFile(Hash)(string filename) if(isDigest!Hash)
{
auto file = File(filename);
auto result = digest!Hash(file.byChunk(4096 * 1024));
writefln("%s (%s) = %s", Hash.stringof, filename, toHexString(result));
}
void main(string[] args)
{
foreach (name; args[1 .. $])
{
digestFile!MD5(name);
digestFile!SHA1(name);
digestFile!CRC32(name);
}
}
}
///
unittest
{
//Generating the hashes of a file using the template API
import std.digest.crc, std.digest.sha, std.digest.md;
import std.stdio;
// Digests a file and prints the result.
void digestFile(Hash)(ref Hash hash, string filename) if(isDigest!Hash)
{
File file = File(filename);
//As digests imlement OutputRange, we could use std.algorithm.copy
//Let's do it manually for now
foreach (buffer; file.byChunk(4096 * 1024))
hash.put(buffer);
auto result = hash.finish();
writefln("%s (%s) = %s", Hash.stringof, filename, toHexString(result));
}
void uMain(string[] args)
{
MD5 md5;
SHA1 sha1;
CRC32 crc32;
md5.start();
sha1.start();
crc32.start();
foreach (arg; args[1 .. $])
{
digestFile(md5, arg);
digestFile(sha1, arg);
digestFile(crc32, arg);
}
}
}
///
unittest
{
import std.digest.crc, std.digest.sha, std.digest.md;
import std.stdio;
// Digests a file and prints the result.
void digestFile(Digest hash, string filename)
{
File file = File(filename);
//As digests implement OutputRange, we could use std.algorithm.copy
//Let's do it manually for now
foreach (buffer; file.byChunk(4096 * 1024))
hash.put(buffer);
ubyte[] result = hash.finish();
writefln("%s (%s) = %s", typeid(hash).toString(), filename, toHexString(result));
}
void umain(string[] args)
{
auto md5 = new MD5Digest();
auto sha1 = new SHA1Digest();
auto crc32 = new CRC32Digest();
foreach (arg; args[1 .. $])
{
digestFile(md5, arg);
digestFile(sha1, arg);
digestFile(crc32, arg);
}
}
}
version(StdDdoc)
version = ExampleDigest;
version(ExampleDigest)
{
/**
* This documents the general structure of a Digest in the template API.
* All digest implementations should implement the following members and therefore pass
* the $(LREF isDigest) test.
*
* Note:
* $(UL
* $(LI A digest must be a struct (value type) to pass the $(LREF isDigest) test.)
* $(LI A digest passing the $(LREF isDigest) test is always an $(D OutputRange))
* )
*/
struct ExampleDigest
{
public:
/**
* Use this to feed the digest with data.
* Also implements the $(XREF range, OutputRange) interface for $(D ubyte) and
* $(D const(ubyte)[]).
* The following usages of $(D put) must work for any type which passes $(LREF isDigest):
* Examples:
* ----
* ExampleDigest dig;
* dig.put(cast(ubyte)0); //single ubyte
* dig.put(cast(ubyte)0, cast(ubyte)0); //variadic
* ubyte[10] buf;
* dig.put(buf); //buffer
* ----
*/
@trusted void put(scope const(ubyte)[] data...)
{
}
/**
* This function is used to (re)initialize the digest.
* It must be called before using the digest and it also works as a 'reset' function
* if the digest has already processed data.
*/
@trusted void start()
{
}
/**
* The finish function returns the final hash sum and resets the Digest.
*
* Note:
* The actual type returned by finish depends on the digest implementation.
* $(D ubyte[16]) is just used as an example. It is guaranteed that the type is a
* static array of ubytes.
*
* $(UL
* $(LI Use $(LREF DigestType) to obtain the actual return type.)
* $(LI Use $(LREF digestLength) to obtain the length of the ubyte array.)
* )
*/
@trusted ubyte[16] finish()
{
return (ubyte[16]).init;
}
}
}
///
unittest
{
//Using the OutputRange feature
import std.algorithm : copy;
import std.range : repeat;
import std.digest.md;
auto oneMillionRange = repeat!ubyte(cast(ubyte)'a', 1000000);
auto ctx = makeDigest!MD5();
copy(oneMillionRange, &ctx); //Note: You must pass a pointer to copy!
assert(ctx.finish().toHexString() == "7707D6AE4E027C70EEA2A935C2296F21");
}
/**
* Use this to check if a type is a digest. See $(LREF ExampleDigest) to see what
* a type must provide to pass this check.
*
* Note:
* This is very useful as a template constraint (see examples)
*
* BUGS:
* $(UL
* $(LI Does not yet verify that put takes scope parameters.)
* $(LI Should check that finish() returns a ubyte[num] array)
* )
*/
template isDigest(T)
{
import std.range : isOutputRange;
enum bool isDigest = isOutputRange!(T, const(ubyte)[]) && isOutputRange!(T, ubyte) &&
is(T == struct) &&
is(typeof(
{
T dig = void; //Can define
dig.put(cast(ubyte)0, cast(ubyte)0); //varags
dig.start(); //has start
auto value = dig.finish(); //has finish
}));
}
///
unittest
{
import std.digest.crc;
static assert(isDigest!CRC32);
}
///
unittest
{
import std.digest.crc;
void myFunction(T)() if(isDigest!T)
{
T dig;
dig.start();
auto result = dig.finish();
}
myFunction!CRC32();
}
/**
* Use this template to get the type which is returned by a digest's $(LREF finish) method.
*/
template DigestType(T)
{
static if(isDigest!T)
{
alias DigestType =
ReturnType!(typeof(
{
T dig = void;
return dig.finish();
}));
}
else
static assert(false, T.stringof ~ " is not a digest! (fails isDigest!T)");
}
///
unittest
{
import std.digest.crc;
assert(is(DigestType!(CRC32) == ubyte[4]));
}
///
unittest
{
import std.digest.crc;
CRC32 dig;
dig.start();
DigestType!CRC32 result = dig.finish();
}
/**
* Used to check if a digest supports the $(D peek) method.
* Peek has exactly the same function signatures as finish, but it doesn't reset
* the digest's internal state.
*
* Note:
* $(UL
* $(LI This is very useful as a template constraint (see examples))
* $(LI This also checks if T passes $(LREF isDigest))
* )
*/
template hasPeek(T)
{
enum bool hasPeek = isDigest!T &&
is(typeof(
{
T dig = void; //Can define
DigestType!T val = dig.peek();
}));
}
///
unittest
{
import std.digest.crc, std.digest.md;
assert(!hasPeek!(MD5));
assert(hasPeek!CRC32);
}
///
unittest
{
import std.digest.crc;
void myFunction(T)() if(hasPeek!T)
{
T dig;
dig.start();
auto result = dig.peek();
}
myFunction!CRC32();
}
private template isDigestibleRange(Range)
{
import std.digest.md;
import std.range : isInputRange, ElementType;
enum bool isDigestibleRange = isInputRange!Range && is(typeof(
{
MD5 ha; //Could use any conformant hash
ElementType!Range val;
ha.put(val);
}));
}
/**
* This is a convenience function to calculate a hash using the template API.
* Every digest passing the $(LREF isDigest) test can be used with this function.
*
* Params:
* range= an $(D InputRange) with $(D ElementType) $(D ubyte), $(D ubyte[]) or $(D ubyte[num])
*/
DigestType!Hash digest(Hash, Range)(auto ref Range range) if(!isArray!Range
&& isDigestibleRange!Range)
{
import std.algorithm : copy;
Hash hash;
hash.start();
copy(range, &hash);
return hash.finish();
}
///
unittest
{
import std.digest.md;
import std.range : repeat;
auto testRange = repeat!ubyte(cast(ubyte)'a', 100);
auto md5 = digest!MD5(testRange);
}
/**
* This overload of the digest function handles arrays.
*
* Params:
* data= one or more arrays of any type
*/
DigestType!Hash digest(Hash, T...)(scope const T data) if(allSatisfy!(isArray, typeof(data)))
{
Hash hash;
hash.start();
foreach(datum; data)
hash.put(cast(const(ubyte[]))datum);
return hash.finish();
}
///
unittest
{
import std.digest.md, std.digest.sha, std.digest.crc;
auto md5 = digest!MD5( "The quick brown fox jumps over the lazy dog");
auto sha1 = digest!SHA1( "The quick brown fox jumps over the lazy dog");
auto crc32 = digest!CRC32("The quick brown fox jumps over the lazy dog");
assert(toHexString(crc32) == "39A34F41");
}
///
unittest
{
import std.digest.crc;
auto crc32 = digest!CRC32("The quick ", "brown ", "fox jumps over the lazy dog");
assert(toHexString(crc32) == "39A34F41");
}
/**
* This is a convenience function similar to $(LREF digest), but it returns the string
* representation of the hash. Every digest passing the $(LREF isDigest) test can be used with this
* function.
*
* Params:
* order= the order in which the bytes are processed (see $(LREF toHexString))
* range= an $(D InputRange) with $(D ElementType) $(D ubyte), $(D ubyte[]) or $(D ubyte[num])
*/
char[digestLength!(Hash)*2] hexDigest(Hash, Order order = Order.increasing, Range)(ref Range range)
if(!isArray!Range && isDigestibleRange!Range)
{
return toHexString!order(digest!Hash(range));
}
///
unittest
{
import std.digest.md;
import std.range : repeat;
auto testRange = repeat!ubyte(cast(ubyte)'a', 100);
assert(hexDigest!MD5(testRange) == "36A92CC94A9E0FA21F625F8BFB007ADF");
}
/**
* This overload of the hexDigest function handles arrays.
*
* Params:
* order= the order in which the bytes are processed (see $(LREF toHexString))
* data= one or more arrays of any type
*/
char[digestLength!(Hash)*2] hexDigest(Hash, Order order = Order.increasing, T...)(scope const T data)
if(allSatisfy!(isArray, typeof(data)))
{
return toHexString!order(digest!Hash(data));
}
///
unittest
{
import std.digest.crc;
assert(hexDigest!(CRC32, Order.decreasing)("The quick brown fox jumps over the lazy dog") == "414FA339");
}
///
unittest
{
import std.digest.crc;
assert(hexDigest!(CRC32, Order.decreasing)("The quick ", "brown ", "fox jumps over the lazy dog") == "414FA339");
}
/**
* This is a convenience function which returns an initialized digest, so it's not necessary to call
* start manually.
*/
Hash makeDigest(Hash)()
{
Hash hash;
hash.start();
return hash;
}
///
unittest
{
import std.digest.md;
auto md5 = makeDigest!MD5();
md5.put(0);
assert(toHexString(md5.finish()) == "93B885ADFE0DA089CDF634904FD59F71");
}
/*+*************************** End of template part, welcome to OOP land **************************/
/**
* This describes the OOP API. To understand when to use the template API and when to use the OOP API,
* see the module documentation at the top of this page.
*
* The Digest interface is the base interface which is implemented by all digests.
*
* Note:
* A Digest implementation is always an $(D OutputRange)
*/
interface Digest
{
public:
/**
* Use this to feed the digest with data.
* Also implements the $(XREF range, OutputRange) interface for $(D ubyte) and
* $(D const(ubyte)[]).
*
* Examples:
* ----
* void test(Digest dig)
* {
* dig.put(cast(ubyte)0); //single ubyte
* dig.put(cast(ubyte)0, cast(ubyte)0); //variadic
* ubyte[10] buf;
* dig.put(buf); //buffer
* }
* ----
*/
@trusted nothrow void put(scope const(ubyte)[] data...);
/**
* Resets the internal state of the digest.
* Note:
* $(LREF finish) calls this internally, so it's not necessary to call
* $(D reset) manually after a call to $(LREF finish).
*/
@trusted nothrow void reset();
/**
* This is the length in bytes of the hash value which is returned by $(LREF finish).
* It's also the required size of a buffer passed to $(LREF finish).
*/
@trusted nothrow @property size_t length() const;
/**
* The finish function returns the hash value. It takes an optional buffer to copy the data
* into. If a buffer is passed, it must be at least $(LREF length) bytes big.
*/
@trusted nothrow ubyte[] finish();
///ditto
nothrow ubyte[] finish(scope ubyte[] buf);
//@@@BUG@@@ http://d.puremagic.com/issues/show_bug.cgi?id=6549
/*in
{
assert(buf.length >= this.length);
}*/
/**
* This is a convenience function to calculate the hash of a value using the OOP API.
*/
final @trusted nothrow ubyte[] digest(scope const(void[])[] data...)
{
this.reset();
foreach(datum; data)
this.put(cast(ubyte[])datum);
return this.finish();
}
}
///
unittest
{
//Using the OutputRange feature
import std.algorithm : copy;
import std.range : repeat;
import std.digest.md;
auto oneMillionRange = repeat!ubyte(cast(ubyte)'a', 1000000);
auto ctx = new MD5Digest();
copy(oneMillionRange, ctx);
assert(ctx.finish().toHexString() == "7707D6AE4E027C70EEA2A935C2296F21");
}
///
unittest
{
import std.digest.md, std.digest.sha, std.digest.crc;
ubyte[] md5 = (new MD5Digest()).digest("The quick brown fox jumps over the lazy dog");
ubyte[] sha1 = (new SHA1Digest()).digest("The quick brown fox jumps over the lazy dog");
ubyte[] crc32 = (new CRC32Digest()).digest("The quick brown fox jumps over the lazy dog");
assert(crcHexString(crc32) == "414FA339");
}
///
unittest
{
import std.digest.crc;
ubyte[] crc32 = (new CRC32Digest()).digest("The quick ", "brown ", "fox jumps over the lazy dog");
assert(crcHexString(crc32) == "414FA339");
}
unittest
{
import std.range : isOutputRange;
assert(!isDigest!(Digest));
assert(isOutputRange!(Digest, ubyte));
}
///
unittest
{
void test(Digest dig)
{
dig.put(cast(ubyte)0); //single ubyte
dig.put(cast(ubyte)0, cast(ubyte)0); //variadic
ubyte[10] buf;
dig.put(buf); //buffer
}
}
/*+*************************** End of OOP part, helper functions follow ***************************/
/**
* See $(LREF toHexString)
*/
enum Order : bool
{
increasing, ///
decreasing ///
}
/**
* Used to convert a hash value (a static or dynamic array of ubytes) to a string.
* Can be used with the OOP and with the template API.
*
* The additional order parameter can be used to specify the order of the input data.
* By default the data is processed in increasing order, starting at index 0. To process it in the
* opposite order, pass Order.decreasing as a parameter.
*
* The additional letterCase parameter can be used to specify the case of the output data.
* By default the output is in upper case. To change it to the lower case
* pass LetterCase.lower as a parameter.
*/
char[num*2] toHexString(Order order = Order.increasing, size_t num, LetterCase letterCase = LetterCase.upper)
(in ubyte[num] digest)
{
static if (letterCase == LetterCase.upper)
{
import std.ascii : hexDigits = hexDigits;
}
else
{
import std.ascii : hexDigits = lowerHexDigits;
}
char[num*2] result;
size_t i;
static if(order == Order.increasing)
{
foreach(u; digest)
{
result[i++] = hexDigits[u >> 4];
result[i++] = hexDigits[u & 15];
}
}
else
{
size_t j = num - 1;
while(i < num*2)
{
result[i++] = hexDigits[digest[j] >> 4];
result[i++] = hexDigits[digest[j] & 15];
j--;
}
}
return result;
}
///ditto
auto toHexString(LetterCase letterCase, Order order = Order.increasing, size_t num)(in ubyte[num] digest)
{
return toHexString!(order, num, letterCase)(digest);
}
///ditto
string toHexString(Order order = Order.increasing, LetterCase letterCase = LetterCase.upper)
(in ubyte[] digest)
{
static if (letterCase == LetterCase.upper)
{
import std.ascii : hexDigits = hexDigits;
}
else
{
import std.ascii : hexDigits = lowerHexDigits;
}
auto result = new char[digest.length*2];
size_t i;
static if(order == Order.increasing)
{
foreach(u; digest)
{
result[i++] = hexDigits[u >> 4];
result[i++] = hexDigits[u & 15];
}
}
else
{
import std.range : retro;
foreach(u; retro(digest))
{
result[i++] = hexDigits[u >> 4];
result[i++] = hexDigits[u & 15];
}
}
import std.exception : assumeUnique;
return assumeUnique(result);
}
///ditto
auto toHexString(LetterCase letterCase, Order order = Order.increasing)(in ubyte[] digest)
{
return toHexString!(order, letterCase)(digest);
}
//For more example unittests, see Digest.digest, digest
///
unittest
{
import std.digest.crc;
//Test with template API:
auto crc32 = digest!CRC32("The quick ", "brown ", "fox jumps over the lazy dog");
//Lower case variant:
assert(toHexString!(LetterCase.lower)(crc32) == "39a34f41");
//Usually CRCs are printed in this order, though:
assert(toHexString!(Order.decreasing)(crc32) == "414FA339");
assert(toHexString!(LetterCase.lower, Order.decreasing)(crc32) == "414fa339");
}
///
unittest
{
import std.digest.crc;
// With OOP API
auto crc32 = (new CRC32Digest()).digest("The quick ", "brown ", "fox jumps over the lazy dog");
//Usually CRCs are printed in this order, though:
assert(toHexString!(Order.decreasing)(crc32) == "414FA339");
}
unittest
{
ubyte[16] data;
assert(toHexString(data) == "00000000000000000000000000000000");
assert(toHexString(cast(ubyte[4])[42, 43, 44, 45]) == "2A2B2C2D");
assert(toHexString(cast(ubyte[])[42, 43, 44, 45]) == "2A2B2C2D");
assert(toHexString!(Order.decreasing)(cast(ubyte[4])[42, 43, 44, 45]) == "2D2C2B2A");
assert(toHexString!(Order.decreasing, LetterCase.lower)(cast(ubyte[4])[42, 43, 44, 45]) == "2d2c2b2a");
assert(toHexString!(Order.decreasing)(cast(ubyte[])[42, 43, 44, 45]) == "2D2C2B2A");
}
/*+*********************** End of public helper part, private helpers follow ***********************/
/*
* Used to convert from a ubyte[] slice to a ref ubyte[N].
* This helper is used internally in the WrapperDigest template to wrap the template API's
* finish function.
*/
ref T[N] asArray(size_t N, T)(ref T[] source, string errorMsg = "")
{
assert(source.length >= N, errorMsg);
return *cast(T[N]*)source.ptr;
}
/**
* This helper is used internally in the WrapperDigest template, but it might be
* useful for other purposes as well. It returns the length (in bytes) of the hash value
* produced by T.
*/
template digestLength(T) if(isDigest!T)
{
enum size_t digestLength = (ReturnType!(T.finish)).length;
}
/**
* Wraps a template API hash struct into a Digest interface.
* Modules providing digest implementations will usually provide
* an alias for this template (e.g. MD5Digest, SHA1Digest, ...).
*/
class WrapperDigest(T) if(isDigest!T) : Digest
{
protected:
T _digest;
public final:
/**
* Initializes the digest.
*/
this()
{
_digest.start();
}
/**
* Use this to feed the digest with data.
* Also implements the $(XREF range, OutputRange) interface for $(D ubyte) and
* $(D const(ubyte)[]).
*/
@trusted nothrow void put(scope const(ubyte)[] data...)
{
_digest.put(data);
}
/**
* Resets the internal state of the digest.
* Note:
* $(LREF finish) calls this internally, so it's not necessary to call
* $(D reset) manually after a call to $(LREF finish).
*/
@trusted nothrow void reset()
{
_digest.start();
}
/**
* This is the length in bytes of the hash value which is returned by $(LREF finish).
* It's also the required size of a buffer passed to $(LREF finish).
*/
@trusted nothrow @property size_t length() const pure
{
return digestLength!T;
}
/**
* The finish function returns the hash value. It takes an optional buffer to copy the data
* into. If a buffer is passed, it must have a length at least $(LREF length) bytes.
*
* Examples:
* --------
*
* import std.digest.md;
* ubyte[16] buf;
* auto hash = new WrapperDigest!MD5();
* hash.put(cast(ubyte)0);
* auto result = hash.finish(buf[]);
* //The result is now in result (and in buf). If you pass a buffer which is bigger than
* //necessary, result will have the correct length, but buf will still have it's original
* //length
* --------
*/
nothrow ubyte[] finish(scope ubyte[] buf)
in
{
assert(buf.length >= this.length);
}
body
{
enum string msg = "Buffer needs to be at least " ~ digestLength!(T).stringof ~ " bytes " ~
"big, check " ~ typeof(this).stringof ~ ".length!";
asArray!(digestLength!T)(buf, msg) = _digest.finish();
return buf[0 .. digestLength!T];
}
///ditto
@trusted nothrow ubyte[] finish()
{
enum len = digestLength!T;
auto buf = new ubyte[len];
asArray!(digestLength!T)(buf) = _digest.finish();
return buf;
}
version(StdDdoc)
{
/**
* Works like $(D finish) but does not reset the internal state, so it's possible
* to continue putting data into this WrapperDigest after a call to peek.
*
* These functions are only available if $(D hasPeek!T) is true.
*/
@trusted ubyte[] peek(scope ubyte[] buf) const;
///ditto
@trusted ubyte[] peek() const;
}
else static if(hasPeek!T)
{
@trusted ubyte[] peek(scope ubyte[] buf) const
in
{
assert(buf.length >= this.length);
}
body
{
enum string msg = "Buffer needs to be at least " ~ digestLength!(T).stringof ~ " bytes " ~
"big, check " ~ typeof(this).stringof ~ ".length!";
asArray!(digestLength!T)(buf, msg) = _digest.peek();
return buf[0 .. digestLength!T];
}
@trusted ubyte[] peek() const
{
enum len = digestLength!T;
auto buf = new ubyte[len];
asArray!(digestLength!T)(buf) = _digest.peek();
return buf;
}
}
}
///
unittest
{
import std.digest.md;
//Simple example
auto hash = new WrapperDigest!MD5();
hash.put(cast(ubyte)0);
auto result = hash.finish();
}
///
unittest
{
//using a supplied buffer
import std.digest.md;
ubyte[16] buf;
auto hash = new WrapperDigest!MD5();
hash.put(cast(ubyte)0);
auto result = hash.finish(buf[]);
//The result is now in result (and in buf). If you pass a buffer which is bigger than
//necessary, result will have the correct length, but buf will still have it's original
//length
}
Jump to Line
Something went wrong with that request. Please try again.