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1 Introduction

This article gives details on Stark effect and Stark-Zeeman effect for the Balmer-
Alpha transitions. A derivation of the perturbed energies, transition rates, and
Stokes parameters is given. These are useful in plasma applications for diagnos-
tics based on the Motional Stark Effect. The last section gives an overview of
the changes implemented in the FIDASIM code for the Stark-Zeeman splitting
and Stokes parameters.

2 Hamiltonian

The Hamiltonian for the hydrogen atom in an E-field and B-field is given by,

H = H0 +HE +HB (1)

Where, H0 is the Hydrogen atom’s unperturbed Hamiltonian (possibly including
fine structure although I have ignored it so far). Also,

HE = e|E|x =
εx

3a0
(2)

HB =
e|B|
2me

(Lz + 2Sz) =
γ

h̄
(Lz + 2Sz) (3)

are the perturbations due to the external fields, assuming that the ~E and ~B
fields are perpendicular.

3 Pure Stark effect for n=2

First we want to get matrix elements of the perturbed part of the Hamiltonian.
Using the n,l,m,ms basis these matrix elements are given by,

〈n, l,m| εx
3a0
|n′, l′,m′〉 (4)
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The unperturbed hydrogen wave-functions can be looked up in most quantum
mechanics books and are given by,

ψn,l,m =
[
(

2

na0
)3 (n− l − 1)!

2n(n+ l)!

]1/2
exp

(
− r

na0

)
(

2r

na0
)lL2l+1

n+l (
2r

na0
)Ylm(θ, φ) (5)

Here, L2l+1
n+l (x) are the Laguerre polynomials and Ylm(θ, φ) are the spherical

harmonics. Note that l ∈ {0, 1, ...n− 1} and m ∈ {−l,−l+ 1, ..., l− 1, l}. Using
this, the matrix elements can be written in integral form as,

〈n, l,m| εx
3a0
|n′, l′,m′〉 =

∫
ψ∗n,l,m(

ε

3a0
r cos θ sinφ)ψn′,l′,m′d

3~r (6)

Using mathematica to do the calculations, the matrix form of the perturbed
Hamiltonian for the n=2 states is determined to be,

0 − ε√
2

0 ε√
2

− ε√
2

0 0 0

0 0 0 0
ε√
2

0 0 0

 (7)

Here, the first column is for |2, 0, 0〉, the second for |2, 1,−1〉, the third for
|2, 1, 0〉, and fourth for |2, 1, 1〉. Similarly for the rows. The perturbed energies
are then simply the Eigenvalues of this matrix. The eigenvalues are given by,

{−ε, ε, 0, 0} (8)

The Eigen-vectors of the matrix are the states corresponding to each energy
level.

4 Pure Stark effect for n=3

Following the same process as for n=2, I get the perturbed matrix elements of
the Hamiltonian for n=3,

0 −
√

3ε 0
√

3ε 0 0 0 0 0

−
√

3ε 0 0 0 − 3ε
2 0 1

2

√
3
2ε 0 0

0 0 0 0 0 − 3ε
2
√

2
0 3ε

2
√

2
0

√
3ε 0 0 0 0 0 − 1

2

√
3
2ε 0 3ε

2

0 − 3ε
2 0 0 0 0 0 0 0

0 0 − 3ε
2
√

2
0 0 0 0 0 0

0 1
2

√
3
2ε 0 − 1

2

√
3
2ε 0 0 0 0 0

0 0 3ε
2
√

2
0 0 0 0 0 0

0 0 0 3ε
2 0 0 0 0 0


(9)

And the eigenvalues(perturbed energies) are,{
−3ε, 3ε,−3ε

2
,−3ε

2
,

3ε

2
,

3ε

2
, 0, 0, 0

}
(10)
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5 Stark-Zeeman Effect

Now we add the third Hamiltonian term, HB = e|B|
2me

(Lz + 2Sz) = γ
h̄ (Lz + 2Sz).

The matrix elements in the |n, l,m,ms〉 basis are very easy to calculate.

〈n, l,m,ms|
γ

h̄
(Lz + 2Sz)|n, l′,m′,m′s〉 = γ(mδm,m′ + 2msδms,m′s

) (11)

Since the spin doesn’t change in the transitions we are concerned with, the
contribution of the spin to the perturbation in the energy will be the same for
both n=2 and n=3. Because of this the spectrum will not shift due to the spin
portion of the Zeeman effect. So to simplify future calculations this part will be
dropped and the effective matrix elements will be,

〈n, l,m|γ
h̄

(Lz)|n, l′,m′〉 = γmδm,m′ (12)

So for n=2 the full matrix is,
0 − ε√

2
0 ε√

2

− ε√
2
−γ 0 0

0 0 0 0
ε√
2

0 0 γ

 (13)

with eigenvalues, {
0, 0,−

√
γ2 + ε2,

√
γ2 + ε2

}
(14)

For n=3 the matrix is,

0 −
√

3ε 0
√

3ε 0 0 0 0 0

−
√

3ε −γ 0 0 − 3ε
2 0 1

2

√
3
2ε 0 0

0 0 0 0 0 − 3ε
2
√

2
0 3ε

2
√

2
0

√
3ε 0 0 γ 0 0 − 1

2

√
3
2ε 0 3ε

2

0 − 3ε
2 0 0 −2γ 0 0 0 0

0 0 − 3ε
2
√

2
0 0 −γ 0 0 0

0 1
2

√
3
2ε 0 − 1

2

√
3
2ε 0 0 0 0 0

0 0 3ε
2
√

2
0 0 0 0 γ 0

0 0 0 3ε
2 0 0 0 0 2γ


(15)

With eigenvalues,{
0, 0, 0,−

√
4γ2 + 9ε2,−1

2

√
4γ2 + 9ε2,−1

2

√
4γ2 + 9ε2,

1

2

√
4γ2 + 9ε2,

1

2

√
4γ2 + 9ε2,

√
4γ2 + 9ε2

}
(16)

Alex Thorman’s paper [2] has a nice diagram using the variables q0 =
√
γ2 + ε2

and q1 =
√

4γ2 + 9ε2 that summarizes the results derived so far. It is shown in
Figure 1.
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Figure 1: Energy and degeneracy of the n = 2 and n = 3 levels of the pure Stark
states and Stark-Zeeman states. In the Stark-Zeeman case, the degeneracy only
exists when the electric and magnetic fields are orthogonal. From [2].

6 Wavelength shifts

The wavelength of a transition from energy Ei to Ej can be determined using
the formula,

Ei − Ej =
hc

λ
(17)

In the Stark-Zeeman case of n=3 to n=2, this becomes,

(
E1

32
+ k1q1/2)− (

E1

22
+ k0q0) =

hc

λ
(18)

Where E1 is the binding energy of Hydrogen. Rearranging this equation and
using λ0 for the unperturbed wavelength gives the following formula for the
wavelength,

λ =
2chλ0

2ch− 2k0λ0q0 + k1λ0q1
(19)

In the Motional Stark Effect the electric field is given by ~E = ~v× ~B. In this
case, the above formula can give the wavelength as only a function of | ~B| and
vp where vp is the velocity perpendicular to the B field. After Solving for λ and
Taylor expanding, the wavelength is given by,

λ0 +

Beλ2
0

(
k2

√
36a2

0vp2m2
e + h̄2 − k1

√
81a2

0vp2m2
e + h̄2

)
2chme

+O
(
B2
)

(20)
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7 Transitions

The transition rate between two states in the dipole approximation is given by,

Aij = | 〈ψi|~r|ψj〉 |2
ω3
ije

2

3πε0h̄c3
(21)

Where ωij is equal to
Ei−Ej

h̄ . This formula shows that calculating the relative
intensities of the transitions is essentially equivalent to calculating the 〈ψi|~r|ψj〉
matrix elements. Calculating these in the |n, l,m〉 basis is easy in Mathematica
using the wave-functions in equation 5. However these aren’t the right states
for the stark zeeman effect. The good linear combinations are given by the
normalized eigenvectors of matrices in equation 7 and 9. This change of basis
can be done like so,

〈ψi|~r|ψj〉 =
∑

n,l,m,n′,l′,m′

〈ψi|ψn,l,m〉 〈ψn,l,m|~r|ψn′,l′,m′〉 〈ψn′,l′,m′ |ψj〉 (22)

Note that this summation can be simplified since the n and m quantum numbers
are common to both the |n, l,m〉 states and the stark states. The result for
transitions from n=3 to n=2 is in the table below,

Figure 2: Table from Alex Thorman’s paper[2]. Normalization |rij |2 =
21436a2

0(Intensity)/514 was used.

8 Polarization & Stokes Parameters

The polarization of the emitted light is dependent on the change in the m
quantum number in the transition. If ∆m = 0, the light will be linearly polarized
along the direction of ~E (π lines). For ∆m = ±1, the light will be circularly

polarized perpendicular to ~E (σ lines).
The observed intensities will be the product of the transition probability

and a factor depending on the angle between ~E and the observation direction
in addition to the polarization, θ. The observed intensities are given by,

Iobsπ = Iπ sin2 θ (23)

Iobsσ = Iσ
1 + cos2 θ

2
(24)
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These factors match the angular distribution of dipole radiation in classical
electrodynamics and can be understood classically. See Jackson page 437.

Stokes parameters are a way of parametrizing the polarization state of light.
The following derivation of the stokes parameters for the Stark Effect mostly
follows the derivation by Edward Collett [1]. Completely polarized light can be
written in the form ψ = c1φ1+c2φ2 where φ1 and φ2 are orthogonal polarization
states. The stokes parameters are then defined using the complex amplitudes
c1 and c2 to be,

s0 = c1c
∗
1 + c2c

∗
2 (25)

s1 = c1c
∗
1 − c2c∗2 (26)

s2 = c1c
∗
2 + c2c

∗
1 (27)

s3 = i(c1c
∗
2 − c2c∗1) (28)

The electric field of an accelerating non-relativistic electric charge is given by,

~E = (−e/c2R)[~n× (~n× ~̇v)] (29)

where ~n = ~R/R is the unit vector to observation point and ~̇v is the acceleration.
In spherical coordinates, this can be rewritten as,

~E = (−e/c2R)[(ẍ cos θ − z̈ sin θ)~eθ − ÿ ~eφ] (30)

Here I have assumed that I can set φ = 0 using symmetry about the axis of the
external ~E field. The complex amplitude coefficients are then,

cθ = (−e/c2R)(ẍ cos θ − z̈ sin θ) (31)

cφ = (−e/c2R)ÿ (32)

Using the model of an oscillating dipole and putting these in a quantum me-
chanical form, the time derivatives can be replaced by −ω2

ij . So we have,

cθ = (eω2
ij/c

2R)(x cos θ − z sin θ) (33)

cφ = (eω2
ij/c

2R)y (34)

These complex amplitudes can then be calculated using the 〈ψi|~r|ψj〉 matrix
elements. Ignoring constant factors, the π transitions have ~r = (0, 0, 1) and the
σ± transitions have ~r = (±1,−i, 0). Plugging these in to 33 and 34 allows us to
write the form of the stokes parameters, ignoring constant terms, as,

~Sπ =


sin2 θ
− sin2 θ

0
0

 (35)

~Sσ± =
1

2


1 + cos2 θ

sin2 θ
0

±2 cos θ

 (36)

6



Looking at equation 36, since the σ+ and σ− lines have the same transition
probabilities, the sum will give s4 = 0 for the σ transitions assuming that the
upper state populations are statistically occupied. For a discussion of the effect
of unequal upper states see Alex Thorman’s paper [2]. One thing to note about
this derivation is that the assumption that φ can be set to zero may not be true
in the Stark-Zeeman case if the ~B field is too large since the ~B field will break
the azimuthal symmetry. These stokes vectors should only be valid in the limit
γ/ε −→ 0.

9 First order corrections to Stokes parameters
for Stark-Zeeman effect.

The Zeeman effect breaks the symmetry that was assumed in Sec. 4 leading
to changes in the stokes parameters even when upper state populations are
statistically occupied[3]. To derive a correction to the stokes parameters, we
can use the eigenvectors of the Stark-Zeeman Hamiltonian in equations 13 and
15 to calculate the dipole moments.

To demonstrate how to derive this correction, the correction to the Lyman-
Alpha stokes parameters is presented. The Stark-Zeeman corrections to the
hamiltonian with an electric field in the z-direction and a B-field in the x-
direction is, 

0 −ε 0 0
−ε 0 γ√

2

γ√
2

0 γ√
2

0 0

0 γ√
2

0 0

 (37)

This matrix has eigenvectors,

|2, 0,−1〉 =
x√

x2 + 2
|2, 0, 0〉+

√
2√

x2 + 2
|2, 1,−1〉

|2, 0, 1〉 =
x√

x2 + 2
|2, 0, 0〉+

√
2√

x2 + 2
|2, 1, 1〉

|2,−1, 0〉 = − 1√
2
√

1 + x2
|2, 0, 0〉 − 1√

2
|2, 1, 0〉+

1

2
√

1
x2 + 1

|2, 1, 1〉+
1

2
√

1
x2 + 1

|2, 1,−1〉

|2, 1, 0〉 = − 1√
2 + 2x2

|2, 0, 0〉+
1√
2
|2, 1, 0〉+

1

2
√

1
x2 + 1

|2, 1, 1〉+
1

2
√

1
x2 + 1

|2, 1,−1〉

where the left side of the above equations have the |n, k,m〉 states and the right
side has the |n, l,m〉 states. To simplify the expressions, I defined x = γ/ε.
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These states correspond to the eigenvalues,{
0, 0,−

√
γ2 + ε2,

√
γ2 + ε2

}
(38)

Using these states, the dipole moments for the transitions can be calculated
from equation 22. The dipole moments are,

~rσ+ = 〈2, 0,−1|~r|1, 0, 0〉 = (
128a0

243
√

x2

2 + 1
,

128ia0

243
√

x2

2 + 1
, 0) (39)

~rσ− = 〈2, 0, 1|~r|1, 0, 0〉 = (− 128a0

243
√

x2

2 + 1
,

128ia0

243
√

x2

2 + 1
, 0) (40)

~rπ− = 〈2,−1, 0|~r|1, 0, 0〉 = (0,
128ia0

243
√

1
x2 + 1

,−128a0

243
) (41)

~rπ+ = 〈2, 1, 0|~r|1, 0, 0〉 = (0,
128ia0

243
√

1
x2 + 1

,
128a0

243
) (42)

By considering the limit that x −→ 0 it is clear that the first two transitions are
the σ transitions and the next two are π transitions. By going back to equation
29, and expanding in a taylor series to first order in x, the normalized stokes
parameters can be calculated to be,

~Sσ± =
1

2


1 + cos2 θ

sin2 θ
0

±2 cos θ

 (43)

~Sπ± =


sin2 θ
− sin2 θ

0

± 2γ
ε cosφ sin θ

 (44)

Here I used π+ for the transition from |2, 1, 0〉 and π− for the transition from
|2,−1, 0〉. I can recognize that since the magnetic field is in the x-direction that
cosφ sin θ = î · B̂ where î is the observation direction.

The Balmer-Alpha lines also have a similar correction to the s3 parameter
that can be derived in a similar way to the Lyman-Alpha corrections. The form
of the correction is,

s3 = 2(rate)(factor)(̂i · B̂) (45)

For the Balmer-Alpha lines, the factors and rates are summarized in table 1.
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Transition Energy Shift Rate Factor

σ0 0 5490 0

σ±1 ±( q12 − q0) 1936 ∓ γ
3ε

π±2 ±q0 729 ∓ 17γ
81ε

π±3 ± q12 2304 ∓ γ
2ε

π±4 ±(q1 − q0) 1681 ∓ 97γ
123ε

σ±5 ±( q12 + q0) 16 ± 5γ
3ε

σ±6 ±q1 18 ± 4γ
3ε

σ±7 ±(q1 + q0) 1 ± γ
3ε

Table 1: Table for next order correction to Balmer-alpha stokes parameters.
Values taken from Alex Thorman’s Thesis [3]

.

10 FIDASIM Implementation

In FIDASIM, the Stark and Zeeman corrections to the wavelengths have been
implemented using the formula below.

λ =
2chλ0

2ch− 2k0λ0q0 + k1λ0q1

q0 =
√
γ2 + ε2

q1 =
√

4γ2 + 9ε2

γ =
eh̄

2me

∣∣∣ ~B∣∣∣
ε = 3ea0

∣∣∣ ~E∣∣∣
Here, k0 go from -1 to 1 and k1 go from -2 to 2 to specify the different transitions.
An assumption was made here that the ~E and ~B fields are perpendicular. This
assumption is satisfied in the Motional Stark Effect exactly but an external ~E
might violate this assumption. However, typically the ~v × ~B portion of the ~E
field is much larger and this assumption is a reasonable approximation.

The transition rates, which determine the relative intensities of the spectral
lines, are unchanged from the pure stark effects using the assumption that the
stark effect is dominant. The stokes parameters are dependent on the observa-
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tion direction and are given, to first order in γ/ε by,

~Sσ =


1 + cos2 θ

sin2 θ
0

2(factor)(̂i · B̂)



~Sπ =


sin2 θ
− sin2 θ

0

2(factor)(̂i · B̂)


Where î is the observation direction, θ is the angle between the ~E field and ~i
and B̂ is the unit vector for the magnetic field direction. The (factor) term for

the first order correction can be taken from table 1. These ~S are multiplied
by the intensity in FIDASIM so that the first stoke parameter is equal to the
observed intensity.

As an example, below are plots created in FIDASIM of the beam emission
from a 81.1 keV beam (30LT) for DIII-D discharge #179571 at 920 ms, a 2.0 T
shot. The input geometry is shown in figure 3. The output stokes parameters

Figure 3: The black line labeled ’NBI’ is the 81.1 keV beam. The red/orange
lines are the observation line of sight.

calculated by FIDASIM are shown in figure 4 with stark lines split and with
stark lines summed in figure 5.
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Figure 4: 81.1 keV full component beam emission stokes parameters split into
stark lines.

Figure 5: 81.1 keV full component beam emission stokes parameters.

11



11 Acknowledgements

We thank Ralph Dux for an IDL version of the Stark-Zeeman splitting that
was used to check the line shifts and probabilities. Brian Victor, Alvin Garcia,
Luke Stagner, and Bill Heidbrink also contributed helpful advice. This work
was supported by U.S. DOE grants that include DE-FG02-06ER54867.

References

[1] Edward Collett. “Stokes Parameters for Quantum Systems”. In: American
Journal of Physics 38.5 (May 1970), pp. 563–574. issn: 0002-9505. doi:
10.1119/1.1976407. url: http://aapt.scitation.org/doi/10.1119/
1.1976407.

[2] Alex Thorman. “Polarisation of the Balmer-α emission in crossed electric
and magnetic fields”. In: Journal of Quantitative Spectroscopy and Radia-
tive Transfer 207 (Mar. 2018), pp. 8–15. issn: 00224073. doi: 10.1016/j.
jqsrt.2017.12.015. url: https://doi.org/10.1016/j.jqsrt.2017.
12.015.

[3] Alexander Thorman. “Polarisation Coherence Imaging of Electric and Mag-
netic Fields in Plasmas”. PhD thesis. Plasma Research Laboratory, Re-
search School of Physics and Engineering, College of Science, The Aus-
tralian National University, 2018. doi: https://doi.org/10.25911/

5d611f73c9d32.

12


