Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 

README.md

BagOfKeyPoses

Machine learning method based on a bag of key poses model and sequence alignment.

Description

This method handles multiclass classification of data with sequential or temporal relation. Any type of feature expressed as an array of double values can be used. This data has to be acquired in an ordered fashion, so that a sequence of features with a meaningful order can be obtained.

This method has successfully been employed for real-time recognition of human actions. In this case, spatial information is provided in the form of frame-based features that describe the human pose, whereas sequences of these features encode the temporal evolution. Therefore, this learning method applies spatio-temporal classification by means of learning the bag of key poses model and applying temporal alignment between the test sequence and the previously learned templates.

Details

The method is explained in depth in Chaaraoui, A. A., Climent-Pérez, P., & Flórez-Revuelta, F. (2013). Silhouette-based human action recognition using sequences of key poses. Pattern Recognition Letters, 34(15), 1799-1807. http://dx.doi.org/10.1016/j.patrec.2013.01.021

Latest results achieved on RGB and RBGD-based human action recognition are published in Chaaraoui, A. A., Padilla-López, J. R., Ferrández-Pastor, F. J., Nieto-Hidalgo, M., & Flórez-Revuelta, F. (2014). A Vision-Based System for Intelligent Monitoring: Human Behaviour Analysis and Privacy by Context. Sensors, 14(5), 8895-8925. http://dx.doi.org/10.3390/s140508895

License

Distributed under the free software license Apache 2.0 License http://www.apache.org/licenses/LICENSE-2.0.html requiring preservation of the copyright notice and disclaimer.

If used in research work a citation to the following bibtex is required:

  @article{Chaaraoui2013,
    title = "Silhouette-based human action recognition using sequences of key poses ",
    journal = "Pattern Recognition Letters ",
    volume = "34",
    number = "15",
    pages = "1799 - 1807",
    year = "2013",
    note = "Smart Approaches for Human Action Recognition ",
    issn = "0167-8655",
    doi = "http://dx.doi.org/10.1016/j.patrec.2013.01.021",
    url = "http://www.sciencedirect.com/science/article/pii/S0167865513000342",
    author = "Alexandros Andre Chaaraoui and Pau Climent-Pérez and Francisco Flórez-Revuelta",
  }

Authors

Alexandros Andre Chaaraoui
Department of Computer Technology
University of Alicante
alexandros [AT] dtic [DOT] ua [DOT] es
www.alexandrosandre.com

Francisco Flórez-Revuelta
Faculty of Science, Engineering and Computing
Kingston University
F [DOT] Florez [AT] kingston [DOT] ac [DOT] uk
http://staffnet.kingston.ac.uk/~ku48824/

Pau Climent-Pérez
Faculty of Science, Engineering and Computing
Kingston University
P [DOT] Climent [AT] kingston [DOT] ac [DOT] uk

Results

The following results have been achieved on publicly available datasets using this machine learning method for human action recognition. Please send an email to the authors if you want to add your results to this list.

Dataset Article LOSO LOAO LOVO FPS
Weizmann Chaaraoui, A. A., Padilla-López, J. R., Ferrández-Pastor, F. J., Nieto-Hidalgo, M., & Flórez-Revuelta, F. (2014) 100% 100% - 197
MuHAVi-8 Chaaraoui, A. A., Padilla-López, J. R., Ferrández-Pastor, F. J., Nieto-Hidalgo, M., & Flórez-Revuelta, F. (2014) 100% 100% 82.4% 98
MuHAVi-14 Chaaraoui, A. A., Padilla-López, J. R., Ferrández-Pastor, F. J., Nieto-Hidalgo, M., & Flórez-Revuelta, F. (2014) 98.5% 94.1% 59.6% 99
MuHAVi-14 Chaaraoui, A. A., & Flórez-Revuelta, F. (2014b) 100% 100% - -
IXMAS Chaaraoui, A. A., Padilla-López, J. R., Ferrández-Pastor, F. J., Nieto-Hidalgo, M., & Flórez-Revuelta, F. (2014) - 91.4% - - 207
DHA Chaaraoui, A. A., Padilla-López, J. R., Ferrández-Pastor, F. J., Nieto-Hidalgo, M., & Flórez-Revuelta, F. (2014) 95.2% - - 99

LOSO = Leave-one-sequence-out cross validation
LOAO = Leave-one-actor-out cross validation
LOVO = Leave-one-view-out cross validation

Related publications

This method has also been used in the following publications. Please send an email to the authors if you want to add your publication to this list.

Chaaraoui, A. A., & Flórez Revuelta, F. (2014a). Adaptive Human Action Recognition With an Evolving Bag of Key Poses. Autonomous Mental Development, IEEE Transactions on , vol.6, no.2, pp.139-152. http://dx.doi.org/10.1109/TAMD.2014.2315676

Chaaraoui, A. A. (2014). Vision-based Recognition of Human Behaviour for Intelligent Environments. PhD. Thesis. University of Alicante, Spain. http://hdl.handle.net/10045/36395

Chaaraoui, A. A., & Flórez-Revuelta, F. (2014b). Optimizing human action recognition based on a cooperative coevolutionary algorithm. Engineering Applications of Artificial Intelligence, 31, 116-125. http://dx.doi.org/10.1016/j.engappai.2013.10.003

Chaaraoui, A. A., Padilla-López, J. R., Climent-Pérez, P., & Flórez-Revuelta, F. (2014). Evolutionary joint selection to improve human action recognition with RGB-D devices. Expert Systems with Applications, 41(3), 786-794. http://dx.doi.org/10.1016/j.eswa.2013.08.009

Chaaraoui, A. A., Padilla-López, J. R., & Flórez-Revuelta, F. (2013). Fusion of Skeletal and Silhouette-based Features for Human Action Recognition with RGB-D Devices. In Computer Vision Workshops (ICCVW), 2013 IEEE International Conference on (pp. 91-97). IEEE. http://dx.doi.org/10.1109/ICCVW.2013.19

Chaaraoui, A. A., & Flórez-Revuelta, F. (2013). Human action recognition optimization based on evolutionary feature subset selection. In Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference (pp. 1229-1236). ACM. http://dx.doi.org/10.1145/2463372.2463529

Chaaraoui, A. A., Padilla-López, J. R., Ferrández-Pastor, F. J., García-Chamizo, J. M., Nieto-Hidalgo, M., Romacho-Agud, V., & Flórez-Revuelta, F. (2013). A Vision System for Intelligent Monitoring of Activities of Daily Living at Home. In Ambient Assisted Living and Active Aging (pp. 96-99). Springer International Publishing. http://dx.doi.org/10.1007/978-3-319-03092-0_14

Chaaraoui, A. A., Climent-Pérez, P., & Flórez-Revuelta, F. (2012). An efficient approach for multi-view human action recognition based on bag-of-key-poses. In Human Behavior Understanding (pp. 29-40). Springer Berlin Heidelberg. http://dx.doi.org/10.1007/978-3-642-34014-7_3

Employed datasets

Weizmann
Gorelick, L., Blank, M., Shechtman, E., Irani, M., & Basri, R. (2007). Actions as space-time shapes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(12), 2247-2253.

MuHAVi-8 and MuHAVi-14
Singh, S., Velastin, S. A., & Ragheb, H. (2010, August). Muhavi: A multicamera human action video dataset for the evaluation of action recognition methods. In Advanced Video and Signal Based Surveillance (AVSS), 2010 Seventh IEEE International Conference on (pp. 48-55). IEEE.

IXMAS
Weinland, D., Ronfard, R., & Boyer, E. (2006). Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding, 104(2), 249-257.

DHA
Lin, Y. C., Hu, M. C., Cheng, W. H., Hsieh, Y. H., & Chen, H. M. (2012, October). Human action recognition and retrieval using sole depth information. In Proceedings of the 20th ACM international conference on Multimedia (pp. 1053-1056). ACM.

About

Machine learning method based on a bag of key poses model and temporal alignment

Resources

License

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.