Permalink
Cannot retrieve contributors at this time
Name already in use
A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
stable-baselines3/stable_baselines3/common/sb2_compat/rmsprop_tf_like.py
Go to fileThis commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
136 lines (111 sloc)
5.5 KB
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from typing import Any, Callable, Dict, Iterable, Optional | |
import torch | |
from torch.optim import Optimizer | |
class RMSpropTFLike(Optimizer): | |
r"""Implements RMSprop algorithm with closer match to Tensorflow version. | |
For reproducibility with original stable-baselines. Use this | |
version with e.g. A2C for stabler learning than with the PyTorch | |
RMSProp. Based on the PyTorch v1.5.0 implementation of RMSprop. | |
See a more throughout conversion in pytorch-image-models repository: | |
https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/rmsprop_tf.py | |
Changes to the original RMSprop: | |
- Move epsilon inside square root | |
- Initialize squared gradient to ones rather than zeros | |
Proposed by G. Hinton in his | |
`course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_. | |
The centered version first appears in `Generating Sequences | |
With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_. | |
The implementation here takes the square root of the gradient average before | |
adding epsilon (note that TensorFlow interchanges these two operations). The effective | |
learning rate is thus :math:`\alpha/(\sqrt{v} + \epsilon)` where :math:`\alpha` | |
is the scheduled learning rate and :math:`v` is the weighted moving average | |
of the squared gradient. | |
:params: iterable of parameters to optimize or dicts defining | |
parameter groups | |
:param lr: learning rate (default: 1e-2) | |
:param momentum: momentum factor (default: 0) | |
:param alpha: smoothing constant (default: 0.99) | |
:param eps: term added to the denominator to improve | |
numerical stability (default: 1e-8) | |
:param centered: if ``True``, compute the centered RMSProp, | |
the gradient is normalized by an estimation of its variance | |
:param weight_decay: weight decay (L2 penalty) (default: 0) | |
""" | |
def __init__( | |
self, | |
params: Iterable[torch.nn.Parameter], | |
lr: float = 1e-2, | |
alpha: float = 0.99, | |
eps: float = 1e-8, | |
weight_decay: float = 0, | |
momentum: float = 0, | |
centered: bool = False, | |
): | |
if not 0.0 <= lr: | |
raise ValueError(f"Invalid learning rate: {lr}") | |
if not 0.0 <= eps: | |
raise ValueError(f"Invalid epsilon value: {eps}") | |
if not 0.0 <= momentum: | |
raise ValueError(f"Invalid momentum value: {momentum}") | |
if not 0.0 <= weight_decay: | |
raise ValueError(f"Invalid weight_decay value: {weight_decay}") | |
if not 0.0 <= alpha: | |
raise ValueError(f"Invalid alpha value: {alpha}") | |
defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay) | |
super().__init__(params, defaults) | |
def __setstate__(self, state: Dict[str, Any]) -> None: | |
super().__setstate__(state) | |
for group in self.param_groups: | |
group.setdefault("momentum", 0) | |
group.setdefault("centered", False) | |
@torch.no_grad() | |
def step(self, closure: Optional[Callable[[], None]] = None) -> Optional[torch.Tensor]: | |
"""Performs a single optimization step. | |
:param closure: A closure that reevaluates the model | |
and returns the loss. | |
:return: loss | |
""" | |
loss = None | |
if closure is not None: | |
with torch.enable_grad(): | |
loss = closure() | |
for group in self.param_groups: | |
for p in group["params"]: | |
if p.grad is None: | |
continue | |
grad = p.grad | |
if grad.is_sparse: | |
raise RuntimeError("RMSpropTF does not support sparse gradients") | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state["step"] = 0 | |
# PyTorch initialized to zeros here | |
state["square_avg"] = torch.ones_like(p, memory_format=torch.preserve_format) | |
if group["momentum"] > 0: | |
state["momentum_buffer"] = torch.zeros_like(p, memory_format=torch.preserve_format) | |
if group["centered"]: | |
state["grad_avg"] = torch.zeros_like(p, memory_format=torch.preserve_format) | |
square_avg = state["square_avg"] | |
alpha = group["alpha"] | |
state["step"] += 1 | |
if group["weight_decay"] != 0: | |
grad = grad.add(p, alpha=group["weight_decay"]) | |
square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha) | |
if group["centered"]: | |
grad_avg = state["grad_avg"] | |
grad_avg.mul_(alpha).add_(grad, alpha=1 - alpha) | |
# PyTorch added epsilon after square root | |
# avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).sqrt_().add_(group['eps']) | |
avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).add_(group["eps"]).sqrt_() | |
else: | |
# PyTorch added epsilon after square root | |
# avg = square_avg.sqrt().add_(group['eps']) | |
avg = square_avg.add(group["eps"]).sqrt_() | |
if group["momentum"] > 0: | |
buf = state["momentum_buffer"] | |
buf.mul_(group["momentum"]).addcdiv_(grad, avg) | |
p.add_(buf, alpha=-group["lr"]) | |
else: | |
p.addcdiv_(grad, avg, value=-group["lr"]) | |
return loss |