Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
from typing import Any, Callable, Dict, Iterable, Optional
import torch
from torch.optim import Optimizer
class RMSpropTFLike(Optimizer):
r"""Implements RMSprop algorithm with closer match to Tensorflow version.
For reproducibility with original stable-baselines. Use this
version with e.g. A2C for stabler learning than with the PyTorch
RMSProp. Based on the PyTorch v1.5.0 implementation of RMSprop.
See a more throughout conversion in pytorch-image-models repository:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/optim/rmsprop_tf.py
Changes to the original RMSprop:
- Move epsilon inside square root
- Initialize squared gradient to ones rather than zeros
Proposed by G. Hinton in his
`course <http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf>`_.
The centered version first appears in `Generating Sequences
With Recurrent Neural Networks <https://arxiv.org/pdf/1308.0850v5.pdf>`_.
The implementation here takes the square root of the gradient average before
adding epsilon (note that TensorFlow interchanges these two operations). The effective
learning rate is thus :math:`\alpha/(\sqrt{v} + \epsilon)` where :math:`\alpha`
is the scheduled learning rate and :math:`v` is the weighted moving average
of the squared gradient.
:params: iterable of parameters to optimize or dicts defining
parameter groups
:param lr: learning rate (default: 1e-2)
:param momentum: momentum factor (default: 0)
:param alpha: smoothing constant (default: 0.99)
:param eps: term added to the denominator to improve
numerical stability (default: 1e-8)
:param centered: if ``True``, compute the centered RMSProp,
the gradient is normalized by an estimation of its variance
:param weight_decay: weight decay (L2 penalty) (default: 0)
"""
def __init__(
self,
params: Iterable[torch.nn.Parameter],
lr: float = 1e-2,
alpha: float = 0.99,
eps: float = 1e-8,
weight_decay: float = 0,
momentum: float = 0,
centered: bool = False,
):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= momentum:
raise ValueError(f"Invalid momentum value: {momentum}")
if not 0.0 <= weight_decay:
raise ValueError(f"Invalid weight_decay value: {weight_decay}")
if not 0.0 <= alpha:
raise ValueError(f"Invalid alpha value: {alpha}")
defaults = dict(lr=lr, momentum=momentum, alpha=alpha, eps=eps, centered=centered, weight_decay=weight_decay)
super().__init__(params, defaults)
def __setstate__(self, state: Dict[str, Any]) -> None:
super().__setstate__(state)
for group in self.param_groups:
group.setdefault("momentum", 0)
group.setdefault("centered", False)
@torch.no_grad()
def step(self, closure: Optional[Callable[[], None]] = None) -> Optional[torch.Tensor]:
"""Performs a single optimization step.
:param closure: A closure that reevaluates the model
and returns the loss.
:return: loss
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad
if grad.is_sparse:
raise RuntimeError("RMSpropTF does not support sparse gradients")
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
# PyTorch initialized to zeros here
state["square_avg"] = torch.ones_like(p, memory_format=torch.preserve_format)
if group["momentum"] > 0:
state["momentum_buffer"] = torch.zeros_like(p, memory_format=torch.preserve_format)
if group["centered"]:
state["grad_avg"] = torch.zeros_like(p, memory_format=torch.preserve_format)
square_avg = state["square_avg"]
alpha = group["alpha"]
state["step"] += 1
if group["weight_decay"] != 0:
grad = grad.add(p, alpha=group["weight_decay"])
square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha)
if group["centered"]:
grad_avg = state["grad_avg"]
grad_avg.mul_(alpha).add_(grad, alpha=1 - alpha)
# PyTorch added epsilon after square root
# avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).sqrt_().add_(group['eps'])
avg = square_avg.addcmul(grad_avg, grad_avg, value=-1).add_(group["eps"]).sqrt_()
else:
# PyTorch added epsilon after square root
# avg = square_avg.sqrt().add_(group['eps'])
avg = square_avg.add(group["eps"]).sqrt_()
if group["momentum"] > 0:
buf = state["momentum_buffer"]
buf.mul_(group["momentum"]).addcdiv_(grad, avg)
p.add_(buf, alpha=-group["lr"])
else:
p.addcdiv_(grad, avg, value=-group["lr"])
return loss