ASTROGEOLOGY SCIENCE CENTER ### Jigsaw Kenneth Edmundson U.S. Geological Survey Astrogeology / Geomatics Team The ISIS Bundle Adjustment for Extraterrestrial Photogrammetry ### Least Squares Bundle Adjustment #### Input - Image Measurements. - Initial values for image pointing/ position and ground point coordinates. - 'a priori' precisions for above parameters if available. #### Output - Refined image pointing/position and ground point coordinates. - Their uncertainties. - Solution statistics. #### The Mathematical Model ## The Collinearity Condition #### The Bundle Adjustment ### Jigsaw Interface | K ⊙ | jigsaw <@prog6> | ⊗ ⊗ 🤄 | |----------------------------|--|------------------| | <u>File Options View I</u> | <u>⊣</u> elp | | | G 🔞 🔉 🐧 🕔 |) c 🔀 📆 🥀 | | | | Files — | | | FROMLIST | | | | | | | | HELDLIST none | | | | CNET | | | | ONET | | | | | | | | OBSERVATIONS | Voor instances of the same observation in different sub-ofile | s the same | | RADIUS | Keep instances of the same observation in different cube files Solve for local radii of points | s the same | | UPDATE | | | | OPDATE | ☐ Update cube label ⓒ CholMod (SPARSE) | | | METHOD | | | | METHOD | C SpecialK (dense) (SPECIALK) | | | ERRORPROPAGAT | © Sparse matrix solver (OLDSPARSE) ION | | | | | | | OUTLIER_REJECTI | | | | REJECTION_MULTIP | LIER 3.0 | | | | | timation——— | | | None: no tier one maximumlikelihood estimation (NONE) | | | MODEL1 | C Huber: aproximates the L2 norm near 0, and the L1 norm | therafter. Has | | | C Huber Modified: approximates the L2 norm near 0 and the | L1 norm there | | MAX_MODEL1_C_Q | UANTILE 0.5 | | | | None: no tier two maximumlikelihood estimation (NONE) | | | | C Huber: aproximates the L2 norm near 0, and the L1 norm | therafter. Has | | MODEL2 | C Huber Modified: approximates the L2 norm near 0 and the | L1 norm there | | | Welsch: aprroximates the L2 norm near 0, but then decay | s exponentially | | | Chen: a highly aggresive method that intentionally remov | es the largest I | | MAX_MODEL2_C_Q | UANTILE 0.5 | | | | None: no tier three maximumlikelihood estimation (NONE) |) | | | $oldsymbol{c}$ Huber: aproximates the L2 norm near 0, and the L1 norm | therafter. Has | | MODEL3 | $oldsymbol{c}$ Huber Modified: approximates the L2 norm near 0 and the | L1 norm there | | | $oldsymbol{c}$ Welsch: aprroximates the L2 norm near 0, but then decay | s exponentially | | | $oldsymbol{c}$ Chen: a highly aggresive method that intentionally remov | es the largest 1 | | MAX_MODEL3_C_Q | UANTILE 0.5 | | | | Convergence Crite | eria——— | | SIGMA0 1.0e-10 | | | | MAXITS 50 | | | | 155 | | | #### Files - FROMLIST - ascii list of images in the control network. - HELDLIST - ascii list of images for which position & pointing parameters are to be held fixed. - CNET - Input control network. - ONET - Output control network. | % ⊙ | jigsaw <@prog6> | ⊗ ⊘ ⊗ | |-------------------------------|---|---------------| | <u>File Options View Help</u> | | | |] 🕝 🐼 🐼 🕥 😃 (| <u>o</u> 🔀 🔜 🥀 | | | | Files—— | | | FROMLIST | | | | HELDLIST none | | | | | | | | CNET | | | | ONET | | | | | Solve Options— | | | OBSERVATIONS | lacktriangle Keep instances of the same observation in different cube files t | he same | | RADIUS | ☐ Solve for local radii of points | | | UPDATE | □ Update cube label | | | | © CholMod (SPARSE) | | | METHOD | C SpecialK (dense) (SPECIALK) | | | | C Sparse matrix solver (OLDSPARSE) | | | ERRORPROPAGATION | Compute variance-covariance matrix | | | OUTLIER_REJECTION | Auto-rejection of outliers | | | REJECTION_MULTIPLIE | R 3.0 | | | | Maximum Likelihood Estin | nation—— | | | None: no tier one maximumlikelihood estimation (NONE) | | | MODEL1 | $m{c}$ Huber: aproximates the L2 norm near 0, and the L1 norm th | erafter. Has | | | C Huber Modified: approximates the L2 norm near 0 and the L | 1 norm there | | MAX_MODEL1_C_QUA | NTILE 0.5 | | | | None: no tier two maximumlikelihood estimation (NONE) | | | | C Huber: aproximates the L2 norm near 0, and the L1 norm th | erafter. Has | | MODEL2 | C Huber Modified: approximates the L2 norm near 0 and the L | 1 norm there | | | C Welsch: aprroximates the L2 norm near 0, but then decays | exponentially | | | Chen: a highly aggresive method that intentionally removes | the largest 1 | | MAX_MODEL2_C_QUA | | | | | None: no tier three maximumlikelihood estimation (NONE) | | | | C Huber: aproximates the L2 norm near 0, and the L1 norm th | | | MODEL3 | C Huber Modified: approximates the L2 norm near 0 and the L | | | | • Welsch: aprroximates the L2 norm near 0, but then decays | | | MAY MODELO C OUA | C Chen: a highly aggresive method that intentionally removes | the largest i | | MAX_MODEL3_C_QUA | NTILE 0.5 | | | | Convergence Criteria | à | | SIGMA0 1.0e-10 | | | | MAXITS 50 | | | | | | | #### Solve Options - OBSERVATIONS (Observation Mode) - All images within an "observation" have the same position & pointing. - Example: LRO NAC L/R - RADIUS - UPDATE - METHOD - · CholMod (default) - SpecialK - OLDSPARSE | ※ ⊙ | jigsaw <@prog6> | | |-------------------------------|---|-----------------| | <u>File Options View Help</u> | | | | | | | | | Files—— | <u> </u> | | FROMLIST | | | | HELDLIST none | | | | | | | | CNET | | | | ONET | | | | | Solve Options— | | | OBSERVATIONS | ☐ Keep instances of the same observation in different cube files t | the same | | RADIUS | ☐ Solve for local radii of points | | | UPDATE | □ Update cube label | | | | CholMod (SPARSE) | | | METHOD | C SpecialK (dense) (SPECIALK) | | | | C Sparse matrix solver (OLDSPARSE) | , | | ERRORPROPAGATION | ☐ Compute variance-covariance matrix | | | OUTLIER_REJECTION | ☐ Auto-rejection of outliers | | | REJECTION_MULTIPLIER | 3.0 | | | | —————————————————————————————————————— | nation—— | | | None: no tier one maximumlikelihood estimation (NONE) | | | MODEL1 | C Huber: aproximates the L2 norm near 0, and the L1 norm th | erafter. Has | | | C Huber Modified: approximates the L2 norm near 0 and the L | 1 norm there | | MAX_MODEL1_C_QUANT | ILE 0.5 | | | | None: no tier two maximumlikelihood estimation (NONE) | | | | Huber: aproximates the L2 norm near 0, and the L1 norm the | erafter, Has | | MODEL2 | Huber Modified: approximates the L2 norm near 0 and the L | .1 norm there | | | • Welsch: aprroximates the L2 norm near 0, but then decays | exponentially | | | C Chen: a highly aggresive method that intentionally remove | s the largest 1 | | MAX_MODEL2_C_QUANT | | | | | None: no tier three maximumlikelihood estimation (NONE) | | | | Huber: aproximates the L2 norm near 0, and the L1 norm the L2 norm near 0, and the L2 norm | | | MODEL3 | C Huber Modified: approximates the L2 norm near 0 and the L | | | | • Welsch: aprroximates the L2 norm near 0, but then decays | | | MAN MODELS O SUMME | Chen: a highly aggresive method that intentionally remove | s the largest 1 | | MAX_MODEL3_C_QUANT | ILE 0.5 | | | | Convergence Criteri | a | | SIGMA0 1.0e-10 | | | | MAXITS 50 | | | | | | | #### Solve Options - ERRORPROPAGATION - Generation of parameter uncertainties. - OUTLIER REJECTION - Automated rejection of outliers - REJECTION_MULTIPLIER - METHOD - · CholMod (default) - SpecialK - OLDSPARSE | ※ ⊙ | jigsaw <@prog6> | ⊗ ⊘ ⊗ | |--------------------------|--|---------------------| | <u>File Options View</u> | <u>H</u> elp | | | | | | | | Files — | _ | | FROMLIST | | | | HELDLIST non | | | | _ | | | | CNET | | | | ONET | | | | | Solve Option | ons——— | | OBSERVATIO | | | | RADIUS | Solve for local radii of points | | | UPDATE | ☐ Update cube label | | | | C CholMod (SPARSE) | | | METHOD | C SpecialK (dense) (SPECIALK) | | | | C Sparse matrix solver (OLDSPARSE) | | | ERRORPROPAG | TION | | | OUTLIER_REJEC | TION ☐ Auto-rejection of outliers | | | REJECTION_MUL | PLIER 3.0 | | | | — Maximum Likelihood | d Estimation— | | | None: no tier one maximumlikelihood estimation (NON) | | | MODEL | | | | MODE | C Huber Modified: approximates the L2 norm near 0 and | | | MAX_MODEL1_C | | the Li norm there | | MAX_NODELI_C | None: no tier two maximumlikelihood estimation (NON) | VE) | | | C Huber: aproximates the L2 norm near 0, and the L1 no | | | MODEL | | | | | C Welsch: aprroximates the L2 norm near 0, but then de | | | | C Chen: a highly aggresive method that intentionally re | | | MAX_MODEL2_C | | | | | None: no tier three maximumlikelihood estimation (NO | DNE) | | | C Huber: aproximates the L2 norm near 0, and the L1 no | orm therafter. Has | | MODEL | C Huber Modified: approximates the L2 norm near 0 and | the LI norm there | | M | C Welsch: aprroximates the L2 norm near 0, but then de | ecays exponentially | | | C Chen: a highly aggresive method that intentionally re | moves the largest 1 | | MAX_MODEL3_C | QUANTILE 0.5 | | | | | | | SIGMA0 1.0e-1 | | | | MAXITS 50 | | | | MAXII3 130 | | | | | 10.11 14.12 14.15 14.15 15.15 15.15 15.15 15.15 15.15 15.15 15.15 15.15 15.15 15.15 15.15 15.15 15.15 15.15 15 | | | File Ontions View Help | jigsaw <@prog6> | ⊗ ⊗ | | | |--|---|-----------|--|--| | File Options View Help Output | | | | | | | | | | | | | Files——— | | | | | FROMLIST | FROMLIST | | | | | HELDLIST none | none | | | | | CNET | | | | | | ONET | ONET | | | | | | Solve Options— | | | | | OBSERVATIONS | ☐ Keep instances of the same observation in different cube files the same | ame | | | | RADIUS | Solve for local radii of points | | | | | UPDATE | □ Update cube label | | | | | | © CholMod (SPARSE) | | | | | METHOD | C SpecialK (dense) (SPECIALK) | | | | | | C Sparse matrix solver (OLDSPARSE) | | | | | ERRORPROPAGATION | ☐ Compute variance-covariance matrix | | | | | OUTLIER_REJECTION | ☐ Auto-rejection of outliers | | | | | REJECTION_MULTIPLIER | 3.0 | | | | | | Maximum Likelihood Estimatio | n | | | | | None: no tier one maximumlikelihood estimation (NONE) | | | | | MODEL1 | C Huber: aproximates the L2 norm near 0, and the L1 norm theraft | er. Has | | | | | C Huber Modified: approximates the L2 norm near 0 and the L1 nor | m there | | | | MAX_MODEL1_C_QUANTI | • | | | | | | None: no tier two maximumlikelihood estimation (NONE) | | | | | | C Huber: aproximates the L2 norm near 0, and the L1 norm theraft | | | | | MODEL2 | C Huber Modified: approximates the L2 norm near 0 and the L1 nor | | | | | | Welsch: aprroximates the L2 norm near 0, but then decays expo Chen: a highly aggresive method that intentionally removes the | _ | | | | MAX_MODEL2_C_QUANTI | | laryest | | | | IN W_MODELE_G_QOMMI | None: no tier three maximumlikelihood estimation (NONE) | | | | | | C Huber: aproximates the L2 norm near 0, and the L1 norm theraft | er, Has | | | | MODEL3 | C Huber Modified: approximates the L2 norm near 0 and the L1 nor | | | | | | C Welsch: aprroximates the L2 norm near 0, but then decays expo | nentially | | | | | $oldsymbol{c}$ Chen: a highly aggresive method that intentionally removes the | largest i | | | | MAX_MODEL3_C_QUANTI | LE 0.5 | | | | | | Convergence Criteria— | | | | | SIGMA0 1.0e-10 | | | | | | MAXITS 50 | | | | | | | | | | | #### Convergence Criteria - SIGMAO - Convergence occurs when change in SigmaO in successive iterations is less or equal to this value. - Setting to a larger value results in fewer iterations. - MAXITS - Adjustment stops (regardless of convergence) upon reaching maximum iterations. | | | Camera Pointing Options— | |---------------|--|--| | CKDEGREE | 2 | | | SOLVEDEGREE | 2 | | |) | C Don't solve for any came | ra pointing factors (NONE) | | | Solve for camera angles:
twist (ANGLE | right ascension, declination and optionally
S) | | CAMSOLVE | C Solve for camera angles | AND their angular velocities (VELOCITIES) | | | C Solve for camera angles, | their angular velocities and accelerations (ACCELERATIONS) | | | C Solve for all coefficients i | n the polynomials fit to the camera angles. (ALL) | | TWIST | ▼ Solve for twist | | | | | | | € Do | n't solve for any spacecraft | position parameters (NONE) | | | ve for the spacecraft position | | | SPSOLVE | · | ons and velocities (VELOCITIES) | | | | ons, velocities, and accelerations (ACCELERATIONS) | | | <u> </u> | | | | | Parameter Uncertainties — | | | LATITUDE_SIGMA | none | | _ | ONGITUDE_SIGMA | none | | | _RADIUS_SIGMA | none | | | FT_POSITION_SIGMA | none | | | FT_VELOCITY_SIGMA | none | | SPACECRAFT_ | _ACCELERATION_SIGMA | none | | CAMERA | A_ANGLES_SIGMA | none | | CAMERA_ANG | ULAR_VELOCITY_SIGMA | none | | CAMERA_ANGUL | AR_ACCELERATION_SIGMA | none | | | | Output Options— | | FILE_PREFIX | none | | | BUNDLEOUT_TX | • | | | OUTPUT_CSV | Outputs point and image data (body-fixed) to csv file - bundleout_points.csv | | | RESIDUALS_CSV | | | | ·I | | [P | | | | | | RGB. 🤾 jigsaw | | 4 Making_A_Mosaic.txt - KWr BundleAdjus | | | | | # Camera Pointing Options - CKDEGREE - Degree of polynomial for computation of initial values (time-dependent sensors, e.g. line scan). ## Camera Pointing Options - SOLVEDEGREE - Degree of polynomial in adjustment. - e.g., degree of 2 ⇒ solving for 3 polynomial coefficients. - at² + bt + c; where - t = time - a = angular acceleration - b = angular velocity - c = angle | | | Camera Pointing Options | | |---------------|--|--|--| | CKDEGREE | 2 | | | | SOLVEDEGREE | 2 | | | |) | C Don't solve for any came | ra pointing factors (NONE) | | | | Solve for camera angles:
twist (ANGLE | right ascension, declination and optionally
S) | | | CAMSOLVE | C Solve for camera angles A | AND their angular velocities (VELOCITIES) | | | | C Solve for camera angles, | their angular velocities and accelerations (ACCELERATIONS) | | | | C Solve for all coefficients in | n the polynomials fit to the camera angles. (ALL) | | | TWIST | ✓ Solve for twist | | | | | | | | | G Do | n't solve for any spacecraft p | nosition parameters (NONE) | | | | lve for the spacecraft position | | | | SPSOLVE | | ons and velocities (VELOCITIES) | | | | | ons, velocities, and accelerations (ACCELERATIONS) | | | | The following position | | | | | | Parameter Uncertainties — | | | POINT_ | LATITUDE_SIGMA | none | | | POINT_L | ONGITUDE_SIGMA | none | | | POINT | _RADIUS_SIGMA | none | | | SPACECRA | FT_POSITION_SIGMA | none | | | SPACECRA | FT_VELOCITY_SIGMA | none | | | SPACECRAFT_ | _ACCELERATION_SIGMA | none | | | CAMERA | A_ANGLES_SIGMA | none | | | CAMERA_ANG | ULAR_VELOCITY_SIGMA | none | | | CAMERA_ANGUL | AR_ACCELERATION_SIGMA | none | | | | | Output Options | | | FILE_PREFIX | none | | | | BUNDLEOUT_TXT | ' | t file - bundleout.txt | | | OUTPUT_CSV | ✓ Outputs point and image data (body-fixed) to csv file - bundleout_points.csv | | | | RESIDUALS_CSV | | | | | .1 | | | | | | | <u> </u> | | | RGB. Kjigsaw | | 4 Making A Mosaic.txt - KW BundleAdju | | | (-1,5 | | 1,1(-2,-2,-1) | | ## Camera Pointing Options - CAMSOLVE - Selection of angular parameters in the adjustment. - TWIST ### Spacecraft Options - SPSOLVE - Selection of spacecraft position parameters in the adjustment. - NOTE: capability to solve for coefficients of higher degree polynomials (as with pointing) is coming soon. ## Global Parameter Uncertainties - Global 'a priori' uncertainties for ground point coordinates, position, & pointing parameters. - Parameter weights in the adjustment are computed from uncertainties. - Point sigmas in control network take precedence. | | | Camera Pointing Options———— | | |--|---|--|--| | CKDEGREE | 2 | | | | SOLVEDEGREE | 2 | | | | | C Don't solve for any came | era pointing factors (NONE) | | | | Solve for camera angles: right ascension, declination and optionally twist (ANGLES) | | | | CAMSOLVE | C Solve for camera angles | AND their angular velocities (VELOCITIES) | | | | C Solve for camera angles, | their angular velocities and accelerations (ACCELERATIONS) | | | | C Solve for all coefficients | in the polynomials fit to the camera angles. (ALL) | | | TWIST | ✓ Solve for twist | | | | | | Spacecraft Options— | | | ⊙ D | on't solve for any spacecraft | position parameters (NONE) | | | O S | olve for the spacecraft position | ons (POSITION) | | | SPSOLVE | olve for the spacecraft position | ons and velocities (VELOCITIES) | | | C S | olve for the spacecraft position | ons, velocities, and accelerations (ACCELERATIONS) | | | | | Parameter Uncertainties ———— | | | POINT | _LATITUDE_SIGMA | none | | | POINT_LONGITUDE_SIGMA | | none | | | POIN | T_RADIUS_SIGMA | none | | | SPACECR | AFT_POSITION_SIGMA | none | | | SPACECRAFT_VELOCITY_SIGMA | | none | | | SPACECRAFT | Γ_ACCELERATION_SIGMA | none | | | CAME | RA_ANGLES_SIGMA | none | | | CAMERA_AN | GULAR_VELOCITY_SIGMA | none | | | CAMERA_ANGU | LAR_ACCELERATION_SIGMA_ | none | | | | | Output Options— | | | FILE_PREFIX | none | | | | BUNDLEOUT_TX | ,
<t bundle="" outpu<="" standard="" td="" ✓=""><td>it file - bundleout.txt</td></t> | it file - bundleout.txt | | | OUTPUT_CSV | ✓ Outputs point and image data (body-fixed) to csv file - bundleout_points.csv | | | | RESIDUALS_CS | | | | | 1 | | | | | | | | | | NOT THE MENT OF THE PARTY TH | | | | #### Output Options - FILE_PREFIX - BUNDLEOUT_TXT - Standard report "bundleout.txt" contains... - adjusted parameters - adjusted parameter uncertainties (if error propagation is on) - Statistics - OUTPUT_CSV - "bundleout_images.csv" - "bundleout_points.csv" | | | Camera Pointing Options——— | | |---------------|---|--|--| | CKDEGREE | 2 | | | | SOLVEDEGREE | OLVEDEGREE 2 | | | | | C Don't solve for any came | ra pointing factors (NONE) | | | | Solve for camera angles: right ascension, declination and optionally twist (ANGLES) | | | | CAMSOLVE | C Solve for camera angles A | AND their angular velocities (VELOCITIES) | | | | C Solve for camera angles, | their angular velocities and accelerations (ACCELERATIONS) | | | | C Solve for all coefficients i | n the polynomials fit to the camera angles. (ALL) | | | TWIST | ▽ Solve for twist | | | | | | Spacecraft Options——— | | | € Do | n't solve for any spacecraft | position parameters (NONE) | | | | lve for the spacecraft position | • | | | SPSOLVE | · | ons and velocities (VELOCITIES) | | | | | ons, velocities, and accelerations (ACCELERATIONS) | | | | <u> </u> | | | | | | Parameter Uncertainties — | | | | LATITUDE_SIGMA | none | | | _ | ONGITUDE_SIGMA | none | | | POINT | _RADIUS_SIGMA | none | | | SPACECRA | FT_POSITION_SIGMA | none | | | SPACECRA | FT_VELOCITY_SIGMA | none | | | SPACECRAFT_ | _ACCELERATION_SIGMA | none | | | CAMER | A_ANGLES_SIGMA | none | | | CAMERA_ANG | ULAR_VELOCITY_SIGMA | none | | | CAMERA_ANGUL | AR_ACCELERATION_SIGMA | none | | | | | Output Options— | | | FILE_PREFIX | none | | | | BUNDLEOUT_TX | • | | | | OUTPUT_CSV | Outputs point and image data (body-fixed) to csv file - bundleout_points.csv | | | | RESIDUALS_CSV | | | | | 1 | | | | | | | | | ### Output Options - RESIDUALS_CSV - "residuals_images.csv" Run Time: 2012-06-22T15:39:42 Network Filename: AS15_Sub4_Cleaned_PtsRename_GControl9_LandingSite_binary.net Network Description: cnetextracted Target: Moon Linear Units: kilometers Angular Units: decimal degrees OBSERVATIONS: OFF RADIUS: ON SOLUTION TYPE: SPARSE ERROR PROPAGATION: ON OUTLIER REJECTION: ON REJECTION MULTIPLIER: 3.000000 MAXIMUM LIKELIHOOD ESTIMATION Tier 0 Enabled: FALSE Tier 1 Enabled: FALSE Tier 2 Enabled: FALSE SIGMAG: 1.0000000e-10 CAMSOLVE: ANGLES TWIST: ON SPSOLVE: POSITION INPUT: GLOBAL IMAGE PARAMETER UNCERTAINTIES POINT LATITUDE SIGMA: N/A POINT LONGITUDE SIGMA: N/A POINT RADIUS SIGMA: N/A SPACECRAFT POSITION SIGMA: 500.0000000 (meters) SPACECRAFT VELOCITY SIGMA: N/A SPACECRAFT ACCELERATION SIGMA: N/A CAMERA ANGLES SIGMA: 3.0000000 (dd) CAMERA ANGULAR VELOCITY SIGMA: N/A CAMERA ANGULAR SIGMA: N/A 395 950 1900 1844 Convergence Criteria: le-10(Sigma0) Sigma0: 0.55322850893198283195 Error Propagation Elapsed Time: 0.0500 (seconds) Total Elapsed Time: 0.4400 (seconds) -1.486 -1.118 -0.868 -0.756 -0.658 -0.602 -0.545 Percentile 34: Percentile 35: Percentile 36: Percentile 37: Percentile 38: Percentile 39: -0.014 -0.010 -0.008 Percent Percent Percent -0.006 Percentile 39: Percentile 40: -0.004 Percent -0.003 Percent Percent -0.498 -0.468 -0.003 #### Examining the Results Things to look for... - Sigma0: ideally close to 1.0. - Examine measure residuals for outliers. - Unreasonably high adjusted parameter uncertainties. - Magnitude of the corrections to weighted parameters. Potential problems to consider... - · Poor a priori parameter values - Bad SPICE? Problem DEM? - Measurement errors Wrong feature? Wrong point label? - Improperly weighted point coordinates? - Weak image geometry? - Number and geometry of image measurements for a ground point - · Camera model problem?