Permalink
Browse files

Merge branch 'paulliu-caffe2-classify' into develop

Signed-off-by: Bofu Chen (bafu) <bofu@dt42.io>
  • Loading branch information...
Bofu Chen (bafu)
Bofu Chen (bafu) committed Jan 14, 2018
2 parents 09fb6f0 + ab6c3b3 commit 33e8186c6c71dcb889d40de48735d103cb8beb02
Showing with 386 additions and 7 deletions.
  1. +27 −7 configure
  2. +228 −0 inference/classify_caffe2_server.py
  3. +42 −0 utils/install-caffe2-models.sh
  4. +29 −0 utils/install-caffe2-raspbian.sh
  5. +60 −0 utils/install-caffe2-ubuntu.sh
@@ -20,6 +20,7 @@
# One-click IoT gateway deployment script.
LOG="/tmp/berrynet.log"
DISTRIBUTIONID=`lsb_release -i -s`
install_berrynet_repository() {
sudo cp apt/berrynet.list /etc/apt/sources.list.d
@@ -28,6 +29,7 @@ install_berrynet_repository() {
install_system_dependencies() {
sudo apt-get update
sudo apt-get install -y python-dev python-pip python-opencv mongodb libkrb5-dev libzmq3-dev libyaml-dev imagemagick curl fswebcam wget git libopencv-dev
sudo apt-get install -y lsb-release
sudo service mongodb start
sudo -H pip install watchdog cython
}
@@ -43,14 +45,18 @@ install_nodejs() {
}
install_tensorflow() {
TENSORFLOW_VERSION="1.0.1"
TENSORFLOW_PKGNAME="tensorflow-${TENSORFLOW_VERSION}-cp27-none-linux_armv7l.whl"
if [ ! -e "$TENSORFLOW_PKGNAME" ]; then
wget https://github.com/samjabrahams/tensorflow-on-raspberry-pi/releases/download/v${TENSORFLOW_VERSION}/$TENSORFLOW_PKGNAME
else
echo "$TENSORFLOW_PKGNAME has existed, skip to download it."
if [ x"$DISTRIBUTIONID" = x"Ubuntu" ]; then
sudo -H pip install tensorflow
elif [ x"$DISTRIBUTIONID" = x"Raspbian" ]; then
TENSORFLOW_VERSION="1.0.1"
TENSORFLOW_PKGNAME="tensorflow-${TENSORFLOW_VERSION}-cp27-none-linux_armv7l.whl"
if [ ! -e "$TENSORFLOW_PKGNAME" ]; then
wget https://github.com/samjabrahams/tensorflow-on-raspberry-pi/releases/download/v${TENSORFLOW_VERSION}/$TENSORFLOW_PKGNAME
else
echo "$TENSORFLOW_PKGNAME has existed, skip to download it."
fi
sudo -H pip install $TENSORFLOW_PKGNAME
fi
sudo -H pip install $TENSORFLOW_PKGNAME
}
install_darkflow() {
@@ -180,6 +186,18 @@ install_gateway() {
popd > /dev/null
}
install_caffe2() {
if [ x"$DISTRIBUTIONID" = x"Ubuntu" ]; then
sh ./utils/install-caffe2-ubuntu.sh
elif [ x"$DISTRIBUTIONID" = x"Raspbian" ]; then
sh ./utils/install-caffe2-raspbian.sh
fi
}
download_classifier_model_caffe2() {
sh ./utils/install-caffe2-models.sh
}
install_berrynet_repository 2>&1 | tee -a $LOG
install_system_dependencies 2>&1 | tee -a $LOG
install_optional_dependencies 2>&1 | tee -a $LOG
@@ -192,5 +210,7 @@ download_detector_model 2>&1 | tee -a $LOG
install_dashboard 2>&1 | tee -a $LOG
install_systemd_configs 2>&1 | tee -a $LOG
install_gateway 2>&1 | tee -a $LOG
install_caffe2 2>&1 | tee -a $LOG
download_classifier_model_caffe2 2>&1 | tee -a $LOG
echo "Installation is completed successfully!" | tee -a $LOG
@@ -0,0 +1,228 @@
# Copyright 2017 DT42
#
# This file is part of BerryNet.
#
# BerryNet is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# BerryNet is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with BerryNet. If not, see <http://www.gnu.org/licenses/>.
"""Simple image classification server with Inception.
The server monitors image_dir and run inferences on new images added to the
directory. Every image file should come with another empty file with '.done'
suffix to signal readiness. Inference result of a image can be read from the
'.txt' file of that image after '.txt.done' is spotted.
This is an example the server expects clients to do. Note the order.
# cp cat.jpg /run/image_dir
# touch /run/image_dir/cat.jpg.done
Clients should wait for appearance of 'cat.jpg.txt.done' before getting
result from 'cat.jpg.txt'.
"""
from __future__ import print_function
import os
import sys
import time
from caffe2.proto import caffe2_pb2
import numpy as np
import skimage.io
import skimage.transform
import threading
import multiprocessing
import Queue
import signal
from watchdog.observers import Observer
from watchdog.events import PatternMatchingEventHandler
from caffe2.python import core, workspace
import urllib2
image_dir = '/run/image_dir'
image_queue = Queue.Queue()
sess = None
threads = []
def logging(*args):
print("[%08.3f]" % time.time(), ' '.join(args))
def touch(fname, times=None):
with open(fname, 'a'):
os.utime(fname, times)
def crop_center(img,cropx,cropy):
y,x,c = img.shape
startx = x//2-(cropx//2)
starty = y//2-(cropy//2)
return img[starty:starty+cropy,startx:startx+cropx]
def rescale(img, input_height, input_width):
aspect = img.shape[1]/float(img.shape[0])
if(aspect>1):
# landscape orientation - wide image
res = int(aspect * input_height)
imgScaled = skimage.transform.resize(img, (input_width, res))
if(aspect<1):
# portrait orientation - tall image
res = int(input_width/aspect)
imgScaled = skimage.transform.resize(img, (res, input_height))
if(aspect == 1):
imgScaled = skimage.transform.resize(img, (input_width, input_height))
return imgScaled
def server(labels):
"""Infinite loop serving inference requests"""
global image_queue, sess
CAFFE2_ROOT = "/caffe2"
CAFFE_MODELS = "/caffe2/caffe2/python/models"
MODEL = 'squeezenet', 'exec_net.pb', 'predict_net.pb', 'ilsvrc_2012_mean.npy', 227
codes = "https://gist.githubusercontent.com/aaronmarkham/cd3a6b6ac071eca6f7b4a6e40e6038aa/raw/9edb4038a37da6b5a44c3b5bc52e448ff09bfe5b/alexnet_codes"
logging(threading.current_thread().getName(), "is running")
CAFFE2_ROOT = os.path.expanduser(CAFFE2_ROOT)
CAFFE_MODELS = os.path.expanduser(CAFFE_MODELS)
MEAN_FILE = os.path.join(CAFFE_MODELS, MODEL[0], MODEL[3])
if not os.path.exists(MEAN_FILE):
mean = 128
else:
mean = np.load(MEAN_FILE).mean(1).mean(1)
mean = mean[:, np.newaxis, np.newaxis]
INPUT_IMAGE_SIZE = MODEL[4]
INIT_NET = os.path.join(CAFFE_MODELS, MODEL[0], MODEL[1])
PREDICT_NET = os.path.join(CAFFE_MODELS, MODEL[0], MODEL[2])
while True:
input_name = image_queue.get()
img = skimage.img_as_float(skimage.io.imread(input_name)).astype(np.float32)
img = rescale(img, INPUT_IMAGE_SIZE, INPUT_IMAGE_SIZE)
img = crop_center(img, INPUT_IMAGE_SIZE, INPUT_IMAGE_SIZE)
img = img.swapaxes(1, 2).swapaxes(0, 1)
img = img[(2, 1, 0), :, :]
img = img * 255 - mean
img = img[np.newaxis, :, :, :].astype(np.float32)
with open(INIT_NET, 'rb') as f:
init_net = f.read()
with open(PREDICT_NET, 'rb') as f:
predict_net = f.read()
p = workspace.Predictor(init_net, predict_net)
# run the net and return prediction
results = p.run([img])
results = np.asarray(results)
results = np.delete(results, 1)
index = 0
highest = 0
arr = np.empty((0,2), dtype=object)
arr[:,0] = int(10)
arr[:,1:] = float(10)
for i, r in enumerate(results):
# imagenet index begins with 1!
i=i+1
arr = np.append(arr, np.array([[i,r]]), axis=0)
if (r > highest):
highest = r
index = i
response = urllib2.urlopen(codes)
output_name = input_name+'.txt'
output_done_name = output_name+'.done'
output = open(output_name, 'w')
for line in response:
code, result = line.partition(":")[::2]
if (code.strip() == str(index)):
human_string = result.strip()[1:-2]
score = highest
print("%s (score = %.5f)" % (human_string, score), file=output)
output.close()
touch(output_done_name)
logging(input_name, " classified!")
class EventHandler(PatternMatchingEventHandler):
def process(self, event):
"""
event.event_type
'modified' | 'created' | 'moved' | 'deleted'
event.is_directory
True | False
event.src_path
path/to/observed/file
"""
# the file will be processed there
global image_queue
_msg = event.src_path
image_queue.put(_msg.rstrip('.done'))
os.remove(_msg)
logging(_msg, event.event_type)
# ignore all other types of events except 'modified'
def on_created(self, event):
self.process(event)
def main(_):
"""Called by Tensorflow"""
# Create a server thread for each CPU core
cpu_count = multiprocessing.cpu_count()
for i in xrange(cpu_count/4):
threads.append(threading.Thread(target=server,
name='Server thread %d' % i,
args=({},)))
for t in threads: t.start()
for t in threads: t.join()
if __name__ == '__main__':
global sess, threads
pid = str(os.getpid())
pidfile = "/tmp/classify_server.pid"
if os.path.isfile(pidfile):
logging("%s already exists, exiting" % pidfile)
sys.exit(1)
with open(pidfile, 'w') as f:
f.write(pid)
# workaround the issue that SIGINT cannot be received (fork a child to
# avoid blocking the main process in Thread.join()
child_pid = os.fork()
if child_pid == 0:
# child
# observer handles event in a different thread
observer = Observer()
observer.schedule(EventHandler(['*.jpg.done']), path=image_dir)
observer.start()
# Create a server thread for each CPU core
cpu_count = multiprocessing.cpu_count()
for i in xrange(cpu_count/4):
threads.append(threading.Thread(target=server,
name='Server thread %d' % i,
args=({},)))
for t in threads: t.start()
for t in threads: t.join()
else:
# parent
try:
os.wait()
except KeyboardInterrupt:
os.kill(child_pid, signal.SIGKILL)
os.unlink(pidfile)
@@ -0,0 +1,42 @@
#!/bin/sh
# Main dependencies
sudo apt-get update
#sudo apt-get install -y git-lfs
# Download models
#
# FIXME: caffe2.python.models.download can not download correct
# squeezenet model files currently.
#
# It will download {init_net.pb, predict_net.pb}, but the latest
# squeezenet model files on Caffe2 model repo are
# {exec_net.pb, predict_net.pb}.
#
# These two predict_net.pb are also different.
#
# Caffe2 model repo: https://github.com/caffe2/models/tree/master/squeezenet
CAFFE2_MODEL_DIR="/caffe2/caffe2/python/models"
#TMPDIR1=`mktemp -d`
#cd /caffe2/build
#sudo python -m caffe2.python.models.download squeezenet
#sudo mkdir -p "$TMPDIR1"/models
#sudo mv -f squeezenet "$TMPDIR1"/models
#cd "$TMPDIR1"
#git lfs clone https://github.com/caffe2/models.git
# Install models
#
# FIXME: git-lfs is unavailable on Raspbian.
sudo mkdir -p $CAFFE2_MODEL_DIR/squeezenet
sudo wget -O $CAFFE2_MODEL_DIR/squeezenet/exec_net.pb \
https://github.com/caffe2/models/raw/master/squeezenet/exec_net.pb
sudo wget -O $CAFFE2_MODEL_DIR/squeezenet/predict_net.pb \
https://github.com/caffe2/models/raw/master/squeezenet/predict_net.pb
#sudo cp -f models/squeezenet/*.pb /caffe2/caffe2/python/models
#sudo cp -f models/bvlc_alexnet/*.npy /caffe2/caffe2/python/models
@@ -0,0 +1,29 @@
#!/bin/sh
# Main dependencies
sudo apt-get update
sudo apt-get install -y \
build-essential \
git \
cmake \
googletest \
libgflags-dev \
libgoogle-glog-dev \
libprotobuf-dev \
libpython-dev \
python-pip \
python-numpy \
protobuf-compiler \
python-protobuf \
python-skimage \
python-future
# Build and install caffe2
cd / # Not sure why we need to build from /
sudo git clone --recursive https://github.com/caffe2/caffe2.git
cd caffe2
sudo ./scripts/build_raspbian.sh
cd build
sudo make install
Oops, something went wrong.

0 comments on commit 33e8186

Please sign in to comment.