Skip to content
Joint Optimization Framework for Learning with Noisy Labels
Branch: master
Clone or download
Latest commit 7e7a30d May 4, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
README.md fix readme May 4, 2018
first_step_train.py initial commit May 4, 2018
net.py initial commit May 4, 2018
second_step_train.py initial commit May 4, 2018

README.md

Joint Optimization Framework for Learning with Noisy Labels

This repository contains the code for the paper Joint Optimization Framework for Learning with Noisy Labels.

Requirements

  • Python 3.6
  • Chainer 4.0.0
  • CuPy 4.0.0
  • ChainerCV 0.9.0

Training

To train the network on the Symmmetric Noise CIFAR-10 dataset (noise rate = 0.7):

$ python first_step_train.py --gpu 0 --out first_sn07 --learnrate 0.08 --alpha 1.2 --beta 0.8 --percent 0.7
$ python second_step_train.py --gpu 0 --out second_sn07 --label first_sn07

To train the network on the Asymmmetric Noise CIFAR-10 dataset (noise rate = 0.4):

$ python first_step_train.py --gpu 0 --out first_an04 --learnrate 0.03 --alpha 0.8 --beta 0.4 --percent 0.4 --asym
$ python second_step_train.py --gpu 0 --out second_an04 --label first_an04

Citation

@inproceedings{tanaka2018joint,
    title = {Joint Optimization Framework for Learning with Noisy Labels},
    author = {Tanaka, Daiki and Ikami, Daiki and Yamasaki, Toshihiko and Aizawa, Kiyoharu},
    booktitle = {CVPR},
    year = {2018}
}
You can’t perform that action at this time.