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Abstract

Databases are widespread, yet extracting rel-
evant data can be difficult. Without substan-
tial domain knowledge, multivariate search
queries often return sparse or uninformative re-
sults. This paper introduces an approach for
searching structured data based on probabilis-
tic programming and nonparametric Bayes.
Users specify queries in a probabilistic lan-
guage that combines standard SQL database
search operators with an information theo-
retic ranking function called predictive rele-
vance. Predictive relevance can be calculated
by a fast sparse matrix algorithm based on
posterior samples from CrossCat, a nonpara-
metric Bayesian model for high-dimensional,
heterogeneously-typed data tables. The result
is a flexible search technique that applies to a
broad class of information retrieval problems,
which we integrate into BayesDB, a proba-
bilistic programming platform for probabilis-
tic data analysis. This paper demonstrates ap-
plications to databases of US colleges, global
macroeconomic indicators of public health,
and classic cars. We found that human evalu-
ators often prefer the results from probabilistic
search to results from a standard baseline.

1 Introduction

We are surrounded by multivariate data, yet it is difficult
to search. Consider the problem of finding a university
with a city campus, low student debt, high investment
in student instruction, and tuition fees within a certain
budget. The US College Scorecard dataset (Council of
Economic Advisers, 2015) contains these variables plus
hundreds of others. However, choosing thresholds for the

quantitative variables — debt, investment, tuition, etc —
requires domain knowledge. Furthermore, results grow
sparse as more constraints are added. Figure 1a shows
results from an SQL SELECT query with plausible thresh-
olds for this question that yields only a single match.

This paper shows how to formulate a broad class of prob-
abilistic search queries on structured data using proba-
bilistic programming and information theory. The core
technical idea combines SQL search operators with a
ranking function called predictive relevance that assesses
the relevance of database records to some set of query
records, in a context defined by a variable of interest.
Figures 1b and 1c show two examples, expanding and
then refining the result from Figure 1a by combining pre-
dictive relevance with SQL. Predictive relevance is the
probability that a candidate record is informative about
the answers to a specific class of predictive queries about
unknown fields in the query records.

The paper presents an efficient implementation applying
a simple sparse matrix algorithm to the results of infer-
ence in CrossCat (Mansinghka et al., 2016). The result is
a scalable, domain-general search technique for sparse,
multivariate, structured data that combines the strengths
of SQL search with probabilistic approaches to informa-
tion retrieval. Users can query by example, using real
records in the database if they are familiar with the do-
main, or partially-specified hypothetical records if they
are less familiar. Users can then narrow search results by
adding Boolean filters, and by including multiple records
in the query set rather than a single record. An overview
of the technique and its integration into BayesDB (Mans-
inghka et al., 2015) is shown in Figure 3.

We demonstrate the proposed technique with databases
of (i) US colleges, (ii) public health and macroeconomic
indicators, and (iii) cars from the late 1980s. The paper
empirically confirms the scalability of the technique and
shows that human evaluators often prefer results from the
proposed technique to results from a standard baseline.
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%bql SELECT
... "institute",
... "median_sat_math",
... "admit_rate",
... "tuition",
... "median_student_debt",
... "instructional_invest",
... "locale"
... FROM college_scorecard
... WHERE
... "locale" LIKE '%City%'
... "tuition" < 50000
... "median_student_debt" < 10000
... "instructional_invest" > 50000
... LIMIT 10

(a) Standard SQL. Using a SQL WHERE clause to search for a university with a city
campus, low student debt (at most $10K), high investment in student instruction (at least
$50K), and a tuition within their budget (at most $50K). Due to sparsity in the dataset for
the chosen thresholds, the Boolean conditions in the clause have only a single matching
result, shown in the table below. The user needs to iteratively adjust the thresholds in
order to obtain more results which match the search query.

institute admit sat tuition debt investment locale

Duke University 11% 745 47,243 7,500 50,756 Midsize City

%bql SELECT
... "institute",
... "admit_rate",
... "median_sat_math",
... "tuition",
... "median_student_debt",
... "instructional_invest",
... "locale"
... FROM college_scorecard
... ORDER BY
... RELEVANCE PROBABILITY
... TO HYPOTHETICAL ROW ((
... "locale" = 'Midsize City'
... "tuition" = 50000,
... "median_student_debt" = 10000,
... "instructional_invest" = 50000
... ))
... IN THE CONTEXT OF
... "instructional_invest"
... DESC
... LIMIT 10

(b) Relevance to hypothetical record. If the search query is instead specified as a hypo-
thetical record in a BQL RELEVANCE PROBABILITY query, then ORDER BY can give the
top-10 ranked matches. The results are all top-tier schools with high teaching investment,
a city or large suburban campus, and low student debt. However, the user is surprised by
the highly stringent admission rates at these colleges, which are mostly below 10%.

institute admit sat tuition debt investment locale

Duke University 11% 745 47,243 7,500 50,756 Midsize City
Princeton University 8% 755 41,820 7,500 52,224 Large Suburb
Harvard University 6% 755 43,938 6,500 49,500 Midsize City
Univ of Chicago 8% 758 49,380 12,500 83,779 Large City
Mass Inst Technology 8% 770 45,016 14,990 62,770 Midsize City
Calif Inst Technology 8% 785 43,362 11,812 92,590 Midsize City
Stanford University 5% 745 45,195 12,782 93,146 Large Suburb
Yale University 6% 750 45,800 13,774 107,982 Midsize City
Columbia University 7% 745 51,008 23,000 80,944 Large City
University of Penn. 10% 735 47,668 21,500 49,018 Large City

%bql SELECT
... "institute",
... "admit_rate",
... "median_sat_math",
... "tuition",
... "median_student_debt",
... "instructional_invest",
... "locale"
... FROM college_scorecard
... WHERE
... "admit_rate" > 0.10
... AND "locale" LIKE '%City%'
... ORDER BY
... RELEVANCE PROBABILITY
... TO EXISTING ROWS IN (
... 'Duke University',
... 'Harvard University',
... 'Mass Inst Technology',
... 'Yale University',
... )
... IN THE CONTEXT OF
... "instructional_invest"
... DESC
... LIMIT 10

(c) Relevance to observed records combined with SQL. Combining BQL and SQL
to search for colleges which are most relevant to the schools from (b) in the context of
“instructional investment”, but that must have (i) less stringent admissions (at least 10%)
and (ii) city campuses only. The quantitative search metrics of interest for the colleges
in the result set are all significantly better than the national average, but they are mostly
below the more selective schools in (b).

institute admit sat tuition debt investment locale

Duke University 11% 745 47,243 7,500 50,756 Midsize City
Georgetown Univ 17% 710 46,744 17,000 31,102 Midsize City
Johns Hopkins Univ 16% 730 47,060 16,250 77,339 Midsize City
Vanderbilt Univ 13% 760 43,838 13,000 79,372 Large City
University of Penn. 10% 735 47,668 21,500 49,018 Large City
Carnegie Mellon 24% 750 49,022 25,250 31,807 Midsize City
Rice University 15% 750 40,566 9,642 40,056 Midsize City
Univ Southern Calif 18% 710 48,280 21,500 43,170 Midsize City
Cooper Union 15% 710 41,400 18,250 21,635 Large City
New York University 35% 685 46,170 23,300 30,237 Large City
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Figure 1: Combining predictive relevance probability in the Bayesian Query Language (BQL) with standard tech-
niques in SQL to search the US College Scorecard dataset. The full data contains over 7000 colleges and 1700
variables, and is available for download at collegescorecard.ed.gov/data.

collegescorecard.ed.gov/data


2 Establishing an information theoretic
definition of context-specific predictive
relevance

In this section, we outline the basic set-up and notations
for the database search problem, and establish a formal
definition of the probability of “predictive relevance” be-
tween records in the database.

2.1 Finding predictively relevant records

Suppose we are given a sparse dataset
D= {x1,x2, . . . ,xN} containing N records, where
each xr = (x[r,1], . . . , x[r,p]) is an instantiation of a
p-dimensional random vector, possibly with missing
values. For notational convenience, we refer to arbitrary
collections of observations using sets as indices, so that
x[R,C]≡

{
x[r,c] : r ∈ R, c ∈ R

}
. Bold-face symbols

denote multivariate entities, and variables are capitalized
as X[r,c] when they are unobserved (i.e. random).

Let Q⊂ [N ] index a small collection of “query records”
xQ= {xq : q ∈ Q}. Our objective is to rank each item
xi ∈D by how relevant it is for formulating predictions
about values of xQ, “in the context” of a particular di-
mension c. We formally define the context of c as a sub-
set of dimensions V ⊆ [p] such that for an arbitrary record
r∗ and each v ∈V , the random variable X[r∗,v] is statis-
tically dependent with X[r∗,c].1

In other words, we are searching for records i where
knowledge of x[i,V] is useful for predicting x[Q,V], had
we not known the values of these observations.

2.2 Defining context-specific predictive relevance
using mutual information

We now formalize the intuition from the previous sec-
tion more precisely. LetRc(Q, r) denote the probability
that r is predictively relevant to Q, in the context of c.
Furthermore, let c∗ denote the index of a new dimension
in the length-p random vectors, which is statistically de-
pendent on dimension c (i.e. is in its context) but is not
one of the p existing variables in the database. Since c∗

indexes a novel variable, its value for each row r is itself
a random variable, which we denote X[r,c∗]. We now de-
fine the probability that r is predictively relevant to Q in
the context of c as the posterior probability that the mu-
tual information of X[r,c∗] and each query record X[q,c∗]

1A general definition for statistical dependence is having
non-zero mutual information with the context variable. How-
ever, the method for detecting dependence to find variables in
the context can be arbitrary e.g., using linear statistics such as
Pearson-R, directly estimating mutual information, or others.

is non-zero:

Rc(Q, r) = (1)

P

⋂
q∈Q

(
I(X[q,c∗] : X[r,c∗]) > 0

) ∣∣∣∣ λc∗ , α,D
 .

The symbol λc∗ refers to an arbitrary set of hyperparam-
eters which govern the distribution of dimension c∗, and
α is a context-specific hyperparameter which controls
the prior on structural dependencies between the ran-
dom variables

{
X[r,c∗] : r ∈ [N ]

}
. Moreover, the mu-

tual information I, a well-established measure for the
strength of predictive relationships between random vari-
ables (Cover and Thomas, 2012), is defined in the usual
way,

I(X[q,c∗] : X[r,c∗] | λc∗ , α,D) = (2)

E
[
log

(
p(X[q,c∗], X[r,c∗]|λc∗ , α,D)

p(X[q,c∗]|λc∗ , α,D)p(X[r,c∗]|λc∗ , α,D)

)]
.

Figure 2 illustrates the predictive relevance probability
in terms of a hypothesis test on two competing graph-
ical models, where the mutual information is non-zero
in panel (a) indicating predictive relevance; and zero in
panel (b), indicating predictive irrelevance.

2.3 Related Work

Our formulation of predictive relevance in terms of mu-
tual information between new variables X[r,c∗] is related
to the idea of “property induction” from the cognitive sci-
ence literature (Rips, 1975; Osherson et al., 1990; Shafto
et al., 2008), where subjects are asked to predict whether
an entity has a property, given that some other entity has
that property; e.g. how likely are cats to have some new
disease, given that mice are known to have the disease?

It is also informative to consider the relationship be-
tween the predictive relevance Rc(Q, r) in Eq (1) and
the Bayesian Sets ranking function from the statistical
modeling literature (Ghahramani and Heller, 2005):

scoreBayes-Sets(Q, r) =
p(xr|xQ)

p(xr)
. (3)

Bayes Sets defines a Bayes Factor, or ratio of marginal
likelihoods, which is used for hypothesis testing without
assuming a structure prior. On the other hand, predictive
relevance defines a posterior probability, whose value is
between 0 and 1, and therefore requires a prior over de-
pendence structure between records (our approach out-
lined in Section 3 is based on nonparametric Bayes).
While Bayes Sets draws inferences using only the query
and candidate rows without considering the rest of the
data, predictive relevance probabilities are necessarily
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(b) Different generative processes for xQ and xr .

Figure 2: The predictive relevance of a collection of query recordsQ to a candidate record r, in the context of variable
c, computes the probability that x[Q,c] and x[r,c] are drawn from (a) the same generative process, versus (b) different
generative processes. The latent variables z0 and z1 are indicators for the generative process of the records; and θc0
(resp. θc1) are distributional parameters of data under model z0 (resp. z1) for variable c. Hyperparameter α dictates the
prior on z, and λ dictates the prior on distributional parameters θ. The symbol c∗ denotes a new dimension which is
statistically dependent on c, and for which no values are observed for either Q or r. Conditioned on hyperparameters,
knowing X[r,c∗] in (a) carries information about the unknown values X[Q,c∗], whereas in (b) it does not.

conditioned on D as in Eq (1). Finally Bayes Sets con-
siders the entire data vectors for scoring, whereas predic-
tive relevance considers only dimensions which are in the
context of a variable c, making it possible for two records
to be predictively relevant in some context but probably
predictively irrelevant in another.

3 Computing the probability of predictive
relevance using nonparametric Bayes

This section describes the cross-categorization prior
(CrossCat, Mansinghka et al. (2016)) and outlines algo-
rithms which use CrossCat to efficiently estimate pre-
dictive relevance probabilities Eq (1) for sparse, high-
dimensional, and heterogenously-typed data tables.

CrossCat is a nonparametric Bayesian model which
learns the full joint distribution of p variables using struc-
ture learning and divide-and-conquer. The generative
model begins by partitioning the set of p variables into
blocks using a Chinese restaurant process. This step
is CrossCat’s “outer” clustering, since it partitions the
columns of a data table where variables correspond to
columns, and records correspond to rows. Let π de-
note the partition of [p] whose k-th block is Vk ⊆ [p]: for
j 6= k, all variables in Vk are mutually (marginally and
conditionally) independent of all variables in Vj . Within
block k, the variables x[r,Vk] follow a Dirichlet process
mixture model (Escobar and West, 1995), where we fo-
cus on the case the joint distribution factorizes given the
latent cluster assignment zkr . This step is an “inner” clus-
tering in CrossCat, since it specifies a cluster assignment

for each row in block k. CrossCat’s combinatorial struc-
ture requires detailed notation to track the latent variables
and dependencies between them. The generative process
for an exchangeable sequence (X1, . . . ,XN ) of N ran-
dom vectors is summarized below.

Table 1: Symbols used to describe CrossCat prior

Symbol Description
α0 Concentration hyperparameter of column CRP
α1 Concentration hyperparameter of row CRP
vc Index of variable c in column partition
Vk List of variables in block k of column partition
zkr Cluster index of r in row partition of block k
Cky List of rows in cluster y of block k
Mc Joint distribution of data for variable c
λc Hyperparameters of Mc

X[r,c] r-th observation of variable c
SET(l) Unique items in list l

CROSSCAT PRIOR

1. Sample column partition into blocks.
v = (v1, . . . , vp) ∼ CRP(·|α0)
Vk ← {c∈ [p] : vc = k} foreach k∈ SET(v)

2. Sample row partitions within each block.

zk =(zk1 , . . . , z
k
N ) ∼ CRP(·|α1) foreach k∈ SET(v)

Cky ←
{
r∈ [N ] : zkr = y

}
foreach k∈ SET(v)
foreach y ∈ SET(zk)

3. Sample data jointly within row cluster.{
X[r,c] : r ∈ Cky

}
∼Mc(·|λc) foreach k∈ SET(v)

foreach y ∈ SET(zk)
foreach c∈Vk



Sparse Tabular Database

country oil hdi snow government
Australia 19 parliamentary
Lebanon 145 1.3 semi-presidential
Swaziland 17 110 monarchy
USA 31 197 2.9 presidential
China 21 3.4 politburo
Greece 03 180 parliamentary
Peru 147 1.1 presidential
. . . . . . . . . . . . . . .

BayesDB Modeling Posterior CrossCat Structures

O H S G O H S G O H S G

Model φ̂1 Model φ̂2 Model φ̂3

BQL Predictive Relevance Query

%bql SELECT "country", "oil", "hdi"
... FROM population
... WHERE "government" IS NOT 'monarchy'
... ORDER BY
... RELEVANCE PROBABILITY
... TO HYPOTHETICAL ROW WITH VALUES
... (("oil"=27, "snow"=0.2, "hdi"=180))
... IN THE CONTEXT OF "hdi"

Query Results

country oil hdi
USA 31 197
Australia 19
Greece 03 180
Peru 17 147
China 21
Lebanon 145
... ... ...

CROSSCAT-INCORPORATE-RECORD (Algorithm 3)
CROSSCAT-PREDICTIVE-RELEVANCE (Algorithm 1)

BayesDB Query Engine

Country Relevance Prob
φ̂1 φ̂2 φ̂3 avg

China 0 1 0 0.33
USA 1 1 1 1.00
Lebanon 0 0 0 0.00
Greece 1 0 1 0.66
Australia 1 0 1 0.66
Peru 1 0 0 0.33
. . . . . . . . . . . .

SQL
Sorting

Figure 3: BayesDB workflow for computing context-specific predictive relevance between database records. Model-
ing and inference in BayesDB produces an ensemble of posterior CrossCat model structures. Each structure specifies
(i) a column partition for the factorization of the joint distribution of all variables in the database, using a Chinese resta-
raunt process; and (ii) a separate row partition within each block of variables, using a Dirichlet process mixture. The
column partition clusters variables into different “contexts”, where all variables in a context are probably dependent
on one another. With each context, the row partition clusters records which are probably informative of one another.
End-user queries for predictive relevance are expressed in Bayesian Query Langauge. The BQL interpreter aggregates
relevance probabilities across the ensemble, and can use them as a ranking function in a probabilistic ORDER BY query.

The representation of CrossCat in this paper assumes that
data within a cluster is sampled jointly (step 3), marginal-
izing over cluster-specific distributional parameters:

Mc(x[Cky ,c], λc) =

∫
θ

∏
r∈Cky

p(x[r,c]|θ)p(θ|λc)dθ.

This assumption suffices for our development of pre-
dictive relevance, and is applicable to a broad class of
statistical data types (Saad and Mansinghka, 2016) with
conjugate prior-likelihood representations such as Beta-
Bernoulli for binary, Dirichlet-Multinomial for categori-
cal, Normal-Inverse-Gamma-Normal for real values, and
Gamma-Poisson for counts.

Given dataset D, we refer to Obermeyer et al. (2014) and
Mansinghka et al. (2016) for scalable algorithms for pos-
terior inference in CrossCat, and assume we have access
to an ensemble of H posterior samples

{
φ̂1, . . . , φ̂H

}
where each φ̂h is a realization of all variables in Table 1.

3.1 Estimating predictive relevance using CrossCat

We now describe how to use posterior samples of Cross-
Cat to efficiently estimate the predictive relevance proba-
bilityRc(Q, r) from Eq (1). Letting c denote the context
variable, we formalize the novel variable c∗ as a fresh
column in the tabular population which is assigned to
the same block k as c (i.e. k= vc = vc∗). As shown
by Saad and Mansinghka (2017), structural dependen-
cies induced by CrossCat’s variable partition are related
to an upper-bound on the probability there exists a statis-
tical dependence between c and c∗. To estimate Eq (1),
we first treat the mutual information between X[q,c∗] and
X[r,c∗] as a derived random variable, which is a function
of their random cluster assignments zkq and zkr ,

(zkq , z
k
r ) 7→ I(X[q,c∗] : X[r,c∗]|zkq , zkr , α1, λc∗). (4)

The key insight, implied by step 3 of the CrossCat prior,
is that, conditioned on their assignments, rows from dif-



ferent clusters are sampled independently, which gives

zkq 6= zkr

⇐⇒ p(x[q,c∗], x[r,c∗]|zkq , zkr , λc∗ , α1,D) =

p(x[q,c∗]|zkq , λc∗ , α1,D)p(x[r,c∗]|zkr , λc∗ , α1,D)

⇐⇒ I(X[q,c∗] : X[r,c∗]|zkq , zkr , α1, λc∗) = 0, (5)

where the final implication follows directly from the def-
inition of mutual information in Eq (2). Note that Eq (5)
does not depend on the particular choice of λc∗ , and
indeed this hyperparameter is never represented explic-
itly. Moreover, hyperparameter α1 (corresponding to α
in Figure 2) is the concentration of the Dirichlet process
for CrossCat row partitions.

Eq (5) implies that we can estimate the probability of
non- zero mutual information between X[r,c∗] and each
X[q,c∗] for q ∈Q by forming a Monte Carlo estimate
from the ensemble of posterior CrossCat samples,

Rc(Q, r)

= P

⋂
q∈Q

(
I(X[q,c∗] : X[r,c∗]) > 0

) ∣∣∣∣ λc∗ , α1,D


= P

⋂
q∈Q

(
zvcq = zvcr

) ∣∣∣∣ α1,D


≈ 1

H

H∑
h=1

I
⋂
q∈Q

(
ẑ
v̂hc ,h
q = ẑ

v̂hc ,h
r

) , (6)

where v̂hc indexes the context block, and ẑv̂
h
c ,h
r denotes

cluster assignment of r in the row partition of v̂hc , accord-
ing to the sample φ̂h. Algorithm 1 outlines a procedure
(used by the BayesDB query engine from Figure 3) for
formulating a Monte Carlo based estimator for a predic-
tive relevance query using CrossCat.

Algorithm 1 CROSSCAT-PREDICTIVE-RELEVANCE

Require:

 CrossCat samples: φ̂h for h = 1, . . . ,H
query rows: Q = {qi : 1 ≤ i ≤ |Q|}
context variable: c

Ensure: predictive relevance of each existing row in D toQ
1: for r = 1, . . . , N do . for each existing row
2: for h = 1, . . . , H do . for each CrossCat sample
3: k ← v̂hc . retrieve the context block
4: for q ∈ Q do . for each query row
5: if ẑk,hq 6= ẑk,hr then . r and q are different clusters
6: Rh

c (Q, r)← 0 . r irrelevant to some q
7: break
8: else . r in same cluster as all q ∈ Q
9: Rh

c (Q, r)← 1 . r relevant to all q
10: Rc(Q, r)← 1

H

∑H
h=1R

h
c (Q, r) . average relevances

11: return {Rc(Q, r) : 1 ≤ r ≤ N}

3.2 Optimizing the estimator using a sparse
matrix-vector multiplication

In this section, we show how to greatly optimize the
naive, nested for-loop implementation in Algorithm 1 by
instead computing predictive relevance for all r through
a single matrix-vector multiplication.

Define the pairwise cluster co-occurrence matrix Sk,h

for block k of CrossCat sample φ̂h to have binary en-
tries Sk,hi,j = I[ẑk,hi = ẑk,hj ]. Furthermore, let 1Q denote a
length-N vector with a 1 at indexes q ∈Q and 0 other-
wise. We vectorizeRc(Q, r) across r∈ [N ] by:

uh =
1

|Q|
Sk,h 1Q h = 1, . . . ,H (7)

Rc(Q, ·) =
1

H

H∑
h=1

uh. (8)

The resulting length-N vector uh in Eq (7) satisfies
uhr = 1 if and only if ẑk,hr = ẑk,hq for all q ∈Q, which
we identify as the argument of the indicator function in
Eq (6). Finally, by averaging uh across the H samples in
Eq (8), we arrive at the vector of relevance probabilities.

For large datasets, constructing the N×N matrix Sk,h

using Θ(N2) operations is prohibitively expensive. Al-
gorithm 2 describes an efficient procedure that ex-
ploits CrossCat’s sparsity to build Sk,h in expected time
�O(N2) by using (i) a sparse matrix representation,
and (ii) CrossCat’s partition data structures to avoid con-
sidering all pairs of rows. This fast construction means
that Eq (7) is practical to implement for large data tables.

The algorithm’s running time depends on (i) the number
of clusters |SET(ẑk)| in line 1; (ii) the average number of
rows per cluster |Ĉky | in line 2; and (iii) the data structures
used to represent Sk,h in line 3. Under the CRP prior, the
expected number of clusters isO(α1 log(N)), which im-
plies an average occupancy of O(N/(α1 log(N))) rows
per cluster. If the sparse binary matrix is stored with a
list-of-lists representation, then the update in line 3 re-
quires O(1) time. Furthermore, we emphasize that since
Sk,h does not dependQ, its cost of construction is amor-
tized over an arbitrary number of queries.

Algorithm 2 CROSSCAT-CO-OCCURRENCE-MATRIX

Require: CrossCat sample φ̂h; block index k.
Ensure: Pairwise co-occurrence matrix Sk,h

1: for y ∈ SET(ẑk) do . for each cluster in block k
2: for r ∈ Ĉky do . for each row in the cluster
3: Set Sk,h

r,j = 1, where j ∈ Ĉky . update the matrix

4: return Sk,h



3.3 Computing predictive relevance probabilities
for query records that are not in the database

We have so far assumed that the query records must con-
sist of items that already exist in the database. This
section relaxes this restrictive assumption by illustrat-
ing how to compute relevance probabilities for search
records which do not exist in D, and are instead speci-
fied by the user on a per-query basis (refer to the BQL
query in Figure 3 for an example of a hypothetical query
record). The key idea is to (i) incorporate the new records
into each CrossCat sample φ̂h by using a Gibbs-step
to sample cluster assignments from the joint posterior
(Neal, 2000); (ii) compute Eq (7) on the updated sam-
ples; and (iii) unincorporate the records, leaving the orig-
inal samples unmutated.

Letting
{
x[N+i] : 1 ≤ i ≤ t

}
denote t (partially ob-

served) new rows and Q = {N+1, . . . , N+t} the
query, we compute Rc(Q, r) for all r by first apply-
ing CROSSCAT-INCORPORATE-RECORD (Algorithm 3) to
each q ∈Q sequentially. Sequential incorporation cor-
responds to sampling from the sequence of predictive
distributions, which, by exchangeability, ensures that
each updated φ̂h contains a sample of cluster assign-
ments from the joint distribution, guaranteeing correct-
ness of the Monte Carlo estimator in Eq (6). Note that
since CrossCat specifies a non-parametric mixture, the
proposal clusters include all existing clusters, plus one
singleton cluster max(zk) + 1. We next update the co-
occurrence matrices in time linear in the size of the sam-
pled cluster and then evaluate Eq (7) and (8). To unincor-
porate, we reverse lines 7-9 and restore the co-occurrence
matrices. Figure 4 confirms that the runtime scaling
is asymptotically linear, varying the (i) number of new
rows, (ii) fraction of variables specified for the new rows
that are in the context block (i.e. query sparsity), (iii)
number of clusters in the context block, and (iv) number
of variables in the context block.

Algorithm 3 CROSSCAT-INCORPORATE-RECORD

Require: CrossCat sample φ; context c; new row xN+1

Ensure: Updated crosscat sample φ′

1: k ← vc . Retrieve block of context variable
2: Y ← max(zk) + 1 . Retrieve proposal clusters
3: for y=1, . . . , Y do . Compute cluster probabilities

4: ny ←

{∣∣Cky ∣∣ if y ∈ zk

α1 if y = max(zk)+ 1

5: ly ←
(∏

c∈Vk Mc(x[N+1,c]|x[Ck
y ,c], λc)

)
ny

6: zkN+1 ∼ CATEGORICAL(l1, . . . , lY ) . Sample cluster
7: z′

k ← zk ∪
{
zkN+1

}
. Append cluster assignment

8: C′kzk
N+1
← Ck

zk
N+1
∪ {N+1} . Append row to cluster

9: D′ ← D ∪
{
x[N+1,Vk]

}
. Append record to database

10: return φ′ . Return the updated sample
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Figure 4: Empirical measurements of the asymp-
totic scaling of CROSSCAT-INCORPORATE-RECORD (Algo-
rithm 3) on the Gapminder dataset (Section 4). The color
of each measurement indicates the number of variables
in the block of the context variable; each column shows
a different number of records (1, 2, 4, and 8) incorpo-
rated by the algorithm. The top panels shows that, for
a fixed number of variables in the context, the runtime
(in milliseconds) decays linearly with the sparsity of the
hypothetical records (dimensions which are not in the
same block as the context variable are ignored). The
lower panels show the runtime increasing linearly with
the number of clusters in the context; the number of vari-
ables in the context dictates the slope of the curve.

4 Applications

This section illustrates the efficacy of predictive rele-
vance in BayesDB by applying the technique to sev-
eral search problems in real-world, sparse, and high-
dimensional datasets of public interest.2

4.1 College Scorecard

The College Scorecard (Council of Economic Advisers,
2015) is a federal dataset consisting of over 7000 col-
leges and 1700 variables, and is used to measure and im-
prove the performance of US institutions of higher edu-
cation. These variables include a broad set of categories

2Appendix D contains a further application to a dataset of
classic cars from 1987. Appendix A formally describes the in-
tegration of RELVANCE PROBABILITY into BayesDB as an ex-
pression in the Bayesian Query Language (Figure 3).



Pairwise CrossCat predictive relevances in different contexts

(a) CrossCat (life expectancy) (b) CrossCat (exports, % gdp)

Pairwise cosine similarities in different contexts

(c) Cosine (life expectancy) (d) Cosine (exports, % gdp)

Concept Representative Countries in the Concept

Low-Income Nations Burundi, Ethiopia, Uganda, Benin, Malawi, Rwanda, Togo, Guinea, Senegal, Afghanistan, Malawi
Post-Soviet Nations Russia, Ukraine, Bulgaria, Belarus, Slovakia, Serbia, Croatia, Poland, Hungary, Romania, Latvia
Western Democracies France, Britain, Germany, Netherlands, Italy, Denmark, Finland, Sweden, Norway, Australia, Japan
Small Wealthy Nations Qatar, Bahrain, Kuwait, Emirates, Singapore, Israel, Gibraltar, Bermuda, Jersey, Cayman Islands

(e) Countries which are mutually predictive in the context of “life expectancy” according to CrossCat’s relevance matrix (a).

Figure 5: (a) – (d) Pairwise heatmaps of countries from the Gapminder dataset in the contexts of “life expectancy at
birth” and “exports of goods and services (% of gdp) ”, using CrossCat predictive relevance and cosine similarity. Each
row and column in a matrix is a country, and a cell value (between 0 and 1) indicates the strength of match between
those two countries. (e) CrossCat learns a sparse set of relevances; for “life expectancy”, these broadly correspond
to common-sense taxonomies of countries based on shared geographic, political and macroeconomic characteristics.
These concepts were manually labeled by inspecting clusters of countries in matrix (a); the colors in the matrix
correspond to countries in the table which belong to the concept of that color. Note that the relevance structure differs
significantly when ranking in the context of “exports, % gdp”, as shown by the colors in matrix (b) where the clusters of
mutually relevant countries form a different pattern than in (a). Cosine similarity learns dense, noisy sets of spuriously
high-ranking countries with coarser structure, as shown in (c) and (d). Refer to Appendix C for more baselines.

such as the campus characteristics, academic programs,
student debt, tuition fees, admission rates, instructional
investments, ethnic distributions, and completion rates.
We analyzed a subset of 2000 schools (four-year institu-
tions) and 100 variables from the categories listed above.

Suppose a student is interested in attending a city univer-
sity with a set of desired specifications. Starting with a
standard SQL Boolean search in Figure 1a (on p. 2) they
find only one matching record, which requires iteratively
rewriting the search conditions to retrieve more results.

Figure 1b instead expresses the search query as a hypo-
thetical row in a BQL PREDICTIVE RELEVANCE query
(which invokes the technique in Section 3.3). The top-
ranking records contain first-rate schools, but their ad-
mission rates are much too stringent. In Figure 1c, the
user re-expresses the BQL query to rank schools by pre-
dictive relevance, in the context of instructional invest-
ment, to a subset of the first-rate schools discovered
in 1b. Combining ORDER BY PREDICTIVE RELEVANCE
with Boolean conditions in the WHERE clause returns an-
other set of top-quality schools with city-campuses that
are less competitive than those in 1b, but have quantita-
tive metrics that are much better than national averages.

4.2 Gapminder

Gapminder (Rosling, 2008) is an extensive longitudinal
dataset of over ∼320 global macroeconomic variables
of population growth, education, climate, trade, welfare
and health for 225 countries. Our experiments are based
on a cross-section of the data from the year 2002. The
data is sparse, with 35% of the data missing. Figure 5
shows heatmaps of the pairwise predictive relevances for
all countries in the dataset under different contexts, and
compares the results to cosine similarity. Clusters of
predictively relevant countries form common-sense tax-
onomies; refer to the caption for further discussion.

Figure 6 finds the top-15 countries in the dataset ordered
by their predictive relevance to the United States, in the
context of “life expectancy at birth”. Table 6b shows
representative variables which are in the context; these
variables have the highest dependence probability with
the context variable, according a Monte Carlo estimate
using 64 posterior CrossCat samples. The countries in
Figure 6a are all rich, Western democracies with highly
developed economies and advanced healthcare systems.

To quantitatively evaluate the quality of top-ranked coun-
tries returned by predictive relevance, we ran the tech-



%bql .barplot
... ESTIMATE "country",
... RELEVANCE PROBABILITY
... TO EXISTING ROWS IN
... ('United States')
... IN THE CONTEXT OF
... "life expectancy at birth"
... AS "rel_us_lifexp"
... FROM gapminder
... ORDER BY "rel_us_lifexp" DESC
... LIMIT 15
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(a) Relevance to USA in the context of “life expectancy”

Measles, mumps, & rubella vaccines (% population)
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Dead children per woman
access to improved sanitation facilities (% population)
access to improved drinking water sources (% population)
human development index
body mass index (kg/m2)
murder rate (per 100,000)
food supply (kilocalories per person)
contraceptive prevalence (% women ages 15-49)
alcohol consumption (liters per adult)
prevalence of tobacco use among adults (% population)

(b) Variables in the context of “life expectancy at birth”

Figure 6: Using BQL to search for the top 15 countries in
the Gapminder dataset ranked by their relevance to the United
States in the context of “life expectancy at birth” finds rich,
Western democracies with advanced healthcare systems.

nique on 10 representative search queries (varying the
country and context variable) and obtained the top 10 re-
sults for each query. Figure 7 shows the queries, and hu-
man preferences for the results from predictive relevance
versus results from cosine similarity between the coun-
try vectors. We defined the context for cosine similarity
by the 320-dimensional vectors down to 10 dimensions
and selecting variables which are most dependent with
the context variable according to CrossCat’s dependence
probabilities. To deal with sparsity, which cosine simi-
larity cannot handle natively, we imputed missing values
using sample medians; imputation techniques like MICE
(Buuren and Groothuis-Oudshoorn, 2011) resulted in lit-
tle difference (Appendix C).

-.75 -.50 -.25 0 .25 .50 .75
Average Preference (70 Humans)

Singapore–Urban Population

Hong Kong–Urban Population

United Kingdom–Life Expectancy

Qatar–Life Expectancy

Japan–Life Expectancy

Bulgaria–Life Expectancy

Bangladesh–Life Expectancy

Australia–Life Expectancy

United States–Democracy Score

Saudi Arabia–Democracy Score

Search Query (Country–Context) Prefer Cosine Prefer CrossCat

Figure 7: Comparing human preferences for the top-ranked
countries returned by cosine similarity versus CrossCat predic-
tive relevance, in 10 representative search queries (shown on
the y-axis). For each query, human subjects were given the top
10 most relevant countries, according to both cosine and Cross-
Cat, and then asked to choose which results they preferred, if
any. We scored the responses in the following way: “countries
returned by cosine are more relevant” (score = -1); “countries
returned by CrossCat are more relevant” (score = +1); “both
results are equally relevant” (score = 0). The x-axis shows
the scores averaged across 70 humans, surveyed on the cloud
through crowdflower.com. Error bars represent one standard
error of the mean. For most of the queries, human preferences
are biased in favor of CrossCat’s rankings. Further details on
the experimental design and results are given in Appendix B.

5 Discussion

This paper has shown how to perform probabilistic
searches of structured data by combining ideas from
probabilistic programming, information theory, and non-
parametric Bayes. The demonstrations suggest the tech-
nique can be effective on sparse, real-world databases
from multiple domains and produce results that human
evaluators often preferred to a standard baseline.

More empirical evaluation is clearly needed, ideally in-
cluding tests of hundreds or thousands of queries, more
complex query types, and comparisons with query results
manually provided by human domain experts. In fact,
search via predictive relevance in the context of variables
drawn from learned representations of data could poten-
tially provide a meaningful way to compare representa-
tion learning techniques. It also may be fruitful to build
a distributed implementation suitable for database rep-
resentations of web-scale data, including photos, social
network users, and web pages.

Relatively unstructured probabilistic models, such as
topic models, proved sufficient for making unstructured
text data far more accessible and useful. We hope this pa-
per helps illustrate the potential for structured probabilis-
tic models to improve the accessibility and usefulness of
structured data.

crowdflower.com
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Appendices
A Integrating predictive relevance as a

ranking function in BayesDB

This section describes the integration of predictive rele-
vance into BayesDB (Mansinghka et al., 2015; Saad and
Mansinghka, 2016), a probabilistic programming plat-
form for probabilistic data analysis.

New syntaxes in the Bayesian Query Language (BQL)
allow a user to express predictive relevance queries
where the query set can be an arbitrary combination of
existing and hypothetical records. We implement predic-
tive relevance in BQL as an expression with the follow-
ing syntaxes, depending on the specification of the query
records.

• Query records are existing rows.

RELEVANCE PROBABILITY
TO EXISTING ROWS IN <expression>
IN THE CONTEXT OF <context-var>

• Query records are hypothetical rows.

RELEVANCE PROBABILITY
TO HYPOTHETICAL ROWS WITH VALUES (<values>)
IN THE CONTEXT OF <context-var>

• Query records are existing and hypothetical rows.

RELEVANCE PROBABILITY
TO EXISTING ROWS IN <expression>
AND HYPOTHETICAL ROWS WITH VALUES (<values>)
IN THE CONTEXT OF <context-var>

The expression is formally implemented as a 1-row BQL
estimand, which specifies a map r 7→ Rc(Q, r) for each
record in the table. As shown in the expressions above,
query records are specified by the user in two ways: (i)
by giving a collection of EXISTING ROWS, whose pri-
mary key indexes are either specified manually, or re-
trieved using an arbitrary BQL <expression>; (ii) by
specifying one or more HYPOTHETICAL RECORDS with
their <values> as a list of column-value pairs. These
new rows are first incorporated using Algorithm 3 from
Section 3.3 and they are then unincorporated after the
query is finished. The <context-var> can be any vari-
able in the tabular population.

As a 1-row function in the structured query language, the
RELEVANCE PROBABILITY expression can be used in a
variety of settings. Some typical use-cases are shown
in the following examples, where we use only existing
query rows for simplicity.

• As a column in an ESTIMATE query.

ESTIMATE
"rowid",
RELEVANCE PROBABILITY

TO EXISTING ROWS IN <expression>
IN THE CONTEXT OF <context-var>

FROM <table>

• As a filter in WHERE clause.

ESTIMATE
"rowid"

FROM <table>
WHERE (

RELEVANCE PROBABILITY
TO EXISTING ROWS IN <expression>
IN THE CONTEXT OF <context-var>

) > 0.5

• As a comparator in an ORDER BY clause.

ESTIMATE
"rowid"

FROM <table>
ORDER BY

RELEVANCE PROBABILITY
TO EXISTING ROWS IN <expression>
IN THE CONTEXT OF <context-var>

[ASC | DESC]

It is also possible to perform arithmetic operations and
Boolean comparisons on relevance probabilities.

• Finding the mean relevance probability for a set of
rowids of interest.

ESTIMATE
AVG (

RELEVANCE PROBABILITY
TO EXISTING ROWS IN <expression>
IN THE CONTEXT OF <context-var>

)
FROM <table>
WHERE "rowid" IN <expression>

• Finding rows which are more relevant in some con-
text c0 than in another context c1.

ESTIMATE
"rowid"

FROM <table>
WHERE (

RELEVANCE PROBABILITY
TO EXISTING ROWS IN <expression>
IN THE CONTEXT OF <context-var-0>

) > (
RELEVANCE PROBABILITY

TO EXISTING ROWS IN <expression>
IN THE CONTEXT OF <context-var-1>

)



B Predictive relevance and cosine similarity on Gapminder human evaluation queries
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Figure 8: The top-10 ranking countries returned by predictive relevance and cosine similarity for each of the 10
queries used for the human evaluation in Figure 7. For each country-context search query, we showed seventy subjects
(surveyed on the AI crowdsourcing platform crowdflower.com) a pair of tables. We then asked each subject to select
the table which contains more relevant results to the search query, or report that both tables contain equally relevant
results. The tables above show the top-ranked countries using CrossCat predictive relevance and cosine similarity,
with a histogram of the human responses. The caption of Figure 7 describes how we converted these raw histograms
into scores between -1 and 1 that are displayed in the main text. The tables showing countries ranked using CrossCat
predictive relevance are: Saudi Arabia (A); United States (B); Australia (A); Bangladesh (B); Bulgaria (B); Japan (B);
Qatar (A); UK (B); Hong Kong (B); Singapore (B).

crowdflower.com


C Pairwise heatmaps on Gapminder countries using baseline methods
COSINE SIMILARITY
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BRAY-CURTIS COEFFICENT
Median Imputation (5 vars) Median Imputation (10 vars) Median Imputation (15 vars) Median Imputation (20 vars)

MICE Imputation (5 vars) MICE Imputation (10 vars) MICE Imputation (15 vars) MICE Imputation (20 vars)

EUCLIDEAN DISTANCE
Median Imputation (5 vars) Median Imputation (10 vars) Median Imputation (15 vars) Median Imputation (20 vars)

MICE Imputation (5 vars) MICE Imputation (10 vars) MICE Imputation (15 vars) MICE Imputation (20 vars)

Figure 9: Pairwise heatmaps of countries in Gapminder dataset in the context of “life expectancy at birth”, using various distance
and similarity measures on the country vectors. Each heatmap is labeled with the imputation technique (median or MICE (Buuren
and Groothuis-Oudshoorn, 2011)), and the number of variables in the context (i.e. dimensionality of the vectors). These techniques
struggle with sparsity and their structures are much noisier than the results of relevance probability shown in Figure 5a and Table 5e.



D Application to a dataset of 1987 cars

%bql CREATE TABLE cars_1987_raw
... FROM 'cars_1987.csv'

%bql SELECT
... "make",
... "price",
... "wheels",
... "doors",
... "engine",
... "horsepower",
... "body"
... FROM cars_1987_raw
... WHERE "price" < 45000
... AND "wheels" = 'rear'
... AND "doors" = 'four
... AND "engine" >= 250
... AND "horsepower" > 180
... AND "body" sedan

(a) Suppose a customer wishes to purchase a classic car from 1987 with a budget of $45,000
and a desired set of technical specifications. They first load a csv file of 200 cars with 26
variables into a BayesDB table, and then specify the search conditions as Boolean filters in
a SQL WHERE clause. Due to sparsity in the table, only one record is returned. To obtain
more relevant results, the user needs to broaden the specifications in the query.

make price wheels doors engine horsepower body

mercedes 40,960 rear four 308 184 sedan

%mml CREATE POPULATION
... cars_1987
... FOR cars_1987_raw
... WITH SCHEMA (
... GUESS STATISTICAL
... TYPES FOR (*);
... )

%mml CREATE METAMODEL m FOR cars_1987
... WITH BASELINE crosscat;

%mml INITIALIZE 100 MODELS FOR m;
%mml ANALYZE m FOR 1 MINUTE;

%bql .heatmap ESTIMATE
... DEPENDENCE PROBABILITY
... FROM PAIRWISE VARIABLES
... OF cars_1987

%bql SELECT
... "make",
... "price",
... "wheels",
... "doors",
... "engine-size",
... "horsepower",
... "style"
... FROM cars_1987
... ORDER BY
... RELEVANCE PROBABILITY
... TO HYPOTHETICAL ROW ((
... "price" = 42000,
... "wheels" = 'rear',
... "doors" = 'four',
... "engine" = 250,
... "horsepower" = 180,
... "body" = 'sedan'
... ))
... IN THE CONTEXT OF
... "price"
... LIMIT 10

(b) Building CrosssCat models in BayesDB for the cars_1987 population learns a full joint
probabilistic model over all variables. The ESTIMATE DEPENDENCE PROBABILITY query
allows the user to plot a heatmap of probable dependencies between car characteristics. The
context of “price” probably contains the majority of other variables in the search query.
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(c) Using ORDER BY RELEVANCE PROBABILITY in BQL ranks each car in the table by its
relevance to the user’s specifications, which are specified as a hypothetical row. The top-10
ranked cars by probability of relevance to the search query, in the context of price, are
shown below in the table below. The user can now inspect further characteristics of this
subset of cars, to find ones that they like best.

make price wheels doors engine horsepower body

jaguar 35,550 rear four 258 176 sedan
jaguar 32,250 rear four 258 176 sedan
mercedes 40,960 rear four 308 184 sedan
mercedes 45,400 rear two 304 184 hardtop
mercedes 34,184 rear four 234 155 sedan
mercedes 35,056 rear two 234 155 convertible
bmw 36,880 rear four 209 182 sedan
bmw 41,315 rear two 209 182 sedan
bmw 30,760 rear four 209 182 sedan
jaguar 36,000 rear two 326 262 sedan

Figure 10: A session in BayesDB for probabilistic model building and search in the cars dataset (Kibler et al., 1989).
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Abstract

Datasets with hundreds of variables and
many missing values are commonplace. In
this setting, it is both statistically and com-
putationally challenging to detect true pre-
dictive relationships between variables and
also to suppress false positives. This paper
proposes an approach that combines prob-
abilistic programming, information theory,
and non-parametric Bayes. It shows how to
use Bayesian non-parametric modeling to (i)
build an ensemble of joint probability mod-
els for all the variables; (ii) efficiently detect
marginal independencies; and (iii) estimate
the conditional mutual information between
arbitrary subsets of variables, subject to a
broad class of constraints. Users can access
these capabilities using BayesDB, a proba-
bilistic programming platform for probabilis-
tic data analysis, by writing queries in a sim-
ple, SQL-like language. This paper demon-
strates empirically that the method can
(i) detect context-specific (in)dependencies
on challenging synthetic problems and (ii)
yield improved sensitivity and specificity over
baselines from statistics and machine learn-
ing, on a real-world database of over 300
sparsely observed indicators of macroeco-
nomic development and public health.

1 Introduction

Sparse databases with hundreds of variables are com-
monplace. In these settings, it can be both statisti-
cally and computationally challenging to detect pre-

Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Florida, USA. JMLR: W&CP volume 54. Copy-
right 2017 by the author(s).

dictive relationships between variables [4]. First, the
data may be incomplete and require cleaning and im-
putation before pairwise statistics can be calculated.
Second, parametric modeling assumptions that under-
lie standard hypothesis testing techniques may not
be appropriate due to nonlinear, multivariate, and/or
heteroskedastic relationships. Third, as the number
of variables grows, it becomes harder to detect true
relationships while suppressing false positives. Many
approaches have been proposed (see [17, Table 1] for a
summary), but they each exhibit limitations in prac-
tice. For example, some only apply to fully-observed
real-valued data, and most do not produce probabilis-
tically coherent measures of uncertainty. This pa-
per proposes an approach to dependence detection
that combines probabilistic programming, informa-
tion theory, and non-parametric Bayes. The end-to-
end approach is summarized in Figure 1. Queries
about the conditional mutual information (CMI) be-
tween variables of interest are expressed using the
Bayesian Query Language [18], an SQL-like proba-
bilistic programming language. Approximate infer-
ence with CrossCat [19] produces an ensemble of joint
probability models, which are analyzed for structural
(in)dependencies. For model structures in which de-
pendence cannot be ruled out, the CMI is estimated
via Monte Carlo integration.

In principle, this approach has significant advantages.
First, the method is scalable to high-dimensional data:
it can be used for exploratory analysis without re-
quiring expensive CMI estimation for all pairs of vari-
ables. Second, it applies to heterogeneously typed,
incomplete datasets with minimal pre-processing [19].
Third, the non-parametric Bayesian joint density esti-
mator used to form CMI estimates can model a broad
class of data patterns, without overfitting to highly ir-
regular data. This paper shows that the proposed ap-
proach is effective on a real-world database with hun-
dreds of variables and a missing data rate of ∼35%,
detecting common-sense predictive relationships that
are missed by baseline methods while suppressing spu-
rious relationships that baselines purport to detect.
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Sparse Tabular Database

X Y W Z
19 Congo 170 1.4
14 182
21 India 3.4
17 Lebanon 195

Chile 115 1.1
Australia 2.9

31 190 2.3
. . . . . . . . . . . .

BayesDB Modeling Posterior CrossCat Structures

X Y W Z X Y W Z X Y W Z

Model Ĝ1 Model Ĝ2 Model Ĝ3

. . .

BQL CMI Query

%bql SIMULATE
... MUTUAL INFORMATION OF
... X WITH Y GIVEN W
... FROM MODELS OF population

BayesDB Query Engine

CrossCat-Cmi
(Algorithm 4a)

IĜ2 (X:Y |W )

IĜ1 (X:Y |W )

IĜ3 (X:Y |W )

. . .

CMI Posterior Distribution

Figure 1: Workflow for computing posterior distributions of the CMI for variables in a data table using
BayesDB. Modeling and inference in BayesDB produces an ensemble of posterior CrossCat samples. Each model
learns a factorization of the joint distribution of all variables in the database, and a Dirichlet process mixture
within each block of dependent variables. For instance, model Ĝ1 specifies that X is independent of (Y,W ) which
in turn is independent of Z, while in Ĝ3, all variables are (structurally) dependent. End-user queries for the
CMI are expressed in the Bayesian Query Language. The BQL interpreter uses CrossCat structures to optimize
the query where possible, by (i) bypassing Monte Carlo estimation completely when the queried variables are
structurally independent, and/or (ii) dropping redundant constraints which are structurally independent of the
queried variables. Values of CMI returned by each model constitute samples from the posterior CMI distribution.

2 Drawing Bayesian inferences about
conditional mutual information

Let x = (x1, x2, . . . , xD) denote a D-dimensional
random vector, whose sub-vectors we denote xA =
{xi : i ∈ A} with joint probability density pG(xA).
The symbol G refers to an arbitrary specification for
the “generative” process of x, and parameterizes all its
joint and conditional densities. The mutual informa-
tion (MI) of the variables xA and xB (under generative
process G) is defined in the usual way [5]:

IG(xA:xB) = E
(xA,xB)

[
log

(
pG(xA,xB)

pG(xA)pG(xB)

)]
. (1)

The mutual information can be interpreted as
the KL-divergence from the product of marginals
pG(xA)pG(xB) to the joint distribution pG(xA,xB),
and is a well-established measure for both the exis-
tence and strength of dependence between xA and xB
(Section 2.2). Given an observation of the variables
{xC=x̂C}, the conditional mutual information (CMI)
of xA and xB given {xC=x̂C} is defined analogously:

IG(xA:xB|xC=x̂C) =

E
(xA,xB)|x̂C

[
log

(
pG(xA,xB|x̂C)

pG(xA|x̂C)pG(xB|x̂C)

)]
. (2)

Estimating the mutual information between the vari-
ables of x given a dataset of observations D remains

an open problem in the literature. Various parametric
and non-parametric methods for estimating MI exist
[21, 22, 15]; see [24] for a comprehensive review. Tradi-
tional approaches typically construct a point estimate
Î(xA:xB) (and possible confidence intervals) assuming
a “true value” of I(xA:xB). In this paper, we instead
take a non-parametric Bayesian approach, where the
mutual information itself is a derived random variable;
a similar interpretation was recently developed in in-
dependent work [16]. The randomness of mutual infor-
mation arises from treating the data generating pro-
cess and parameters G as a random variable, whose
prior distribution we denote π. Composing G with the
function h : Ĝ 7→ IĜ(xA:xB) induces the derived ran-
dom variable h(G) ≡ IG(xA:xB). The distribution of
the MI can thus be expressed as an expectation under
distribution π:

P [IG(xA:xB) ∈ S] =
∫

I
[
IĜ(xA:xB) ∈ S

]
π(dĜ)

= E
Ĝ∼π

[
I
[
IĜ(xA:xB) ∈ S

]]
. (3)

Given a dataset D, we define the posterior distribution
of the mutual information, P [IG(xA:xB) ∈ S|D] as the
expectation in Eq (3) under the posterior π(·|D). We
define the distribution over conditional mutual infor-
mation P [IG(xA:xB|x̂C) ∈ S] analogously to Eq (3),
substituting the CMI (2) inside the expectation.
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2.1 Estimating CMI with generative
population models

Monte Carlo estimates of CMI can be formed for mod-
els expressed as generative population models [18, 28],
a probabilistic programming formalism for character-
izing the data generating process of an infinite array
of realizations of random vector x = (x1, x2, . . . , xD).
Listing 1 summarizes elements of the GPM interface.

Listing 1 GPM interface for simulating from and as-
sessing the density of conditional and marginal distri-
butions of a random vector x.

Simulate(G, query: Q= {qj}, condition: x̂E=
{
x̂ej
}
)

Return a sample s ∼ pG(xQ|x̂E ,D).

LogPdf(G, query: x̂Q=
{
x̂qj
}
, condition: x̂E=

{
x̂ej
}
)

Return the joint log density pG(x̂Q|x̂E ,D)

These two interface procedures can be combined to
derive a simple Monte Carlo estimator for the CMI
(2), shown in Algorithm 2a.

Algorithm 2a Gpm-Cmi

Require: GPM G; query A, B; condition x̂C ; accuracy T
Ensure: Monte Carlo estimate of IG (xA:xB|xC=x̂C)
1: for t = 1, . . . , T do
2: (x̂A, x̂B)← Simulate(G,A ∪ B, x̂C)
3: mt

A∪B ← LogPdf(G, x̂A∪B, x̂C)
4: mt

A ← LogPdf(x̂A, x̂C)
5: mt

B ← LogPdf(x̂B, x̂C)
6: return 1

T

∑T
t=1

(
mt
A∪B − (mt

A +mt
B)
)

While Gpm-Cmi is an unbiased and consistent estima-
tor applicable to any probabilistic model implemented
as a GPM, its quality in detecting dependencies is
tied to the ability of G to capture patterns from the
dataset D; this paper uses baseline non-parametric
GPMs built using CrossCat (Section 3).

2.2 Extracting conditional independence
relationships from CMI estimates

An estimator for the CMI can be used to discover sev-
eral forms of independence relations of interest.

Marginal Independence It is straightforward to
see that (xA ⊥⊥G xB) if and only if IG(xA:xB) = 0.

Context-Specific Independence If the event
{xC=x̂C} decouples xA and xB, then they are said
to be independent “in the context” of x̂C , denoted
(xA ⊥⊥G xB| {xC=x̂C}) [3]. This condition is equiv-
alent to the CMI from (2) equaling zero. Thus by
estimating CMI, we are able to detect finer-grained
independencies than can be detected by analyzing the
graph structure of a learned Bayesian network [30].

Conditional Independence If context-specific in-
dependence holds for all possible observation sets

{xC=x̂C}, then xA and xB are conditionally indepen-
dent given xC , denoted (xA ⊥⊥G xB|xC). By the non-
negativity of CMI, conditional independence implies
the CMI of xA and xB, marginalizing out xC , is zero:

IG(xA:xB|xC) = Ê
xC

[IG(xA:xB|xC = x̂C)] = 0. (4)

Figure 2 illustrates different CMI queries which are
used to discover these three types of dependencies in
various data generators; Figure 3 shows CMI queries
expressed in the Bayesian Query Language.

3 Building generative population
models for CMI estimation with
non-parametric Bayes

Our approach to estimating the CMI requires a prior π
and model class G which is flexible enough to emulate
an arbitrary joint distribution over x, and tractable
enough to implement Algorithm 2a for its arbitrary
sub-vectors. We begin with a Dirichlet process mixture
model (DPMM) [12]. Letting Ld denote the likelihood
for variable d, Vd a prior over the parameters of Ld, and
λd the hyperparameters of Vd, the generative process
for N observations D=

{
x[i,1:D] : 1 ≤ i ≤ N

}
is:

DPMM-Prior

α ∼ Gamma(1, 1)

z = (z1, . . . , zN ) ∼ CRP(·|α)
φ[d,k] ∼ Vd(·|λd) d ∈ [D], k ∈ Unique(z)

x[i,d] ∼ Ld(·|φ[d,zi]) i ∈ [N ], d ∈ [D]

We refer to [7, 14] for algorithms for posterior in-
ference, and assume we have a posterior sample
Ĝ = (α,z[1:N ], {φd}) of all parameters in the DPMM.
To compute the CMI of an arbitrary query pattern
IĜ(xA:xB|xC=x̂C) using Algorithm 2a, we need im-
plementations of Simulate and LogPdf for Ĝ. These
two procedures are summarized in Algorithms 3a, 3b.

Algorithm 3a DPMM-Simulate

Require: DPMM G; target A; condition x̂C
Ensure: joint sample x̂A ∼ pG(·|x̂C)
1: (li)

K+1
i=1 ← DPMM-Cluster-Posterior(G, x̂C)

2: zN+1 ∼ Categorical(l1, . . . , lK+1)
3: for a ∈ A do
4: x̂a ∼ La(·|φ[a,zN+1])

5: return x̂A
Algorithm 3b DPMM-LogPdf

Require: DPMM G; target x̂A; condition x̂C
Ensure: log density pG(x̂A|x̂C)
1: (li)

K+1
i=1 ← DPMM-Cluster-Posterior(G, x̂C)

2: for k = 1, . . . ,K + 1 do
3: tk ←

∏
a∈A La(x̂a|φ[a,k])

4: return log
(∑K+1

k=1 (tklk)
)
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(b) The first three plots verify that A, B, and C are marginally independent. The next three plots
show that conditioning on C “couples” the parents A and B (both for fixed values of C ∈ {2,−2},
and marginalizing over all C). The last plot shows that {C = 0} does not couple A and B, due to
symmetry of signum.
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(c) Ground truth
“common-cause”
generator.
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(d) The first three plots verify that A, B, and C are marginally dependent. The next three
plots show that conditioning on A “decouples” the children B and C; the decoupling is weaker for
{A = 0}, because it is 3.4 nats less likely that {A = 1}. The final plot shows the weighted CMI
under these two possibilities.

Figure 2: Posterior distributions of CMI under the DPMM posterior, given 100 data points from canonical Bayes
net structures. Distributions peaked at 0 indicate high probability of (conditional) independence. In both cases,
the posterior CMI distributions correctly detect the marginal, conditional, and context-specific independences in
the “ground truth” Bayes nets, despite the fact that both “common-cause” and “common-effect” structures are
not in the (structural) hypothesis space of the DPMM prior.

Algorithm 3c DPMM-Cluster-Posterior

Require: DPMM G; condition x̂C ;
Ensure: {pG(zN+1 = k) : 1 ≤ k ≤ max(z1:N ) + 1}
1: K ← max(z1:N )
2: for k = 1, . . . ,K + 1 do

3: nk ←
{
| {xi ∈ D : zi = k} | if k ≤ K
α if k = K + 1

4: lk ←
(∏

c∈C Lc(x̂c|φ[c,k])
)
nk

5: return (l1, . . . , lK+1)/
∑K+1

k=1 (lk)

The subroutine DPMM-Cluster-Posterior is used
for sampling (in DPMM-Simulate) and marginalizing
over (in DPMM-LogPdf) the non-parametric mixture
components. Moreover, if Ld and Vd form a conjugate
likelihood-prior pair, then invocations of Ld(x̂d|φ[d,k])
in Algorithms 3a:4 and 3b:3 can be Rao-Blackwellized
by conditioning on the sufficient statistics of data in
cluster k, thus marginalizing out φ[d,k] [26]. This op-
timization is important in practice, since analytical
marginalization can be obtained in closed-form for sev-
eral likelihoods in the exponential family [9]. Finally,
to approximate the posterior distribution over CMI in
(2), it suffices to aggregate DPMM-Cmi from a set of
posterior samples

{
Ĝ1, . . . , ĜH

}
∼iid π(·|D). Figure 2

shows posterior CMI distributions from the DPMM
successfully recovering the marginal and conditional
independencies in two canonical Bayesian networks.

3.1 Inducing sparse dependencies using the
CrossCat prior

The multivariate DPMM makes the restrictive as-
sumption that all variables x = (x1, . . . , xD) are
(structurally) marginally dependent, where their joint
distribution fully factorizes conditioned on the mixture
assignment z. In high-dimensional datasets, imposing
full structural dependence among all variables is too
conservative. Moreover, while the Monte Carlo error
of Algorithm 2a does not scale with the dimensional-
ity D, its runtime scales linearly for the DPMM, and
so estimating the CMI is likely to be prohibitively ex-
pensive. We relax these constraints by using CrossCat
[19], a structure learning prior which induces sparsity
over the dependencies between the variables of x. In
particular, CrossCat posits a factorization of x accord-
ing to a variable partition γ =

{
V1, . . . ,V|γ|

}
, where

Vi ⊆ [D]. For i 6= j, all variables in block Vi are mu-
tually (marginally and conditionally) independent of
all variables in Vj . The factorization of x given the
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Simulate from the posterior
distribution of the mutual
information of (x1, x2) with
x3, given x4 = 14.

Estimate the probability that
the mutual information of
(x1, x2) with x3, given x4 =

14 and marginalizing over x5,
is less than 0.1 nats.

Synthesize a hypothetical
dataset with 100 records, in-
cluding only those variables
which are probably indepen-
dent of x2.

SIMULATE
MUTUAL INFORMATION OF

(x1, x2) WITH (x3)
GIVEN (x4 = 14)

FROM MODELS OF population

ESTIMATE PROBABILITY OF
MUTUAL INFORMATION OF

(x1, x2) WITH (x3)
GIVEN (x4 = 14, x5)

< 0.1
BY population

SIMULATE (
SELECT * FROM
VARIABLES OF population
WHERE PROBABILITY OF

MUTUAL INFORMATION
WITH x2 < 0.1

> 0.9)
FROM population
LIMIT 100;

1: for Gk ∈ M do
2: IGk ← Gpm-Cmi(Gk, {x1, x2} , {x3} , {(x4, 14)})
3: return (IG1 , . . . , IG|M| )

1: for Gk ∈ M do
2: for t = 1, . . . , T do
3: x̂t

5 ← Simulate(Gk, x5, {(x4, 14)})
4: ItGk ← Gpm-Cmi(

Gk, {x1, x2} , {x3} ,
{
(x4, 14), (x5, x̂

t
5)
}
)

5: IGk ←
1
T

∑
t

(
ItGk

)
6: return 1

|M|
∑

j

(
I
[
IGk < 0.1

])
1: S ← ∅
2: for xi ∈ (x1, . . . , xD) do
3: for Gk ∈ M do
4: IGk ← Gpm-Cmi(Gk, xi, x2,∅)

5: pi ← 1
|M|

∑
k I
[
IGk < 0.1

]
6: if pi > 0.9 then
7: S ← S ∪ {xi}
8: for t = 1 . . . , 100 do
9: st ← Simulate(M,S,∅)

10: return (s1, . . . , s100)

English Summary of
CMI Query

CMI Query in Bayesian
Query Language

Inference Algorithm Invoked by
Query Interpreter

Figure 3: End-user CMI queries in the Bayesian Query Language for three data analysis tasks; (top) evaluating
the strength of predictive relationships; (middle) specifying the amount of evidence required for a “predictively”
significant relationship; (bottom) synthesizing a hypothetical population, censoring probably sensitive variables.

variable partition γ is therefore given by:

pG(x|D) =
∏
V∈γ

pGV (xV |DV). (5)

Within block V, the variables xV = {xd : d ∈ V}
are distributed according to a multivariate DPMM;
subscripts with V (such as GV) now index a set of
block-specific DPMM parameters. The joint predic-
tive density pGV is given by Algorithm 3b:

pGV (xV |D) =

KV +1∑
k=1

n[V,k]
∏
d∈V

pGV (xd|φ[d,k])∑
k′ n[V,k′]

 . (6)

The CrossCat generative process for N observations
D=

{
x[i,1:D] : 1 ≤ i ≤ N

}
is summarized below.

CrossCat-Prior

α′ ∼ Gamma(1, 1)

v = (v1, . . . , vD) ∼ CRP(·|α′)
Vk ← {i ∈ [D] : vi = k} k ∈ Unique(v){
x[i,Vk]

}N
i=1
∼ DPMM-Prior k ∈ Unique(v)

We refer to [19, 23] for algorithms for posterior infer-
ence in CrossCat, and assume we have a set of approx-
imate samples

{
Ĝi : 1 ≤ i ≤ H

}
of all latent CrossCat

parameters from the posterior π(·|D).

3.2 Optimizing a CMI query

The following lemma shows how CrossCat induces
sparsity for a multivariate CMI query.
Lemma 1. Let G be a posterior sample from Cross-
Cat, whose full joint distribution is given by (5) and
(6). Then, for all A,B, C ⊆ [D],

IG (xA : xB | x̂C) =
∑
V∈γ
IGV (xA∩V : xB∩V | x̂C∩V),

where IGV (xA∩V : ∅|x̂C∩V) ≡ 0.

Proof. Refer to Appendix A.
An immediate consequence of Lemma 1 is that struc-
ture discovery in CrossCat allows us to optimize Monte
Carlo estimation of IG(xA : xB|xC = x̂C) by ignoring
all target and condition variables which are not in the
same block V, as shown in Algorithm 4a and Figure 4.

Algorithm 4a CrossCat-Cmi

Require: CrossCat G; query A, B; condition x̂C ; acc. T
Ensure: Monte Carlo estimate of IG(xA:xB|xC=x̂C)
1: for V ∈ γ do
2: if A ∩ V and B ∩ V then
3: iV ←Gpm-Cmi(GV , A ∩ V, B ∩ V, x̂C∩V , T )
4: else
5: iV ← 0
6: return

∑
V∈γ iV
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Figure 4: Comparing the runtime of CrossCat-Cmi
(Alg 4a) and Gpm-Cmi (Alg 2a) (using the DPMM),
on 1000 randomly generated CMI queries from an 8-
dimensional dataset. The dashed curve shows the 45-
degree line. The green dots at 0 correspond to Cross-
Cat detecting structural independence between query vari-
ables, bypassing Monte Carlo estimation completely. The
blue dots (below diagonal) correspond to CrossCat opti-
mizing the Monte Carlo estimator by ignoring constraint
variables which are structurally independent of the target
variables. The red dots (along diagonal) correspond to
CrossCat learning no structural independences, requiring
full Monte Carlo estimation and resulting in comparable
runtime to DPMM. These three cases correspond to the
three posterior CrossCat structures illustrated in Figure 1,
when the targets variables are X and Y conditioned onW .

3.3 Upper bounding the pairwise
dependence probability

In exploratory data analysis, we are often interested
in detecting pairwise predictive relationships between
variables (xi, xj). Using the formalism from Eq (3),
we can compute the probability that their MI is non-
zero: P [IG(xi : xj) > 0]. This quantity can be upper-
bounded by the posterior probability that xi and xj
have the same assignments vi and vj in the CrossCat
variable partition γ:

P [IG(xi : xj) > 0]

= P [IG(xi : xj) > 0 | {G : vi = vj}]P [{G : vi = vj}]
+ P [IG(xi : xj) > 0 | {G : vi 6= vj}]P [{G : vi 6= vj}]
= P [IG(xi : xj) > 0 | {G : vi = vj}]P [{G : vi = vj}]

< P [{G : vi = vj}] ≈
1

H

H∑
h=1

I[Ĝh : v̂[h,i] = v̂[h,j]], (7)

where Lemma 1 has been used to set the addend in
line 3 to zero. Also note that the summand in (7) can
be computed in O(1) for CrossCat sample Ĝh. When
dependencies among the D variables are sparse such
that many pairs (xi, xj) have MI upper bounded by 0,
the number of invocations of Algorithm 4a required to
compute pairwise MI values is � O(D2). A compari-
son of upper bounding MI versus exact MI estimation
with Monte Carlo is shown in Figure 5.
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Figure 5: Posterior probability that dimensions of a bi-
variate Gaussian are dependent, vs the covariance (top).
The CrossCat upper bound (7) is useful for detecting the
existence of a predictive relationship; the posterior distri-
bution of MI can determine whether the strength of the
relationship is “predictively significant” based on various
tolerance levels (0.05, 0.10, 0.20, and 0.30 nats).

4 Applications to macroeconomic
indicators of global poverty,
education, and health

This section illustrates the efficacy of the proposed
approach on a sparse database from an ongoing col-
laboration with the Bill & Melinda Gates Founda-
tion.1 The Gapminder data set is an extensive lon-
gitudinal dataset of ∼320 global developmental indi-
cators for 200 countries spanning over 5 centuries [27].
These include variables from a broad set of categories
such as education, health, trade, poverty, population
growth, and mortality rates. We experiment with a
cross-sectional slice of the data from 2002. Figure 6a
shows the pairwise R2 correlation values between all
variables; each row and column in the heatmap is an
indicator in the dataset, and the color of a cell is the
raw value of R2 (between 0 and 1). Figure 6b shows
pairwise binary hypothesis tests of independence using
HSIC [13], which detects a dense set of dependencies
including many spurious relationships (Appendix B).
For both methods, statistically insignificant relation-
ships (α = 0.05 with Bonferroni correction for multi-
ple testing) are shown as 0. Figure 6c shows an up-
per bound on the pairwise probability that the MI of
two variables exceeds zero (also a value between 0 and
1). These entries are estimated using Eq (7) (bypass-
ing Monte Carlo estimation) using H=100 samples of
CrossCat. Note that the metric P[IG(xi:xj) > 0] in
Figure 6c only indicates the existence of a predictive
relationship between xi and xj ; it does not quantify ei-
ther the strength or directionality of the relationship.

1A further application, to a real-world dataset of math-
ematics exam scores, is shown in Appendix C.
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(a) R2 Correlation Value (b) HSIC [13] Independence Test (c) P[IG(xi:xj) > 0], Eq (7)

(d) Pairwise heatmaps of all 320 variables in the Gapminder dataset using three dependency detection techniques. Darker
cells indicate a detected dependence between the two variables.

variable A variable B P[IG > 0] R2 (p� 10−6)

personal computers earthquake affected 0.015625 0.974445
road traffic total deaths people living w/ hiv 0.265625 0.858260
natural gas reserves 15-25 yrs sex ratio 0.031250 0.951471
forest products per ha earthquake killed 0.046875 0.936342
flood affected population 40-59 yrs 0.140625 0.882729 0 1 2 3 4 5 6 7
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(e) Spurious relationships which are correlated under R2, but probably independent according to posterior MI.

variable A variable B P[IG > 0] R2 (p� 10−6)

inflation trade balance (% gdp) 0.859375 0.114470
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(f) Common-sense relationships probably dependent according to posterior MI, but weakly correlated under R2.

Figure 6: Comparing dependences between variables in the Gapminder dataset, as detected by R2, HSIC (with
Bonferroni correction for multiple testing), and posterior distribution over mutual information in CrossCat.

It is instructive to compare the dependencies detected
by R2 and CrossCat-Cmi. Table 6e shows pairs of
variables that are spuriously reported as dependent
according to correlation; scatter plots reveal they are
either (i) are sparsely observed or (ii) exhibit high
correlation due to large outliers. Table 6f shows
common-sense relationships between pairs of variables
that CrossCat-CMI detects but R2 does not; scatter
plots reveal they are either (i) non-linearly related, (ii)
roughly linear with heteroskedastic noise, or (iii) pair-
wise independent but dependent given a third variable.
Recall that CrossCat is a product of DPMMs; practi-
cally meaningful conditions for weak and strong con-
sistency of Dirichlet location-scale mixtures have been
established by [11, 33]. This supports the intuition
that CrossCat can detect a broad class of predictive
relationships that simpler parametric models miss.

Figure 7 focuses on a group of four “trade”-related vari-
ables in the Gapminder dataset detected as probably
dependent: “net trade balance”, “total goods traded”,
“exports of goods and services”, and “imports of goods
and services”. R2 fails to detect a statistically sig-
nificant dependence between “net trade balance” and

the other variables, due to weak linear correlations
and heteroskedastic noise as shown in the scatter plots
(Figure 7b). From economics, these four variables are
causally related by the graphical model in Figure 7c,
where the value of a node is a noisy addition or sub-
traction of the values of its parents. Figure 7d il-
lustrates that CrossCat recovers predictive relation-
ships between these variables: conditioning on “ex-
ports”=150 and “balance”=30 (a low probability event
according to the left subplot) centers the posterior
predictive distribution of “imports” around 120, and
decouples it from “total goods”. The posterior CMI
curves of “imports” and “total goods”, with and with-
out the conditions on “exports” and “balance”, formal-
ize this decoupling (right subplot of Figure 7d).

5 Related Work

There is broad acknowledgment that new techniques
for dependency detection beyond linear correlation are
required. Existing approaches for conditional inde-
pendence testing include the use of kernel methods
[1, 10, 35, 29], copula functions [2, 25, 17], and char-
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(a) Block of “trade” variables de-
tected as probably dependent.
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(b) Scatter plots show weak linear correlations
and heteroskedastic noise for net balance.

exports
(goods & services)

imports 
(services)

imports 
(goods)

exports 
(goods)

exports 
(services)

imports
(goods & services)

total goods 
traded

net balance trade

not in
dataset

(c) Ground truth causal structure
of variables in the “trade” block.

50 100 150 200

total goods traded (% gdp)

0

20

40

60

80

100

120

140

im
po

rt
s

of
go

od
s

&
se

rv
ic

es
(%

gd
p)

Joint Posterior Surface
of Pr[Imports, Goods]

50 100 150 200

total goods traded (% gdp)

im
po

rt
s

of
go

od
s

&
se

rv
ic

es
(%

gd
p)

Joint Posterior Surface of
Pr[Imports, Goods | Exports=150, Balance=30]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Conditional Mutual Information (nats)

Po
st

er
io

r
D

en
si

ty

Posterior Distributions of
Conditional Mutual Information

MI(Imports:Goods)
MI(Imports:Goods|Expts=150,Bal=30)

(d) Left plot shows the joint posterior density of “imports” and “goods”, where the marginal coupling is due to their common
parent in (c). Center plot shows the same distribution conditioned on “exports”=150 and “balance”=30; “imports” now
centers around its noiseless value of 120, and is decoupled from “goods”. Right plot shows the CMI for these distributions.

Figure 7: CMI discovers existence and confirms strength of predictive relationships between “trade” variables.

acteristic functions [32], many of which capture non-
linear and multivariate predictive relationships. Un-
like these methods, however, our approach represents
dependence in terms of conditional mutual information
and is not embedded in a frequentist decision- theo-
retic framework. Our quantity of interest is a full pos-
terior distribution over CMI, as opposed to a p-value
to identify when the null hypothesis CMI=0 cannot be
rejected. Dependence detection is much less studied
in the Bayesian literature; [8] use a Polya tree prior
to compute a Bayes Factor for the relative evidence
of dependence versus independence. Their method is
used only to quantify evidence for the existence, but
not assess the strength, of a predictive relationship.
The most similar approach to this work was proposed
independently in recent work by [16], who compute a
distribution over CMI by estimating the joint density
using an encompassing non-parametric Bayesian prior.
However, the differences are significant. First, the
Monte Carlo estimator in [16] is based on resampling
empirical data. However, real-world databases may
be too sparse for resampling data to yield good esti-
mates, especially for queries given unlikely constraints.
Instead, we use a Monte Carlo estimator by simulat-
ing the predictive distribution. Second, the prior in
[16] is a standard Dirichlet process mixture model,
whereas this paper proposes a sparsity-inducing Cross-
Cat prior, which permits optimized computations for
upper bounds of posterior probabilities as well as sim-
plifying CMI queries with multivariate conditions.

6 Discussion

This paper has shown it is possible to detect predic-
tive relationships by integrating probabilistic program-
ming, information theory, and non-parametric Bayes.
Users specify a broad class of conditional mutual in-
formation queries using a simple SQL-like language,
which are answered using a scalable pipeline based on
approximate Bayesian inference. The underlying ap-
proach applies to arbitrary generative population mod-
els, including parametric models and other classes of
probabilistic programs [28]; this work has focused on
exploiting the sparsity of CrossCat model structures to
improve scalability for exploratory analysis. With this
foundation, one may extend the technique to domains
such as causal structure learning. The CMI estimator
can be used as a conditional-independence test in a
structure discovery algorithm such as PC [31]. It is
also possible to use learned CMI probabilities as part
of a prior over directed acyclic graphs in the Bayesian
setting. This paper has focused on detection and pre-
liminary assessment of predictive relationships; con-
firmatory analysis and descriptive summarization are
left for future work, and will require an assessment of
the robustness of joint density estimation when ran-
dom sampling assumptions are violated. Moreover,
new algorithmic insights will be needed to scale the
technique to efficiently detect pairwise dependencies
in very high-dimensional databases with tens of thou-
sands of variables.



Saad and Mansinghka

Acknowledgements

This research was supported by DARPA (PPAML pro-
gram, contract number FA8750-14-2-0004), IARPA
(under research contract 2015-15061000003), the Of-
fice of Naval Research (under research contract
N000141310333), the Army Research Office (under
agreement number W911NF-13-1-0212), and gifts
from Analog Devices and Google.

References

[1] Francis Bach and Michael Jordan. Kernel inde-
pendent component analysis. Journal of Machine
Learning Research, 3:1–48, 2002.

[2] Taoufik Bouezmarni, Jeroen VK Rombouts, and
Abderrahim Taamouti. Nonparametric copula-
based test for conditional independence with ap-
plications to granger causality. Journal of Busi-
ness & Economic Statistics, 30(2):275–287, 2012.

[3] Craig Boutilier, Nir Friedman, Moises Gold-
szmidt, and Daphne Koller. Context-specific in-
dependence in bayesian networks. In Proceedings
of the Twelfth International Conference on Un-
certainty in Artificial Intelligence, pages 115–123.
Morgan Kaufmann Publishers Inc., 1996.

[4] National Reseach Council. Frontiers in massive
data analysis. The National Academies Press,
2013.

[5] T.M. Cover and J.A. Thomas. Elements of Infor-
mation Theory. Wiley Series in Telecommunica-
tions and Signal Processing. Wiley, 2012.

[6] David Edwards. Introduction to graphical mod-
elling. Springer Texts in Statistics. Springer,
2012.

[7] Michael Escobar and Mike West. Bayesian density
estimation and inference using mixtures. Journal
of the American Statistical Association, 90(430):
577–588, 1995.

[8] Sarah Filippi and Chris Holmes. A bayesian non-
parametric approach to testing for dependence
between random variables. Bayesian Analysis,
2016. Advance publication.

[9] Daniel Fink. A compendium of conjugate pri-
ors. Technical report, Environmental Statistics
Group, Department of Biology, Montana State
University, 1997.

[10] Kenji Fukumizu, Arthur Gretton, Xiaohai Sun,
and Bernhard Schölkopf. Kernel measures of con-
ditional dependence. In Proceedings of the Twen-
tieth International Conference on Neural Infor-
mation Processing Systems, pages 489–496. Cur-
ran Associates Inc., 2007.

[11] Subhashis Ghosal, Jayanta Ghosh, and R.V. Ra-
mamoorthi. Posterior consistency of dirichlet
mixtures in density estimation. The Annals of
Statistics, 27(1):143–158, 1999.

[12] Dilan Görür and Carl Edward Rasmussen. Dirich-
let process gaussian mixture models: Choice of
the base distribution. Journal of Computer Sci-
ence and Technology, 25(4):653–664, 2010.

[13] Arthur Gretton, Olivier Bousquet, Alex Smola,
and Bernhard Schölkopf. Measuring statistical
dependence with hilbert-schmidt norms. In Pro-
ceedings of the Sixteenth International Confer-
ence Algorithmic Learning Theory, pages 63–77.
Springer, 2005.

[14] Sonia Jain and Radford M Neal. A split-merge
markov chain monte carlo procedure for the
dirichlet process mixture model. Journal of Com-
putational and Graphical Statistics, 13(1):158–
182, 2012.

[15] Alexander Kraskov, Harald Stögbauer, and Pe-
ter Grassberger. Estimating mutual information.
Physical Review E, 69(6):066138, 2004.

[16] Tsuyoshi Kunihama and David B Dunson. Non-
parametric bayes inference on conditional inde-
pendence. Biometrika, 103(1):35–47, 2016.

[17] David Lopez-Paz, Philipp Hennig, and Bernhard
Schölkopf. The randomized dependence coeffi-
cient. In Proceedings of the Twenty-Sixth Interna-
tional Conference on Neural Information Process-
ing Systems, pages 1–9. Curran Associates Inc.,
2013.

[18] Vikash Mansinghka, Richard Tibbetts, Jay Bax-
ter, Pat Shafto, and Baxter Eaves. BayesDB:
A probabilistic programming system for query-
ing the probable implications of data. CoRR,
abs/1512.05006, 2015.

[19] Vikash Mansinghka, Patrick Shafto, Eric Jonas,
Cap Petschulat, Max Gasner, and Joshua B.
Tenenbaum. CrossCat: A fully Bayesian nonpara-
metric method for analyzing heterogeneous, high
dimensional data. Journal of Machine Learning
Research, 17(138):1–49, 2016.

[20] Kantilal Varichand Mardia, John T Kent, and
John M Bibby. Multivariate analysis. Probabil-
ity and Mathematical Statistics. Academic Press,
1980.

[21] Rudy Moddemeijer. On estimation of entropy and
mutual information of continuous distributions.
Signal Processing, 16(3):233–248, 1989.

[22] Young-Il Moon, Balaji Rajagopalan, and Upmanu
Lall. Estimation of mutual information using ker-
nel density estimators. Physical Review E, 52(3):
2318, 1995.



Detecting Dependencies in Sparse, Multivariate Databases

[23] Fritz Obermeyer, Jonathan Glidden, and Eric
Jonas. Scaling nonparametric Bayesian inference
via subsample-annealing. In Proceedings of the
Seventeenth International Conference on Artifi-
cial Intelligence and Statistics, pages 696–705.
JMLR.org, 2014.

[24] Liam Paninski. Estimation of entropy and mutual
information. Neural Computation, 15(6):1191–
1253, 2003.

[25] Barnabás Póczos, Zoubin Ghahramani, and Jeff
Schneider. Copula-based kernel dependency mea-
sures. CoRR, abs/1206.4682, 2012.

[26] Christian Robert and George Casella. Monte
Carlo Statistical Methods. Springer Texts in
Statistics. Springer, 2005.

[27] Hans Rosling. Gapminder: Unveiling the beauty
of statistics for a fact based world view. URL
https://www.gapminder.org/data/.

[28] Feras Saad and Vikash Mansinghka. Probabilis-
tic data analysis with probabilistic programming.
CoRR, abs/1608.05347, 2016.

[29] Dino Sejdinovic, Arthur Gretton, and Wicher
Bergsma. A kernel test for three-variable interac-
tions. In Proceedings of the Twenty-Sixth Interna-
tional Conference on Neural Information Process-
ing Systems, pages 1124–1132. Curran Associates
Inc., 2013.

[30] Ross D Shachter. Bayes-ball: Rational pastime
for determining irrelevance and requisite informa-
tion in belief networks and influence diagrams. In
Proceedings of the Fourteenth Conference on Un-
certainty in Artificial Intelligence, pages 480–487.
Morgan Kaufmann Publishers Inc., 1998.

[31] Peter Spirtes, Clark Glymour, and Richard
Scheines. Causation, Prediction, and Search.
Adaptive Computation and Machine Learning.
MIT Press, 2000.

[32] Liangjun Su and Halbert White. A consistent
characteristic function-based test for conditional
independence. Journal of Econometrics, 141(2):
807–834, 2007.

[33] Surya T Tokdar. Posterior consistency of dirich-
let location-scale mixture of normals in density
estimation and regression. The Indian Journal of
Statistics, 68(1):90–110, 2006.

[34] Joe Whittaker. Graphical models in applied multi-
variate statistics. Wiley Series in Probability and
Mathematical Statistics. Wiley, 1990.

[35] Kun Zhang, Jonas Peters, and Dominik Janzing.
Kernel-based conditional independence test and
application in causal discovery. In Proceedings
of the Twenty-Seventh Conference on Uncertainty

in Artificial Intelligence, pages 804–813. AUAI
Press, 2011.



Probabilistic Data Analysis with Probabilistic Programming

Feras Saad fsaad@mit.edu
Computer Science & Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Vikash Mansinghka vkm@mit.edu
Department of Brain & Cognitive Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Abstract
Probabilistic techniques are central to data analysis, but different approaches can be difficult to
apply, combine, and compare. This paper introduces composable generative population models
(CGPMs), a computational abstraction that extends directed graphical models and can be used to
describe and compose a broad class of probabilistic data analysis techniques. Examples include
hierarchical Bayesian models, multivariate kernel methods, discriminative machine learning, clus-
tering algorithms, dimensionality reduction, and arbitrary probabilistic programs. We also demon-
strate the integration of CGPMs into BayesDB, a probabilistic programming platform that can ex-
press data analysis tasks using a modeling language and a structured query language. The practical
value is illustrated in two ways. First, CGPMs are used in an analysis that identifies satellite data
records which probably violate Kepler’s Third Law, by composing causal probabilistic programs
with non-parametric Bayes in under 50 lines of probabilistic code. Second, for several representa-
tive data analysis tasks, we report on lines of code and accuracy measurements of various CGPMs,
plus comparisons with standard baseline solutions from Python and MATLAB libraries.
Keywords: probabilistic programming, non-parametric Bayesian inference, probabilistic databases,
hybrid modeling, multivariate statistics
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1. Introduction

Probabilistic techniques are central to data analysis, but can be difficult to apply, combine, and
compare. Families of approaches such as parametric statistical modeling, machine learning and
probabilistic programming are each associated with different formalisms and assumptions. This
paper shows how to address these challenges by defining a new family of probabilistic models and
integrating them into BayesDB, a probabilistic programming platform for data analysis. It also gives
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empirical illustrations of the efficacy of the framework on multiple synthetic and real-world tasks in
probabilistic data analysis.

This paper introduces composable generative population models (CGPMs), a computational for-
malism that extends graphical models for use with probabilistic programming. CGPMs specify a ta-
ble of observable random variables with a finite number of columns and a countably infinite number
of rows. They support complex intra-row dependencies among the observables, as well as inter-row
dependencies among a field of latent variables. CGPMs are described by a computational interface
for generating samples and evaluating densities for random variables, including the (random) entries
in the table as well as a broad class of random variables derived from these via conditioning. We
show how to implement CGPMs for several model families such as the outputs of standard discrim-
inative learning methods, kernel density estimators, nearest neighbors, non-parametric Bayesian
methods, and arbitrary probabilistic programs. We also describe algorithms and new syntaxes in the
probabilistic Metamodeling Language for building compositions of CGPMs that can interoperate
with BayesDB.

The practical value is illustrated in two ways. First, the paper outlines a collection of data
analysis tasks with CGPMs on a high-dimensional, real-world dataset with heterogeneous types
and sparse observations. The BayesDB script builds models which combine non-parametric Bayes,
principal component analysis, random forest classification, ordinary least squares, and a causal
probabilistic program that implements a stochastic variant of Kepler’s Third Law. Second, we
illustrate coverage and conciseness of the CGPM abstraction by quantifying the lines of code and
accuracy achieved on several representative data analysis tasks. Estimates are given for models
expressed as CGPMs in BayesDB, as well as for baseline methods implemented in Python and
MATLAB. Savings in lines of code of ~10x at no cost or improvement in accuracy are typical.

The remainder of the paper is structured as follows. Section 2 reviews related work to CGPMs
in both graphical statistics and probabilistic programming. Section 3 describes the conceptual, com-
putational, and statistical formalism for CGPMs. Section 4 formulates a wide range of probabilistic
models as CGPMs, and provides both algorithmic implementations of the interface as well as ex-
amples of their invocations through the Metamodeling Language and Bayesian Query Language.
Section 5 outlines an architecture of BayesDB for use with CGPMs. We show how CGPMs can be
composed to form a generalized directed acyclic graph, constructing hybrid models from simpler
primitives. We also present new syntaxes in MML and BQL for building and querying CGPMs in
BayesDB. Section 6 applies CGPMs to several probabilistic data analysis tasks in a complex real-
world dataset, and reports on lines of code and accuracy measurements. Section 7 concludes with a
discussion and directions for future work.

2. Related Work

Directed graphical models from statistics provide a compact, general-purpose modeling language
to describe both the factorization structure and conditional distributions of a high-dimensional joint
distribution (Koller et al., 2007). Each node is a random variable which is conditionally indepen-
dent of its non-descendants given its parents, and its conditional distribution given all its parents is
specified by a conditional probability table or density (Nielsen and Jensen, 2009, Sec 2.3). CGPMs
extend this mathematical description to a computational one, where nodes are not only random vari-
ables with conditional densities but also computational units (CGPMs) with an interface that allows
them to be composed directly as software. A CGPM node typically encapsulates a more complex

2



statistical object than a single variable in a graphical model. Each node has a set of required input
variables and output variables, and all variables are associated with statistical data types. Nodes are
required to both simulate and evaluate the density of a subset of their outputs by conditioning on
all their inputs, as well as either conditioning or marginalizing over another subset of their outputs.
Internally, the joint distribution of output variables for a single CGPM node can itself be specified
by a general model which is either directed or undirected.

CGPMs combine ideas from the vast literature on modeling and inference in graphical mod-
els with ideas from probabilistic programming. This paper illustrates CGPMs by integrating them
into BayesDB (Mansinghka et al., 2015a), a probabilistic programming platform for data analysis.
BayesDB demonstrated that the Bayesian Query Language (BQL) can express several tasks from
multivariate statistics and probabilistic machine learning in a model-independent way. However this
idea was illustrated by emphasizing that a domain-general baseline model builder based on Cross-
Cat (Mansinghka et al., 2015b), with limited support for plug-in models called “foreign predictors”,
provides good enough performance for common statistical tasks. Due to limitations in the under-
lying formalism of generative population models (GPMs), which do not accept inputs and only
learn joint distributions over observable variables, the paper did not provide an expressive modeling
language for constructing a wide class of models applicable to different data analysis tasks, or for
integrating domain-specific models built by experts into BayesDB. By both accepting input vari-
ables and exposing latent variables as queryable outputs, CGPMs provide a concrete proposal for
mediating between automated and custom modeling using the Metamodeling Language, and model-
independent querying using the Bayesian Query Language. The CGPM abstraction thus exposes the
generality of BQL to a much broader model class than originally presented, which includes hybrids
models with generative and discriminative components.

It is helpful to contrast CGPMs in BayesDB with other probabilistic programming formalisms
such as Stan (Carpenter et al., 2015). Stan is a probabilistic programming language for specifying
hierarchical Bayesian models, with built-in algorithms for automated, highly efficient posterior in-
ference. However, it is not straightforward to (i) integrate models from different formalisms such as
discriminative machine learning as sub-parts of the overall model, (ii) directly query the outputs of
the model for downstream data analysis tasks, which needs to be done on a per-program basis, and
(iii) build composite programs out of smaller Stan programs, since each program is an independent
unit without an interface. CGPMs provide an interface for addressing these limitations and makes it
possible to wrap Stan programs as CGPMs that can then interact, through BayesDB, with CGPMs
implemented in other systems.

Tabular (Gordon et al., 2014) is a schema-driven probabilistic programming language which
shares some similarity to composable generative population models. For instance, both the statis-
tical representation of a CGPM (Section 3.3), and a probabilistic schema in Tabular, characterize
a data generating process in terms of input variables, output variables, latent variables, parameters
and hyper-parameters. However, unlike Tabular schemas, CGPMs explicitly provide a computa-
tional interface, which is more general than the description of their internal structure, and facilitates
their composition (Section 5.2). In Tabular, probabilistic programs are centered around paramet-
ric statistical modeling in factor graphs, where the user manually constructs variable nodes, factor
nodes, and the quantitative relationships between them. On the other hand, CGPMs express a broad
range of model classes which do not necessarily naturally admit natural representations as factor
graphs, and combine higher-level automatic model discovery (using baseline generative CGPMs)
with user-specified overrides for hybrid modeling.
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3. Composable Generative Population Models

In this section we describe composable generative population models (CGPMs), a computational
abstraction that provides a uniform treatment of a broad class of models and methods in probabilistic
data analysis. This section is divided into three parts. The first part formalizes the notion of a
statistical population in terms of a random tabular data structure with a finite number of columns
and a countably infinite number of rows, and establishes notation used throughout the paper. The
second part outlines the computational interface that defines CGPMs. The third part describes a
class of statistical graphical models which can be naturally expressed using the CGPM framework.

3.1 Populations

In our framework, a population P is defined in terms of a finite set of variables (v1, . . . , vT ), where
each variable vt takes values in a general observation space Vt. Each variable has a qualitative
interpretation as a particular property or attribute of the members of the population. The rth member
of the population, denoted xr, is a T -dimensional vector (x[r,1], . . . , x[r,T ]), and the element x[r,t] is a
variable corresponding to the variable vt of member r. The entire population is then organized as an
infinite exchangeable sequence (x1,x2, . . . ) of members.

The population can be conceptualized as a tabular data structure with a finite number of columns
and an infinite number of rows. Column t corresponds to variable vt, row r to member xr, and cell
(r, t) to element x[r,t]. The table is further associated with the observation spaces {Vt : t ∈ [T ]}.
The exchangeability assumption translates into the requirement that P is unchanged by permuting
the member ids. Finally, a measurement is defined as an observed value for cell (r, t) in the data
structure. In general, we use x[r,t] to indicate the element as a variable as well as its measured value
(if one exists); the meaning is typically clear from context. A collection of measurements recorded
in the infinite table is referred to as a datasetD.

It is helpful to compare the standard notion of a statistical population with the formalism de-
scribed above. In classical multivariate statistics, a data analysis tasks starts with a “data matrix”, a
finite array containing the measurements from some experiment, and additional modeling assump-
tions then specify that these measurements are a “random sample” from a statistical population.
The members of the population are generated by a distribution (often a multivariate normal) whose
unknown parameters (population mean, population covariance, etc) we wish to discover (Timm,
2002; Khattree and Naik, 2000; Gelman and Hill, 2006). This usage of the term “statistical popu-
lation” thus combines domain knowledge (in defining the schema), observed data, and quantitative
modeling assumptions (in terms of the random variables) under one umbrella idea.

By contrast, our framing characterizes a population only in terms of a set of population variables
and their observation spaces. This framing does not commit to a probabilistic description of the data
generating process, and is intended to invite questions about populations without reference to an
underlying statistical model. Moreover, every member in our definition of a population is associated
with a unique identifier – while this paper only focuses on modeling measurements conditioned on
the member ids, in principle the member ids themselves could be modeled by a process that is more
complex than random sampling.

Moreover, our mathematical specification of a population attempts to be more granular than the
standard formalism from multivariate statistics. We explicitly differentiate between a variable vt,
and the set of elements {x[r,t] : r = 1, 2, . . .} which are versions of that variable vt for each member.
By separating a variable (a “column” in the infinite table) from its related element-level variables
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(“cells” in that column), and carefully accounting for all elements in the data structure, we can dis-
cuss precisely the mathematical and algorithmic operations performed by CGPMs. This level of
analysis would not be possible had we coarsely specified a population as a single random vector
x = (x1, . . . , xT ), and viewed measurements collected in a “data matrix” as independent realizations
of x. Moreover, specifying measurements at the cell level deals with arbitrary/sparse patterns of
observations in the infinite table, in contrast with the standard notion of data matrices which are
often treated as objects from linear algebra. Similarly, explicitly notating the observation spaces
{Vt : t ∈ [T ]} allows us to capture heterogeneity in population variables, rather than assume the
universe is T -dimensional Euclidean space. These characteristics are common in real-world popu-
lations that arise in probabilistic data analysis.

3.2 Computational description of composable generative population models

Having established populations, we now introduce composable generative population models in
terms of the computational interface they provide. A composable generative population model
(CGPM) G characterizes the data generating process for a population P. The CGPM selects from
the population variables (v1, v2, . . . , vT ) a set of output variables (vout

1 , . . . , vout
O ) and a set of input

variables (vin
1 , . . . , v

in
I ). For each member r,G is responsible for modeling the full joint distribution of

all the output variables conditioned on all the input variables. CGPMs differ from the mathematical
definition of a probability density in that they are defined directly in terms of a computational
interface, as shown in Listing 1. This interface explicitly differentiates between the sampler of
a random variable from its conditional distribution, and the assessor of its conditional density.

Listing 1 Computational interface for composable generative population models.

• G ← create(population: P, outputs: {vout
i }i∈[O], inputs: {vin

j } j∈[I], binary: B, seed: s)

Create a CGPM for the population, with the specified inputs and outputs.

• s← simulate (G, member: r, query: Q = {qk}, evidence : E = {x[r,e j]} ∪ yr)

Generate a sample from the distribution s ∼G x[r,Q]|{x[r,E],yr,D}.

• c← logpdf (G, member: r, query : Q = {x[r,qk]}, evidence : E = {x[r,e j]} ∪ yr)

Evaluate the log density log pG(x[r,Q]|{x[r,E],yr,D}).

• G′ ← incorporate (G, measurement : x[r,k])

Record a measurement x[r,k] ∈ Vk into the datasetD.

• G′ ← unincorporate (G, member : r)

Eliminate all measurements of input and output variables for member r.

• G′ ← infer (G, program : T )

Adjust internal state in accordance with the learning procedure specified by program T .
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There are several key ideas to draw from the interface. In create, P contains the set of all
population variables and their observation spaces. The binary is an opaque probabilistic program
containing implementations of the interface, and seed is the entropy source from which the CGPM
draws random bits. The outputs requires at least one entry, the inputs may be an empty set, and
any variable which is neither an input nor an output is unmodeled by the CGPM. For simplicity, we
use the symbol x[r,t] to denote the output variable x[r,vout

t ] and similarly y[r,t] for input variable y[r,vin
t ]

of member r. These elements are often collected into vectors xr and yr, respectively
In incorporate, measurements are recorded at the cell-level, allowing only a sparse subset of

observations for member r to exist. The measurement may be either an output element from xr or
input element from yr.

Both simulate and logpdf are computed for single member r of the population. The query
parameter differs between the two methods: in simulate, Q = {qk} is a set of indices of output
variables that are to be simulated jointly; in logpdf, Q = {x[r,qk]} is a set of values for the output
variables whose density is to be assessed jointly. The evidence parameter is the same for both
simulate and logpdf, which contains additional information about r, possibly including the values
of a set of output variables that are disjoint from the query variables. In particular, if x[r,E] is empty,
the CGPM is asked to marginalize over all its output variables that are not in the query Q; if x[r,E] is
not empty, the CGPM is required to condition on those output values.

The target distributions in simulate and logpdf are also conditioned on all previously incorpo-
rated measurements in the datasetD. Because CGPMs generally model populations with inter-row
dependencies, measurements of other members s , r are relevant to a simulate or logpdf query
about r. The CGPM interface allows the user to override a previous measurement of r in D on a
per-query basis; this occurs when an element x[r,e j] or yr in the evidence contradicts an existing
measurement x′[r,e j]

or y′r in D. Asking such hypothetical queries addresses several tasks of inter-
est in probabilistic data analysis, such as simulating “what-if” scenarios and detecting outliers in
high-dimensional populations.

Finally, the infer procedure evolves the CGPM’s internal state in response to the inflow of
measurements. The inference program T can be based on any learning strategy applicable to the
CGPM, such as Markov Chain Monte Carlo transitions, variational inference, maximum-likelihood,
least-squares estimation, or no learning.

3.3 Statistical description of composable generative population models

The previous section outlined the external interface that defines a CGPM without specifying its
internal structure. In practice, many CGPMs can be described using a general graphical model with
both directed and undirected edges. The data generating process is characterized by a collection of
variables in the graph,

G = (α,θ,Z = {zr}
∞
r=1,X = {xr}

∞
r=1,Y = {yr}

∞
r=1).

• α: Fixed quantities such as input and output dimensionalities, observation spaces, depen-
dence structures and statistical hyperparameters.

• θ: Population-level, or global, latent variables relevant to all members.

• zr = (z[r,1], . . . , z[r,L]): Member-specific latent variables governing only member r directly. A
subset of these variables may be exposed, and treated as queryable output variables.
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xr

zryr θ
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inputs
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r = 1, 2, . . .

G

Figure 1: Internal independence constraints for a broad class of composable generative pop-
ulation models. All nodes in the diagram are multidimensional. Internally, the hyperparameters α
are fixed and known quantities. The global latents θ are shared by all members of the population.
Member-specific latents zr interact only with their corresponding observations xr, as well as other
member-latents {zs : s , r} as indicated by the dashed loop around the plate. Nodes xr and xs

across different members r and s are independent conditioned on their member-latents. However,
general dependencies are permitted within elements {x[r,i] : i ∈ [O]} of node xr. The input variables
yr are ambient conditioning variables in the population and are always observed; in general, yr may
be the output of another CGPM (Section 5.2). Externally, G is specified by an opaque binary,
e.g. a probabilistic program, describing the data generating process, and outputs and inputs that
specify the variable names for simulate and logpdf.

• xr = (x[r,1], . . . , x[r,O]): Output variables representing observable attributes of member r.

• yr = (y[r,1], . . . y[r,I]): Input variables that must be present for any query about xr, such as the
“feature vectors” in a discriminative model.

The notion of global and local latent variables is a common motif in the hierarchical modeling
literature (Blei et al., 2016). They are useful in specifying the set of constraints governing the
dependence between observable variables in terms of some latent structure. From this lens, CGPMs
satisfy the following conditional independence constraint,

∀r , s ∈ N,∀ j, k ∈ [O] : x[r, j] ⊥⊥ x[s,k] | {α,θ, zr, zs}. (1)

Equation (1) formalizes the notion that all dependencies across members r ∈ N are fully mediated
by the global parameters θ and member-specific variables {zr}. However, elements x[r, j] and x[r,i]
within a member are free to assume any dependence structure, allowing for arbitrary inter-row
dependencies. This feature allows CGPMs to express undirected models where the output variables
are not exchangeably-coupled, such as Gaussian Markov random fields (Rue and Held, 2005).

A common specialization of constraint (1) further requires that the member-specific latent vari-
ables {zr} are conditionally independent given θ; a comprehensive list of models in machine learn-
ing and statistics satisfying this additional constraint is given in (Hoffman et al., 2013, Section
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2.1). However, CGPMs permit more general dependencies in that member latents may be cou-
pled conditioned θ, thus allowing for complex intra-row dependencies. CGPMs can thus be used
for models such as Gaussian process regression with noisy observations (Rasmussen and Williams,
2006), where the member-specific latent variables (i.e. the noiseless observations) across different
members in the population are jointly Gaussian (Damianou and Lawrence, 2013, Figure 1).

Figure 1 summarizes these ideas by showing a CGPM as a graphical model. Finally, we note it
is also possible for a CGPM to fully implement the interface without admitting a “natural” represen-
tation in terms of the graphical structure from Figure 1, as shown by several examples in Section 4.

3.4 Composable generative population models are an abstraction for probabilistic processes

By providing a computational interface, the CGPM interface provides a layer of abstraction which
separates the internal implementation of a probabilistic model from the generative process it rep-
resents. In this section we will explore how the computational (external) description of a CGPM
provides a fundamentally different understanding than its statistical (internal) description.

As an example, consider a Dirichlet process mixture model (Antoniak, 1974) expressed as a
CGPM. The hyperparameters α = (H, γ, F) are the base measure H, concentration parameter γ,
and parametric distribution F of the observable variables {xr}. The member latent variable zr = (zr)
is the cluster assignment of r. Consider now two different representations of the underlying DP,
each leading to a different notion of (i) population parameters θ, and (ii) conditional independence
constraints.

• In the stick breaking representation (Sethuraman, 1994), the population parameters θ =

{(φi, πi) : i ∈ N}, where φi are the atoms that parameterize the likelihood F(·|φi) (drawn i.i.d
from H) and πi their weights (drawn jointly from GEM(γ)). Conditioned on {α,θ}, the mem-
ber latents are independent, zr ∼

iid Categorical({π1, π2, . . .}).

• In the Chinese restaurant process representation (Aldous, 1985), the population parameters
θ = {φi : i ∈ N} are now only the atoms, and the weights are fully collapsed out. Conditioned
on {α,θ}, the member latents are exchangeably coupled {z1, z2, . . .} ∼ Crp(γ).

These internal representation choices are not exposed by the CGPM interface and may be inter-
changed without altering the queries it can answer.1 It follows that the computational description
of CGPMs provides an abstraction boundary between a particular implementation of a probabilistic
model and the generative process for the population that it represents. Two implementations of a
CGPM may encapsulate the same process by inducing an identical marginal distribution over their
observable variables, while maintaining different auxiliary-variable representations internally.

The encapsulation of a CGPM’s internal state can be relaxed by asking the CGPM to expose
member-specific latent variables as outputs. In terms of the infinite table metaphor from Section 3.1,
this operation may be conceptualized as the CGPM “fantasizing” the existence of new columns in
the underlying population. Providing a gateway into the internal state of a CGPM trades-off the
model independence of the interface with the ability to query the hidden structure of a particular
probabilistic process. Section 5 describes surface-level syntaxes for exposing latent variables, and
Section 6.1 illustrates its utility for inferring latent cluster assignments in an infinite mixture model,
as well simulating projections of high-dimensional data onto low-dimensional latent subspaces.

1. However, it is important to note that interchanging representations may result in different performance characteristics,
such as compute time or approximateness of simulate and logpdf.
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4. Algorithmic Implementations of Composable Generative Population Models

In this section, we illustrate that the computational abstraction of CGPMs is applicable to broad
classes of modeling approaches and philosophies. Table 1 shows the collection of models whose in-
ternal structure we will develop from the perspective of CGPMs. Section 6 shows both comparisons
of these CGPMs and their practical application to data analysis tasks.

Composable Generative Population Model Modeling Approach

Section 4.2 Cross Categorization non-parametric Bayesian generative modeling
Section 4.3 Ensemble Classifiers and Regressors discriminative machine learning
Section 4.4 Factor Analysis & Probabilistic PCA dimensionality reduction
Section 4.5 Parametric Mixture of Experts discriminative statistical modeling
Section 4.7 Multivariate Kernel Density Estimation classical multivariate statistics
Section 4.6 Generative Nearest Neighbors clustering based generative modeling
Section 4.8 Probabilistic Programs in VentureScript probabilistic programming

Table 1: Examples of composable generative population models, and a modeling framework
for data analysis to which they belong.

The two methods from the interface in Listing 1 whose algorithmic implementations we outline
for each CGPM are

• s← simulate (G, member: r, query: Q = {qk}, evidence : E = {x[r,e j]} ∪ yr)

Generate a sample from the distribution s ∼G x[r,Q]|{x[r,E],yr,D}.

• c← logpdf (G, member: r, query : Q = {x[r,qk]}, evidence : E = {x[r,e j]} ∪ yr)

Evaluate the log density log pG(x[r,Q]|{x[r,E],yr,D}).

In both simulate and logpdf, the target distributions for the query variables x[r,Q] require an
implementation of two operations:

• Conditioning on the evidence variables x[r,E], in addition to the input variables yr and entire
measurement setD.

• Marginalizing over all output variables {x[r,i] : i ∈ [O]\(E ∪ Q)} not in the query or evidence.

Both conditioning and marginalizing over joint distributions allow users of CGPMs to pose non-
trivial queries about populations that arise in multivariate probabilistic data analysis. All our algo-
rithms generally assume that the information known about member r in simulate and logpdf is
only what is provided for the evidence parameter. Extending the implementations to deal with ob-
served members r′ ∈ D is mostly straightforward and often implementation-specific. We also note
that the figures in these subsections contain excerpts of probabilistic code in the Bayesian Query
Language, Metamodeling Language, and VentureScript; most of their syntaxes are outlined in Sec-
tion 5. Finally, we leave the many possible implementations of infer for each CGPM, which learns
the latent state using observed data, primarily to external references.
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4.1 Primitive univariate distributions and statistical data types

The statistical data type of a population variable vt provides a more refined taxonomy than the
“observation space” Vt described in Section 3.1. Table 2 shows the collection of statistical data
types available in the Metamodeling Language (Section 5.3), out of which more complex CGPMs
are built. The (parameterized) support of a statistical type defines the set in which samples from
simulate take values. Each statistical type is also associated with a base measure which ensures
logpdf is well-defined. In high-dimensional populations with heterogeneous types, logpdf is
taken against the product measure of these univariate base measures. The statistical type also iden-
tifies invariants that the variable maintains. For instance, the values of a NOMINAL variable are
permutation-invariant; the distance between two values for a CYCLIC variable is defined circularly
(modulo the period), etc. The final column in Table 2 shows the primitive univariate CGPMs that
are compatible with each statistical type. For these simple CGPMs, logpdf is implemented directly
from their probability density functions, and algorithms for simulate are well-known (Devroye,
1986). For infer, the CGPMs may have fixed parameters, or learn from data using i.e. maximum
likelihood (Casella and Berger, 2002, Ch. 7) or Bayesian priors (Fink, 1997).

Statistical Data Type Parameters Support Measure/σ-Algebra Primitive Univariate CGPM

BINARY - {0, 1} (#, 2{0,1}) BERNOULLI
NOMINAL symbols: S {0, 1, . . . , S − 1} (#, 2[S ]) CATEGORICAL
COUNT/RATE base: b {0, 1

b ,
2
b , . . .} (#, 2N) POISSON, GEOMETRIC

CYCLIC period: p (0, p) (λ,B(R)) VON-MISES
MAGNITUDE – (0,∞) (λ,B(R)) LOGNORMAL, EXPONENTIAL
NUMERICAL – (−∞,∞) (λ,B(R)) NORMAL
NUMERICAL-RANGED low: l, high:h (l, h) ⊂ R (λ,B(R)) BETA, NORMAL-TRUNC

Table 2: Statistical data types, and their supports, base measures, and primitive CGPMs.
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Figure 2: Samples from the primitive CGPMs of each statistical data type.
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4.2 Cross-Categorization

Cross-Categorization (CrossCat) is a Bayesian non-parametric method for learning the joint dis-
tribution over all variables in a heterogeneous, high-dimensional population (Mansinghka et al.,
2015b). The generative model begins by first partitioning the set of variables (v1, . . . , vT ) into
blocks. This step is CrossCat’s “outer” clustering, since it partitions the “columns”(when view-
ing the population in terms of its infinite table representation from Section 3.1). Let π denote the
variable partition, and {Bi : i ∈ |π|} denote its blocks. π is a global latent variable which dictates
the structural dependencies between variables; any collection of variables in different blocks are
mutually independent, and all variables in the same block are mutually dependent. It follows that
for each member r, the joint distribution for xr factorizes,

pG(xr |θ) =
∏
B∈π

pG(x[r,B]|θB).

The bundle of global parameters θ includes π as well as a set of block-specific latent variables
{θB}B∈π. Within each block B of dependent variables, the elements {x[r,i], i ∈ B} are conditionally
independent given a member-specific latent variable z[r,B] ∈ N. This variable is an “inner” clustering
assignment in CrossCat, since it specifies the cluster identity of row r with respect to the variables
in block B. The joint distribution over elements then factorizes,

pG(x[r,B]|θB) =
∑

k

∏
i∈B

pG(x[r,i]|φ[i,k])

 pG(z[r,B] = k|ωB)

 . (2)

The global parameter φ[i,k] parameterizes the primitive univariate CGPM (of the appropriate statis-
tical type) for vi in cluster k, and ωB is a parameter governing the distribution of the latent variable
z[r,B]. This description fully specifies the CrossCat factorization of the joint distribution pG(xr |θ).
This generative template is encoded into a hierarchical Bayesian model by specifying priors over
the partition π, mixture weights ωB in each block B ∈ π, and distributional parameters φ[i,k]. In
contrast to (Mansinghka et al., 2015b), Algorithm 2a presents (for simplicity) a fully uncollapsed
representation of the CrossCat prior, using a GEM distribution (Pitman, 2002) for the inner DP.

Having described the generative process and established notation, we now outline algorithms
for logpdf and simulate. Since CrossCat is a Bayesian CGPM, the distribution of interest
pG(x[r,Q]|x[r,E],D) requires us to marginalize out the latent variables (θ,Z). Sampling from the
posterior is covered in (Mansinghka et al., 2015b, Section 2.4), so we only focus on implementing
simulate and logpdf assuming posterior samples of latents are available.2 These implemen-
tations are summarized in Algorithms 2b and 2c, where all routines have access to a posterior
sample of the latent variables in Algorithm 2a. While our algorithms are based on an uncollapsed
CrossCat, in practice, the Parameter-Prior and primitive CGPMs from lines 8 and 13 in Algo-
rithm 2a form a conjugate pair. The density terms pG(x[r,c]|φ[c,k]) are computed by marginalizing
φ[c,k], and using the sufficient statistics in cluster k along with the column hyperparameters λi,
i.e. pG(x[r,c]|{x[r′,c] : z[r′,B] = k},λi). This Rao-Blackwellization enhances the inferential quality and
predictive performance of CrossCat, and the one sample approximation on line 6 of Algorithm 2d,
an instance of Algorithm 8 from (Neal, 2000), becomes exact for evaluating logpdf. Section 3.4
contains a discussion on the implications of different internal representations of a generative process
(such as collapsed or uncollapsed) from the perspective of CGPMs.

2. Section 4.8 outlines the Monte Carlo estimator for aggregating the samples in a general probabilistic programming
setting.
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Algorithm 2a Forward sampling a population in the CrossCat CGPM.

1: α ∼ Crp-Concentration-Prior . sample a concentration for the outer CRP
2: π ∼ Crp(α|[T ]) . sample partition of variables {v1, . . . , vT }

3: for B ∈ π do . for each block B in the variable partition
4: αB ∼ Crp-Concentration-Prior . sample a concentration for the inner CRP at B
5: (ω[B,1], ω[B,2], . . . ) ∼ GEM(αB) . sample stick-breaking weights of its clusters
6: for i ∈ [T ] do . for each variable vi in the population
7: λi ∼ Parameter-Hyper-Prior . sample hyperparams from a hyperprior
8: (φ[i,1], φ[i,2], . . . )

iid
∼ Parameter-Prior(λi) . sample component distribution params

9: for r = 1, 2, . . . do . for each member r in the population
10: for B ∈ π do . for each block B in the variable partition
11: z[r,B] ∼ Categorical(ωB) . sample the cluster assignment of r in B
12: for i ∈ B do . for each variable vi in the block
13: x[r,i] ∼ pG(·|φ[i,z[r,B]]) . sample observable element vi for r

Algorithm 2b simulate for the CrossCat CGPM.

1: function Simulate
2: x[r,Q] ← ∅ . initialize empty sample
3: for B ∈ π do . for each block B in the variable partition
4: l← Compute-Cluster-Probabilities(B) . retrieve posterior probabilities of proposal clusters
5: z[r,B] ∼ Categorical(l) . sample a cluster
6: for q ∈ (Q ∩ B) do . for each query variable in the block
7: x[r,q] ∼ pG(·|φ[q,z[r,B]]) . sample an observation element

8: return x[r,Q] . overall sample of query variables

Algorithm 2c logpdf for the CrossCat CGPM.

1: function LogPdf
2: for B ∈ π do . for each block B in the variable partition
3: l← Compute-Cluster-Probabilities(B) . retrieve posterior probabilities of proposal clusters
4: K ← |l| . compute number of proposed clusters

5: tB ←
∑K

k=1

[( ∏
q∈(Q∩B)

pG(x[r,q]|φ[r,k])
)

lk∑K
k′=1 lk′

]
. compute density for query variables in B

6: return
∑

B∈π log(tB) . overall log density of query

Algorithm 2d Computing the cluster probabilities in a block of the CrossCat partition.

1: function Compute-Cluster-Probabilities (block: B)
2: K ← max

r′∈D
{z[r′,B]} . compute number of occupied clusters

3: for k = 1, 2, . . . ,K do ck = |{r′ ∈ D : z[r′,B] = k}| . compute number of members in each cluster
4: for k = 1, 2, . . . ,K do . for each cluster k
5: lk ←

(
ck∑

j c j+αB

) ∏
e∈(E∩B)

pG(x[r,e]|φ[e,k]) . compute probability of r joining k

6: lK+1 ←

(
αB∑

j c j+αB

) ∏
e∈(E∩B)

pG(x[r,e]|φ[e,K+1]) . compute probability of r in singleton cluster

7: return (l1, . . . , lK , lK+1) . normalized probabilities of proposed clusters
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(a) Black dots represent observed samples from a noisy ring with decreasing noise level. Colored dots
represent samples from CrossCat’s posterior predictive after two minutes of analysis. The color of a point
indicates its latent cluster assignment from CrossCat’s inner Dirichlet process mixture. This panel illustrates a
phenomenon known as the Bayes Occam’s razor. At higher noise levels (left side plots) there is less evidence
for patterns in the data, so the posterior prefers a less complex model with a small number of large clusters.
At lower noise levels (right side plots) there is more evidence for the functional relationship, so the posterior
prefers a more complex model with a large number of small clusters, which is required to emulate the ring.

(b) The heatmaps show the evolution of CrossCat’s posterior predictive density with increasing number of
inference transitions, given a ring with fixed noise level (sixth ring from right in panel (a)). Brighter shades
of green indicate greater density mass in the region. The surface plots to the right of each heatmap show the
same density, projected in three dimensions. During early stages of inference, the density surface is unimodal
and appears as a cloud in the 2D plane. Modalities and patterns in the data are captured with increasing
inference, as the Markov chain centers on regions of high posterior mass in CrossCat’s latent state.

Figure 3: Using simulate and logpdf to study CrossCat’s emulation of a noisy ring.

13



4.3 Ensemble classifiers and regressors

In this section, we describe how to construct CGPMs for a class of ensemble- based classifiers
and regressors that are common in machine learning. These CGPMs are not typically described by
a graphical model (Section 3.3) yet are still able to satisfy the CGPM interface by implementing
simulate and logpdf. For each member r, we assume the CGPM G generates a single output
variable xr, and requires as input a feature vector yr = (y[r,1], . . . , y[r,I]). In an ensemble method, G
carries a set of learners {L1, . . . , LK}, where each learner Lk returns a point prediction of xr given yr

denoted Lk(yr). As a simple example, G may represent a random forest, and each learner Li a con-
stituent decision tree. For infer, G may construct the ensemble of learners given measurementsD
using any meta-learning algorithm such Boosting (Freund and Schapire, 1995), Bagging (Breiman,
1996) or others.

4.3.1 Classification

Let {1, . . . , S } denote the set of possible values for the output variable xr (this specification is con-
sistent with a BINARY or NOMINAL statistical data type from Table 2 in Section 5.3). Given an input
yr, the simplest strategy to define a probability for the event [xr = s] is to compute the proportion
of learners in the ensemble who predict [Lk(yr) = s]. This baseline strategy guarantees that the dis-
crete probabilities sum to 1; however, it suffers from degeneracy in that the simulate and logpdf
are undefined when D is empty. To address this issue, we introduce a smoothing parameter α. With
probability α, the output xr is uniform over the S symbols, and with probability (1 − α), it is an
aggregate of outputs from the learners,

pG(xr |yr,D) = (1 − α)

 1
K

S∑
s=1

I[xr = s]
K∑

k=1

(I[Lk(yr) = s])


 + α

(
1
S

)
. (3)

In practice, a prior is placed on the smoothing parameter α ∼ Uniform([0, 1]), which is transitioned
by gridded Gibbs sampling (Ritter and Tanner, 1992) over the prediction likelihood on the measure-
ment set. When the distribution of xr given yr is in the hypothesis space of the learners, we expect
that limn→∞ pG(α|G,Dn) = 0. Both simulate and logpdf can be implemented directly from (3).

4.3.2 Regression

In the regression setting, the predictions {Lk(yr)} returned by each learner are real-valued, and so the
discrete aggregation strategy from (3) does not lead to a well-defined implementation of logpdf.
Instead, for an input vector yr the ensemble-based regression CGPM G first computes the set of
predictions {L1(yr), . . . LK(yr)}, and then incorporates them into a primitive univariate CGPM
compatible with the statistical type of the output variable, such as a NORMAL for NUMERICAL, or
LOGNORMAL for MAGNITUDE. This strategy fits a statistical type appropriate noise model based on
the variability of responses from the learners, which relates to how noisy the regression is. imple-
mentations of logpdf and simulate are directly inherited from the constructed primitive CGPM.

4.4 Factor analysis & probabilistic PCA

Our development of factor analysis closely follows (Murphy, 2012, Chatper 12); we extend the
exposition to describe implementations of simulate and logpdf for arbitrary patterns of latent
and observable variables. Factor analysis is a continuous latent variable model where the vector
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of output variables xr = (x[r,1], . . . , x[r,D]) is a noisy linear combination of a set of L basis vectors
{w1, . . . ,wL},

xr = µ +w1z[r,1] +w2z[r,2] + · · · +wLz[r,L] + ε ε ∼G Normal(0, diag(ψ1, . . . , ψD)). (4)

Each basis vectorwl is a D-dimensional vector and the dimension of the latent space L (a hyperpa-
rameter) is less than D. The member latents zr ∈ RL are known as factor scores, and they represent
a low-dimensional projection of xr. The global latents are the bases W = [w1 . . .wL], covariance
matrix Ψ of the noise ε, and mean vector µ of xr. To specify a generative model, the member-
specific latent variables are given a prior zr ∼ Normal(0, I). Combining this prior with (4) the joint
distribution over the latent and observable variables is

sr =

(
zr

xr

)
∼G Normal

(
m =

(
0
µ

)
,Σ =

(
IL×L W>

L×D
W>

D×L
(
WW> + Ψ

)
D×D

))
, (5)

where we have defined the joint vector sr = (zr,xr) ∈ RD+L. The CGPM G implementing factor
analysis exposes the member-specific latent variables as output variables. The multivariate normal
(5) provides the ingredients for simulate and logpdf on any pattern of latent and observable
variables with query s[r,Q] and evidence s[r,E]. To arrive at the target distribution, the Bayes
theorem for Gaussians (Bishop, 2006) is invoked in a two-step process.

Marginalize s[r,Q∪E] ∼
G Normal

((
µQ

µE

)
,

(
ΣQ ΣQ∪E

Σ>Q∪E ΣE

))
Condition s[r,Q]|s[r,E] ∼

G Normal
(
µQ + ΣQ∪EΣ−1

E (s[r,E] − µE),ΣQ −ΣQ∪EΣ−1
E Σ>Q∪E

)
Our implementation of infer uses expectation maximization for factor analysis (Ghahramani

and Hinton, 1997); an alternative approach is posterior inference in the Bayesian setting (Press et al.,
1997). Finally, probabilistic principal component analysis (Tipping and Bishop, 1999) is recovered
when covariance of ε is further constrained to satisfy ψ1 = · · · = ψD.

%mml CREATE TABLE iris FROM ‘iris.csv’;
%mml CREATE POPULATION p FOR iris (GUESS (*));
%mml CREATE METAMODEL m FOR p (
.... OVERRIDE GENERATIVE MODEL FOR
.... sepal_length, sepal_width,
.... petal_length, petal_width
.... AND EXPOSE
.... flower_pc1 NUMERICAL,
.... flower_pc2 NUMERICAL
.... USING probabilistic_pca(L=2));
%mml INITIALIZE 1 MODEL FOR m;
%mml ANALYZE m FOR 10 ITERATION;
%bql .scatter
.... INFER EXPLICIT
.... PREDICT flower_pc1 USING 10 SAMPLES,
.... PREDICT flower_pc2 USING 10 SAMPLES,
... flower_name
.... FROM p;

setosa
versicolor
virginica

Figure 4: Low dimensional projection of flowers in the iris dataset using the probabilistic PCA
CGPM. The two latent principal components scores are exposed as queryable outputs in BQL.
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4.5 Parametric mixture of experts

The mixture of experts (Jacobs et al., 1991) is a regression model for data which exhibit highly
non-linear characteristics, such as heteroskedastic noise and piecewise continuous patterns. Let G
be a CGPM which generates output variables xr = (x[r,1], . . . , x[r,T ]) given input variables yr, using
mixtures of local parametric mixtures. The member latent variable zr = (zr) takes values in [K]
(possibly unbounded) which induces a Naive Bayes factorization over the outputs

pG(x[r,Q]|yr,θ) =

K∑
k=1

 T∏
t=1

pG(x[r,t]|yr,γ[q,zr])pG(zr = k|yr,θ)

 , (6)

where γ[q,k] are the regression parameters for variable x[r,t] when zr = k. While (6) looks similar
to the Naive Bayes factorization (2) from CrossCat, they differ in important ways. In CrossCat, the
variables x[r,t] are sampled from primitive univariate CGPMs, while in the mixture of experts they
are sampled from a discriminative CGPM conditioned on yr. The term pG(x[r,t]|yr,γ[q,zr]) may be
any generalized linear model for the correct statistical data type (such as a Gaussian linear regression
for NUMERICAL, logistic regression for NOMINAL, or Poisson regression for COUNTS). Second, the
mixture of experts has a “gating function” for pG(zr = k|yr,θ) which is also conditioned on yr and
may be a general function such as a softmax or even a Dirichlet process mixture (Hannah et al.,
2011). In, CrossCat the member latents z[r,B] are necessarily given a CRP prior in each block. We
leave out implementations of simulate and logpdf, and refer to Figure 5 for a comparison of
posterior samples from CrossCat and mixture of experts given data from a piecewise continuous
function.
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(a) CrossCat
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(b) Mixture of linear regression experts

Figure 5: Posterior samples from CrossCat and mixture of experts given a piecewise contin-
uous linear function. Observed data points are shown in black, and posterior samples are shown
in color, which represents a latent cluster assignment internal to each CGPM. (a) CrossCat emu-
lates the curve using a mixture of axis-aligned Gaussians, requiring a larger number of small, noisy
clusters. (b) Mixture of linear regression experts identifies the two linear regimes and is able to
interpolate well (red dots in top curve). The two orange datapoints that appear as outliers are sam-
ples from a “singleton” cluster, since the gating function is implemented using a Dirichlet process
mixture.

16



4.6 Generative nearest neighbors

In this section, we present a compositional generative population model which implements simulate
and logpdf by building ad-hoc statistical models on a per-query basis. The method is a simple ex-
tension of K Nearest Neighbors to generative modeling.

Let G be a generative nearest neighbor CGPM, and x[r,Q] and x[r,E] denote the query and ev-
idence for a simulate or logpdf query. The method first finds the K nearest neighbors to r in
dataset D, based on the values of the evidence variables x[r,E]. Let N denote the top K neighbors,
whose generic member is denoted xk ∈ N . Within N , we assume the query variables Q are inde-
pendent, and learn a CGPM G = {G[q] : q ∈ Q} which is a product of primitive univariate CGPMs
Gq (based on the appropriate statistical data type of each variable q from Table 2). The measure-
ments {x[k,q]k ∈ N} are used to learn the primitive CGPM for q in the neighborhood. This procedure
is summarized in Algorithm 3c. Implementations of simulate and logpdf follow directly from
the product CGPM, as summarized in Algorithms 3a and 3b. Figure 6 illustrates how the behavior
of simulate on a synthetic x-cross varies with the neighborhood size parameter K.

It should be noted that building independent models in the neighborhood will result in very
poor performance when the query variables remain highly correlated even when conditioned on the
evidence. Our baseline approach can be modified to capture the dependence between the query vari-
ables by instead building one independent CGPM around the local neighborhood of each neighbor
k ∈ N , rather than one independent CGPM for the entire neighborhood. These improvements are
left for future work.

Algorithm 3a simulate for generative nearest neighbors CGPM.

1: x[r,Q] ← ∅ . initialize empty sample
2: (Gq : q ∈ Q)← Build-Local-Cgpms (x[r,E]) . retrieve the local parametric CGPMs
3: for q ∈ Q do . for each query variable q
4: x[r,q] ← simulate(G[ j,q], r, {q},∅) . sample from the primitive CGPM
5: return x[r,Q] . overall sample of query variables

Algorithm 3b logpdf for generative nearest neighbors CGPM.

1: (Gq : q ∈ Q)← Build-Local-Cgpms (x[r,E]) . retrieve the local parametric CGPMs
2: for q ∈ Q do . for each query variable q
3: log wq ← logpdf(Gq, r, x[r,q],∅) . compute the density of q

4: return
∑

q∈Q log wq . overall density estimate

Algorithm 3c Building local parametric models in the generative nearest neighbor CGPM.

1: function Build-Local-Cgpms (x[r,E])
2: DE ← {x[r′,E] : r′ ∈ D} . marginalize by exclusion from neighbor search
3: N ← Nearest-Neighbors(K,DE ,x[r,E]) . find neighbors of r
4: for q ∈ Q do . for each query variable q
5: Gq ← Primitive-Univariate-Cgpm . initialize a primitive CGPM
6: for k ∈ N do: . for each neighbor
7: Gq ← incorporate(Gq, k, x[k,q]) . incorporate into primitive CGPM
8: Gq ← infer(Gq,TML) . transition the primitive CGPM
9: return (Gq : q ∈ Q) . collection of primitive CGPMs
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(b) Samples of z GIVEN x=0.5, y=0.5 for various neighborhood sizes

%mml CREATE METAMDOEL xcross_m WITH BASELINE gknn(K=?) FOR xcross;
%bql .scatter SIMULATE z FROM xcross_m GIVEN x=0.5, y=0.5 LIMIT 50;

Figure 6: Posterior samples from the generative nearest neighbors CGPM given an x-cross
for varying values of neighbors K. (a) Samples from the synthetic x-cross data generator. It
produces three variables: x and y are real-valued and are scattered in the 2D plane, and z is a binary
variable indicating the functional regime. (b) For small neighborhoods (K=2, K=4), most members
of the neighborhood satisfy z=0, as reflected by the sharp posterior distribution of z at 0. As the
neighborhood size increases (K=8, K=10) they become noisy and include more members with z=1,
smoothing out the posterior over z between 0 and 1.

4.7 Multivariate kernel density estimation

In this section, we show how to express multivariate kernel density estimation with mixed data types,
as developed by (Racine and Li, 2004), using CGPMs. Similarly to ensemble methods (Section 4.3)
this approach implements the CGPM interface without admitting a natural representation in terms
of the graphical model in Figure 1. We extend the exposition of (Racine and Li, 2004) to include
algorithms for conditional sampling and density assessment. Given measurements D, the joint
distribution over the variables of xr is estimated non-parametrically

pG(xr |D) =
1
|D|

∑
r′∈D

K(xr |γ) =
1
|D|

∑
r′∈D

∏
i∈[O]

1
γi

Ki
(
x[r,i], x[r′,i]|γi

) . (7)

K(xr |γ) is a product kernel and γ is a global parameter containing the bandwidths for each kernel
Ki. Note that using a product kernel does not imply independence of elements x[r,i] and x[r, j] within
a member. Bandwidths are typically learned by cross-validation or maximum-likelihood. For a
NOMINAL statistical type with S symbols the kernel is

Kq(x, x′|γq) =
(
(1 − γq)I[x = x′] + γq/(S − 1)I[x , x′]

)
,

from (Aitchison and Aitken, 1976). For a NUMERICAL statistical type the kernel is a standard second
order Gaussian

Kq(x, x′|γq) =

(
exp(−

1
2

((x − x′)/γ)2)/
√

2π
)
.
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To implement simulate and logpdf, we first show how the product kernel (7) ensures marginal-
ization is tractable,

Marginalize

pG(x[r,Q]|D) =

∫
x[r,\Q]

pG(x[r,Q],x[r,\Q])dx[r,\Q] =

∫
x[r,\Q]

1
|D|

∑
r′∈D

K(xr |γ)dx[r,\Q]

=

∫
x[r,\Q]

 1
|D|

∑
r′∈D

∏
i∈[O]

1
γi

Ki
(
x[r,i], x[r′,i]|γi

) dx[r,\Q]


=

1
|D|

∑
r′∈D

∫
x[r,\Q]


∏

q∈Q

1
γq

Kq
(
x[r,q], x[r′,q]|γq

)
∏

j∈\Q

1
γ j

K j
(
x[r, j], x[r′, j]|γ j

) dx[r,\Q]




=
1
|D|

∑
r′∈D


∏

q∈Q

1
γq

Kq
(
x[r,q], x[r′,q]|γq

) ∫
x[r,\Q]


∏

j∈\Q

1
γ j

K j
(
x[r, j], x[r′, j]|γ j

) dx[r,\Q]

︸                                                     ︷︷                                                     ︸
density normalized to 1


=

1
|D|

∑
r′∈D

∏
q∈Q

1
γq

Kq
(
x[r,q], x[r′,q]|γq

) . (8)

Conditioning is a direct application of the Bayes Rule, where the numerator and denominator
are computed separately using (8).

Condition pG(x[r,Q]|x[r,E],D) =
pG(x[r,Q],x[r,E]|D)

pG(x[r,E]|D)
(9)

Combining (8) and (9) provides an immediate algorithm for logpdf. To implement simulate,
we begin by ignoring the normalizing constant in the denominator of (9) which is unnecessary for
sampling. We then express the numerator suggestively,

pG(x[r,Q]|x[r,E],D) ∝
∑
r′∈D


∏
q∈Q

1
γq

Kq
(
x[r,q], x[r′,q]|γq

)∏
e∈E

1
γe

Ke
(
x[r,e], x[r′,e]|γe

)
︸                          ︷︷                          ︸

weight w′r

 , (10)

In particular, the simulate algorithm first samples a member r′ ∼ Categorical({w′r : r ∈ D}),
where the weight w′r is labeled in (10). Next, it samples the query elements x[r,q] independently
from the corresponding kernels curried at r′. Intuitively, the CGPM weights each member r′ in the
population by how well its local kernel explains the evidence x[r,E] known about r.

4.8 Probabilistic programs in VentureScript

In this section, we show how to construct a composable generative population model directly in
terms of its computational and statistical definitions from Section 3 by expressing it in the Venture-
Script probabilistic programming language. For simplicity, this section assumes the CGPM satisfies
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a more refined conditional independence constraint than (1), namely

∃q, q′ : (r, c) , (r′, c′) =⇒ x[r,c] ⊥⊥ x[r′,c′] | {α,θ, z[r,q], z[r′,q′],yr,y
′
r}. (11)

In words, for every observation element x[r,c], there exists a latent variable z[r,q] that (in addition to
θ) mediates all coupling with other variables in the population. The member latent variablesZ may
still exhibit arbitrary dependencies within and among one another. While not essential, this require-
ment simplifies exposition of the inference algorithms. The approach for simulate and logpdf
is based on approximate inference in tagged subparts of the Venture trace.3 The CGPM carries a
set of K independent samples {θk}

K
k=1 from an approximate posterior pG(θ|D). These samples of

global latent variables are assigned weights on a per-query basis. Since VentureScript CGPMs are
Bayesian, the target distribution for simulate and logpdf marginalizes over all internal state,

pG(x[r,Q]|x[r,E],D) =

∫
θ

pG(x[r,Q]|x[r,E],θ,D)pG(θ|x[r,E],D)dθ (12)

=

∫
θ

p(x[r,Q]|x[r,E],θ,D)
pG(x[r,E]|θ,D)p(θ|D)

pG(x[r,E]|D,G)
dθ

≈
1∑K

k=1 wk

K∑
k=1

pG(x[r,Q]|x[r,E],θk,D)wk θk ∼
G |D. (13)

The weight wk = pG(x[r,E]|θk,D) is the likelihood of the evidence under θk. The weighting scheme
(13) is a computational trade-off circumventing the requirement to run inference on population
parameters θ on a per-query basis, i.e. when given new evidence x[r,E] about r.4

It suffices now to consider the target distribution under single sample θk:

pG(x[r,Q]|x[r,E],θk,D) =

∫
zr

pG(x[r,Q], zr |x[r,E],θk,D)dzr (14)

=

∫
zr


∏

q∈Q

pG(x[r,q]|zr,θk)

 pG(zr |x[r,E],θk,D)dzr

 (15)

≈
1
T

T∑
t=1

∏
q∈Q

pG(x[r,q]|z[t,r],θk) z[t,r] ∼
G |{x[r,E],θ,D}. (16)

Eq (14) suggests that simulate for can be implemented by sampling from the joint local posterior
{x[r,Q], zr |x[r,E],θk,D}, and returning only elements x[r,Q]. Eq (16) shows that logpdf can be im-
plemented by first sampling the member latents zr from the local posterior. By invoking conditional
independence constraint (11) in Eq (15), the query x[r,Q] factors into a product of density terms
for each element x[r,q] which can be evaluated directly. This description completes the algorithm
for simulate and logpdf in trace θk, and is repeated for {θ1, . . . ,θK}. The CGPM implements
simulate by drawing a trace j ∼ Categorical({w1, . . . ,wK}) and returning the sample x[r,Q] from
θ j. Similarly, logpdf is computed using the weighted Monte Carlo estimator (13). Algorithms 4a
and 4b illustrate implementations in a general probabilistic programming environment.

3. In Venture, every random choice may be in a scope which is divided into a set of blocks. The CGPM places each
member r in its own scope, and each observable x[r,i] and latent z[r,i] element in a block within that scope.

4. An alternative strategy is to compute a harmonic mean estimator based directly on (12).
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%sql CREATE TABLE sin_t(x, y REAL);
%mml CREATE POPULATION sin_p FOR t WITH SCHEMA(
.... MODEL x, y AS NUMERICAL);

%mml CREATE METAMODEL sin_m FOR sin_p(
.... OVERRIDE MODEL FOR x USING
.... inline_venturescript(‘
.... () ~> {uniform(low: -4.71, high: 4.71)}
.... ’);
.... OVERRIDE MODEL FOR y GIVEN x USING
.... inline_venturescript(‘
.... (x) ~> {
.... if (cos(x) > 0) {
.... uniform(low: cos(x)-0.5, high: cos(x))}
.... else {
.... uniform(low: cos(x), high: cos(x)+0.5)}}
.... ’)
.... );
%mml ANALYZE 1 MODEL for sin_m;
%bql .scatter SIMULATE x, y FROM sin_p LIMIT 100;
%bql .scatter SELECT x, 0.5 FROM(
.... SIMULATE x FROM sin_p GIVEN y=-0.75 LIMIT 50);
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Figure 7: Composing VentureScript expressions by compiling them into CGPMs. (a) Expres-
sions in teal are lambda expressions, or anonymous functions, in VentureScript, which are compiled
into CGPMs by the inline_venturescript adapter. Both forward simulation (blue query) and
inversion (red query) of the joint generative model are achieved by Algorithm 5a. This code is an in-
stance of polyglot probabilistic programming; it includes expressions from two different languages
interacting in a single program. (b) The top plot shows samples of forward simulating x and y (blue
query); the middle plot shows samples of x GIVEN y=-0.75 (red query), successfully capturing
the two posterior modes; the bottom plot shows an overlay.
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Parameter Symbol

no. of trace instances K
global latent variables in trace k θk

local latent variables in trace k Zk

observation set in trace k Dk

input variable yr

evidence set x[r,E]

Parameter Symbol

weight of trace k wk

sample of zr in trace k z[k,r]
sample of x[r,Q] in trace k x[k,r,Q]
no. of internal Monte Carlo samples T
t-th Monte Carlo sample of z[k,r] z[k,t,r]
weighted density estimate in trace k qk

Table 3: Parameters and symbols used in Algorithms 4a and 4b.

Algorithm 4a simulate for CGPMs in a general probabilistic programming environment.

1: function Simulate
2: for k = 1, . . . ,K do . for each trace k
3: wk ← Compute-Trace-Weight (k,x[r,E]) . retrieve the weight
4: j ∼ Categorical({w1, . . . ,wk}) . importance resample the traces
5: {x[ j,r,Q], z[ j,r]} ∼

G |{θ j,Z j,D j} . transition operator leaving target invariant
6: return x[ j,r,Q] . select samples of query set from resampled trace

Algorithm 4b logpdf for CGPMs in a general probabilistic programming environment.

1: function LogPdf
2: for k = 1, . . . ,K do . for each trace k
3: wk ← Compute-Trace-Weight (k,x[r,E]) . retrieve the weight
4: for t = 1, . . . ,T do . obtain T samples of latents in scope r
5: z[k,t,r] ∼

G |{θk,Zk,Dk} . transition operator leaving target invariant
6: h[k,t] ←

∏
q∈Q p(x[r,q]|θk, z[k,t,r]) . compute a density estimate

7: rk ←
1
T

∑T
t=1 h[k,t] . aggregate density estimates by simple Monte Carlo

8: qk ← rkwk . importance weight the estimate
9: return log

(∑K
k=1 qk

)
− log

(∑K
k=1 wk

)
. weighted importance sampling estimator

Algorithm 4c Computing the weight of a trace on a per-query basis.

1: function Compute-Trace-Weight (trace: k, evidence: x[r,E])
2: Dk ←Dk ∪ yr . observe the input variable
3: if z[k,r] < Zk then . if member r has unknown local latents
4: z[k,r] ∼

G |{θk,Zk,Dk} . sample from the prior
5: Dk ←Dk ∪ x[r,E] . observe new evidence variables
6: wk ←

∏
e∈E

pG(x[r,e]|θk, z[k,r]) . weight by likelihood of x[r,E]

7: return wk
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5. Integrating Conditional Generative Population Models into BayesDB

Without probabilistic programming systems and languages that treat data analysis computationally,
it is difficult to both utilize the expressive power of CGPMs and use general-purpose inference ma-
chinery to develop and query them. In this section, we show how CGPMs have been integrated
into BayesDB, a probabilistic programming platform with two languages: the Bayesian Query Lan-
guage (BQL) for model-independent querying, and the Metamodeling Language (MML) for model
discovery and building. We first describe how simple BQL queries map directly to invocations of
the CGPM interface. We then show how to compose CGPMs into networks, and outline new expres-
sions in MML used to construct populations and networks of CGPMs. The experiments in Section
6 illustrate how extending BayesDB with CGPMs can be used for non-trivial data analysis tasks.

%mml CREATE TABLE t FROM "customers.csv"
%mml CREATE POPULATION p FOR t(
.... GUESS STATTYPES FOR (*);
.... MODEL age AS MAGNITUDE
.... );

%mml CREATE METAMODEL m FOR p
.... WITH BASELINE crosscat(
.... SET CATEGORY MODEL
.... FOR age TO lognormal;
.... OVERRIDE GENERATIVE MODEL
.... FOR income GIVEN age, state
.... USING linear_regression
.... );

%mml INITIALIZE 4 MODELS FOR m;
%mml ANALYZE m FOR 1 MINUTE;

%bql SIMULATE age, state
.... GIVEN income = 145000
.... FROM p LIMIT 100;

age state income

29 CA 145000

61 TX 145000

48 MA 145000

PopulationsData Tables Metamodels

Metamodeling Language
(MML) Interpreter

MML
Script

CGPM
Library

Composable Generative
Population Models (CGPMs)

Bayesian Query Language
(BQL) Interpreter

BQL
Query

Query Results

Figure 8: System architecture and modules that comprise BayesDB. The Metamodeling Lan-
guage interpreter reads (i) population schemas to define variables and statistical types, (ii) meta-
model definitions to apply automatic and custom modeling strategies for groups of variables in the
population, and (iii) commands such as INITIALIZE, which instantiates an ensemble of CGPM net-
works, and ANALYZE, which applies inference operators to CGPMs to learn from observed data. The
Bayesian Query Language is a model-independent probabilistic query language that allows users to
(i) ESTIMATE properties of CGPMs such strength and existence of dependence relationships be-
tween variables, similarity between members, and conditional density queries, and (ii) SIMULATE
missing or hypothetical observations subject to user-provided constraints. Together, these compo-
nents allow users to build population models and query the probable implications of their data.
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5.1 Querying composable generative population models using the Bayesian Query Language

The BQL interpreter allows users to ask probabilistic questions about populations using a structured
query language. Figure 9 shows how the BQL queries SIMULATE and ESTIMATE PROBABILITY OF
translate into invocations of simulate and logpdf for an illustrative population and CGPM.

BQL defines a large collection of row-wise and column-wise estimators for CGPMs (Mans-
inghka et al., 2015a, Sec. 3.2.2), such as MUTUAL INFORMATION, DEPENDENCE PROBABILITY
and SIMILIARITY WITH RESPECT TO. These quantities admit default implementations in terms
of Monte Carlo estimators formed by simulate and logpdf, and any CGPM may override the
BQL interpreter’s generic implementations with a custom, optimized implementation. A full de-
scription of implementing BQL in terms of the CGPM interface is beyond the scope of this work.

rowid a b c d

1 57 2.5 Male 15
2 15 0.8 Female 10
3 NA 1.4 NA NA
...

...
...

...
...

r x[r,a] x[r,b] x[r,c] y[r,d]
...

...
...

...
...

(a) A population represented as an infinite table in BayesDB, modeled by a CGPM G which generates vari-
ables a, b, and c as outputs, and requires variable d as input.

BQL SIMULATE a FROM G GIVEN d=12 WHERE rowid=3 LIMIT 2
CGPM simulate (G, member: 3, query: {a}, evidence: {(d, 12)})
Quantity si ∼

G x[3,a]|{y[3,d] = 3, x[3,b] = 1.4,D} for i = 1, 2

Result
rowid a d
3 51 12
3 59 12

(b) Mapping a SIMULATE query to the CGPM interface invocation of simulate. The sampled quantity si

also includes {x[3,b] = 1.4} as a conditioning value, which was extracted from the datasetD. The CGPM must
condition on every observed value inD, as well as additional per-query constraints specified by the user, such
as {y[3,d] = 3}. The result is a table with two rows corresponding to the two requested samples.

BQL ESTIMATE PROBABILITY OF a=49, c=‘MALE’ GIVEN d=12 FROM G WHERE rowid=3
CGPM logpdf( G, member: 3, query : {(a, 49), (c, ‘MALE’)} evidence : {(d, 12)})
Quantity pG(x[3,a] = 49, x[3,c] = ‘MALE’|y[3,d] = 12, x[3,b] = 1.4,D)

Result rowid a c d bql_pdf((a,c),(d))
3 49 ‘Male’ 12 0.117

(c) Mapping an ESTIMATE PROBABILITY OF query to the CGPM interface invocation of logpdf. The
output is a table with a single row that contains the value of the queried joint density.

Figure 9: Translating BQL queries into invocations of the CGPM interface.
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5.2 Compositional networks of composable generative population models

Our development of CGPMs has until now focused on their computational interface and their inter-
nal probabilistic structures. In this section, we outline the mathematical formalism which justifies
closure of CGPMs under input/output composition. For a collection of CGPMs {Gk : k ∈ [K]} op-
erating on the same population P, we will show how they be organized into a generalized directed
graph which itself is a CGPM G[K], and provide a Monte Carlo strategy for performing joint infer-
ence over the outputs and inputs to the internal CGPMs. This composition allows complex prob-
abilistic models to be built from simpler CGPMs. They communicate with one another using the
simulate and logpdf interface to answer queries against the overall network. In the next section,
we describe the surface syntaxes in MML to construct networks of CGPMs in BayesDB.

Let v = (v1, . . . , vT ) be the variables of P, and Ga be a CGPM which generates outputs
vout

a = (vout
[a,1], . . . , v

out
[a,Oa]), accepts inputs vin

a = (vin
[a,1], . . . , v

in
[a,Ia]), and satisfies (vout

a ∪ vin
a ) ⊂ v.

Similarly, consider another CGPM Gb on the same population with outputs vout
b and inputs vin

b .
The composition (G[b,B] ◦ G[a,A]) applies the subset of outputs vout

[a,A] of Ga to the subset of inputs
vin

[b,B] of Gb, resulting in a new CGPM Gc with output (vout
a ∪ vout

b ) and input (vin
a ∪ v

out
[b,\B]). The

rules of composition require that (vout
a ∩ vout

b ) = ∅ i.e. Ga and Gb do not share any output, and
that vout

[a,A] and vin
[b,B] correspond to the same subset of variables in the original population P. Gen-

eralizing this idea further, a collection of CGPMs {Gk : k ∈ [K]} can thus be organized as a graph
where node k represents internal CGPM Gk, and the labeled edge aA → bB denotes the composition
(G[b,B] ◦G[a,A]). These labeled edges between different CGPMs in the network must form a directed
acyclic graph. However, elements x[k,r,i] and x[k,r, j] of the same member r within any particular Gk

are only required to satisfy constraint (1) which may in general follow directed and/or undirected
dependencies. The topology of the overall CGPM network G[K] can be summarized by its general-
ized adjacency matrix π[K] := {πk : k ∈ [K]}, where πk = {(p, t) : vout

[p,t] ∈ v
in
k } is the set of all output

elements from upstream CGPMs connected to the inputs of Gk.
To illustrate that the class of CGPMs is closed under composition, we need to show how the

network G[K] implements the interface. First note that G[K] produces as outputs the union of all
output variables of its constituent CGPMs, and takes as inputs the collection of variables in the
population which are not the output of any CGPM in the network. The latter collection of variables
are “exogenous” to the network, and must be provided for queries that require them.

The implementations of simulate and logpdf againstG[K] are shown in Algorithms 5a and 5b.
Both algorithms use an importance sampling scheme which combines the methods provided by each
individual node Gk, and a shared forward-sampling subroutine in Algorithm 5c. The estimator for
logpdf uses ratio likelihood weighting; both estimators derived from lines 2 and 4 of Algorithm 5b
are computed using unnormalized importance sampling, so the ratio estimator on line 6 is exact in
the infinite limit of importance samples J and J′. The algorithms explicitly pass the member id r
between each CGPM so that they agree about which member-specific latent variables are relevant
for the query, while preserving abstraction boundaries. The importance sampling strategy used for
compositional simulate and logpdf may only be feasible when the networks are shallow and
the primitive CGPMs are fairly noisy; better Monte Carlo strategies or perhaps even variational
strategies may be needed for deeper networks, and are left to future work.

The network’s infer method can be implemented by invoking infer separately on each inter-
nal CGPM node. In general, several improvements on this baseline strategy are possible and are
also interesting areas for further research (Section 7).
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Parameter Symbol

number of importance samples J, J′

identifier of the population r
indices of CGPM nodes in the network k = 1, 2, . . . ,K
CGPM representing node k Gk

parents of node k πk

input variables exogenous to network for node k y[k,r]
query set for node k x[k,r,Qk]
evidence set for node k x[k,r,Ek]
query/evidence sets aggregated over all nodes in network x[r,A] = ∪

k∈[K]
x[k,r,Ak]

Table 4: Parameters and symbols used in Algorithms 5a, 5b, and 5c. All parameters provided to
the functions in which they appear. Weighted-Sample ignores query and evidence from the global
environment, and is provided with an explicit set of constrained nodes by Simulate and LogPdf.

Algorithm 5a simulate in a directed acyclic network of CGPMs.

1: function Simulate
2: for j = 1, . . . , J do . generate J importance samples
3: (s j,w j)←Weighted-Sample (x[r,E]) . retrieve sample weighted by evidence

4: m← Categorical({w1, . . . ,wJ}) . resample importance sample
5: return ∪

k∈[K]
x[k,r,Qk] ∈ sm . overall sample of query variables

Algorithm 5b logpdf in a directed acyclic network of CGPMs.

1: function LogPdf
2: for j = 1, . . . , J do . generate J importance samples
3: (s j,w j)← Weighted-Sample (x[r,E] ∪ x[r,Q]) . joint density of query/evidence

4: for j = 1, . . . , J′ do . generate J′ importance samples
5: (s′j,w

′
j)← Weighted-Sample (x[r,Ek]) . marginal density of evidence

6: return log
(∑

[J] w j/
∑

[J′] w j
)
− log(J/J′) . likelihood ratio importance estimator

Algorithm 5c Weighted forward sampling in a directed acyclic network of CGPMs.

1: function Weighted-Sample (constraints: x[r,Ck])
2: (s, log w)← (∅, 0) . initialize empty sample with zero weight
3: for k ∈ TopoSort ({π1 . . . πK}) do . topologically sort the adjacency matrix
4: ỹ[k,r] ← y[k,r] ∪ {x[p,r,t] ∈ s : (p, t) ∈ πk} . retrieve required inputs at node k
5: log w← log w + logpdf(Gk, r,x[k,r,Ck], ỹ[k,r]) . update weight by constraint likelihood
6: x[k,r,\Ck] ← simulate(Gk, r, \Ck,x[k,r,Ck] ∪ ỹ[k,r]) . simulate unconstrained nodes
7: s← s ∪ x[k,r,Ck∪\Ck] . append to sample

8: return (s,w) . overall sample and its weight
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5.3 Building populations and networks of composable generative population models with the
Metamodeling Language

As shown in Figure 8, the MML interpreter in BayesDB interacts with data tables and populations,
metamodels, and a library of CGPMs. Population schemas are MML programs which are used to
declare a list of variables and their statistical types. Every population is backed by a base table in
BayesDB, which stores the measurements. Metamodel definitions are MML programs which are
used to declare a composite network of CGPMs for a given population. The internal CGPMs nodes
in this network come from the CGPM library available to BayesDB. After declaring a population
and a metamodel for it, further MML commands are used to instantiate stochastic ensembles of
CGPM networks (INITIALIZE), and apply inference operators to them (ANALYZE).

In this section, we describe the surface level syntaxes in the Metamodeling Language for pop-
ulation schemas, metamodel definitions, and other MML commands. We also describe how to use
the Bayesian Query Language to query ensembles of CGPMs at varying levels of granularity. A for-
mal semantics for MML that precisely describes the relationship between the compositional surface
syntax and a network of CGPMs is left for future work.

5.3.1 Population Schemas

A population schema declares a collection of variables and their statistical types.

CREATE POPULATION <p> FOR <table> WITH SCHEMA (<schemum>[; ...]);

Declares a new population p in BayesDB. The token table references a database table, which
stores the measurements and is known as the base table for p.

schemum := MODEL <var-names> AS <stat-type>

Uses stat-type as the statistical data type for all the variables named in var-names.

schemum := IGNORE <var-names>

Excludes var-names from the population. This command is typically applied for columns in
the base table representing unique names, timestamps, and other metadata.

schemum := GUESS STATTYPES FOR (* | <var-names>)

Uses existing measurements in the base table to guess the statistical data types of columns
in the table. When the argument is (*), the target columns are all those which do not appear
in MODEL or IGNORE. When the argument is (var-names), only those subset of columns are
guessed.

Every column in the base table must have a derivable policy (guess, ignore, or explicitly model
with a user-provided statistical data type) from the schema. The statistical data types available
in MML are shown in Table 2. The GUESS command is implemented using various heuristics on
the measurements (such as the number of unique values, sparsity of observations, and SQL TEXT
columns) and only assigns a variable to either NOMINAL or NUMERICAL. Using a more refined statisti-
cal type for a variable is achieved with an explicit MODEL...AS command. Finally, two populations
identical same base tables and variables, but different statistical type assignments, are considered
distinct populations.
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5.3.2 Metamodel Definitions

After creating a population P in BayesDB, we use metamodel definitions to declare CGPMs for
the population. This MML program specifies both the topology and internal CGPM nodes of the
network (Section 5.2). Starting with a baseline CGPM at the “root”of the graph, nodes and edges
are constructed by a sequence overrides that extract variables from the root node and place them
into newly created CGPM nodes. The syntax for a metamodel definition is:

CREATE METAMODEL <m> FOR <population> WITH BASELINE <baseline-cgpm>
[(<schemum>[; ...])];

Declares a new metamodel m. The token population references a BayesDB population,
which contains a set of variable names and their statistical types and is known as the base
population for m.

baseline-cgpm ::= (crosscat | multivariate_kde | generative_knn)

Identifies the automatic model discovery engine, which learns the full joint distribution of
all variables in the population of m. Baselines include Cross-Categorization (Section 4.2),
Multivariate Kernel Density Estimation (Section 4.7), or Generative K-Nearest-Neighbors
(Section 4.6).

schemum := OVERRIDE GENERATIVE MODEL FOR <output-vars>
[GIVEN <input-vars>] [AND EXPOSE (<exposed-var> <stat-type>)[, ...]]
USING <cgpm-name>

Overrides baseline-cgpm by creating a new node in the CGPM network. The node gen-
erates output-vars, possibly requires the specified input-vars. Additionally, the CGPM
may expose some of its latent variable as queryable outputs. The token cgpm-name refers to
the name of the CGPM which is overriding baseline-cgpm on the specified subpart of the
joint distribution.

schemum := SET CATEGORY MODEL FOR <output-var> TO <primitive-cgpm-name>

(This command is only available when baseline-cgpm is crosscat.)

Replaces the default category model used by crosscat for output-var, based on its statis-
tical type, with an alternative primitive-cgpm that is also applicable to that statistical type
(last column of Table 2).

To answer arbitrary BQL queries about a population, BayesDB requires each CGPM to carry a
full joint model over all the population variables. Thus, each metamodel is declared with a baseline
CGPM, such as CrossCat, a non-parametric Bayesian structure learner for high-dimensional and
heterogeneous data tables (Mansinghka et al., 2015b), among others outlined in Section 4. It is
important to note that the input-vars in the OVERRIDE MODEL command may be the outputs of
not only the baseline but any collection of upstream CGPMs. It is also possible to completely
override the baseline by overriding all the variables in the population.
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5.3.3 Homogeneous Ensembles of CGPM Networks

In BayesDB, a metamodelM is formally defined as an ensemble of CGPM networks {(Gk,wk)}Ni=1,
where wk is the weight of network Gk (Mansinghka et al., 2015a, Section 3.1.2). The CGPMs inM
are homogeneous in that (from the perspective of MML) they have the same metamodel definition,
and (from the perspective of the CGPM interface) they are all created with the same population,
inputs, outputs, and binary. The ensembleM is populated with K instances of CGPMs using
the following MML command:

INITIALIZE <K> MODELS FOR <metamodel>;

Creates K independent replicas of the composable generative population model network con-
tained in the MML definition of metamodel.

CGPM instances in the ensemble are different in that BayesDB provides each Gk a unique
seed during create. This means that invoking infer(Gk, program: T ) causes each network’s
internal state to evolve differently over the course of inference (when T contains non-deterministic
execution). In MML surface syntax, infer is invoked using the following command:

ANALYZE <metamodel> FOR <K> (ITERATIONS | SECONDS) [(<plan>)];

Runs analysis (in parallel) on all the initialized CGPM networks in the ensemble, according
to an optional inference plan.

plan := (VARIABLES | SKIP) <var-names>

If VARIABLES, then runs analysis on all the CGPM nodes which have at least one output
variable in var-names. If SKIP, then then transitions all the CGPM nodes except those
which have a an output variable in var-names. As outlined at the end of Section 5.2, each
CGPM node is learned independently at present time.

Weighted ensembling of homogeneous CGPMs can be interpreted based on the modeling and
inference tactics internal to a CGPM. For example, in Bayesian CGPM network where ANALYZE
invokes MCMC transitions, each Gk may represent a different posterior sample; for variational
inference, each Gk may converge to a different set of latent parameters due to different random
initializations. More extensive syntaxes for inference plans in MML are left for future work.

5.3.4 Heterogeneous Ensembles of CGPM Networks

Section 5.3.3 defined a metamodel M as an ensemble of homogeneous CGPM networks with the
same metamodel definition. It is also possible construct a heterogeneous ensemble of CGPM net-
works by defining a set of metamodels {M1, . . . ,MK} for the same population P but with different
metamodel definitions. Let G[k,t] be the tth CGPM network in the metamodel Mk. The Bayesian
Query Language is able to query CGPM networks at three levels of granularity, starting from the
most coarse to the most granular.

(ESTIMATE | SIMULATE | INFER) <bql-expression> FROM <population>;

Executes the BQL query by aggregating responses from all metamodels {M1, . . . ,Mk} de-
fined for <population>.
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(ESTIMATE | SIMULATE | INFER) <bql-expression> FROM <population>
MODELED BY <metamodel-k>;

Executes the BQL query by aggregating responses from all the CGPM networks {G[k,t]} that
have been initialized with the MML definition for <metamodel-k>.

(ESTIMATE | SIMULATE | INFER) <bql-expression> FROM <population>
MODELED BY <metamodel-k> USING MODEL <t>;

Executes the BQL query by returning the single response from G[k,t] in <metamodel-k>.

Monte Carlo estimators obtained by simulate and logpdf remain well-defined even when the
ensemble contains heterogeneous CGPMs. All CGPMs across different metamodels are defined for
the same population, which determines the statistical types of the variables. This guarantees that
the associated supports and (product of) base measures (from Table 2) for simulate and logpdf
queries are all type-matched.

5.4 Composable generative population models generalize and extend generative population
models in BayesDB

It is informative to compare both the conceptual and technical differences between generative pop-
ulation models (GPMs) in BayesDB (Mansinghka et al., 2015a) with composable generative popu-
lation models (CGPMs). In its original presentation, the GPM interface served the purpose of being
the primary vehicle for motivating BQL as a model-independent query language (Mansinghka et al.,
2015a, Sec.3.2). Moreover, GPMs were based around CrossCat as the baseline model-discovery en-
gine (Mansinghka et al., 2015a, Sec. 4.5.1), which provided good solutions for several data analysis
tasks. However, by not accepting inputs, GPMs offered no means of composition; non-CrossCat ob-
jects, known as “foreign predictors”, were discriminative models embedded directly into the Cross-
Cat joint density (Mansinghka et al., 2015a, Sec. 4.4.2). By contrast, the main purpose of the CGPM
interface is to motivate more expressive MML syntaxes for building hybrid models, comprised of
arbitrary generative and discriminative components. Since CGPMs natively accept inputs, they ad-
mit a natural form of composition (Section 5.2) which does violate the internal representation of
any particular CGPM.

The computational interface and probabilistic structure of GPMs and CGPMs are different in
several respects. Because GPMs were presented as Bayesian models with Markov Chain Monte
Carlo inference (Mansinghka et al., 2015a, Sec. 4.2), both simulate and logpdf were explicitly
conditioned on a particular set of latent variables extracted from some state in the posterior inference
chain (Mansinghka et al., 2015a, Sec. 3.1.1). On the other hand, CGPMs capture a much broader set
of model classes, and simulate and logpdf do not impose any conditioning constraints internal
to the model besides conditioning on input variables and the entire dataset D. Internally, GPMs
enforced much stronger assumptions regulating inter-row independences; all the elements in a row
are conditionally independent give a latent variable (Mansinghka et al., 2015a, Sec.3.1), effectively
restricting the internal structure to a directed graphical model. CGPMs allow for arbitrary coupling
between elements within a row from Eq (1), which uniformly expresses both directed and undirected
probabilistic models, as well approaches which are not naturally probabilistic that implement the
interface. Finally, unlike GPMs, CGPMs may expose some of member-specific latent variables as
queryable outputs. This features trades-off the model independence of BQL with the ability to learn
and query the details of the internal probabilistic process encapsulated by the CGPM.
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6. Applications of Composable Generative Population Models

The first part of this section outlines a case study applying compositional generative population
models in BayesDB to a population of satellites maintained by the Union of Concerned Scientists.
The dataset contains 1163 entries, and each satellites has 23 numerical and categorical features such
as its material, functional, physical, orbital and economic characteristics. We construct a hybrid
CGPM using an MML metamodel definition which combines (i) a classical physics model written
as a probabilistic program in VentureScript, (ii) a random forest to classify a a nominal variable,
(iii) an ordinary least squares regressor to predict a numerical variable, and (iv) principal component
analysis on the real-valued features of the satellites. These CGPMs allow us to identify satellites
that probably violate their orbital mechanics, accurately infer missing values of anticipated lifetime,
and visualize the dataset by projecting the satellite features into two dimensions.

The second part of this section explores the efficacy of hybrid compositional generative pop-
ulation models on a collection of common tasks in probabilistic data analysis by reporting lines
of code and accuracy measurements against standard baseline solutions. Large savings in lines of
code and improved accuracy are demonstrated in several important regimes. Most of the analysis of
experimental results is contained in the figure gallery at the end of the section.

6.1 Analyzing satellites using a composite CGPM built from causal probabilistic programs,
discriminative machine learning, and Bayesian non-parametrics

The left panel in Figure 10 illustrates a session in MML which declares the population schema for
the satellites data, as well as the metamodel definition for building the hybrid CGPM network that
models various relationships of interest between variables.5 The CREATE POPULATION block shows
the high-dimensional features of each satellite and their heterogeneous statistical types. For simplic-
ity, several variables such as perigee_km, launch_mass_kg and anticipated_lifetime have
been modeled as NUMERICAL rather than a more refined type such as MAGNITUDE. In the remain-
der of this section, we explain the CGPMs declared in the MML metamodel definition under the
CREATE METAMODEL block, and refer to figures for results of BQL queries executed against them.

The PCA CGPM on line 34 of the metamodel definition generates as output five real-valued
variables, and exposes the first two principal component scores to BayesDB. This low-dimensional
projection allows us to both visualize a clustering of the dataset in latent space, and discover oddities
in the distribution of latent scores for satellites whose class_of_orbit is elliptical. It also
identifies a single satellite, in cyan at grid point (1, 1.2), as a candidate for further investigation.
Figure 12 shows the result and further commentary on this experiment.

Four variables in the population relate to the orbital characteristics of each satellite: apogee_km
A, perigee_km P, period_minutes T , and eccentricity e. These variables are constrained by

the theoretical Keplerian relationships e = A−P
A+P and T = 2π

√
((A+P)/2)3

GM , where GM is a physical
constant. In reality, satellites deviate from their theoretical orbits for a variety of reasons, such or-
bital and measurement noise, having engines, or even data-entry errors. The right panel of Figure 10
shows a CGPM in pure VentureScript which accepts as input yr = (Ar, Pr) (apogee and perigee),
and generates as output xr = Tr (period). The prior is a Dirichlet process mixture model on the

5. This program is executed in iVenture, an experimental interactive probabilistic programming environment that sup-
ports running %bql, %mml and %venturescript code cells, all of which operate on a common underlying BayesDB
instance and Venture interpreter.
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error, based on a stochastic variant of Kepler’s Law,

G ∼ DP(α,Normal-Inverse-Gamma(m,V, a, b))

(µr, σ
2
r )|G ∼ G

εr |yr ∼ Normal(·|µr, σ
2
r ) where εr := Tr − Kepler(Ar, Pr).

While the internal details, external interface, and adapter which compiles the VentureScript source
into a CGPM are beyond the scope of this paper, note that its MML declaration uses the EXPOSE
command on line 45. This command makes the inferred cluster identity and noise latent variables
(lines 17 and 22 of the VentureScript program) available to BQL. Figure 11 shows a posterior
sample of the cluster assignments and error distribution, which identifies three distinct classes of
anomalous satellites based on the magnitude of error. For instance, satellite Orion6 in the right
panel of Figure 11, belongs to a cluster with “extreme” deviation. Further investigation reveals
that Orion6 has a period 23.94 minutes, a data-entry error for the true period of 24 hours (1440
minutes).

Figure 13 shows the improvement in prediction accuracy achieved by the hybrid CGPM over the
purely generative CrossCat baseline, for a challenging multiclass classification task. As shown in
lines 57-62 of the metamodel definition in Figure 10, the hybrid CGPM uses a random forest CGPM
for the target variable type_of_orbit given five numerical and categorical predictors. Figures 13a
and 13b shows the confusion matrices on the test set for both the composite and baseline CGPMs.
While both methods systematically confuse sun-synchronous with intermediate orbits, the use of a
random forest classifier results in 11 less classification errors, or an improvement of 11 percentage
points. Using a purely discriminative model for this task, i.e. a random forest without a generative
model over the features (not shown), would require additional logic and heuristic imputation on
feature vectors in the test set, which general contained missing entries.

The final experiment in Figure 14 compares the posterior distribution of the vanilla CrossCat
baseline and multivariate KDE for a two-dimensional density estimation task with nominal data
types. The task is to jointly simulate the country_of_operator and purpose for a hypothetical
satellite, given that its type_of_orbit is geosynchronous. The empirical conditional distribution
from the dataset is shown in red. Both CrossCat and multivariate KDE capture the posterior modes,
although the distribution form KDE has a fatter tail, as indicated by the high number of samples
classified as “Other”. The figure caption contains additional discussion.

There dozens of additional BQL queries that can be posed about the satellites population and,
based on the analysis task of interest, answered using both the existing CGPMs in the hybrid meta-
model as well as more customized CGPMs. The empirical studies in this section has shown it is
possible and practical to apply CGPMs in BayesDB to challenging data analysis tasks in a real-
world dataset, and use BQL queries to compare their performance characteristics.

6.2 Comparing code length and accuracy on representative data analysis tasks

One of the most sparsely observed variables in the satellites dataset is the anticipated_lifetime,
with roughly one in four missing entries. The analysis task in Figure 15 is to infer the anticipated
lifetime x∗ of a new satellite, given the subset of its numerical and nominal features y∗ shown in the
codeblock above the plot. To quantify performance, the predictions of the CGPM were evaluated on
a held-out set of satellites with known lifetimes. Many satellites in both the training set and test set
contained missing entries in their covariates, requiring the CGPM to additionally impute missing
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values in the predictors before forward simulating the regression. Unlike the purely generative
and purely discriminative baselines (shown in the legend), the hybrid CGPM learns both a joint
distribution over the predictors and a discriminative model for the response, leading to significantly
improved predictive performance.

The improvement in lines of code over the baseline methods in Figure 15 is due to using com-
binations of (i) SQL for data processing, (ii) MML for model building, and (iii) BQL for predictive
querying, in BayesDB. All the baselines required custom logic for (i) manual data preprocessing
such as reading csv files, (ii) Euclidean embedding of large categorical values, and (iii) heuristic
imputation of missing features during train and test time (i.e. either imputing the response from its
mean value, or imputing missing predictors from their mean values). The left panel from Figure 15a
shows and end-to-end session in BayesDB which preprocesses the data, builds the hybrid CGPM,
runs analysis on the training set and computes predictions on the test set. The right panel from
Figure 15b shows a single ad-hoc routine used by the Python baselines, which dummy codes a data
frame with missing entries and nominal data types. For nominal variables taking values in a large
set, dummy coding with zeros may cause the solvers to fail when the system is under-determined.
The workaround in the code for baselines is to drop such problematic dimensions from the feature
vector. The regression in the hybrid CGPM does not suffer from this problem because, the default
linear regressor in the CGPM library gives all parameters a Bayesian prior (Banerjee, 2008), which
smooths irregularities.

Figures 16, 17, 18 and 19 extend the lines of code and accuracy comparisons for CGPMs and
baseline methods to several more tasks using diverse statistical methodologies. These figures further
illustrate coverage and conciseness of CGPMs – the captions detail the setup and commentary of
each experiment in greater detail.
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Figure 10: Building a hybrid CGPM in Venturescript and MML for the satellites population.
%mml

1 CREATE TABLE satellites_ucs FROM ’satellites.csv’
2

3 .nullify satellites_ucs ’NaN’
4

5 CREATE POPULATION satellites FOR satellites_ucs
6 WITH SCHEMA (
7 IGNORE Name;
8

9 MODEL
10 country_of_operator, operator_owner,
11 purpose, class_of_orbit, type_of_orbit
12 users, contractor, launch_vehicle,
13 country_of_contractor, launch_site,
14 source_used_for_orbital_data
15 AS NOMINAL;
16

17 MODEL
18 perigee_km, apogee_km, eccentricity,
19 period_minutes launch_mass_kg,
20 dry_mass_kg, power_watts,
21 date_of_launch, anticipated_lifetime
22 AS NUMERICAL;
23

24 MODEL
25 longitude_radians_of_geo,
26 inclination_radians
27 AS CYCLIC
28 );
29

30 CREATE METAMODEL sat_hybrid FOR satellites
31 WITH BASELINE crosscat(
32 SET CATEGORY MODEL FOR eccentricity TO beta;
33

34 OVERRIDE GENERATIVE MODEL FOR
35 launch_mass_kg, dry_mass_kg, power_watts,
36 perigee_km, apogee_km
37 AND EXPOSE
38 pc1 NUMERICAL, pc2 NUMERICAL
39 USING factor_analysis(L=2);
40

41 OVERRIDE GENERATIVE MODEL FOR
42 period_minutes
43 GIVEN
44 apogee_km, perigee_km
45 AND EXPOSE
46 kepler_cluster CATEGORICAL,
47 kepler_noise NUMERICAL
48 USING venturescript(sp=kepler);
49

50 OVERRIDE GENERATIVE MODEL FOR
51 anticipated_lifetime
52 GIVEN
53 date_of_launch, power_watts, apogee_km,
54 perigee_km, dry_mass_kg, class_of_orbit
55 USING linear_regression;
56

57 OVERRIDE GENERATIVE MODEL FOR
58 type_of_orbit
59 GIVEN
60 apogee_km, perigee_km, period_minutes,
61 users, class_of_orbit
62 USING random_forest(k=7);
63 );

%venturescript
// Kepler CGPM.
define kepler = () -> {
// Kepler’s law.
assume keplers_law = (apogee, perigee) -> {
let GM = 398600.4418;
let earth_radius = 6378;
let a = (abs(apogee) + abs(perigee)) *

0.5 + earth_radius;
2 * 3.1415 * sqrt(a**3 / GM) / 60

};
// Internal samplers.
assume crp_alpha = .5;
assume cluster_sampler = make_crp(crp_alpha);
assume error_sampler = mem((cluster) ->

make_nig_normal(1, 1, 1, 1));
// Output simulators.
assume sim_cluster_id =
mem((rowid, apogee, perigee) ~> {
tag(atom(rowid), atom(1), cluster_sampler())

});
assume sim_error =
mem((rowid, apogee, perigee) ~> {
let cluster_id = sim_cluster_id(
rowid, apogee, perigee);

tag(atom(rowid), atom(2),
error_sampler(cluster_id)())

});
assume sim_period =
mem((rowid, apogee, perigee) ~> {
keplers_law(apogee, perigee) +
sim_error(rowid, apogee, perigee)

});
// List of simulators.
assume simulators = [
sim_period, sim_cluster_id, sim_error];

};

// Output observers.
define obs_cluster_id =
(rowid, apogee, perigee, value, label) -> {
$label: observe sim_cluster_id(
$rowid, $apogee, $perigee) = atom(value);

};
define obs_error =
(rowid, apogee, perigee, value, label) -> {
$label: observe sim_error(
$rowid, $apogee, $perigee) = value;

};
define obs_period =
(rowid, apogee, perigee, value, label) -> {
let theoretical_period = run(
sample keplers_law($apogee, $perigee));

obs_error(
rowid, apogee, perigee,
value - theoretical_period, label);

};
// List of observers.
define observers = [
obs_period, obs_cluster_id, obs_error];

// List of inputs.
define inputs = ["apogee", "perigee"];
// Transition operator.
define transition = (N) -> {mh(default, one, N)};
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%bql INFER kepler_cluster, kepler_noise FROM satellites;

Figure 11: Finding satellites whose orbits are likely violations of Kepler’s Third Law using
a causal CGPM in Venturescript, which learns a Dirichlet process mixture on the residuals.
Each dot in the scatter plot (left) is a satellite in the dataset, and its color represents the latent cluster
assignment learned by the causal CGPM. Both the cluster identity and inferred noise are exposed
latent variables. The histogram (right) shows that each of the four distinct clusters roughly translates
to a qualitative description for the magnitude of a satellite’s deviation from its theoretical period:
yellow (negligible), magenta (noticeable), green (large), and blue (extreme). These clusters were
learned non-parametrically.
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%bql INFER EXPLICIT PREDICT pc1, PREDICT pc2, class_of_orbit FROM satellites;

Figure 12: Low dimensional projection of the satellites using the PCA CGPM reveals cluster-
ings in latent space and suggests candidate outliers. The principal component scores are based on
the numerical features of a satellite, and the color is the class_of_orbit. Satellites in low earth,
medium earth, and geosynchronous orbit form tight clusters in latent space along PC1, and exhibit
most within-cluster variance along PC2. The distribution on factor scores for elliptical satellites has
much higher variability along both dimensions, indicating a collection of weak local modes depend-
ing on the regime of the satellite’s eccentricity (not shown), and/or many statistical outliers.
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(a) Crosscat/Random Forest hybrid CGPM.
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(b) CrossCat baseline CGPM.

%bql INFER type_of_orbit FROM held_out_satellites;

Figure 13: Confusion matrices for a multiclass classification task show improved prediction
accuracy by the hybrid CGPM over the CrossCat baseline. The y-axis shows the true label for
“type of orbit” of 100 held-out satellites, and the x-axis shows the predicted label by each CGPM.
The feature vectors are five dimensional and consist of numerical and categorical variables (lines
57-62 of Figure 10), and both test and training sets contained missing data. While both CrossCat
and Crosscat + Random Forest systematically confuse “sun-synchronous”and “intermediate” orbits
(entries in cyan), the overall error rate is reduced by 11% in the hybrid CGPM.

37



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

Probability

USA--Communications
Multinational--Communications

China (PR)--Communications
Russia--Communications

United Kingdom--Communications
Luxembourg--Communications

Japan--Communications
Canada--Communications

China (PR)--Navigation/Global Positioning
Netherlands--Communications

India--Communications
USA--Electronic Surveillance

Brazil--Communications
Spain--Communications

USA--Early Warning
Other

C
o
u

n
tr

y
-P

u
rp

o
s
e

Empirical Data

CrossCat

KDE

%bql SIMULATE country_of_operator, purpose GIVEN class_of_orbit = ‘GEO’;

Figure 14: Simulating from the joint distribution of the country and purpose of a hypothetical
satellite, given its orbit type. The y-axis shows the simulated country-purpose pairs, and the
x-axis shows the frequency of simulations, compared to the true frequency in the dataset. 500
samples were obtained from CrossCat and multivariate KDE to estimate the posterior probabilities.
The posteriors of both CrossCat and KDE are smooth versions of the empirical data – the smoothing
for CrossCat is induced by the inner Dirichlet process mixture over category models, and for KDE
is induced by the bandwidth parameters of the Aitchison and Aitken kernels. The plot shows that
CrossCat’s samples provide a tighter fit to the dataset. The distribution from KDE has a fatter tail,
as indicated by the high number of samples classified in the “Other” category.
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1 CREATE TABLE data_train FROM satellites_train.csv;
2 .nullify data_train ’NaN’;
3

4 CREATE POPULATION satellites FOR data_train
5 WITH SCHEMA(
6 GUESS STATTYPES FOR (*)
7 );
8

9 CREATE METAMODEL cc_ols FOR satellites
10 WITH BASELINE crosscat(
11 OVERRIDE GENERATIVE MODEL FOR
12 anticipated_lifetime
13 GIVEN
14 type_of_orbit, perigee_km, apogee_km,
15 period_minutes, date_of_launch,
16 launch_mass_kg
17 USING linear_regression
18 );
19

20 INITIALIZE 4 MODELS FOR cc_ols;
21 ANALYZE cc_ols FOR 100 ITERATION WAIT;
22

23 CREATE TABLE data_test FROM satellites_test.csv;
24 .nullify data_test ’NaN’;
25 .sql INSERT INTO data_train
26 SELECT * FROM data_test;
27

28 CREATE TABLE predicted_lifetime AS
29 INFER EXPLICIT
30 PREDICT anticipated_lifetime
31 CONFIDENCE pred_conf
32 FROM satellites WHERE _rowid_ > 1000;

(a) Full session in BayesDB which loads the
training and test sets, creates a hybrid CGPM, and
runs the regression.

def dummy_code_categoricals(frame, maximum=10):

def dummy_code_categoricals(series):
categories = pd.get_dummies(

series, dummy_na=1)
if len(categories.columns) > maximum - 1:

return None
if sum(categories[np.nan]) == 0:

del categories[np.nan]
categories.drop(

categories.columns[-1], axis=1,
inplace=1)

return categories

def append_frames(base, right):
for col in right.columns:

base[col] = pd.DataFrame(right[col])

numerical = frame.select_dtypes(include=[float])
categorical = frame.select_dtypes(

include=[’object’])
categorical_coded = filter(

lambda s: s is not None,
[dummy_code_categoricals(categorical[c])

for c in categorical.columns])

joined = numerical

for sub_frame in categorical_coded:
append_frames(joined, sub_frame)

return joined

(b) Ad-hoc Python routine (used by baselines) for
dummy coding nominal predictors in a dataframe
with missing values and heterogeneous types.
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Figure 15: In a high-dimensional regression problem with mixed data types and missing data,
the composite CGPM shows improvement in prediction accuracy over purely generative and
purely discriminative baselines. The task is to infer the anticipated lifetime of a held-out satellite
given categorical and numerical features such as type of orbit, launch mass, and orbital period.
Some feature vectors in the test set have missing entries, leading purely discriminative models
(ridge, lasso, OLS) to either heuristically impute missing features, or to ignore the features and
predict the mean lifetime from its marginal distribution in the training set. The purely generative
model (CrossCat) is able to impute missing data from their full joint distribution, but only indirectly
mediates dependencies between the predictors and response through latent variables. The composite
CGPM (CrossCat+OLS) combines advantages of both approaches; statistically rigorous imputation
followed by direct regression on the features leads to improved predictive accuracy.
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%bql ESTIMATE DEPENDENCE PROBABILITY OF x WITH y;

Figure 16: Dependence discovery. Binary hypothesis tests of independence for synthetic two-
dimensional data drawn from five noisy zero-correlation datasets: sin wave, parabola, x-cross, dia-
mond, and ring. For all datasets the two dimensions are dependent. The y-axis shows the fraction
of correct hypotheses achieved by each method, averaged over all datasets. The decision rule for
kernel-based tests (Gretton et al., 2007; Gretton and Györfi, 2008, 2010), is based on a frequen-
tist significance level of 5% and 1%. The decision rule for CrossCat is based on a dependence
probability threshold of 50%.
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%bql ESTIMATE MUTUAL INFORMATION OF x WITH y;

Figure 17: Dependence strength Estimating the mutual information of a noisy sin wave. The
y-axis shows the squared estimation error, randomized over observed datasets. The “ground truth”
mutual information was derived analytically, and the integral computed by quadrature. Baseline
methods estimate mutual information using K nearest neighbors (Kraskov et al., 2004) and kernel
density estimation (Moon et al., 1995). CrossCat estimates the mutual information first by learning
a Dirichlet process mixture of Gaussians, and using Monte Carlo estimation by generating samples
from the posterior predictive distribution and assessing their density.
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%bql SIMULATE country_of_operator, purpose GIVEN class_of_orbit = ‘GEO’;

Figure 18: Bivariate categorical density estimation. Simulating from the posterior joint distribu-
tion of the country and purpose of a hypothetical satellite, given its orbit type. 500 samples were
obtained from each method to estimate the posterior probabilities. The y-axis shows the Hellinger
distance between posterior samples from each method and the empirical conditional distribution
from the dataset, used as “ground truth”. Standard discriminative baselines struggle to learn the dis-
tribution of a two-dimensional discrete outcome based on a discrete input, where both the predictor
and response variables take values in large categorical sets.
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%bql ESTIMATE PREDICTIVE PROBABILITY OF period_minutes;

Figure 19: Anomaly detection. Detecting satellites with anomalous orbital periods. 18 satellites
from the dataset demonstrated a non-trivial deviation (greater than five minutes) from their theo-
retical period, used as “ground truth” anomalies. For each method, the top 20 satellites ranked
by “outlyingness” score were used as the predicted anomalies. Hybrid CGPMs learn multivariate
and multimodal distributions over all variables in the dataset, leading to higher detection rates than
baseline methods which use univariate and/or unimodal statistics. The Kepler CGPM identifies
most anomalies at the expense of a highly complex program in comparison to baselines.
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7. Discussion and Future Work

This paper has shown that it is possible to use a computational formalism in probabilistic pro-
gramming to apply, combine, and compare a broad class of probabilistic data analysis techniques.
CGPMs extend the core provided by directed graphical models, which express elaborate probabilis-
tic models in terms of smaller univariate pieces, by specifying a computational interface that allows
these pieces to be multivariate, more black-box, and defined directly as software. A key feature
of this framework is that it enables statistical modelers to compose discriminative, generative and
hybrid models from different philosophies in machine learning and statistics using probabilistic pro-
gramming. Moreover, the compositional abstraction is neutral to a CGPM’s internal choices of (i)
modeling assumptions, which may be i.e. hierarchical or flat, or Bayesian or non-Bayesian, and (ii)
inference tactics, which may be i.e. optimization- or sampling-based.

Several models from statistics admit natural implementations in terms of the current CGPM
interface, such as non-linear mixed effect models (Davidian and Giltinan, 1995), where each mem-
ber represents a potentially repeated measurement with latent variables grouping the members into
observation units; or Gaussian processes (Rasmussen and Williams, 2006), where the input vari-
ables are time indexes from another CGPM, and the outputs are noisy observations of the (latent)
function values (Tresp, 2001; Rasmussen and Ghahramani, 2002). Computational representations
of these models as CGPMs allows them to be composable as hybrid models, reusable as software,
and queryable in interesting ways using the Bayesian Query Language.

Both simulate and logpdf in Listing 1 are executed against a single member of the population
i.e. variables within a single row. Queries that target multiple members in the population are cur-
rently supported by an explicit sequence of incorporate, infer, and then simulate or logpdf.
It is interesting to consider extending the CGPM interface to natively handle arbitrary multi-row
cases – this idea was originally presented in the GPM interface (Mansinghka et al., 2015a, Section
3.1.1) although concrete algorithms for implementing multi-row queries, or surface-level syntax in
the Bayesian Query Language for invoking them, were left as open questions. Rather than sup-
port multi-row queries directly in the CGPM interface, it is instead possible to extend the BQL
interpreter with a probabilistic query planner. Given given a cross-row query, the BQL interpreter
automatically determines a candidate set of invocation sequences of the CGPM interface to answer
it, and then selects among them based on time/accuracy requirements.

A worthy direction for future work is extending the set of statistical data types (Section 4.1), and
possibly CGPM interface, to support analysis tasks beyond traditional multivariate statistics. Some
possible new data types and associated CGPMs are

• GRAPH data type, using a relational data CGPM based on the stochastic block model (Nowicki
and Snijders, 2001) or infinite relational model (Kemp et al., 2006),

• TEXT data type, using a topic model CGPM such as latent Dirichlet allocation (Blei et al.,
2003) or probabilistic latent semantic analysis (Hofmann, 1999),

• IMAGE data type, using a CGPM based on neural networks.

Composing CGPMs with these data types leads to interesting tasks over their induced joint distri-
butions. Consider an IMAGE variable with an associated TEXT annotation; a generative CGPM for
the image and discriminative CGPM for the text (given the image) leads to image classification;
a generative CGPM for the text and a discriminative CGPM for the image (given the text) allows
simulating unstructured text followed by their associated images.
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It is also interesting to consider introducing additional structure to our current formalism of
populations from Section 3.1 to support richer notions of population modeling. For instance, pop-
ulations may be hierarchical in that the variables of population A correspond to outputs produced
by a CGPM for population B – the simplest case being summary statistics such as means, medians,
and inter-quartile ranges. Such hierarchical populations are common in census data, which contain
raw measurements of variables for individual households, as well as row-wise and column-wise
summaries based on geography, income level, ethnicity, educational background, and so on. Pop-
ulations can also be extended to support “merge” operations in MML, which are analogous to the
JOIN operations in SQL, where the CGPM on the joined population allows for transfer learning.

Our presentation of the algorithm for infer in a composite network of CGPMs (Section 5.2)
left open improvements to the baseline strategy of learning each CGPM node separately. One way to
achieve joint learning, without violating the abstraction boundaries of the CGPM interface, is: after
running infer individually for each CGPM, run a “refine” phase, where (i) missing measurements
in the population are imputed using one forward pass of simulate throughout the network, then
(ii) each CGPM updates its parameters based on the imputed measurements. This strategy can be
repeated to generate several such imputed networks, which are then organized into an ensemble of
CGPMs in a BayesDB metamodel (Section 5.3.3) where each CGPM in the metamodel corresponds
to a different set of imputations. The weighted-averaging of these CGPMs by BayesDB would thus
correspond to integration over different imputations, as well as their induced parameters.

Extending BQL, or developing new probabilistic programming languages, to assess the infer-
ence quality of CGPMs built in MML will be an important step toward broader application of these
probabilistic programming tools for real-world analysis tasks. For instance, it is possible to develop
a command in BQL such as

ESTIMATE KL DIVERGENCE BETWEEN <cgpm-1> AND <cgpm-2>
FOR VARIABLES <var-names-a> GIVEN <var-names-b>;

which takes two CGPMs (and an overlapping subset of their output variables) and returns an es-
timate of the KL divergence between their conditional predictive distributions, based on a Monte
Carlo estimator using simulate and logpdf. Such model-independent estimators of inference
quality, backed by the CGPM interface, provide a proposal for unifying the testing and profiling
infrastructure among a range of candidate solutions for a given data analysis task.

This paper has shown that it is possible to unify and formalize a broad class of probabilistic data
analysis techniques by integrating them into a probabilistic programming platform, which is itself
integrated with a traditional database. We have focused on a class of probabilistic models that can be
tightly integrated with flat database tables. Population schemas define the variables of interest along
with their types, but unlike traditional database schemas, they can additionally include variables
whose values are never directly observed. Concrete probabilistic models for populations are built
via automated inference mechanisms, according to a baseline meta-modeling strategy which can
also be customized. This idea is similar to concrete indexes for tables in traditional databases which
are built by automated mechanisms, according to an indexing strategy which can be customized via
its own schema. While we are encouraged by the early successes of this approach, there is a vast
literature of richer “data modeling” formalisms from both databases and statistics. Integrating these
ideas could yield further conceptual insight and practical benefits. We hope this paper encourages
others to develop these connections, along with a new generation of intelligent tools for machine-
assisted probabilistic data analysis.
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Abstract
Probabilistic techniques are central to data analysis, but different approaches can
be challenging to apply, combine, and compare. This paper introduces composable
generative population models (CGPMs), a computational abstraction that extends
directed graphical models and can be used to describe and compose a broad class
of probabilistic data analysis techniques. Examples include discriminative machine
learning, hierarchical Bayesian models, multivariate kernel methods, clustering
algorithms, and arbitrary probabilistic programs. We demonstrate the integration
of CGPMs into BayesDB, a probabilistic programming platform that can express
data analysis tasks using a modeling definition language and structured query
language. The practical value is illustrated in two ways. First, the paper describes
an analysis on a database of Earth satellites, which identifies records that probably
violate Kepler’s Third Law by composing causal probabilistic programs with non-
parametric Bayes in 50 lines of probabilistic code. Second, it reports the lines of
code and accuracy of CGPMs compared with baseline solutions from standard
machine learning libraries.

1 Introduction

Probabilistic techniques are central to data analysis, but can be difficult to apply, combine, and
compare. Such difficulties arise because families of approaches such as parametric statistical modeling,
machine learning and probabilistic programming are each associated with different formalisms and
assumptions. The contributions of this paper are (i) a way to address these challenges by defining
CGPMs, a new family of composable probabilistic models; (ii) an integration of this family into
BayesDB [10], a probabilistic programming platform for data analysis; and (iii) empirical illustrations
of the efficacy of the framework for analyzing a real-world database of Earth satellites.

We introduce composable generative population models (CGPMs), a computational formalism that
generalizes directed graphical models. CGPMs specify a table of observable random variables with
a finite number of columns and countably infinitely many rows. They support complex intra-row
dependencies among the observables, as well as inter-row dependencies among a field of latent random
variables. CGPMs are described by a computational interface for generating samples and evaluating
densities for random variables derived from the base table by conditioning and marginalization. This
paper shows how to package discriminative statistical learning techniques, dimensionality reduction
methods, arbitrary probabilistic programs, and their combinations, as CGPMs. We also describe
algorithms and illustrate new syntaxes in the probabilistic Metamodeling Language for building
composite CGPMs that can interoperate with BayesDB.

The practical value is illustrated in two ways. First, we describe a 50-line analysis that identifies
satellite data records that probably violate their theoretical orbital characteristics. The BayesDB script
builds models that combine non-parametric Bayesian structure learning with a causal probabilistic
program that implements a stochastic variant of Kepler’s Third Law. Second, we illustrate coverage
and conciseness of the CGPM abstraction by quantifying the improvement in accuracy and reduction
in lines of code achieved on a representative data analysis task.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



2 Composable Generative Population Models

A composable generative population model represents a data generating process for an exchangeable
sequence of random vectors (x1,x2, . . . ), called a population. Each member xr is T -dimensional,
and element x[r,t] takes values in an observation space Xt, for t ∈ [T ] and r ∈ N. A CGPM G is
formally represented by a collection of variables that characterize the data generating process:

G = (α,θ,Z = {zr : r ∈ N},X = {xr : r ∈ N},Y = {yr : r ∈ N}).
• α: Known, fixed quantities about the population, such as metadata and hyperparameters.

• θ: Population-level latent variables relevant to all members of the population.

• zr = (z[r,1], . . . z[r,L]): Member-specific latent variables that govern only member r directly.

• xr = (x[r,1], . . . x[r,T ]): Observable output variables for member r. A subset of these variables
may be observed and recorded in a dataset D.

• yr = (y[r,1], . . . y[r,I]): Input variables, such as “feature vectors” in a purely discriminative model.

A CGPM is required to satisfy the following conditional independence constraint:
∀r 6= r′ ∈ N,∀t, t′ ∈ [T ] : x[r,t] ⊥⊥ x[r′,t′] | {α,θ, zr, zr′}. (1)

Eq (1) formalizes the notion that all dependencies across members r ∈ N are completely mediated
by the population parameters θ and member-specific variables zr. However, elements x[r,i] and x[r,j]
within a member are generally free to assume any dependence structure. Similarly, the member-
specific latents in Z may be either uncoupled or highly-coupled given population parameters θ.
CGPMs differ from the standard mathematical definition of a joint density in that they are defined in
terms of a computational interface (Listing 1). As computational objects, they explicitly distinguish
between the sampler for the random variables from their joint distribution, and the assessor of their
joint density. In particular, a CGPM is required to sample/assess the joint distribution of a subset of
output variables x[r,Q] conditioned on another subset x[r,E], and marginalizing over x[r,[T ]\(Q∪E)].

Listing 1 Computational interface for composable generative population models.

• s← simulate (G, member: r, query: Q = {qk}, evidence : x[r,E], input : yr)
Generate a sample from the distribution s ∼G x[r,Q]|{x[r,E],yr,D}.

• c← logpdf (G, member: r, query : x[r,Q], evidence : x[r,E], input : yr)
Evaluate the log density log pG(x[r,Q]|{x[r,E],yr,D}).

• G′ ← incorporate (G, measurement : x[r,t] or yr)
Record a measurement x[r,t] ∈ Xt (or yr) into the dataset D.

• G′ ← unincorporate (G, member : r)
Eliminate all measurements of input and output variables for member r.

• G′ ← infer (G, program : T )
Adjust internal latent state in accordance with the learning procedure specified by program T .

2.1 Primitive univariate CGPMs and their statistical data types

The statistical data type (Figure 1) of a population variable xt generated by a CGPM provides a
more refined taxonomy than its “observation space” Xt. The (parameterized) support of a statistical
type is the set in which samples from simulate take values. Each statistical type is also associated
with a base measure which ensures logpdf is well-defined. In high-dimensional populations with
heterogeneous types, logpdf is taken against the product measure of these base measures. The
statistical type also identifies invariants that the variable maintains. For instance, the values of a
NOMINAL variable are permutation-invariant. Figure 1 shows statistical data types provided by the
Metamodeling Language from BayesDB. The final column shows some examples of primitive CGPMs
that are compatible with each statistical type; they implement logpdf directly using univariate
probability density functions, and algorithms for simulate are well known [4]. For infer their
parameters may be fixed, or learned from data using, e.g., maximum likelihood [2, Chapter 7] or
Bayesian priors [5]. We refer to an extended version of this paper [14, Section 3] for using these
primitives to implement CGPMs for a broad collection of model classes, including non-parametric
Bayes, nearest neighbors, PCA, discriminative machine learning, and multivariate kernel methods.
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Statistical Data Type Parameters Support Measure/σ-Algebra Primitive CGPM
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NOMINAL symbols: S {0 . . . S−1} (#, 2[S]) CATEGORICAL
COUNT/RATE base: b {0, 1

b
, 2
b
, . . .} (#, 2N) POISSON, GEOMETRIC

CYCLIC period: p (0, p) (λ,B(R)) VON-MISES
MAGNITUDE – (0,∞) (λ,B(R)) LOGNORMAL, EXPON
NUMERICAL – (−∞,∞) (λ,B(R)) NORMAL
NUMERICAL-RANGED low: l, high:h (l, h) ⊂ R (λ,B(R)) BETA, NORMAL-TRUNC

Fr
eq

ue
nc

y

Nominal

Categorical

Count

Poisson
Geometric

Magnitude

Lognormal
Exponential

Cyclic

Von-Mises

Numerical

Normal

Numerical-Ranged

NormalTrunc
Beta

Figure 1: Statistical data types for population variables generated by CGPMs available in the
BayesDB Metamodeling Language, and samples from their marginal distributions.

2.2 Implementing general CGPMs as probabilistic programs in VentureScript

In this section, we show how to implement simulate and logpdf (Listing 1) for composable gener-
ative models written in VentureScript [8], a probabilistic programming language with programmable
inference. For simplicity, this section assumes a stronger conditional independence constraint,

∃l, l′ ∈ [L] such that (r, t) 6= (r′, t′) =⇒ x[r,t] ⊥⊥ x[r′,t′] | {α,θ, z[r,l], z[r′,l′],yr,y′r}. (2)

In words, for every observable element x[r,t], there exists a latent variable z[r,l] which (in addition
to θ) mediates all coupling with other variables in the population. The member latents Z may still
exhibit arbitrary dependencies. The approach for simulate and logpdf described below is based
on approximate inference in tagged subparts of the Venture trace, which carries a full realization
of all random choices (population and member-specific latent variables) made by the program. The
runtime system carries a set of K traces {(θk,Zk)}Kk=1 sampled from an approximate posterior
pG(θ,Z|D). These traces are assigned weights depending on the user-specified evidence x[r,E] in
the simulate/logpdf function call. G represents the CGPM as a probabilistic program, and the
input yr and latent variables Zk are treated as ambient quantities in θk. The distribution of interest is

pG(x[r,Q]|x[r,E],D) =

∫
θ

pG(x[r,Q]|x[r,E],θ,D)pG(θ|x[r,E],D)dθ

=

∫
θ

pG(x[r,Q]|x[r,E],θ,D)

(
pG(x[r,E]|θ,D)pG(θ|D)

pG(x[r,E]|D)

)
dθ (3)

≈ 1∑K
k=1 w

k

K∑
k=1

pG(x[r,Q]|x[r,E],θ
k,D)wk where θk ∼G |D. (4)

The weight wk = pG(x[r,E]|θk,D) of trace θk is the likelihood of the evidence. The weighting
scheme (4) is a computational trade-off avoiding the requirement to run posterior inference on
population parameters θ for a query about member r. It suffices to derive the distribution for only θk,

pG(x[r,Q]|x[r,E],θ
k,D) =

∫
zk
r

pG(x[r,Q], z
k
r |x[r,E],θ

k,D)dzkr (5)

=

∫
zk
r

∏
q∈Q

(
pG(x[r,q]|zkr ,θk)

)
pG(z

k
r |x[r,E],θ

k,D)dzkr ≈
1

J

J∑
j=1

∏
q∈Q

pG(x[r,q]|zk,jr ,θk), (6)

where zk,jr ∼G |{x[r,E],θ
k,D}. Eq (5) suggests that simulate can be implemented by sampling

(x[r,Q], z
k
r ) ∼G |{x[r,E],θ

k,D} from the joint local posterior, then returning elements x[r,Q]. Eq (6)
shows that logpdf can be implemented by first sampling the member latents zkr ∼G |{x[r,E],θ

k,D}
from the local posterior; using the conditional independence constraint (2), the query x[r,Q] then
factors into a product of density terms for each element x[r,q].
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To aggregate over {θk}Kk=1, for simulate the runtime obtains the queried sample by first drawing
k ∼ CATEGORICAL({w1, . . . , wK}), then returns the sample x[r,Q] drawn from trace θk. Similarly,
logpdf is computed using the weighted Monte Carlo estimator (6). Algorithms 2a and 2b summarize
implementations of simulate and logpdf in a general probabilistic programming environment.

Algorithm 2a simulate for CGPMs in a probabilistic programming environment.

1: function SIMULATE(G, r, Q, x[r,E],yr)
2: for k = 1, . . . ,K do . for each trace k
3: if zk

r 6∈ Zk then . if member r has unknown local latents
4: zk

r ∼G |{θk,Zk,D} . sample them from the prior
5: wk ←

∏
e∈E pG(x[r,e]|θ

k,zk
r ) . weight the trace by likelihood of evidence

6: k ∼ CATEGORICAL ({w1, . . . , wk}) . importance resample the traces
7: {x[r,Q],z

k
r } ∼G |{θk,Zk,D ∪ {yr,x[r,E]}} . run a transition operator leaving target invariant

8: return x[r,Q] . select query variables from the resampled trace

Algorithm 2b logpdf for CGPMs in a probabilistic programming environment.

1: function LOGPDF(G, r, x[r,Q], x[r,E],yr)
2: for k = 1, . . . ,K do . for each trace k
3: Run steps 2 through 5 from Algorithm 2a . retrieve the trace weight
4: for j = 1, . . . , J do . obtain J samples of latents in scope of member r
5: zk,j

r ∼G |{θk,Zk,D ∪ {yr,x[r,E]}} . run a transition operator leaving target invariant
6: hk,j ←

∏
q∈Q pG(x[r,q]|θ

k,zk,j
r ) . compute the density estimate

7: rk ← 1
J

∑J
j=1 h

k,j . aggregate density estimates by simple Monte Carlo
8: qk ← rkwk . importance weight the estimate
9: return log

(∑K
k=1 q

k
)
− log

(∑K
k=1 w

k
)

. weighted importance sampling over all traces

2.3 Inference in a composite network of CGPMs

This section shows how CGPMs are composed by applying the output of one to the input of another.
This allows us to build complex probabilistic models out of simpler primitives directly as software.
Section 3 demonstrates surface-level syntaxes in the Metamodeling Language for constructing these
composite structures. We report experiments including up to three layers of composed CGPMs.

Let Ga be a CGPM with output xa
∗ and input ya

∗ , and Gb have output xb
∗ and input yb

∗ (the symbol ∗
indexes all members r ∈ N). The composition GbB ◦ GaA applies the subset of outputs xa

[∗,A] of Ga to
the inputs yb

[∗,B] of Gb, where |A| = |B| and the variables are type-matched (Figure 1). This operation
results in a new CGPM Gc with output xa

∗ ∪ xb
∗ and input ya

∗ ∪ yb
[∗,\B]. In general, a collection

{Gk : k ∈ [K]} of CGPMs can be organized into a generalized directed graph G[K], which itself is a
CGPM. Node k is an “internal” CGPM Gk, and the labeled edge aA → bB denotes the composition
GaA ◦ GbB. The directed acyclic edge structure applies only to edges between elements of different
CGPMs in the network; elements xk[∗,i], x

k
[∗,j] within Gk may satisfy the more general constraint (1).

Algorithms 3a and 3b show sampling-importance-resampling and ratio-likelihood weighting algo-
rithms that combine simulate and logpdf from each individual Gk to compute queries against
network G[K]. The symbol πk = {(p, t) : xp[∗,t] ∈ y

k
∗} refers to the set of all output elements from

upstream CGPMs connected to the inputs of Gk, so that {πk : k ∈ [K]} encodes the graph adjacency
matrix. Subroutine 3c generates a full realization of all unconstrained variables, and weights forward
samples from the network by the likelihood of constraints. Algorithm 3b is based on ratio-likelihood
weighting (both terms in line 6 are computed by unnormalized importance sampling) and admits an
analysis with known error bounds when logpdf and simulate of each Gk are exact [7].
Algorithm 3a simulate in a directed acyclic network of CGPMs.

1: function SIMULATE(Gk, r,Qk,xk
[r,Ek],y

k
r , for k ∈ [K])

2: for j = 1, . . . , J do . generate J importance samples
3: (sj , wj)←WEIGHTED-SAMPLE ({xk

[r,Ek] : k ∈ [K]}) . retrieve jth weighted sample

4: m← CATEGORICAL ({w1, . . . , wJ}) . resample by importance weights
5: return {xk

[r,Qk] ∈ sm : k ∈ [K]} . return query variables from the selected sample

4



Algorithm 3b logpdf in a directed acyclic network of CGPMs.

1: function SIMULATE(Gk, r,xk
Q,x

k
[r,Ek],y

k
r , for k ∈ [K])

2: for j = 1, . . . , J do . generate J importance samples
3: (sj , wj)← WEIGHTED-SAMPLE ({xk

[r,Qk∪Ek] : k ∈ [K]}) . joint density of query/evidence

4: for j = 1, . . . , J ′ do . generate J ′ importance samples
5: (s′j , w′j)← WEIGHTED-SAMPLE ({xk

[r,Ek] : k ∈ [K]}) . marginal density of evidence

6: return log
(∑

[J] w
j/
∑

[J′] w
′j
)
− log(J/J ′) . return likelihood ratio importance estimate

Algorithm 3c Weighted forward sampling in a directed acyclic network of CGPMs.

1: function WEIGHTED-SAMPLE (constraints: xk
[r,Ck], for k ∈ [K])

2: (s, logw)← (∅, 0) . initialize empty sample with zero weight
3: for k ∈ TOPOSORT ({π1, . . . , πK}) do . topologically sort CGPMs using adjacency matrix
4: ỹk

r ← yk
r ∪ {xp[r,t] ∈ s : (p, t) ∈ πk} . retrieve required inputs at node k

5: logw← logw + logpdf (Gk, r,xk
[r,Ck],∅, ỹ

k
r ) . update weight by likelihood of constraint

6: xk
[r,\Ck]← simulate (Gk, r, \Ck,xk

[r,Ck], ỹ
k
r ) . simulate unconstrained nodes

7: s← s ∪ xk
[r,Ck∪\Ck] . append all node values to sample

8: return (s, w) . return the overall sample and its weight

3 Analyzing satellites using CGPMs built from causal probabilistic
programs, discriminative machine learning, and Bayesian
non-parametrics

This section outlines a case study applying CGPMs to a database of 1163 satellites maintained by
the Union of Concerned Scientists [12]. The dataset contains 23 numerical and categorical features
of each satellite such as its material, functional, physical, orbital and economic characteristics. The
list of variables and examples of three representative satellites are shown in Table 1. A detailed
study of this database using BayesDB provided in [10]. Here, we compose the baseline CGPM
in BayesDB, CrossCat [9], a non-parametric Bayesian structure learner for high dimensional data
tables, with several CGPMs: a classical physics model written in VentureScript, a random forest
classifier, factor analysis, and an ordinary least squares regressor. These composite models allow us
to identify satellites that probably violate their orbital mechanics (Figure 2), as well as accurately
infer the anticipated lifetimes of new satellites (Figure 3). We refer to [14, Section 6] for several
more experiments on a broader set of data analysis tasks, as well as comparisons to baseline machine
learning solutions.

Name International Space Station AAUSat-3 Advanced Orion 5 (NRO L-32, USA 223)
Country of Operator Multinational Denmark USA
Operator Owner NASA/Multinational Aalborg University National Reconnaissance Office (NRO)
Users Government Civil Military
Purpose Scientific Research Technology Development Electronic Surveillance
Class of Orbit LEO LEO GEO
Type of Orbit Intermediate NaN NaN
Perigee km 401 770 35500
Apogee km 422 787 35500
Eccentricity 0.00155 0.00119 0
Period minutes 92.8 100.42 NaN
Launch Mass kg NaN 0.8 5000
Dry Mass kg NaN NaN NaN
Power watts NaN NaN NaN
Date of Launch 36119 41330 40503
Anticipated Lifetime 30 1 NaN
Contractor Boeing Satellite Systems/Multinational Aalborg University National Reconnaissance Laboratory
Country of Contractor Multinational Denmark USA
Launch Site Baikonur Cosmodrome Satish Dhawan Space Center Cape Canaveral
Launch Vehicle Proton PSLV Delta 4 Heavy
Source Used for Orbital Data www.satellitedebris.net 12/12 SC - ASCR SC - ASCR
longitude radians of geo NaN NaN 1.761037215
Inclination radians 0.9005899 1.721418241 0

Table 1: Variables in the satellite population, and three representative satellites. The records are
multivariate, heterogeneously typed, and contain arbitrary patterns of missing data.
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1 CREATE TABLE satellites_ucs FROM 'satellites.csv';
2 CREATE POPULATION satellites FOR satellites_ucs WITH SCHEMA ( GUESS STATTYPES FOR (*) );
3
4 CREATE METAMODEL satellites_hybrid FOR satellites WITH BASELINE CROSSCAT (
5
6 OVERRIDE GENERATIVE MODEL FOR type_of_orbit
7 GIVEN apogee_km, perigee_km, period_minutes, users, class_of_orbit
8 USING RANDOM_FOREST (num_categories = 7);
9

10 OVERRIDE GENERATIVE MODEL FOR launch_mass_kg, dry_mass_kg, power_watts, perigee_km, apogee_km
11 USING FACTOR_ANALYSIS (dimensionality = 2);
12
13 OVERRIDE GENERATIVE MODEL FOR period_minutes
14 AND EXPOSE kepler_cluster_id CATEGORICAL, kepler_noise NUMERICAL
15 GIVEN apogee_km, perigee_km USING VENTURESCRIPT (program = '
16 define dpmm_kepler = () -> { // Definition of DPMM Kepler model program.
17 assume keplers_law = (apogee, perigee) -> {
18 (GM, earth_radius) = (398600, 6378);
19 a = .5*(abs(apogee) + abs(perigee)) + earth_radius;
20 2 * pi * sqrt(a**3 / GM) / 60 };
21 // Latent variable priors.
22 assume crp_alpha = gamma(1,1);
23 assume cluster_id_sampler = make_crp(crp_alpha);
24 assume noise_sampler = mem((cluster) -> make_nig_normal(1, 1, 1, 1));
25 // Simulator for latent variables (kepler_cluster_id and kepler_noise).
26 assume sim_cluster_id = mem((rowid, apogee, perigee) -> {
27 cluster_id_sampler() #rowid:1 });
28 assume sim_noise = mem((rowid, apogee, perigee) -> {
29 cluster_id = sim_cluster_id(rowid, apogee, perigee);
30 noise_sampler(cluster_id)() #rowid:2 });
31 // Simulator for observable variable (period_minutes).
32 assume sim_period = mem((rowid, apogee, perigee) -> {
33 keplers_law(apogee, perigee) + sim_noise(rowid, apogee, perigee) });
34 assume outputs = [sim_period, sim_cluster_id, sim_noise]; // List of output variables.
35 };
36 // Procedures for observing the output variables.
37 define obs_cluster_id = (rowid, apogee, perigee, value, label) -> {
38 $label: observe sim_cluster_id( $rowid, $apogee, $perigee) = atom(value); };
39 define obs_noise = (rowid, apogee, perigee, value, label) -> {
40 $label: observe sim_noise( $rowid, $apogee, $perigee) = value; };
41 define obs_period = (rowid, apogee, perigee, value, label) -> {
42 theoretical_period = run(sample keplers_law($apogee, $perigee));
43 obs_noise( rowid, apogee, perigee, value - theoretical_period, label); };
44 define observers = [obs_period, obs_cluster_id, obs_noise]; // List of observer procedures.
45 define inputs = ["apogee", "perigee"]; // List of input variables.
46 define transition = (N) -> { default_markov_chain(N) }; // Transition operator.
47 '));
48 INITIALIZE 10 MODELS FOR satellites_hybrid;
49 ANALYZE satellites_hybrid FOR 100 ITERATIONS;
50 INFER name, apogee_km, perigee_km, period_minutes, kepler_cluster_id, kepler_noise FROM satellites;
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Figure 2: A session in BayesDB to detect satellites whose orbits are likely violations of
Kepler’s Third Law using a causal composable generative population model written in
VentureScript. The dpmm_kepler CGPM (line 17) learns a DPMM on the residuals of each
satellite’s deviation from its theoretical orbit. Both the cluster identity and inferred noise are
exposed latent variables (line 14). Each dot in the scatter plot (left) is a satellite in the population,
and its color represents the latent cluster assignment learned by dpmm_kepler. The histogram
(right) shows that each of the four detected clusters roughly translates to a qualitative description
of the deviation: yellow (negligible), magenta (noticeable), green (large), and blue (extreme).
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1 CREATE TABLE data_train FROM 'sat_train.csv';
2 .nullify data_train 'NaN';
3
4 CREATE POPULATION satellites FOR data_train
5 WITH SCHEMA(
6 GUESS STATTYPES FOR (*)
7 );
8
9 CREATE METAMODEL crosscat_ols FOR satellites

10 WITH BASELINE CROSSCAT(
11 OVERRIDE GENERATIVE MODEL FOR
12 anticipated_lifetime
13 GIVEN
14 type_of_orbit, perigee_km, apogee_km,
15 period_minutes, date_of_launch,
16 launch_mass_kg
17 USING LINEAR_REGRESSION
18 );
19
20 INITIALIZE 4 MODELS FOR crosscat_ols;
21 ANALYZE crosscat_ols FOR 100 ITERATION WAIT;
22
23 CREATE TABLE data_test FROM 'sat_test.csv';
24 .nullify data_test 'NaN';
25 .sql INSERT INTO data_train
26 SELECT * FROM data_test;
27
28 CREATE TABLE predicted_lifetime AS
29 INFER EXPLICIT
30 PREDICT anticipated_lifetime
31 CONFIDENCE prediction_confidence
32 FROM satellites WHERE _rowid_ > 1000;

(a) Full session in BayesDB which loads the
training and test sets, creates a hybrid CGPM,
and runs the regression using CrossCat+OLS.

def dummy_code_categoricals(frame, maximum=10):

def dummy_code_categoricals(series):
categories = pd.get_dummies(

series, dummy_na=1)
if len(categories.columns) > maximum-1:

return None
if sum(categories[np.nan]) == 0:

del categories[np.nan]
categories.drop(

categories.columns[-1], axis=1,
inplace=1)

return categories

def append_frames(base, right):
for col in right.columns:

base[col] = pd.DataFrame(right[col])

numerical = frame.select_dtypes([float])
categorical = frame.select_dtypes([object])

categorical_coded = filter(
lambda s: s is not None,
[dummy_code_categoricals(categorical[c])

for c in categorical.columns])

joined = numerical

for sub_frame in categorical_coded:
append_frames(joined, sub_frame)

return joined

(b) Ad-hoc Python routine (used by baselines)
for coding nominal predictors in a dataframe
with missing values and mixed data types.
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Figure 3: In a high-dimensional regression problem with mixed data types and missing data,
the composite CGPM improves prediction accuracy over purely generative and purely discrim-
inative baselines. The task is to infer the anticipated lifetime of a held-out satellite given categorical
and numerical features such as type of orbit, launch mass, and orbital period. As feature vectors in
the test set have missing entries, purely discriminative models (ridge, lasso, OLS) either heuristically
impute missing features, or ignore the features and predict the anticipated lifetime using the mean
in the training set. The purely generative model (CrossCat) can impute missing features from their
joint distribution, but only indirectly mediates dependencies between the predictors and response
through latent variables. The composite CGPM (CrossCat+OLS) in panel (a) combines advantages
of both approaches; statistical imputation followed by regression on the features leads to improved
predictive accuracy. The reduced code size is a result of using SQL, BQL, & MML, for preprocessing,
model-building and predictive querying, as opposed to collections of ad-hoc scripts such as panel (b).

Figure 2 shows the MML program for constructing the hybrid CGPM on the satellites population. In
terms of the compositional formalism from Section 2.3, the CrossCat CGPM (specified by the MML
BASELINE keyword) learns the joint distribution of variables at the “root” of the network (i.e., all
variables from Table 1 which do not appear as arguments to an MML OVERRIDE command). The
dpmm_kepler CGPM in line 16 of the top panel in Figure 2 accepts apogee_km and perigee_km
as input variables y = (A,P ), and produces as output the period_minutes x = (T ). These
variables characterize the elliptical orbit of a satellite and are constrained by the relationships
e = (A− P )/(A+ P ) and T = 2π

√
((A+ P )/2))3/GM where e is the eccentricity andGM
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is a physical constant. The program specifies a stochastic version of Kepler’s Law using a Dirichlet
process mixture model for the distribution over errors (between the theoretical and observed period),

P ∼ DP(α,NORMAL-INVERSE-GAMMA(m,V, a, b)), (µr, σ
2
r)|P ∼ P

εr|{µr, σ
2
r ,yr} ∼ NORMAL(·|µr, σ

2
r), where εr := Tr − KEPLER(Ar, Pr).

The lower panels of Figure 2 illustrate how the dpmm_kepler CGPM clusters satellites based on the
magnitude of the deviation from their theoretical orbits; the variables (deviation, cluster identity, etc)
in these figures are obtained from the BQL query on line 50. For instance, the satellite Orion6 shown
in the right panel of Figure 2, belongs to a component with “extreme” deviation. Further investigation
reveals that Orion6 has a recorded period 23.94 minutes, most likely a data entry error for the true
period of 24 hours (1440 minutes); we have reported such errors to the maintainers of the database.

The data analysis task in Figure 3 is to infer the anticipated_lifetime xr of a new satellite, given
a set of features yr such as its type_of_orbit and perigee_km. A simple OLS regressor with
normal errors is used for the response pGols(xr|yr). The CrossCat baseline learns a joint generative
model for the covariates pGcrosscat(yr). The composite CGPM crosscat_ols built Figure 3 (left
panel) thus carries the full joint distribution over the predictors and response pG(xr,yr), leading to
more accurate predictions. Advantages of this hybrid approach are further discussed in the figure.

4 Related Work and Discussion

This paper has shown that it is possible to use a computational formalism in probabilistic programming
to uniformly apply, combine, and compare a broad class of probabilistic data analysis techniques.
By integrating CGPMs into BayesDB [10] and expressing their compositions in the Metamodeling
Language, we have shown it is possible to combine CGPMs synthesized by automatic model discovery
[9] with custom probabilistic programs, which accept and produce multivariate inputs and outputs,
into coherent joint probabilistic models. Advantages of this hybrid approach to modeling and inference
include combining the strengths of both generative and discriminative techniques, as well as savings
in code complexity from the uniformity of the CGPM interface.

While our experiments have constructed CGPMs using VentureScript and Python implementations,
the general probabilistic programming interface of CGPMs makes it possible for BayesDB to interact
with a variety systems such as BUGS [15], Stan [1], BLOG [11], Figaro [13], and others. Each of
these systems provides varying levels of model expressiveness and inference capabilities, and can
be used to be construct domain-specific CGPMs with different performance properties based on
the data analysis task on hand. Moreover, by expressing the data analysis tasks in BayesDB using
the model-independent Bayesian Query Language [10, Section 3], CGPMs can be queried without
necessarily exposing their internal structures to end users. Taken together, these characteristics help
illustrate the broad utility of the BayesDB probabilistic programming platform and architecture [14,
Section 5], which in principle can be used to create and query novel combinations of black-box
machine learning, statistical modeling, computer simulation, and probabilistic generative models.

Our applications have so far focused on CGPMs for analyzing populations from standard multivariate
statistics. A promising area for future work is extending the computational abstraction of CGPMs,
as well as the Metamodeling and Bayesian Query Languages, to cover analysis tasks in other
domains such longitudinal populations [3], statistical relational settings [6], or natural language
processing and computer vision. Another extension, important in practice, is developing alternative
compositional algorithms for querying CGPMs (Section 2.3). The importance sampling strategy used
for compositional simulate and logpdf may only be feasible when the networks are shallow and
the constituent CGPMs are fairly noisy; better Monte Carlo strategies or perhaps even variational
strategies may be needed for deeper networks. Additional future work for composite CGPMs include
(i) algorithms for jointly learning the internal parameters of each individual CGPM, using, e.g.,
imputations from its parents, and (ii) new meta-algorithms for structure learning among a collection
of compatible CGPMs, in a similar spirit to the non-parametric divide-and-conquer method from [9].

We hope the formalisms in this paper lead to practical, unifying tools for data analysis that integrate
these ideas, and provide abstractions that enable the probabilistic programming community to
collaboratively explore these research directions.
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Abstract
Is it possible to make statistical inference broadly accessible to non-statisticians without
sacrificing mathematical rigor or inference quality? This paper describes BayesDB, a prob-
abilistic programming platform that aims to enable users to query the probable implications
of their data as directly as SQL databases enable them to query the data itself. This paper
focuses on four aspects of BayesDB: (i) BQL, an SQL-like query language for Bayesian data
analysis, that answers queries by averaging over an implicit space of probabilistic models;
(ii) techniques for implementing BQL using a broad class of multivariate probabilistic mod-
els; (iii) a semi-parametric Bayesian model-builder that auomatically builds ensembles of
factorial mixture models to serve as baselines; and (iv) MML, a “meta-modeling” language
for imposing qualitative constraints on the model-builder and combining baseline mod-
els with custom algorithmic and statistical models that can be implemented in external
software. BayesDB is illustrated using three applications: cleaning and exploring a pub-
lic database of Earth satellites; assessing the evidence for temporal dependence between
macroeconomic indicators; and analyzing a salary survey.
Keywords: Probabilistic programming, Bayesian inference, probabilistic databases, mul-
tivariate statistics, nonparametric Bayes, automatic machine learning
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1. Introduction

Is it possible to make statistical inference broadly accessible to non-statisticians without
sacrificing mathematical rigor or inference quality? This paper describes BayesDB, a system
that enables users to query the probable implications of their data as directly as SQL
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Mansinghka et al.

databases enable them to query the data itself. By combining ordinary SQL with three new
primitives — SIMULATE, INFER, and ESTIMATE — users of BayesDB can detect predictive
relationships between variables, retrieve statistically similar data items, identify anomalous
data points and variables, infer missing values, and synthesize hypothetical subpopulations.
The default modeling assumptions that BayesDB makes are suitable for a broad class of
problems (Mansinghka et al., 2015; Wasserman, 2011), but statisticians can customize these
assumptions when necessary. BayesDB also enables domain experts that lack statistical
expertise to perform qualitative model checking (Gelman et al., 1995) and encode simple
forms of qualitative prior knowledge.

BayesDB consists of four components, integrated into a single probabilistic programming
system:

1. The Bayesian Query Language (BQL), an SQL-like query language for Bayesian data
analysis. BQL programs can solve a broad class of data analysis problems using
statistically rigorous formulations of cleaning, exploration, confirmatory analysis, and
predictive modeling. BQL defines these primitive operations for these workflows in
terms of Bayesian model averaging over results from an implicit set of multivariate
probabilistic models.

2. A mathematical interface that enables a broad class of multivariate probabilistic mod-
els, called generative population models, to be used to implement BQL. According to
this interface, a data generating process defined over a fixed set of variables is rep-
resented by (i) an infinite array of random realizations of the process, including any
observed data, and (ii) algorithms for simulating from arbitrary conditional distri-
butions and calculating arbitrary conditional densities. This interface permits many
statistical operations to be implemented once, independent of the specific models that
will be used to apply these operations in the context of a particular data table.

3. The BayesDB Meta-modeling Language (MML), a minimal probabilistic program-
ming language. MML includes constructs that enable statisticians to integrate custom
statistical models — including arbitrary algorithmic models contained in external soft-
ware — with the output of a broad class of Bayesian model building techniques. MML
also includes constructs for specifying qualitative dependence and independence con-
straints.

4. A hierarchical, semi-parametric Bayesian “meta-model” that automatically builds en-
sembles of generalized mixture models from database tables. These ensembles serve as
baseline data generators that BQL can use for data cleaning, initial exploration, and
other routine applications.

This design insulates end users from most statistical considerations. Queries are posed in
a qualitative probabilistic programming language for Bayesian data analysis that hides the
details of probabilistic modeling and inference. Baseline models can be built automatically
and customized by statisticians when necessary. All models can be critically assessed and
qualitatively validated via predictive checks that compare synthetic rows (generated via
BQL’s SIMULATE operation) with rows from the original data. Instead of hypothesis testing,
dependencies between variables are obtained via Bayesian model selection.
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BayesDB is “Bayesian” in two ways:

1. In BQL, the objects of inference are rows, and the underlying probability model forms
a “prior” probability distribution on the fields of these rows. This is then constrained
by row-specific observations to create a posterior distribution of field values. Without
this prior, it would be impossible to simulate rows or infer missing values from partial
observations.

2. In MML, the default meta-model is Bayesian in that it assigns a prior probability to
a very broad class of probabilistic models and narrows down on probable models via
Bayesian inference. This prior is unusual in that it encodes a state of ignorance rather
than a strong inductive constraint. MML also provides instructions for augmenting
this prior to incorporate qualitative and quantitative domain knowledge.

In practice, it is useful to use BQL for Bayesian queries against models built using non-
Bayesian or only partially Bayesian techniques. For example, MML supports composing
the default meta-model with modeling techniques specified in external code that need not
be Bayesian. However, the default is to be Bayesian for both model building and query
interpretation, as this ensures the broadest applicability of the results.

This paper focuses on the technical details of BQL, the data generator interface, the
meta-model, and the MML. It also illustrates the capabilities of BayesDB using three appli-
cations: cleaning and exploring a public database of Earth satellites, discovering relation-
ships in measurements of macroeconomic development of countries, and analyzing salary
survey data. Empirical results are based on a prototype implementation that embeds BQL
into sqlite3, a lightweight, open-source, in-memory database.

1.1 A conceptual illustration

This section illustrates data analysis using the MML and BQL on a synthetic example based
on analysis of electronic health records. SQL databases make it easy to load data from disk
and run queries that filter and retrieve the contents. The first step in using BayesDB is to
load data that describes a statistical (sub)population into a table, with one row per member
of the population, and one column per variable:

CREATE POPULATION patients WITH DATA FROM patients.csv;

SELECT age, has_heart_disease FROM patients WHERE age > 30 LIMIT 3;

age has_heart_disease
66 ???
44 yes
31 ???

Once data has been loaded, a population schema needs to be specified. This schema
specifies the statistical characteristics of each example. For example, whether it is categorical
or numerical, and if it is categorical, how many outcomes are there and how is each outcome
represented. After an initial schema has been specified — using a mix of automatic inference
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and manual specification — the schema can be customized using instructions in the Meta-
modeling Language (MML).

GUESS POPULATION SCHEMA FOR patients;

ALTER POPULATION SCHEMA FOR patients
SET DATATYPE FOR num_hosp_visits TO COUNT;

CREATE DEFAULT METAMODEL FOR patients;
ALTER METAMODEL FOR patients ENSURE will_readmit DEPENDENT ON dialysis;

ALTER METAMODEL FOR patients
MODEL infarction GIVEN gender, age, weight, height, cholesterol, bp
USING CUSTOM MODEL FROM infarction_regression.py;

One distinctive feature of MML is that it includes instructions for qualitative probabilistic
programming. These instructions control the behavior of the automatic modeling machinery
in the MML runtime. In this example, these constraints include the assertion of a dependence
between the presence of a chronic kidney condition and future hospital readmissions. They
also include the specification of a custom statistical model for the infarction variable,
illustrating one way that discriminative and non-probabilistic approaches to inference can
be integrated into BayesDB.

The next step is to use the MML to build an ensemble of general-purpose models for the
data, subject to the specified constraints:

INITIALIZE 100 MODELS FOR patients;
ANALYZE patients FOR 3 HOURS CHECKPOINT EVERY 10 MINUTES;

Each of these 100 models is a generative population model (GPM) that represents the
joint distribution on all possible measurements of an infinite population with the given
population schema. These models are initially drawn accordingt to a broad prior probability
distribution over a large hypothesis space of possible GPMs. Until the observed data has
been analyzed, BQL will thus report broad uncertainty for all its query responses.

Once the models are sufficiently adapted to the data, it is possible to query its probable
implications. The following query quantifies over columns, rather than rows, and retrieves
the probability of a marginal dependence between three (arbitrary) variables and height:

ESTIMATE COLUMN NAME, PROBABILITY OF DEPENDENCE WITH height
FROM COLUMNS OF patients LIMIT 3;

column name p( dep. with height )
height 1.0

infarction 0.08
gender 0.99

Point predictions can be accessed by using the INFER instruction, a natural generalization
of SELECT from SQL:
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INFER age, has_heart_disease FROM patients
WHERE age > 30 WITH CONFIDENCE 0.8 LIMIT 3;

age has_heart_disease
66 yes
44 yes
31 ???

In this example, only one of the missing values could be inferred with the specified
confidence level. The probabilistic semantics of CONFIDENCE will be discussed later in this
paper.

BQL also makes it straightforward to generate synthetic sub-populations subject to a
broad class of constraints:

SIMULATE height, weight, blood_pressure FROM patients 3 TIMES
GIVEN gender = male AND age < 10

height weight blood_pressure
46 80 110
38 60 80
39 119 120

The SIMULATE operator gives BQL users access to samples from the posterior predictive
distribution induced by the implicit underlying set of models. This is directly useful for
predictive modeling and also decision-theoretic choice implemented using Monte Carlo esti-
mation of expected utility (Russell and Norvig, 2003). It also enables predictive checking:
samples from SIMULATE can be compared to the results returned by SELECT. Finally, domain
experts can use SIMULATE to scrutinize the implications of the underlying model ensemble,
both quantitatively and qualitatively.

2. Example Analyses

This section describes three applications of the current BayesDB prototype:

1. Exploring and cleaning a public database of Earth satellites.

2. Assessing the evidence for dependencies between indicators of global poverty

3. Analyzing data from a salary survey.

BQL and MML constructs are introduced via real-world uses; a discussion of their formal
interpretation is provided in later sections.

2.1 Exploring and cleaning a public database of Earth satellites

The Union of Concerned Scientists maintains a database of 1000 Earth satellites. For the
majority of satellites, it includes kinematic, material, electrical, political, functional, and
economic characteristics, such as dry mass, launch date, orbit type, country of operator,
and purpose. Here we show a sequence of interactions with a snapshot of this database
using the bayeslite implementation of BayesDB.
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2.1.1 Inspecting the data.

We start by loading the data and looking at a sample. This process uses a combination of
ordinary SQL and convenience functions built into bayeslite. The first step is to create a
population from the raw data:

CREATE POPULATION satellites FROM ucs_database.csv

One natural query is to find the International Space Station, a well-known satellite:

SELECT * FROM satellites WHERE Name LIKE ’International Space Station%’

Variable Value
Name International Space Station (ISS ...)
Country_of_Operator Multinational
Operator_Owner NASA/Multinational
Users Government
Purpose Scientific Research
Class_of_Orbit LEO
Type_of_Orbit Intermediate
Perigee_km 401
Apogee_km 422
Eccentricity 0.00155
Period_minutes 92.8
Launch_Mass_kg NaN
Dry_Mass_kg NaN
Power_watts NaN
Date_of_Launch 36119
Anticipated_Lifetime 30
Contractor Boeing Satellite Systems (prime)/Multinational
Country_of_Contractor Multinational
Launch_Site Baikonur Cosmodrome
Launch_Vehicle Proton
Source_Used_for_Orbital_Data www.satellitedebris.net 12/12
longitude_radians_of_geo NaN
Inclination_radians 0.9005899

This result row illustrates typical characteristics of real-world databases such as hetero-
geneous data types and missing values.

2.1.2 Building baseline models.

Before exploring the implications of the data, it is necessary to obtain a collection of prob-
abilistic models. The next two MML instructions produce a collection of 16 models, using
roughly 4 minutes of analysis total.

INITIALIZE 16 MODELS FOR satellites;
ANALYZE satellites FOR 4 MINUTES WAIT;
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Each of the 16 models is a separate GPM produced by an independent Markov chain
for approximate posterior sampling in the default semi-parametric factorial mixture meta-
model described earlier. This number of models and amount of computation is typical for the
exploratory analyses done with our prototype implementation; this is sufficient for roughly
100 full sweeps of all latent variables.

2.1.3 Answering hypotheticals.

The satellites database should in principle inform the answers to a broad class of hypothetical
or “what if?” questions. For example, consider the following question:

Suppose you receive a report indicating the presence of a previously undetected
satellite in geosynchronous orbit with a dry mass of 500 kilograms. What coun-
tries are most likely to have launched it, and what are its likely purposes?

Answering this question requires knowledge of satellite engineering, orbital mechanics,
and the geopolitics of the satellite industry. It is straightforward to answer this question
using BQL. The key step is to generate a synthetic population of satellites that reflect the
given constraints:

SIMULATE country_of_operator, purpose FROM satellites
GIVEN Class_of_orbit = GEO, Dry_mass_kg = 500 LIMIT 1000;

Figure 1 shows the results of a simple aggregation of these results, counting the marginal
frequencies of various countries and purposes and sorting accordingly. The most probable
explanation, carrying roughly 25% of the probability mass, is that it is a communications
satellite launched by the USA. It is also plausible that it might have been launched other
major space powers such as Russia or China, and that it might have a military purpose.

The satellites data are too sparse and ambiguous for frequency counting to be a viable
alternative. Consider an approach based on finding satellites that match the discrete GEO
constraint and are within some ad-hoc tolerance around the observed dry mass:

SELECT country_of_operator, purpose, Class_of_orbit, Dry_mass_kg
FROM satellites
WHERE Class_of_orbit = "GEO" AND Dry_Mass_kg BETWEEN 400 AND 600;

This SQL query returns just 2 satellites, both Indian:

Country_of_Operator Purpose Class_of_Orbit Dry_Mass_kg
0 India Communications GEO 559
1 India Meteorology GEO 500

Presuming our intuition about satellite mass is flawed, we might issue another query to
look at a broader range of satellites:

SELECT country_of_operator, purpose, Class_of_orbit, Dry_mass_kg
FROM satellites
WHERE Class_of_orbit = ’GEO’ AND Dry_Mass_kg BETWEEN 300 AND 700
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Figure 1: The most probable countries and purposes of a satellite with a 500
kilogram dry mass in geosynchronous orbit. See main text for discussion.
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The results still do not give any real insight into the likely purpose of this satellite:

Country_of_Operator Purpose Class_of_Orbit Dry_Mass_kg
0 Malaysia Communications GEO 650
1 Israel Communications GEO 646
2 Luxembourg Communications GEO 700
3 Russia Communications GEO 620
4 China (PR) Earth Science GEO 620
5 China (PR) Earth Science GEO 620
6 China (PR) Earth Science GEO 620
7 India Communications GEO 559
8 India Navigation GEO 614
9 India Meteorology GEO 500
10 Malaysia Communications GEO 650
11 Multinational Earth Science/Meteorology GEO 320
12 United Kingdom Communications GEO 660
13 Norway Communications GEO 646

Without deep expertise in satellites, and significant expertise in statistics, it is difficult to
know whether or not these results can be trusted. How does the set of satellites vary as the
thresholds on Dry_Mass_kg are adjusted? How locally representative and comprehensive
is the coverage afforded by the data? Are there indirect, multivariate dependencies that
ought to be taken into account, to determine which satellites are most similar? How should
existing satellites be weighted to make an appropriate weighted sample against which to
calculate frequencies? In fact, small modifications to the tolerance on Dry_Mass_kg yield
large changes in the result set.

2.1.4 Identifying predictive relationships between variables.

A key exploratory task is to identify those variables in the database that appear to predict
one another. This is closely related to the key confirmatory analysis question of assessing
the evidence for a predictive relationship between any two particular variables.

To quantify the evidence for (or against) a predictive relationship between two pairs of
variables, BQL relies on information theory. The notion of dependence between two variables
A and B is taken to be mutual information; the amount of evidence for dependence is then
the probability that the mutual information between A and B is nonzero. If the population
models are obtained by posterior inference in a meta-model — as is the case with MML —
then this probability approximates the posterior probability (or strength of evidence) that
the mutual information is nonzero.

ESTIMATE DEPENDENCE PROBABILITY FROM PAIRWISE COLUMNS OF satellites;

Figure 2 shows the results from this query. There are several groups of variables with high
probability of mutual interdependence. For example, we see a definite block of geopolitically
related variables, such as the country of contractor & operator, the contractor’s identity,
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and the location of the satellite (if it is in geosynchronous orbit). The kinematic variables
describing orbits, such as perigee, apogee, period, and orbit class, are also shown as strongly
interdependent. A domain expert with sufficiently confident domain knowledge can use this
overview of the predictive relationships to assess the value of the data and the validity of
the baseline models.

It is also instructive to compare the heatmap of pairwise dependence probabilities with
alternatives from statistics. Figure 2 also shows heatmap that results from datatype-
appropriate measures of correlation. The results from correlation are sufficiently noisy that
it would be difficult to trust inferences from techniques that use correlation to select vari-
ables. Furthermore, the most causally unambiguous relationships, such as the kinematic
constraints relating perigee, apogee, and orbital period, not detected by correlation.

2.1.5 Detecting multivariate anomalies.

Another key aspect of exploratory analysis is identifying anomalous values, including both
(univariate) outliers and multivariate anomalies. Anomalies can arise due to errors in data
acquisition, bugs in upstream preprocessing software (including binning of continuous vari-
ables or translating between different discrete outcomes), and runtime failures. Anomalies
can also arise due to genuine surprises or changes in the external environment.

Using BQL, multivariate anomalies can be detected by assessing the predictive prob-
ability density of each measurement, and ordering from least to most probable. Here we
illustrate this using a simple example: ordering the geosynchronous satellites according to
the probability of their recorded orbital period:

ESTIMATE name, class_of_orbit, period_minutes AS TAU,
PREDICTIVE PROBABILITY OF period_minutes AS "Pr[TAU]"
FROM satellites
ORDER BY “Pr[TAU]” ASCENDING LIMIT 10

This BQL query produces the following table of results:
Name Class_of_Orbit TAU Pr[TAU]

0 AEHF-3 (Advanced Extremely High Frequency sate... GEO 1306.29 0.001279
1 AEHF-2 (Advanced Extremely High Frequency sate... GEO 1306.29 0.001292
2 DSP 20 (USA 149) (Defense Support Program) GEO 142.08 0.002656
3 Intelsat 903 GEO 1436.16 0.003239
4 BSAT-3B GEO 1365.61 0.003440
5 Intelsat 902 GEO 1436.10 0.003492
6 SDS III-6 (Satellite Data System) NRO L-27, Gr... GEO 14.36 0.003811
7 Advanced Orion 6 (NRO L-15, USA 237) GEO 23.94 0.003938
8 SDS III-7 (Satellite Data System) NRO L-38, Dr... GEO 23.94 0.003938
9 QZS-1 (Quazi-Zenith Satellite System, Michibiki) GEO 1436.00 0.004446

Recall that a geosynchronous orbit should take 24 hours or 1440 minutes. Rows 7 and 8
appear to be unit conversion errors (hours rather than minutes). Rows 2 and 6 appear to be
decimal placement errors. Note that row 2 is not an outlier: some satellites have an orbital
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(a) A heatmap depicting the pairwise probabilities of dependence
between all pairs of variables. The rows and columns are both
permuted according to a single ordering obtained via agglomerative
hierarchical clustering to highlight multivariate interactions.

(b) The pairwise correlation matrix; note that many causal rela-
tionships are not detected by simple correlations. See main text
for discussion.

Figure 2: Detecting predictive relationships in the satellites database.11
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period of roughly two hours. It is only anomalous in the context of the other variables that
are probably predictive of orbital period, such as orbit class.

2.1.6 Inferring missing values.

A key application of predictive modeling is inferring point predictions for missing measure-
ments. This can be necessary for cleaning data before downstream processing. It can also
be of intrinsic interest, e.g. in classification problems. The satellites database has many
missing values. Here we show an INFER query that infers missing orbit types and returns
both a point estimate and the confidence in that point estimate:

INFER EXPLICIT
anticipated_lifetime, perigee_km, period_minutes, class_of_orbit,
PREDICT type_of_orbit AS inferred_orbit_type CONFIDENCE inferred_orbit_type_conf
FROM satellites
WHERE type_of_orbit IS NULL;

This form of INFER uses the EXPLICIT modifier that exposes both predicted values and
their associated confidence levels to be included in the output. Figure 3 shows a visualiza-
tion of the results. The panel on the bottom left shows that the confidence depends on the
orbit class and on the predicted value for the inferred orbit type. For example, there is typi-
cally moderate to high confidence for the orbit type of LEO satellites — and high confidence
(but some variability in confidence) for those with Sun-Synchronous orbits. Satellites with
Elliptical orbits may be assigned a Sun-Synchronous type with moderate confidence, but
for other target labels confidence is generally lower. After examining the overall distribu-
tion on confidences, it can be natural to filter INFER results based on a manually specified
confidence threshold. Note that many standard techniques for imputation from statistics
correspond to INFER ... WITH CONFIDENCE 0.

2.1.7 Integrating a kinematic model for elliptical orbits.

Can we improve over the baseline models by integrating causal knowledge about satellites?
MML can be used to compose GPMs built by the default model builder with algorithmic
and/or statistical models specified as external software. Here we integrate a simple model
for elliptical orbits:

ALTER METAMODEL FOR satellites
MODEL perigee_km, apogee_km GIVEN period_minutes, eccentricity
USING CUSTOM MODEL FROM stochastic_kepler.py;
ANALYZE FOREIGN PREDICTORS FOR 1 MINUTE;

The underlying foreign predictor implements Kepler’s laws:

Rmin = τ
2
3 (1.0− ε)−RGEO

Rmax = τ
2
3 (1.0 + ε)−RGEO

X(r∗,apogee_km) ∼ N(Rmin, σ
2)

X(r∗,perigee_km) ∼ N(Rmax, σ
2)

12
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Figure 3: A visualization of inferred point estimates for type_of_orbit and the
confidence in those point estimates. See main text for discussion.
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Here, ε is set via the eccentricity measurement for row r∗, and τ is set via the
period_minutes measurement. RGEO is a fixed constant inside the foreign predictor rep-
resenting the radius of the Earth in kilometers. σ is a parameter that determines the noise
and is set when the variable subset for the foreign predictor instantiation is ANALYZEd.
Note that foreign predictors are essentially GPMs and accordingly must implement generic
simulate(...) and logpdf(...) methods. For algorithmic forward models with numerical out-
puts, MML provides a default wrapper that uses importance sampling with resampling to
approximately generate conditional samples and estimate marginal densities. This is how
Kepler’s laws — in the form of a forward simulation — are turned into a generative model
for kinematic variables that can be conditionally simulated in arbitrary directions.

Figure 4 and Figure 5 show the results. A detailed discussion of the relative merits of
empirical versus analytical modeling is beyond the scope of this paper. However, it is clear
that neither the empirical approach nor the analytical approach is universally dominant. The
empirical approach is able to correctly locate the empirical probability mass — including
multiple modes — but underfits. The orbital mechanics approach yields inferences that are
typically in much tighter accord with the kinematic data. This is unsurprising: these are
the patterns of covariation that led to the development of quantitative models and “hard”
natural sciences. However, there are many satellites for which Kepler’s laws are not in accord
with the data. This reflects many factors, including data quality errors as well as legitimate
gaps between idealized mathematical laws and fine-grained empirical records of real-world
phenomena. For example, at the time Kepler’s laws were formulated, orbiting bodies lacked
engines.

2.1.8 Combing random forests, causal models, and nonparametric Bayes.

Because MML supports model composition, it is straightforward to build hybrid models that
integrate techniques from subfields of machine learning that might seem to be in conflict.
Figure 6 shows the transcript of a complete MML session that builds such a hybrid model.
Random forests are used to classify orbits into types; Kepler’s Laws are used to relate period,
perigee, and apogee; and the default semi-parametric Bayesian meta-model is used for all
remaining variables (with two variables coming with overridden datatypes).

Later sections of this paper explain how these three modeling approaches are combined
to answer individual BQL queries.

2.2 Assessing the evidence for dependencies between indicators of global
poverty

In the early 21st century it is widely believed that resolving extreme poverty around the
world will be accomplished by empowering individuals to resolve their poverty. Govern-
ments and NGOs encourage this process through a variety of interventions, many of them
combining material assistance with policy changes. In principle, policies should be driven by
quantitative data-driven understanding of international economic development. In practice,
international economic data is sparse, unreliable, and highly aggregated. These data limi-
tations create substantial obstacles to understanding the situational context of successful or
unsuccessful interventions and policies.
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SIMULATE period_minutes, apogee_km FROM satellites_kepler LIMIT 100;
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Figure 4: Integrating empirical baseline models with a noisy version of Kepler’s
laws. Neither the empirical approach nor the analytical approach is universally dominant
in terms of accuracy. See main text for discussion.
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SIMULATE perigee_km, apogee_km FROM satellites_kepler ASSUMING
period_minutes = 1436 LIMIT 100;
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Figure 5: Comparing conditional predictions of an empirical model with Kepler’s
laws. See main text for discussion.

16



BayesDB: A system for querying the probable implications of data

CREATE POPULATION satellites
FROM ucs_satellites.csv

CREATE METAMODEL sat_keplers ON satellites
USING composer(
random_forest (

Type_of_Orbit (CATEGORICAL)
GIVEN Apogee_km, Perigee_km,

Eccentricity, Period_minutes,
Launch_Mass_kg, Power_watts,
Anticipated_Lifetime,

Class_of_orbit
),
foreign_model (

source = ’keplers_laws.py’,
Period_Minutes (NUMERICAL)

GIVEN Perigee_km, Apogee_km
),
default_metamodel (

Country_of_Operator CATEGORICAL,
Inclination_radians NUMERICAL

)
);

INITIALIZE 16 MODELS FOR satellites;
ANALYZE satellites FOR 4 MINUTES;

Figure 6: A complete MML session that builds a hybrid model integrating techniques from
subfields of machine learning that might seem to be in conflict.
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The “Gapminder” data set, collected and curated by Hans Rosling at the Karolinska
Institutet, is the most well known and extensive sets of longitudinal global developmental
indicators. Representing over 500 indicators, 400 countries, and 500 years of data, it covers
the colonial era, industrial revolution, socio-political upheavals around the world in the 20th
century, and the first decade of the 21st. Containing over 2 million observations, the data
has been used as the basis for a compelling set of data animations and the most widely
viewed TED talk on statistics.

To date, analysis of this data has been minimal, as it requires intensive preprocessing
and cleaning. Different analytical methdologies require different approaches to imputation
and variable selection; as a result, results from different teams are difficult to compare.
Here we show how to explore the data with BayesDB and assess the evidence for predictive
relationships between different macroeconomic measures of development.

2.2.1 Exploring the Data with SQL

The raw form of the data is ∼500 Excel spreadsheets, each containing longitudinal data for
∼300 countries over ∼100 years. However, the dataset only contains ∼2 million observations,
i.e. 97% of the data is missing. Figure 7 shows key indicators of the data around size,
missing records, and the relationship between data availability and countries, records, and
years. The primary data is mmodeled in SQL as a âĂĲfactâĂİ table structure. This
relatively-normalized representation easily models the sparse matrix and allows us to use a
combination of SQL and Python data science tools to craft our population structures.

The histograms in Figure 7 show the breadth and also the variability of the data. The
histogram by year in Figure 7a shows that data is complete for only recent history, and in
fact that some predicted data continues into the future, and that data for some indicators
is only available every 10 years. The histogram by country in Figure 7a shows that data
availability varies by country (the most described country is Sweden), that many countries
have reasonably complete data, but that there is a long tail of countries with sparse data,
including countries that no longer exist and with inconsistent or disputed naming. Figure 7c
shows that there is also a variance by indicators, because different measurements are collected
by different agencies with different expectations and data policies.

The data has already been subject to extensive visualization and descriptive analytics
by the Gapminder project. This paper focuses on the use of MML to model the data and
BQL to query its probable implications.

2.2.2 Detecting Basic and Longitudinal Dependence

Our analysis focuses on the 53 variables with most complete data for the years 1999-2008.
It is straightforward to create an ensemble of models for this subset:

GUESS POPULATION SCHEMA FOR dense_gapminder;
INITIALIZE 64 MODELS FOR dense_gapminder;
ANALYZE todo FOR 300 MINUTES WAIT;

The probability of dependence heatmap that results is shown in Figure 8. Indicators
such as total population and urban percentage form blocks containing their values for all 10
years contained in the dataset. This shows that the default GPM was able to extract the
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observation_count indicator_count country_count year_count coverage
2082193 464 405 364 0.03044

(a) Observation volume by year, 1086-2100. Note that the most complete data is for only
recent history.

(b) Observation volume by country. Note that the data becomes very limited for some countries,
and includes countries that no longer exist.

(c) Observation volume by indicator. Note that some indicators are much more complete or
extensive in terms of year and country than others.

Figure 7: Gapminder data volume measures. The dataset contains longitudinal records
of ∼500 macroeconomic variables for ∼300 countries, spanning a ∼100 year period. However,
roughly 97% of the data is missing.

temporal dependence in these indicators. In other cases, such as measurements of the number
of people killed in floods, the year to year dependence is much weaker. The heatmap also
shows dependence between indicators, such as the block in the top right corner combining
indicators of stress, urbanization, and fertility rate. Finally, it segregates data according
to type sof indicators, as can be seen in Figure 8b where there is a sharp break from total
measurements to per-capital.

If we analyze just the data for the year 2002, using 32 models for 3 minutes, we get
a heatmap that highlights the dependence and independence between indicators. Figure 9
shows the details.

2.2.3 Measuring the Similarity of Countries

In order to help with the delivery of international aid and the design and analysis of in-
terventions, decision makers often want a richer understanding of the similarities between
countries. With BQL we can formulate these queries in general or against specific attributes.
Figure 10 shows country similarities for different indicators. As expected, changing the in-
dicator of interest can produce a very different similarity structure. Analyses that presume
a single global similarity measure cannot pick up this context-specific structure.

The authors are involved in an ongoing research partnership with the Bill and Melinda
Gates Foundation aimed at integrating the Gapminder data with other relevant sources, in-
cluding qualitative knowledge from domain eperts, and using it to drive empirically grounded
policy and aid interventions.
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(b)

(c)

(a) Probability of dependence heatmap for 40 indicators over 10 years.

Oil consumption per capita (1999-2008)

Electricity generation per capita (1999-2008)

Residential electricity per capita (1999-2008)

Total population male (1999-2008)

Total population female (1999-2008)

Urban population (1999-2008)

(b) Indicators form 10 year runs, with a sharp
break from totals to per capita.

Storm Affected/Killed
2000,2004,2006,2008

Epidemic Killed/Affected
2000-2008

(c) Natural disaster indicators cluster but do
not have strong year-to-year dependence.

Figure 8: Probability of dependence heatmap for the Gapminder data. BayesDB
detects temporal dependence within some indicators but not others, as well as dependence
between some indicators (but not others). See main text for discussion.
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Figure 9: Probability of dependence for 40 indicators in 2002. Of particular note are
the blocks for population growth rates, natural disasters, HIV, total energy usage, and per
capita energy usage.
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(a) Countries enumerated in decending order of
similarity to Kenya on Total Fertility Rate.

(b) Countries enumerated in descending order of
similarity to the United States on Total Fertility
Rate.

(c) Countries enumerated in decending order of
similarity to Kenya on per capita energy produc-
tion.

(d) Countries enumerated in descending order of
similarity to the United States on per capita en-
ergy production.

Figure 10: Examining the similarity of countries. Kenya and the United States are
similar to different countries, and the similarity structure with respect to per capita energy
production and total fertility rate are significantly different.
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(a) Probability of dependence between columns
with default metamodel settings.

(b) Probability of dependence between columns
when state is dependent on salary columns.

Figure 11: Probability of dependence heat maps with and without dependence
assertions in MML. Note that in the second figure stronger dependencies were resolved
overall.

2.3 Analyzing a salary survey

Surveys are a common source of multivariate data and a potentially appealing application
for BayesDB. Here we show a preliminary analysis of a web-administered anonymous salary
survey. Participants shared their compensation details along with information about their
title, years of service, acheivements, employer, and geography.

2.4 Controlling Models with Qualitative Assumptions

This salary population provides an instructive example of applying qualitiative assumptions
to a model. In this case, the first analysis of compensation data finds that geographic
location (state, region) is not a factor in compensation. Domain experts suggest that is
implausible, that cost of living and the competitive market in different cities is a significant
factor in compensation of the survey participants. The following code can be used to apply
this qualitative assumption:

ALTER METAMODEL FOR salary ENSURE total, equity, base, bonus DEPENDENT
ON state;

Without asserting the dependence, state is inferred to be dependent on region and inde-
pendent of performance. After asserting a qualitative constraint, the probability of depen-
dence heat map changes. Not only are the squares implied by that depencence colored to 1.0,
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but other columns have re-aligned in their modeling. In particular, given this assumption,
there appears to be more evidence of dependence between the 2012 and 2013 measures and
core indicators such as years in the job, bonus, the presence of an equity stake, etc. Also,
there appears to be less evidence that job title impacts the key compensation variables.

3. The Bayesian Query Language

The Bayesian Query Language (BQL) formalizes Bayesian data analysis without exposing
the end user to model parameters, priors, and posteriors. This section describes the statis-
tical operations that are implemented by the core BQL instruction set. It also describes the
modeling formalism that is used to implement BQL.

3.1 Generative Population Models

BQL programs are executed against a weighted collection of generative population models
(GPMs). At present, GPMs can be built in two ways:

1. Specified directly as external software libraries.

2. Inferred from data via probabilistic inference in a meta-model written in BayesDB’s
Meta-modeling Language.

GPMs can respond to queries about the joint distribution of the underlying data gener-
ating process as a whole or about the predictive distribution for a specific member of the
population. The population can be thought of as a table, where individual members are
specified by row indexes.

Each GPM induces a random table with a finite number of columns and an infinite num-
ber of rows, where each cell contains a random variable. BQL treats each BayesDB generator
as a model of the data generating process underlying its associated table of observations. It
is sometimes useful to query a GPM about hypothetical members of the population. This
can be performed by using a row whose index r∗ may not be associated with any actual
member; this can be guaranteed by generating a unique row index.

Each GPM is described by a schema S that must be compatible with the population
schema for the population to which it is being applied. This schema is a tuple containing
(typed-outputs, typed-inputs, body). The typed-outputs component specifies the col-
umn indexes and statistical types of each column that the data generator will be responsible
for producing. The typed-inputs component specifies the indexes and statistical types of
each column that the data generator can read from. The body is an opaque binary that
contains any GPM-specific configuration information, such as a probabilistic program.

Mathematically, the internals of a GPM G = (Θ,Z, O) consists of three parts:

1. Measurement-specific latent variables Z = ∪z(r,c).

There may be overlap between the latent variables for different measurements. If a
GPM cannot track dependencies internally — or if it is based on a model class in
which all measurements are coupled — then z(r,c) = Z.
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2. Population-level latent variables Θ.

These are all latent variables that remain well-defined in the absence of all measure-
ments. Examples include hyper-parameters and mixture component parameters.

3. Observations O = {(ri, ci, x(ri,ci))}.
These correspond to the observed measurements.

For example, a naive Bayesian GPM lacks any measurement-specific variables, i.e. z(r,c) =

∅, and is completely characterized by a single vector of parameters Θ = ~θc for the probabil-
ity models for each column. A finite mixture GPM would have z(r,c) = {zr} be the cluster
assignment for each row, and have Θ = {θ(c,l)|l ∈ Z} be the component model parameters
for each cluster.

Generative population models are required to satisfy the following conditional indepen-
dence constraint:

x(r,c)|Θ, z(r,c) � x(r′,c′)|Θ, z(r′,c′) unless (r, c) = (r′, c′)

Note in particular that the observations O need not be conditioned on directly, given Θ
and z(r,c). This formalizes the requirement that the dependencies between the measurements
in the population are completely mediated by the population-level latent variables and all
relevant measurement-specific latent variables. In general, no other independence constraints
are enforced by the interface. GPMs can thus be built around dense, highly-coupled model
families such as low-dimensional latent spaces and convolutional neural networks.

3.1.1 An interface to generative population models

A GPM must implement the following interface:

1. G = {Θ,Z} = initialize( schema = S )

Initialize a data generator with the given schema and return the resulting data gener-
ator G. It ensures that storage has been allocated for the random variables Θ and Z,
storing the global latent variables and the local latent variables, respectively.

2. ~si = simulate(G, givens = {(rj , cj , x(r,cj))}, targets = {rk, ck}, N)

Generate N sampled values {~si} from the specified distribution:

{~si} ∼ {X(rk,ck)}|{X(rj ,cj) = x(rj ,cj)},Θ, {zr,c|(r, c) ∈ {rj , cj} ∪ {rk, ck}}

The set of valid distributions includes all finite-dimensional joint distributions obtain-
able by conditioning on the values of arbitrary measurements and marginalizing over
another arbitrary set.

3. log p = logpdf(G, givens = {(rj , cj , x(rj ,cj))}, query = {(rk, ck, q(r,ck))})
Evaluate the log probability density of the specified conditional/marginal distribution
at a target point:

log p = log p({X(rk,ck) = q(rk,ck)}|{X(rj ,cj) = x(rj ,cj)},Θ, {zr,c|(r, c) ∈ {rj , cj}∪{rk, ck}})
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4. d= kl-divergence-given-G(G, measurements_A = {(ri, cai )}, measurements_B = {(rj , cbj)},
conditions_C = {(rk, cck, xk)})

This estimates the KL divergence of the set of measurements A from the set of mea-
surements B, conditioned on the given constraints C. KL calculations are central to
model-independent data analysis. For example, to detect predictive relationships, it
suffices to check for non-zero mutual information, which can be reduced to calculat-
ing the KL between the joint distribution over two variables and the product of the
marginals.

It is included in the GPM interface because that allows a GPM implementer to supply
an optimized implementation. Where such an implementation is not available, the KL
can be estimated via simple Monte Carlo estimation:

DGKL({X(ri,cai )
}, {X(rj ,cbj)

}) =
∑

{xi}∈dom({X(ri,c
a
i
)})

p
(
{X(ri,cai )

} = {xi} |G
)
log

p
(
{X(rj ,cbj)

} = {xi} |G
)

p
(
{X(ri,cai )

} = {xi} |G
)


≈
∑
{xi}k

log

 p
(
{X(rj ,cbj)

} = {xi}k |G
)

p
(
{X(ri,cai )

} = {xi}k) |G
)


with{xi}k ∼ {X(ri,cai )
}

This interface is intentionally quite general. It needs to support an open set of primitives
for Bayesian data analysis. This paper focuses on the subset of this interface where all
measurements come from the same row. All the BQL operations used in this paper can
be reduced to explicit invocations of simulate, logpdf , and to Monte Carlo estimates of
Kullback-Leibler divergences implemented in terms them. Some GPMs can significantly
optimize some of these operations relative to Monte Carlo baselines; such optimizations are
likely to be important in practice but are beyond the scope of this paper.

3.1.2 Weighted collections of generative population models.

BQL is executed against a weighted collection of GPMsM:

M = {(wi,Gi)}

In principle, these collections can include GPMs drawn from different model classes. The
weights are treated as prior probabilities. This paper focuses on the case where the GPMs
come from a single meta-model, each produced by independent runs of a single Markov
chain for posterior inference in the meta-model given all available measurements. In this
case, assigning unit weights to all models wi = 1 results in BQL queries based on a Monte
Carlo approximation to Bayesian model averaging.
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3.2 Core instructions: SIMULATE, ESTIMATE, and INFER

Data analysis workflows in BQL are built around three core classes of statistical operations:

1. Generating samples from predictive probability distributions, including both comple-
tions of existing rows in a data table as well as predictive distributions over hypothet-
ical rows.

2. Estimating predictive probability densities and approximating derived information-
theoretic quantities.

3. Summarizing multi-modal probability distributions with single values.

These capabilities are exposed via three basic extensions to SQL that each combine
results from individual GPMs in different ways. They can be composed with ordinary SQL
to solve a broad range of data analysis tasks:

1. Detecting predictive relationships between variables: ESTIMATE COLUMN PROBABILITY
OF DEPENDENCE WITH ...

This yields an estimate of the marginal probability of dependence between the spec-
ified columns. This is equivalent to the probability that the mutual information be-
tween those two variables is nonzero, integrating over the weighted collection of GPMs
that BayesDB maintains. If the GPMs are produced by an asymptotically consis-
tent estimator of the joint distribution, then these probabilities will reflect non-linear,
heteroscedastic, or context-specific dependencies that statistical aggregates (such as
correlation or linear regression coefficients) will not.

2. Regression, classification, semi-supervised learning, and imputation: INFER ...

Each of these predictive modeling tasks requires filling in point estimates in different
conditions. All of these can be viewed as special cases of INFER, which handles arbitrary
patterns of missing values and both continuous and discrete prediction targets.

3. Anomaly/outlier detection: ORDER BY PROBABILITY OF col ASCENDING LIMIT k

Anomalous cells can be found by predictive checking: identify the cells that are least
likely under the inferred constellation of models. These may not be outliers in the
standard univariate sense: the low probability may be due to interactions between
several variables, even though each variable on its own is marginally typical.

4. Retrieving similar rows: ORDER BY SIMILARITY TO row

A broad class of structured search operations can be performed via information-
theoretic measures of similarity between rows. These are useful in both data ex-
ploration and in more targeted search.

5. Predictive model checking: SIMULATE ...

By comparing aggregates from the output of SIMULATE to the output of the analogous
SELECT statements, it is possible to do predictive checking without having to mention
models, parameters, priors, or posteriors.
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3.2.1 SIMULATE: generating samples from arbitrary predictive distributions.

The first, called SIMULATE, provides a flexible interface to sampling from posterior predictive
distributions:

SIMULATE target columns FROM population [WHERE row filter] [ASSUMING
constraint] [k TIMES]

The WHERE clause is interpreted as a constraint to test against all members of the popula-
tion that have been observed so far. If it is not supplied, the SIMULATE command is executed
against an arbitrary as-yet-unobserved member of the population, i.e. a unique row id from
the standpoint of the GPM interface. The ASSUME clause is interpreted as an additional set
of constraints to condition each row on before generating the simulations.

For example, to generate a proxy dataset of two variables varA and varB, one can
write SIMULATE varA, varB FROM population 100 TIMES. As another example, consider
the BQL command SIMULATE varA, varD FROM population 20 TIMES WHERE varB = True
AND varC IS MISSING ASSUMING varC = 3.4. This generates 20 simulated values from
p(varA, varD|varC = 3.4) for each member of the population where varB is equal to True
and varC is missing. This behavior may seem non-intuitive. For example, a SIMULATE in-
vocation with WHERE true returns Rk rows, where R is the number of rows in the database
and k is the number of output samples specified with the query. On the other hand, WHERE
false yields an empty result set, always. However, this semantics allows SQL aggregates to
reduce the predictions for individual source rows by grouping on the row identifiers.

To formally describe the meaning of simulate, we first introduce some notation. Let
w({x(r,c)|c ∈ G}) be the predicate denoted by the WHERE clause, i.e. w(·) = 1 if the pred-
icate is satisfied and 0 otherwise. Let R be the set of rows for which there is at least one
measurement, i.e. R = {ri|(ri, ·, ·) ∈ O}, and let W = {ri|w({x(ri,c)|c ∈ G}) = 1} be the
set of rows that satisfy the WHERE clause’s filter. If a WHERE clause is not provided, then
w({x(r,c)|c ∈ G}) = 0 for all existing rows r ∈ R, and W = {r∗} be a set containing a single
distinguished row about which no measurements are known. Let T = {ci} be the set of
target columns, and let A = (cj , x(r,cj)) be the set of assumed equality constraints. Also let
TA = T ∪ {c|(c, ·) ∈ A} be the set of all columns referenced in the SIMULATE command.

For each r∗ ∈ W , the SIMULATE primitive produces a set of k returned realizations
Sr∗ = {si} of the following generative process:

Gi ∼ Discrete({Gj);wj})
si ∼ {Xr∗,c|c ∈ T}|{Xr∗,c′ = xc′ |(c′, xc′) ∈ A},Θi, {zi(r∗,cm)|cm ∈ TA}

This corresponds to choosing a GPM at random according to the probabilities given by
their weights and then generating si from the conditioned distribution in that model. If the
models are equally weighted, i.e. wi = 1, and if all the GPMs are drawn from their posterior
distribution given the observations p(G|O), then this procedure implements sampling from
the Bayesian posterior predictive distribution over the targets given all the observed data
plus the additional constraints from the ASSUME clause:

p({Xr∗,c|c ∈ T}|{Xr∗,c′ = xc′ |(c′, xc′) ∈ A}, O)

∝ p({Xr∗,c|c ∈ T}|{Xr∗,c′ = xc′ |(c′, xc′) ∈ A}|G)p(G|O)
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3.2.2 ESTIMATE: approximating posterior averages.

The second core BQL primitive, called ESTIMATE, allows clients to query the posterior ex-
pectations of stochastic functions that are defined over the rows and the columns:

ESTIMATE target properties FROM [COLUMNS OF] table [WHERE row/col filter]

Row-wise estimands provided by BQL. Consider the case where the rows are being
queried, i.e. COLUMNS OF does not occur in the query. Let P = {fi(x(r,ci),G)} be the
set of properties whose values are requested. These properties can depend on observed
measurements as well as latent components of the GPM. Let w(·) implement the WHERE
clause’s filter, as with SIMULATE. If a WHERE clause is not provided, then w({x(r,c)|c ∈ G}) = 0
for all existing rows r ∈ R.

Given these definitions, each row in the output of this class of ESTIMATE invocations is
defined as follows:

{ei} with ei =
∑
k

wkfi(x(r,ci),Gk)

The total set of returned rows is defined by the where clause:

{{ei}r} for r ∈W = {ri|w({x(ri,c)|c ∈ G}) = 1}

1. log p = predictive-probability(G, row = r, col = c)

This estimand is denoted PREDICTIVE PROBABILITY OF col, and applied against an
implicitly specified row, thus picking out a single measurement in the population. It
can be implemented by delegation to the underlying GPM:

predictive-probability(G, r, c)) = logpdf(G, ∅, {(r, c, x(rj ,cj) from OG)})

This can be used to identify outliers — measurements that are unlikely under their
marginal distribution — as well as anomalous measurements that are marginally likely
but unlikely given the other measurements for the same row.

2. sim(a,b) = generative-similarity(G, context = {ci}, rowA = ra, rowB = rb)

Data analysts frequently want to retrieve rows from a table that are “statistically
similar” to some pre-existing or hypothetical row. This is a key problem in data
exploration. It is also useful when trying to explain surprising inference results or
when trying to diagnose and repair data or inference quality issues. Many machine
learning techniques treat similarity as a central primitive, and use a metric formulation
of similarity as the basis for inductive generalization.

Information theory provides appealing alternatives: measure similarity in terms of the
amount of information one row contains about the values in another. This can be
assessed against all variables or just against a “context” that is defined by a particular
subset of variables. One approach, leading to a directional measure, is to measure the
divergence of the distribution over values in one row from the distribution over values
in another:

Pr[DGKL(~xG,ra |{ci}||~xG,rb |{ci}) = 0]
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Column-wise estimands provided by BQL. Another use of ESTIMATE is to query prop-
erties of the columns, via ESTIMATE ... FROM COLUMNS OF .... Let r∗ be a distinguished
row about which no measurements are known, i.e. (r∗, ·, ·) /∈ O. Let gi(x(r∗,c),G) be a
function of a set of measurements from a fresh row and the underlying GPM. It is then
straightforward to define the set G of values needed to check the WHERE filter, the set of
columns Cs that satisfy the filter, and the set E of returned values containing all the target
expressions for each satisfying column.

G = {gc(x(r∗,c), {x(r,c)|(r, c, ·) ∈ O},Gk)|c ∈ Gk}
Cs = {g|g ∈ G and w(g) = 1}
E = ∪t {gt(x(r∗,c), {(x(r,c)|(r, c, ·) ∈ O}, }k)|c ∈ Cs}

1. p = marginal-dependence-prob(G, colA = ci, colB = cj)

This estimand characterizes the amount of evidence for the existence of a predictive
relationship between the pair of variables ci and cj . It is defined according to the
information-theoretic definition of conditional independence:

Pr[X(r∗,ci) � X(r∗,cj)] =
∑
G
Pr[I(X(r∗,ci);X(r∗,cj)) = 0|G]Pr[G]

If each weighted GPM Gk is sampled approximately from some Bayesian posterior
Pr[G|O] (and wk = 1 identically), then simple Monte Carlo estimation of the marginal
dependence probability yields an estimate of the posterior marginal dependence prob-
ability:

Pr[X(r∗,ci) � X(r∗,cj)|O]

2. b = mutual-information(G, colA = ci, colB = cj)

The mutual information between two columns can be estimated by the standard re-
duction to KL divergence (Cover and Thomas, 2012). This complements the marginal
dependence probability, providing one measure of the strength of a dependence.

For convenience, some of the quantities that are ordinarily accessed via ESTIMATE are
also made available via SELECT.

3.2.3 INFER: summarizing distributions with point estimates.

Predictive modeling applications sometimes require access to point predictions rather than
samples from predictive distributions. BQL provides these capabilities using the INFER
primitive. The difference between INFER and SELECT is that INFER incorporates automatic
implicit imputation from the underlying collection of GPMs, plus filtering based on user-
specified confidence thresholds. For simplicity, this paper describes a simplified version with
a single threshold:

INFER target columns FROM table [WHERE row filter] WITH CONFIDENCE confidence
level
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This operation returns a set of measurements {xinf(r,c)} where unobserved measurements
are filled in with point estimates x̂(r,c) if a prescribed confidence threshold p(conf(X(r,c) =
x̂(r,c)) ≥ q) is reached. More formally:

xinf(r,c) =


x(r,c) foreach (r, c, ·) ∈ O
x̂(r,c) foreach (r, c, ·) /∈ O and p(conf(X(r,c) = x̂(r,c)) ≥ q)
null otherwise

For discrete measurements, BQL implements conf(·) in terms of predictive probability:

conf(X(r,c) = x̂(r,c)) = p(X(r,c) = x̂(r,c)) =
∑
G
p(X(r,c) = x̂(r,c)|G)p(G) =

∑
G
p(X(r,c) = x̂(r,c)|G)wi

Optimal candidate estimates can be found by optimization, implemented via enumeration:

x̂(r,c) = arg max
x

p(X(r,c) = x)

For continuous measurements, there is no canonical definition of confidence that applies
to all GPMs. Here we define conf(X(r,c) = x) = q as the probability that there is a useful
unimodal summary of the distribution of X(r,c) that captures at least 100q percent of the
predictive probability mass. This can be formalized in terms of mixture modeling. Let
φl be the parameters of mixture component l; for continuous data, we will use Gaussian
component models, so φl = (µl, σl). Let πl be the mass associated with component l. We
will choose conf(·) and x̂ as follows:

{(φl, πl)} ∼ p({(φl, πl)}|{Xk
(r,c)}) for 0 ≤ k ≤ K+

l∗ = arg max
l

πl

X̂(r,c) = µl∗

conf(X(r,c) = x̂(r,c)) = πl∗

Note that this approach can recover the behavior of the chosen strategy for discrete
data by using component models that place all their probability mass on single values. The
current prototype implementation of BayesDB uses a standard Gibbs sampler for a Dirichlet
process mixture model (Mansinghka et al., 2015; Neal, 1998; Rasmussen, 2000) to sample
{(φl, πl)}|{Xk

(r,c)}, with K
+ = 1000 by default. Adjusting K+ and the amount of inference

done in this mixture model can yield a broad class of tradeoffs between time, accuracy, and
variance; the current values are chosen for simplicity.

3.3 Model and data independence

Relational databases revolutionized the processing and analysis of business data by enabling
a single centrally managed data base to shared by multiple applications and also shared be-
tween operational and analytic workloads. This in turn accelerated the development of high
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performance and efficient databases, because the common abstraction became a target for
researchers and industrial practitioners looking to build high performance system software
with a broad impact. The relational model enabled sharing and infrastructure reuse because
interactions with the data, queries, are expressed in a notation (most popularly SQL) that is
independent of the physical representation of the data (Codd, 1970). Without this indepen-
dence, physical data layout must be carefully tailored to particular workloads, specialized
code written to manipulate the layout, and these data formats and access methods cannot
easily be shared.

BayesDB aims to provide additional abstraction barriers that insulate clients from the
statistical underpinnings of data analysis. Clients need to be able to specify data analysis
steps and workflows in a notation that is independent of the models and runtime infer-
ence strategies used to implement individual primitives, and (where possible) the modeling
strategies used to produce models from the original data.

Recall that the complete persistent state of a single population in BayesDB is charac-
terized by two mathematical objects:

1. The complete set of observed measurements O = {(ri, ci, x(ri,ci))}.

2. The weighted collection of GPMs {(wk,Gk)}. Note that this notation makes no com-
mitment as to the content of the GPMs, the weights, or the procedures by which they
were obtained.

The independencies provided by BayesDB can be described in terms of these objects:

1. Physical data independence. The notation for O makes no commitment as to the
physical representation of the measurements. The definitions of BQL primitives given
above therefore do not depend on details of the data representation to define their
values. However, as with SQL, small changes in representation may yield large changes
in runtime performance.

2. Physical model independence. The notation for each (wk,Gk) makes no commitment as
to the specific probability distribution induced over the set of random measurements
X = {X(ri,ci)}. The definitions of BQL primitives given above therefore do not depend
on the details of the probabilistic models used to define the random result set for each
query. In principle, the mathematical properties of the models as well as their software
implementation (or even implementing platform) can be changed without invalidating
end user queries. However, small changes in the generative population model may
yield large changes in the results of simulate and logpdf .

Databases provide other finer-grained independence properties that may have useful
analogs in BayesDB. For example, let us partition the random variables induced by a given
GPM into two subsets XA = {X(rai ,c

a
i )
} and XB = {X(rbj ,c

b
j)
}. An example of a desirable

data-dependent independence property is that if XA|O � XB|O in the “true” GPM, then
Q|XA, XB = Q|XA in any inferred models. Informally, this rests on the model-building
strategy: if the model-builder recovers the correct independencies, then the independence of
query results follows. This can be thought of as an analogue of logical data independence,

32



BayesDB: A system for querying the probable implications of data

which stipulates that e.g. adding new features should not affect the behavior of existing
applications whose results do not depend on the value of these new features. Formalizing
and verifying these properties is an important challenge for future research.

4. Modeling with the Meta-Modeling Language

BayesDB also provides the Meta-Modeling Language (MML), a probabilistic programming
language for building models of data tables. MML programs consist of modeling tactics
that control the behavior of an automatic model-building engine. These tactics take several
forms: statistical datatypes; initialization of weighted collections of random models; approx-
imately Bayesian updating of the model collection; qualitative assertions about dependence
and independence between variables; and the use of custom statistical models for specific
conditional distributions. All these tactics are currently implemented in terms of a unifying
semi-parametric Bayesian model that fills in all unspecified aspects.

4.1 Statistical datatypes

This metadata constrains the probability models that will be used for each column of data
and can also be used to choose appropriate visualizations. It is straightforward to support
several different kinds of data:

1. Categorical values from a closed set. This datatype includes a dictionary that maps
the raw data values (often strings) to canonical numerical indexes for efficient storage
and processing. This information can also be used to inform modeling tactics. For
example, in the current version of MML, closed-set categorical variables are modeled
generatively via a multinomial component model with a symmetric Dirichlet prior
on the parameters (Mansinghka et al., 2015). Discriminative models for closed-set
categorical columns could potentially use a multinomial logit link function, or an
appropriate multi-class classification scheme.

2. Binary data. Data of this type is generatively modeled using an asymmetric Beta-
Bernoulli model (Mansinghka et al., 2015) that can better handle sparse or marginally
biased variables than a symmetric alternative. Also, a broad class of discriminative
learning techniques can natively handle the binary classification problems induced by
binary variables.

3. Count data. Non-negative counts can be naturally modeled generatively by a Poisson-
Gamma model or discriminatively by a GLM with the appropriate link function.

4. Numerical data. By default, data of this type is generatively modeled using a stan-
dard Normal-Gamma model. It is straightforward to add numerical ranges to enforce
truncation post-hoc, and to add numerical pre-transformations that are appropriate
for data that is naturally viewed as normal only on a log scale.

We have performed preliminary experiments on other datatypes built on standard sta-
tistical models. For example, cyclic data can be handled via a von Mises model (Gopal and
Yang, 2014). Many other datatypes can be handled by the appropriate generalized linear
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model (McCullagh and Nelder, 1989). Broadening the set of primitive data types and as-
sessing coverage on a representative corpus of real-world databases will be a key research
challenge going forwards.

4.2 Bayesian generative population meta-models

Some data generators can be learned from data. Often the learning mechanism will be based
on approximate probabilistic inference in a meta-model: a probabilistic model defined over
a space of data generators, each of which is also a probabilistic model in its own right. Thus
far, all BayesDB meta-models have been Markov chain meta-models. These meta-models
internally maintain a single sample from an approximate posterior, and provide a Markov
chain transition operator that updates this sample stochastically.

1. G = (θ0G ,XG) = initialize(meta-schema = Λ)

Initializes a new meta-model with arbitrary parameters and an associated tabular data
store.

2. incorporate(id = r, values = {(cj , x(r,cj))})

Creates a new member of the population with the given row index and values and
stores it. Errors result from duplicate indexes or variables cj whose values x(r,cj)
are not compatible with the meta-schema Λ (e.g. because the expected data type is
incompatible with a provided value).

3. remove(id = r)

Removes a member of the population from the data store.

4. infer(program = P)

Simulate an internal Markov chain transition operator T to improve the quality of the
current sampled model representation:

θi+1
G = T (θiG)

Some Markov chain meta-models are asymptotically Bayesian, i.e. the distribution that
results from sequences of T updates converges to the posterior over meta-models as T goes
to infinity:

lim
t→∞

DKL(p(θG |XG)||p(T t(θG))) = 0

A sufficiently expressive Markov chain meta-model may also be asymptotically consistent
in the usual sense. The default semi-parametric GPM provided by BayesDB is designed to
be both asymptotically consistent and asymptotically Bayesian; these invariants are crucial
for its robustness, broad applicability, and suitability for use by non-experts. Formally
specifying and validating these properties is an important challenge for future research.
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4.2.1 Controlling inference via INITIALIZE and ANALYZE.

The MML allows users to control the process by which models are created and updated to
reflect the data. These capabilities are exposed via two commands:

1. INITIALIZE k MODELS FOR population

This command creates models by sampling their structure and parameters from the
underlying GPM’s prior. This is implemented by delegation to initialize(Λ) where
Λ is the entire MML schema so far.

2. ANALYZE [variable subset OF] population FOR timelimit

This command performs approximately Bayesian updating of the models in the weighted
collection by delegating to the infer() procedure from the underlying GPM. Here is
a typical invocation:

ANALYZE my_population FOR 10 MINUTES

When no variable subset is provided, analysis is done on all the latent variables associ-
ated with every GPM in the weighted collection. Finer-grained control is also possible
using variable subset specifiers that pick out particular portions of the latent state in
the GPM; these details are beyond the scope of this paper.

4.3 Qualitative constraints

The BayesDB MML provides constructs for specifying qualitative constraints on the depen-
dence and independence relationships (Pearl, 1988). The model-building engine attempts
to enforce them in all GPMs1. These constraints are specified as follows:

ALTER METAMODEL FOR population ENSURE colA IS [NOT] MARGINALLY DEPENDENT
ON colB

It is also possible to INITIALIZE and ANALYZE models that do not respect the constraints,
and then enforce them after the fact:

ALTER MODELS FOR population ENSURE colA IS [NOT] MARGINALLY DEPENDENT
ON colB

These commands enable domain experts to apply qualitative knowledge to make better
use of sparse data. This can be crucial for improving analysis and model credibility in the
eyes of domain experts. They also create the opportunity for false or unjustified knowledge
to influence the results of analysis. This can reduce credibility in the eyes of statisticians or
domain skeptics who want to see all assumptions in an analysis scrutinized empirically.

1. The current implementation does not attempt to detect contradictions.
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4.4 Incorporating foreign statistical models

A crucial aspect of MML is that it permits experts to override the automatic model-building
machinery using custom-built statistical models. Feedforward networks of such models can
be specified as follows:

ALTER SCHEMA FOR population MODEL output variables GIVEN input variables
USING FOREIGN PREDICTOR FROM source file

Presently these models are presumed to be discriminative. They are only required to
be able to simulate from a probability distribution over the output variables conditioned on
the inputs, and to evaluate the probability density induced by this distribution.

4.5 A semi-parametric factorial mixture GPM

The current implementation of MML implements all the above commands in terms of ap-
proximate inference in single, unusually flexible, semi-parametric Bayesian meta-model. This
GPM is closely related to CrossCat (Mansinghka et al., 2015). The CrossCat model is a
factorial Dirichlet process mixture model, where variables are assigned to specific Dirichlet
process mixtures by inference in another Dirichlet process mixture model over the columns.
The version used for implementing MML adds two key components:

1. Deterministic constraints on model structure. Users can specify constraints on the
marginal dependence or independence of arbitrary pairs of variables.

2. Feedforward networks of discriminative models conditioned on the outputs of the gen-
erative model. This allows users to combine general-purpose density estimation with
standard statistical techniques such as regression as well as complex computational
models with noisy outputs.

Thus in MML, the CrossCat probability model is used as the root node in a directed
graphical model. Each other node in the graph corresponds to specific discriminative model,
directly conditioned on the inputs of its immediate ancestors. Undirected terms attached to
the root node enforce deterministic constraints.

It is helpful to view this model in terms of a “divide and conquer” modeling strategy
that bottoms out in foreign predictors and other standard parametric models from Bayesian
statistics:

1. All variables not explicitly assigned to a custom model are divided into marginally
independent groups. Variables in the same group are assumed to be marginally de-
pendent. Partitions of variables that do not respect the given marginal dependence
and independence constraints are rejected. Each group of variables induces an in-
dependent subproblem that will typically be far lower dimensional than the original
high-dimensional problem.

2. For each subproblem, divide the rows into clusters whose values are marginally depen-
dent given any variable-specific hyperparameters.
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3. For each cluster, use a simple product of parametric models — i.e. a “naive Bayes”
approach (Duda et al., 2001) — to estimate the joint distribution.

Inference in the GPM thus addresses modeling tradeoffs that resemble the decisions faced
in exploratory analysis, confirmatory analysis, and predictive modeling. The most crucial
decisions involve defining which subset of the data is relevant for answering each question. A
secondary issue is what probabilistic model to use for each subset; absent prior knowledge,
these are chosen generically, based on the type of the data in the column.

4.5.1 A “divide-and-conquer” generative process

The generative process that induces the default GPM can be described using the following
notation:

Name Description
αD Concentration hyperparameter for CRP that slices the columns
~λd Hyperparameters for column d (datatype-dependent)
zd Slice (column partition) assigned to column d
αv Concentration hyperparameter for CRP that clusters rows for slice v
yvr Cluster assigned to row r with respect to slice v
~θdc Model parameters for column d cluster c (datatype-dependent)
~xc(·,d) Values in cluster c for column d, i.e. {x(r,d) | y|zdr = c}
ud An indicator such that ud = 1 iff d is modeled by a foreign predictor
par(d) The set of input dimensions for the foreign predictor

conditionally modeling variable d
~φd Parameters for the foreign predictor conditionally modeling variable l
md(x(r,d); ~φd, ~xp) The stochastic model for the foreign predictor used for

variable d (with density mdens
d (·)) with ~xp = {x(r,p)|p ∈ par(d)})

δm~z Characteristic function enforcing marginal (in)dependence constraint m
Vd(·) A generic hyper-prior of the appropriate type for variable or dimension d.
Md(·) and LD(·) A datatype-appropriate parameter prior (e.g. a Beta prior for binary data,
∀ d s.t. ud = 1 Normal-Gamma for continuous data, or Dirichlet for discrete data),

and likelihood model (e.g. Bernoulli, Normal or Multinomial).
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Using this notation, the unconstrained generative process for the default meta-model
can be concisely described in statistician’s notation as follows:

αD ∼ Gamma(k = 1, θ = 1)

~λd ∼ Vd(·) foreach d ∈ {1, · · · , D}
zd ∼ CRP({zi | i 6= d};αD) foreach d ∈ {1, · · · , D}
αv ∼ Gamma(k = 1, θ = 1) foreach v ∈ ~z
yvr ∼ CRP({yvi | i 6= r};αv) foreach v ∈ ~z and

r ∈ {1, · · · , R}
~θdc ∼ Md(·;~λd)

~xc(·,d) = {x(r,d) | yzdr = c} ∼
∏
r

Ld(
~θdc ) if ud = 0

~x(·,d) = {x(r,d)} ∼ md( ~φd; {x(r,p)|p ∈ par(d)}) if ud = 1

cm ∼ δm(~z) foreach (in)dependence constraint

The true generative process also must ensure that cm = 1 for all of theM (in)dependence
constraints. This is enforced by conditioning on the event {cm = 1}. A generative model for
this constrained process can be given trivially by embedding the unconstrained generative
process in the inner loop of a rejection sampler for {cm} (Mansinghka, 2009; Murray et al.,
2009).

4.5.2 The joint density

Here we use θG to denote all the latent information in a semi-parametric GPM G needed to
capture its dependence on the data O. This includes the concentration parameter αD for
the CRP over columns, the variable-specific hyper-parameters {~λd}, the column partition
~z, the column-partition-specific concentration parameters {αv} and row partition {~yv}, and
the category-specific parameters {θdc}. Note that in this section, Md, Vd, Ld, and CRP each
represent probability density functions rather than stochastic simulators.

Given this notation, we have:

P (θG , O) = P (X, {~θdc}, {~yv, αv}, {~λd}, ~z, αD)

= e−αD
( ∏
d∈D

Vd(~λd)
)
CRP(~z;αD)

(∏
v∈~z

e−αvCRP(~yv;αv)
)

×
(∏
v∈~z

∏
c∈~yv

∏
d∈{i s.t. zi=v}

Md(~θ
d
c ;
~λd)

∏
r∈c

Ld(x(r,d);
~θdc )
)(∏

m

δm~z
)

×
( ∏
d with ud=1

∏
r

mdens
d (x(r,d); ~φd, {x(r,p)|p ∈ par(d))

)
4.5.3 Inference via sequential Monte Carlo with Gibbs proposals and Gibbs

rejuvenation

Inference in this meta-model is performed via a sequential Monte Carlo scheme, in which each
row is incorporated incrementally, with all latent variables proposed from their conditional
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distribution. Additionally, clients can control the frequency and target latent variables for
rejuvenation kernels based on Gibbs sampling, turning the overall scheme into a resample-
move algorithm (Andrieu et al., 2003; Smith et al., 2013). This combination enables parallel
inference and estimation of marginal probabilities while allowing the bulk of the inferential
work to be done via a suitable Markov chain.

1. incorporate(id = r, values = {(cj , x(r,cj))})
Each row is incorporated via a single Gibbs step that numerically marginalizes out all
the latent variables associated with the row (Smith et al., 2013; Murphy, 2002). The
associated weight is the marginal probability of the measurements to be incorporated:

w′i = wi ∗ p({(cj , x(r,cj))}|G〉)

This operation is linear in the number of observed cells for the record being incorpo-
rated, the number of total slices, and the maximum number of clusters associated with
any slice.

2. infer(iterations = N , type = rows | columns | parameters | hyperparameters | foreign
| resample, slice = j | NA, cluster = k | NA, foreign_predictor = l | NA)
This operation applies a particular transition operator, specified by the arguments, to
a selected subset of the latent variables. Each invocation affects all particles in the
sequential Monte Carlo scheme. By varying the type parameter, a client can control
whether inference is performed over the row-cluster assignment variables, the column-
slice assignment variables, the cluster parameters, the column-specific hyperparame-
ters, or all latent variables associated with a specific foreign predictor. An invocation
with type = resample applies multinomial resampling to the weighted collection of
models.
This allows for a limited form of inference programming (Mansinghka et al., 2014),
as follows. By varying the slice, cluster, or foreign_predictor variables, clients
can instruct the GPM to only perform inference on a specific subset of the latent
variables. Computational effort can thus be focused on those latent variables that are
most relevant for a given analysis, rather than uniformly distributed across all latent
variables in the GPM. This is most useful when the queries of interest focus on a subset
of the variables, or when the clusters are well-separated.
The prototype implementation of BayesDB uses row-cluster, column-slice, cluster-
parameter, and column-hyperparameter transition operators from Mansinghka et al.
(2015). The only modification is that the log joint density now includes terms for
enforcing each of the (in)dependence constraints, and also terms for the likelihood
induced by each foreign predictor, as described above.

This interface allows clients to specify multiple MCMC, SMC and hybrid strategies for
inference. The default inference program that is invoked by the ANALYZE command in BQL
does no resampling and selects slices and clusters to do inference on via systematic scans. It
thus can be thought of as an MCMC scheme with multiple parallel chains. This approach
is conservative and makes it easier to assess the stability and reproducibility of inference,
although it is unlikely to be the most efficient approach in some cases.
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5. Discussion

This paper has described BayesDB, a probabilistic programming platform that allows users
to directly query the probable implications of statistical data. The query language can
solve statistical inference problems such as detecting predictive relationships between vari-
ables, inferring missing values, simulating probable observations, and identifying statistically
similar database entries. Statisticians and domain experts can incorporate (in)dependence
constraints and custom models using a qualitative language for probabilistic models. The
default meta-model frees users from needing to know how to choose modeling approaches,
remove records with missing values, detect outliers, or tune model parameters. The proto-
type implementation is suitable for analyzing complex, heterogeneous data tables with up
to tens of thousands of rows and hundreds of variables.

5.1 Related work in probabilistic programming

Most probabilistic programming languages are intended for model specification (Goodman
et al., 2008; Stan Development Team, 2015; Milch et al., 2007; Pfeffer, 2009). This is
fundamentally different from BQL and MML:

1. In BQL, probabilistic models are never explicitly specified. Instead, an implicit set of
models is averaged over (or sampled from) as needed.

2. With MML, users specify constraints on an algorithm for model discovery and need
not explicitly select any specific models. These constraints generally do not uniquely
identify the structure of the model that will ultimately be used.

In contrast, with languages such as Stan (Stan Development Team, 2015), each program
corresponds to a specific probabilistic model whose structure is fixed by the program source.
Tabular (Gordon et al., 2014), a probabilistic language designed for embedding into spread-
sheets that applies user-specified factor graph models defined in terms of observed and latent
variables to datasets represented as sub-tables, seems closest in structure to BQL. However,
like BUGS and Stan, Tabular does not aim to hide the conceptual vocabulary of probabilis-
tic modeling from its end users, and it focuses on user-specified models. Other integrations
of probabilistic modeling with databases such as (Singh and Graepel, 2013) are similarly
focused on sophisticated modeling but do not provide a model-independent abstraction for
queries or support for general Bayesian data analysis.

It is straightforward to extend MML to allow syntactic escapes into all these languages
that allow external probabilistic programs to be used as foreign predictors.

5.2 Related work in probabilistic databases

BayesDB takes a complementary approach to several recent projects that integrate aspects
of probabilistic inference with databases. The most closely related systems are MauveDB
(Deshpande and Madden, 2006) and BBQ (Deshpande et al., 2004). They provide model-
based views that enable users to run standard SQL queries on the outputs of statistical
models. These models must be explicitly specified as part of the schema. This is useful
for some machine learning applications but does not address the core problems of applied
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inference, such as data exploration, data cleaning, and confirmatory analysis. Both systems
also use restricted model classes that can easily introduce substantial for ad-hoc predictive
queries.

Other systems such as MLBase (Kraska et al., 2013) and GraphLab (Low et al., 2012)
aim to simplify at-scale development and deployment of machine learning algorithms. ML-
Base and GraphLab host data in a distributed database environment and provide operators
for scalable ML algorithms. Systems such as SimSQL (Cai et al., 2013) and its ancestor,
MCDB (Jampani et al., 2008), provide SQL operators for efficient Monte Carlo sampling.
In principle, several of these systems could serve as runtime platforms for optimized imple-
mentations of BQL and the MML.

5.2.1 Uncertain data versus uncertain inference

The database research community has proposed several probabilistic databases that aim to
simplify the management and querying of data that is “uncertain” or “imprecise” (Dalvi et al.,
2009). This “data uncertainty” is different from the inferential uncertainty that motivates
BayesDB. Even when the data is known with certainty, it is rarely possible to uniquely
identify a single model that can be used with complete certainty. Second, each probable
model is likely to have uncertain implications. Extensions of BayesDB that augment GPMs
with probabilistically coherent treatments of data uncertainty are an important area for
future research.

5.3 Limitations and future work

Additional GPMs and meta-models are needed for some applications. There are specialized
SQL databases that strike different tradeoffs between query latency, workload variability,
and storage efficiency. Similarly, we expect that future GPMs and meta-models will strike
different tradeoffs between prediction speed, prediction accuracy, statistical model capacity,
and the amount of available data. In some cases, the semi-parametric meta-model presented
here may be adequate in principle but producing an appropriate implementation is a signifi-
cant systems research project. For example, it may be possible to build versions suitable for
ad-hoc exploration of distributed databases such as Dremel (Melnik et al., 2010) or Spark
(Zaharia et al., 2010). In other cases, fundamentally different model classes may be more
appropriate. For example, it seems appealing to jointly model populations of web browsing
sessions and web assets with low-dimensional latent space models (Stern et al., 2009).

It will be challenging to develop query planners that can handle GPMs given by arbitrary
probabilistic programs. A key issue is that the full GPM interface allows for complex condi-
tional queries over composite GPMs that may require data-dependent inference strategies.
One potential approach is to specify GPMs as probabilistic programs in a language with
programmable inference; currently, the only such language is VentureScript. The inference
strategy needed to answer a given query could then be assembled on-demand.

BQL and MML have yet to incorporate key ideas from several significant subfields of
statistics. For example, neither language has explicit support for causal relationships and
arbitrary counterfactuals (Pearl, 1988, 2009, 2001). Both BQL and MML make the standard,
simplistic assumption that data is missing at random. Neither BQL nor MML has native
support for longitudinal or panel data or for time-series; instead, users must apply standard
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workarounds or implement custom data types. A minor limitation is that hierarchical models
are currently supported by merging subpopulations, retaining an indicator variable, and
treating any variables unique to a given subpopulation as missing. It should instead be
possible to build GPMs that jointly model subpopulations that are separately represented
(and that therefore may not share the same set of observable variables). It will also be
important to develop a formal semantics and cost model for both BQL and MML.
Qualitative probabilistic programming. BQL and MML are qualitative languages for
quantitative reasoning. They make it possible for users to perform Bayesian data analysis
without needing to know how to specify quantitative probabilities or model parameters.
However, the set of qualitative constructs that they support is limited, and needs to be
expanded. For example, in MML, it will be important to support conditional dependence
constraints. These could be specified generatively, e.g. by defining a directed acyclic graph
over subsets of variables, and leaving the model builder to fill in the (conditional) joint
distributions over each subset of variables. In BQL, it would be interesting to explore
the addition of commands for optimization and decision-theoretic choice, with objective
functions specified both explicitly and implicitly. Finally, it will be interesting to explore
elicitation strategies based on “programming by example”. For example, users could create
datasets by iteratively specifying prototypical examples and turn them into large datasets
by treating each as the seed for a separate synthetic population, produced via SIMULATE.

5.4 Conclusion

Traditional databases protect consumers of data from “having to know how the data is
organized in the machine” Codd (1970) and provide automated data representations and
retrieval algorithms that perform well enough for a broad class of applications. Although
this abstraction barrier is only imperfectly achieved, it has proved useful enough to serve
as the basis of multiple generations of software and data systems. This decoupling of task
specification from implementation made it possible to improve performance and reliability
— of individual database indexes, and in some cases of entire database systems — without
needing to notify end users. It also created a simple conceptual vocabulary and query
language for data management and data processing that spread far farther than the systems
programming knowledge needed to implement it.

BayesDB aims to insulate consumers of statistical inference from the concepts of model-
ing and statistics and provide a simple, qualitative interface for solving problems that cur-
rently seem quantitative and complex. It also allows models, analyses, and data resources
to be improved independently. It is not yet clear how deeply the analogy with traditional
databases will run. However, we hope that BayesDB represents a significant step towards
making statistically rigorous empirical inference more credible, transparent and ubiquitous.
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