Skip to content
Inject a shared library (i.e. arbitrary code) into a live linux process, without ptrace
Branch: master
Clone or download
Type Name Latest commit message Commit time
Failed to load latest commit information.
.gitignore Initial commit Dec 30, 2019
LICENSE Initial commit Dec 30, 2019 Update Jan 5, 2020 Simplify logging code (why didn't I think of this before...) Jan 6, 2020
requirements.txt Implement logging and assembly functions, remove pwntools dependency Jan 5, 2020

Inject a shared library (i.e. arbitrary code) into a live linux process, without ptrace. Inspired by Cexigua and linux-inject, among other things.



    .___.__  .__            __               __
  __| _/|  | |__| ____     |__| ____   _____/  |_  ______ ___.__.
 / __ | |  | |  |/    \    |  |/ __ \_/ ___\   __\ \____ <   |  |
/ /_/ | |  |_|  |   |  \   |  \  ___/\  \___|  |   |  |_> >___  |
\____ | |____/__|___|  /\__|  |\___  >\___  >__| /\|   __// ____|
     \/              \/\______|    \/     \/     \/|__|   \/


usage: [-h] [--stopmethod {sigstop,cgroup_freeze,none}]
                   pid /path/to/

Inject a shared library into a live process.

positional arguments:
  pid                   The pid of the target process
  /path/to/       Path of the shared library to load (note: must be
                        relative to the target process's cwd, or absolute)

optional arguments:
  -h, --help            show this help message and exit
  --stopmethod {sigstop,cgroup_freeze,none}
                        How to stop the target process prior to shellcode
                        injection. SIGSTOP (default) can have side-effects.
                        cgroup freeze requires root. 'none' is likely to cause
                        race conditions.


  • Because I can.

  • There are various anti-ptrace techniques, which this evades by simply not using ptrace.

  • I don't like ptrace.

  • Using LD_PRELOAD can sometimes be fiddly or impossible, if the process you want to inject into is spawned by another process with a clean environment.

How it Works

  • Send the stop signal to the target process. (optional)

  • Locate the _dl_open() symbol.

  • Retreive RIP and RSP via /proc/[pid]/syscall.

  • Make a backup of part of the stack, and the code we're about to overwrite with our shellcode, by reading from /proc/[pid]/mem.

  • Generate primary and secondary shellcode buffers.

  • Insert primary shellcode at RIP, by writing to /proc/[pid]/mem.

  • The primary shellcode:

    • Pushes common registers to the stack.
    • Loads the secondary shellcode via mmap().
    • Jumps to the secondary shellcode.
  • The secondary shellcode:

    • Restores the stack and program code to their original states.
    • Pivots the stack (so we don't touch the original one at all).
    • Calls _dl_open() to load the user-specified library. Any constructors will be executed on load, as usual.
    • Restores register state, un-pivots the stack, and jumps back to where it was at the time of the original SIGSTOP.


  • Sending SIGSTOP may cause unwanted side-effects, for example if another thread is waiting on waitpid(). The --stopmethod=cgroup_freeze option avoids this, but requires root (on most distros, at least).

  • I'm not entirely sure how this will interact with complex multi-threaded applications. There's certainly potential for breakage.

  • x86-64 Linux only (for now - 32-bit support could potentially be added).

  • Requires root, or relaxed YAMA configuration (echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope is useful when testing).

  • If the target process is sandboxed (e.g. seccomp filters), it might not have permission to mmap() the second stage shellcode, or to dlopen() the library.

You can’t perform that action at this time.