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Abstract

How well can coupled ship motions and sloshing be simulated by simple
numerical methods? The SOLA algorithm for solving the Navier�Stokes
equation and an extensions to this algorithm for modelling a free surface by
means of the Volume Of Fluid (VOF) method is implemented and tested.
The VOF solver is then coupled to the equation of motion of a ship in waves
and the coupled system is analysed to �nd the e�ect of sloshing on the ship
motions. The results are discussed and compared to results from literature
and experiments.
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Scope of Work

The scope of this master thesis is included below in Norwegian.

HOVEDOPPGAVE I MARIN HYDRODYNAMIKK

VÅR 2008

FOR

STUD. TECHN. Tormod Ravnanger Landet

Væskebevegelse i tank koplet til skipsbevegelser

Koplingen mellom skipsbevegelser og væskebevegelser i skipets tanker er en
interessant utvidelse av dagens beregningsprogrammer for skipsbevegelser.
Problemstillingen kan være aktuell for store gasstankere og FPSOer.

Kandidaten skal med utgangspunkt i volume-of-�uid (VOF) metoden lage
en kode og med denne gjøre detaljerte studier av væskebevegelse i en tank
med fri over�ate. Antagelser og forutsetninger som gjøres og som kan ha
betydning for resultatene eller skape begrensninger, skal dokumenteres.

Tanken er en del av et skip. I utgangspunktet antas det enkle skipsbevegelser
med amplitude og frekvens som eksiterer væsken i tanken. Det komplete
problemet tank/skip implementeres i tidsplanet. I den grad tiden tillater
det kan virkningen av forskjellige tankstørrelser i forhold til skipets størrelse
undersøkes. Parametere som skal studeres spesielt avtales med veileder.
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Kandidaten skal i besvarelsen legge frem sitt personlige bidrag til løsning av
de problemer som oppgaven stiller. Påstander og konklusjoner som legges
frem, skal underbygges med matematiske utledninger og logiske resonnementer
der de forskjellige trinn tydelig fremgår. I besvarelsen skal det klart fremgå
hva som er kandidatens eget arbeid, og hva som er tatt fra andre kilder.
Kandidaten skal utnytte de muligheter som �nnes til å ska�e seg relevant
litteratur for det problemområdet kandidaten skal bearbeide. Besvarelsen
skal være oversiktlig og gi en klar fremstilling av resultater og vurderinger.
Det er viktig at teksten er velskrevet og klart redigert med tabeller og �gurer.
Besvarelsen skal gjøres så kortfattet som mulig, men skrives i klart språk.

Besvarelsen skal inneholde oppgaveteksten, forord, innholdsfortegnelse, sam-
mendrag, hoveddel, konklusjon med anbefalinger for videre arbeide, symbol-
liste, referanser og eventuelle vedlegg. Alle �gurer, tabeller og ligninger skal
nummereres. Det forutsettes at Institutt for marin teknikk, NTNU, fritt
kan benytte seg av resultatene i sitt forskningsarbeid, da med referanse til
studentens besvarelse.

Besvarelsen leveres 9. juni 2008 i tre eksemplarer.

Faglig veileder: Førsteamanuensis Håvard Holm

Bjørnar Pettersen
Professor
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Chapter 1

Introduction

Sloshing is the motion of a �uid with a free surface in a tank. Sloshing can
lead to high dynamic pressures on the tank walls and roof due to large �uid
motions near resonance and the low damping of the �uid motion in tanks
with smooth walls. The tank may be large and located on a ship. The
resultant forces from the tank wall pressures will have a large impact on
the motion of the ship. The interaction between the ship motions and the
resultant forces from sloshing has to be accounted for to accurately calculate
the motions of ships with partially �lled tanks.

This master thesis will demonstrate a way of numerically simulating the
motion of �uid in a partially �lled tank that is subjected to external acceler-
ations. A simple, two dimensional model is presented that can handle mild
sloshing, but no overturning of the free surface, �uid spray or mixing of �uid
and air. This model uses a free surface tracking technique known as the
Volume Of Fluid (VOF) method. The VOF method can in principle handle
overturning, mixing and spray. It can also be extended to three dimensions.
These features and extensions are beyond the scope of this thesis.

A computer program has been implemented based on the presented the-
ory. This report will compare the results from calculations made using this
program to results from literature and model tests. The accuracy in both
phase, direction and amplitude of the resultant forces from the simulations
are analysed to see if the numerical models give results that can be used in
design of ships with partially �lled tanks.
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Chapter 2

Solving the Incompressible

Navier�Stokes Equations

The �rst step towards simulating sloshing is to accurately model the �uid.
The motion and pressure of the �uid in the tank will be found by solving
the Navier�Stokes equation. The internal �uid will be assumed to be in-
compressible; an assumption which is good for �uids such as water. Hirt,
Nichols & Romero (1975) developed a simple solution algorithm called SOLA
for solving the Navier�Stokes equations for incompressible Newtonian �uids
enclosed in a rectangular, two dimensional domain. Their method was a sim-
pli�ed version of the algorithm used in the Marker and Cell (MAC) method
by Harlow & Welch (1965).

MAC is a method for simulating free surface �ows by tracking marker parti-
cles through the �ow �eld. The original SOLA algorithm could not deal with
free surfaces, but several extensions to the algorithm have been published
which can handle this. An extension of SOLA to handle free surfaces by
means of a Volume of Fluid (VOF) method is described in chapter 3.

The Navier�Stokes equations can be written as follows for incompressible
and two dimensional �ow (White 2006):

Dui
Dt

= −1
ρ
∇Ψ + fi + ν∇2ui , i = 1, 2 (2.1)

The �ow �eld variables are the velocities u = u1 and v = u2, and the pressure
Ψ. The �uid density is ρ and the kinematic viscosity is ν. The external body
forces are denoted f . The pressure will be normalised by the density so that
p = Ψ/ρ to simplify the following equations.

Finding the analytical solution to this partial di�erential equation for gen-
eral geometries and arbitrary external forces is for most practical purposes
impossible. The Navier�Stokes equation is very complex due to the coupling
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of the velocities ui with the pressure p. This makes the usage of numerical
mathematics and computer solutions the only way to solve the equations for
practical use cases. (White 2006)

When solving the Navier�Stokes equations one has to make sure that the
solution satis�es the continuity criterion and that all the boundary conditions
are imposed correctly on the �eld variables. The continuity criterion ensures
that no �uid is lost or gained through the calculations. In two dimensions
for an incompressible and Newtonian �uid it can be written

∂u

∂x
+
∂v

∂y
= 0 (2.2)

2.1 The Momentum Equation

The Navier-Stokes momentum equation (2.1) written out for the x-component
in 2D gives

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂Ψ
∂x

+ fx + ν

(
∂2u

∂x2
+
∂2u

∂y2

)
This can be rewritten by substituting p = Ψ/ρ and by using continuity
and the product rule of calculus. This transformation gives the equation on
a di�erential form that is completely conservative of mass and momentum
(Harlow & Welch 1965). The result is the following equation which will later
be discretised

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
= −∂p

∂x
+ fx + ν

(
∂2u

∂x2
+
∂2u

∂y2

)
(2.3)

2.2 Discretisation

The basic SOLA solution method is as follows: discretise the domain, i.e. the
tank, by using a staggered grid (see �g. 2.1). The velocities are calculated by
using the lowest order approximations of the derivatives based on the past
velocity and pressure �elds. These �rst approximations, called the guess
velocities, are not correct as many of the approximations are only correct to
the �rst order, O(δxi). In addition, the interaction of pressures and velocities
is not accounted for. This leads to a velocity �eld that does not satisfy the
continuity criterion (2.2).

A staggered grid is a grid where the unknowns in each cell are located at
di�erent points in space. The SOLA algorithm calculates the pressures and
the two velocity components at di�erent locations. The use of staggered grids
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(a) Gridded domain (b) Staggered grid cell

Figure 2.1 � The discretisation of the domain in the SOLA method. The
labels are used for the free surface calculations below. The labels denote cells
that are Full, Empty, Surface and Boundary.

in the solution of the Navier-Stokes equation is common because it avoids
non-physical pressure oscillations which are common in normal grids where
all unknowns are calculated in the corners of each cell (Langtangen 1999,
p. 441).

The discretised continuity equation (2.2) is simply

1
δx

(ui,j − ui−1,j) +
1
δy

(vi,j − vi,j−1) = 0 (2.4)

The discretised equation of motion (2.3) in the x-direction becomes (similar
in the y-direction):

un+1
i,j =uni,j + δt

[ 1
δx

(
pni,j − pni+1,j

)
+ fx − FUX− FUY + VISX

]
(2.5)

Where the convective and viscous �uxes are de�ned as:

FUX =
1

4δx

[
(ui,j + ui+1,j)

2 + α |ui,j + ui+1,j | ·

(ui,j − ui+1,j)− (ui−1,j + ui,j)
2

− α |ui−1,j + ui,j | (ui−1,j − ui,j)
]

FUY =
1

4δy

[
(vi,j + vi+1,j) (ui,j + ui+1,j)

+ α |vi,j + vi+1,j | (ui,j − ui,j+1)
− (vi,j−1 + vi+1,j−1) (ui,j−1 + ui,j)
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− α |vi,j−1 + vi+1,j−1| (ui,j−1 − ui,j)
]

VISX = ν
[ 1
δx2

(ui+1,j − 2ui,j + ui−1,j)

+
1
δy2

(ui,j+1 − 2ui,j + ui,j−1)
]

Quantities without superscripts are evaluated at time nδt. The number α
denotes the amount of upstream di�erencing. It is zero for central space
di�erencing and one for full upstream di�erencing. The central form is not
numerically stable. The upstream (donor cell) di�erencing is stable provided
no �uid particle can pass through an entire cell in one timestep, δt (Hirt
et al. 1975). In general α should be chosen such that

1 ≥ α > max
{
|uδt
δx
|, |vδt
δy
|
}

(2.6)

The value α = 0.6 has been used for the calculations in section 2.7 and
further.

2.3 Iterative Pressure Calculations

The calculated guess velocities (u, v) from eq. (2.5) do not satisfy the con-
tinuity criterion (2.2). Hirt et al. (1975) describes a method for ensuring
continuity by iteratively changing the pressures until all cells have diver-
gences lower than a certain small number ε. The �uid is �pushed around�
between the grid cells by changing the cell pressures and updating the in-
ter cell velocities until continuity is established. The �uid pressure is never
calculated directly, but only changed iteratively in this approach.

The continuity criterion is then

∇~u = D < ε (2.7)

This criterion is satis�ed by substituting updated velocities

u∗i,j = ui,j +
δtδp

δx
(2.8)

u∗i−1,j = ui−1,j −
δtδp

δx

(similar for v) into the continuity equation (2.4). The pressure change needed
to make D equal zero is then

δp = −D
/[

2δt
(

1
δx2

+
1
δy2

)]
(2.9)
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After updating all cell pressures and velocities in an iterative way, the cri-
terion (2.7) will eventually be satis�ed if the initial guess velocities with
applied boundary conditions are �close enough� to the real divergence free
solution. Convergence is not guaranteed, so a limit has to be put on how
many pressure correction iterations are allowed before giving up to avoid an
in�nite runtime.

The rate of convergence can in some cases be accelerated by a method called
over�relaxation. A constant over�relaxation parameter is introduced and
the calculated pressure change is multiplied by this factor in equation (2.9).
The parameter must never be larger than 2.0, or else the iteration will be
unstable. A value of 1.8 is recommended in the original SOLA article and
that is what has been used for the calculations in section 2.7 and onwards.

2.4 Boundary Conditions

The SOLA algorithm introduces a layer of boundary cells outside the phys-
ical geometry. This is done to avoid changing the numerical schema near
the boundaries. The boundary cells are not a part of the physical boundary.
They are �ctitious �uid cells outside the domain. The boundary cells are
here denoted B while the �uid cells next to the boundary cells are denoted
F (see Fig. 2.1). The velocities normal and parallel to the boundary are de-
noted u⊥ and u‖ respectively. The boundary itself is stationary at all times.
All external motions on the tank are transferred to the tanks stationary
coordinate system by changing the force �eld f in (2.1).

The condition of free-slip is:

u⊥,B = u⊥,F = 0 (no �ow through the wall)

u‖,B = u‖,F (no tangential velocity gradient)

The condition of no-slip is:

u⊥,B = u⊥,F = 0 (no �ow through the wall)

u‖,B = −u‖,F (no tangential velocity at the wall)

The pressure boundary condition on the walls were not given by Hirt et al.
so the condition has been taken from Harlow &Welch (1965). It ensures that
the pressure change across the wall is zero except for the e�ect of external
gravity �elds. It reads:

∂p

∂xi
= δxi fi , i = 1, 2 (2.10)
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2.5 Numerical Stability

The solution algorithm assumes that no �uid particle can pass through more
than one cell in the time increment δt. For a calculation timestep with global
maximum velocities uM and vM the criterion for δt is

δt < min
{

δx

|uM |
,
δy

|vM |

}
(2.11)

A stability criterion when analysing a problem with non-zero kinematic vis-
cosity, ν, is that momentum must not di�use more than approximately one
cell in one timestep:

νδt <
1
2
δx2 δy2

δx2 + δy2
(2.12)

These equations does along the stability demands on the upstream di�erenc-
ing factor and the over�relaxation factor compromise the criteria necessary
for numerical stability of the SOLA algorithm.

2.6 The Implemented Navier�Stokes Solver

The steps detailed above can be brie�y described by the pseudo�code in the
two following routines. SOLA is the main program which calls Pressure-
Iteration and the other routines that are straight forward implementations
of the steps in the SOLA algorithm. All the routines have an upper bound
of O(n) on the runtime where n is the total number of grid cells, except
the pressure iterations if no upper limit is put on the allowable number of
iteration. A limit of 1000 iterations was used for the calculations in sec-
tion 2.7 and further. This results in an upper bound on the total runtime of
O(tend n), where tend is proportional to the number of simulated timesteps.

SOLA

Read-Input()
Impose-Boundary-Conditions(u, v, p)
for t← 0 to tend

do

Compute-Initial-Guess-Velocities(u, uold, v, vold, p)
Impose-Boundary-Conditions(u, v, p)
Pressure-Iteration(u, v, p)
Print-Output(u, v, p)
uold ← u
vold ← v
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Pressure-Iteration(u, v, p)
while Dmax > ε and itercount < itermax

do

Update-Pressures-And-Velocities(u, v, p)
Impose-Boundary-Conditions(u, v, p)
Find-Dmax(u, v)

For more information on the code that implements the above algorithm see
appendix A.

2.7 Tests of the Navier�Stokes Solver

A test of the basic solver without a free surface has been undertaken to verify
the correctness of the implementation of the numerical algorithm. The ability
to solve the simpler problem of �uid motion in a full tank correctly is vital
to solving the more complex problem of a tank with a free surface.

The chosen test case was the �ow in a quadratic cavity with a prescribed
horizontal �uid velocity at the top, the so called Lid Driven Cavity Flow.
This is a purely viscous shear driven case, so it is not very relevant for
sloshing simulation. There is no free surface, and the �ow is driven by
a constant horizontal velocity in the uppermost cells. This test case was
chosen because it is well researched and results for comparison are readily
available in literature.

The Reynolds number studied was Re = UtopL
/
ν = 1000 de�ned by the

side length and the prescribed velocity. A side length of one meter and a
kinematic viscosity of 10−4 was chosen giving a velocity at the top of 0.1
m/s. The no�slip condition was used at the walls. Five di�erent grid sizes
from 25x25 to 400x400 elements were tested.

The horizontal velocities in a centred, vertical, cut were measured after the
simulation had reached an approximately steady state after 300 seconds of
simulation time. As can be seen from �gure 2.2, the solution approaches the
solution by Ghia, Ghia & Shin.

To �nd out whether or not the solution is converging, and if so how fast, the
largest negative velocity from Ghia, Ghia & Shin (1982) in �gure 2.2 was
taken as a reference and the corresponding velocities from the SOLA analysis
were used to calculate the relative error. Figure 2.3 shows that the solution
approaches the values from Ghia et al.. More elements were not tested as
the run with the maximum number of elements (400x400) took more than
37 hours to run compared to 9 hours for the 200x200 case. The run time is
an approximate linear function of the number of elements, so a 800x800 grid
problem would take almost a week to run.
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Figure 2.3 � Lid driven �ow, convergence plot

The results when an approximately stationary condition had been achieved
can be seen in �gure 2.4. The scalar �eld in the background is the normalised
pressure and the vectors show the velocity �eld.
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Figure 2.4 � Lid driven cavity �ow at Re = 1000. The scalar �eld in the
background is the normalised pressure. The grid size is 25x25 elements.
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Chapter 3

Sloshing Simulation with the

Volume of Fluid Method

Two additions have to be made to the SOLA algorithm in order to model the
�uid motion in a partially �lled tank. The interface between the �uid and
the air above must be described in space and time and the correct boundary
conditions must be imposed on the cells near the free surface.

Some simpli�cations of the problem are made in the following. The proper-
ties of the air �ow above the free surface are neglected and zero atmospheric
pressure is assumed. These simpli�cations are valid because the atmospheric
pressure will be acting on both the inside and outside of the tank, so the
resultant force on the tank wall is zero. The density of the air is assumed to
be much lower than the density of the �uid, so the e�ect of the air �ow on
the �uid �ow will be negligible.

In the Volume Of Fluid method (VOF) the free surface is tracked by intro-
ducing a new �eld variable C, the colour function. This function is unity
at a point in the �uid and zero at a point in the void. C is introduced on
the staggered grid in such a way that it denotes the volume fraction of �uid
in each cell. The equation governing the colour function is that the total
volume fraction of �uid and void should remain the same. The advection
equation for C is then (Rudman 1997):

DC
Dt

= 0 (3.1)

The free surface location within each cell is not given by the cell's C�value, so
a method for tracking the �uid location in each cell must be applied to avoid
unphysical di�usion. The main problem with tracking the time development
of C, and the reason why we cannot simply discretise (3.1), is that C is a step
function with a discontinuity at the free surface. The most basic method of

13



tracking the time development of C would be to �nd the upwind volume �ux
between cells, calculated from the cell boundary velocity multiplied by the
volume fraction of �uid in the upwind cell to �nd the �ux of C. This would
lead to blurring of the surface and numerical mixing of �uid and void. An
example of this can be seen in �gure 3.1.

Figure 3.1 � An example of numerical di�usion. The initial state is A, B is
the correct state after the next timestep (only void is �uxed to the next cell),
C shows what will happen when using a �ux algorithm which does not account
for the �uid location in the each cell. The total �ux is here half the cell volume.

Hirt & Nichols (1981) introduced the Volume Of Fluid method by publishing
what they called the donor�acceptor VOF method. This method handles the
free surface by tracking the �uid in rectangular sub�volumes in each cell. The
sub�volumes may extend from any of the four cell boundaries and must span
the entire boundary. The amount and location of �uid is then used when
calculating �uxes. This will in most cases result a better estimate of the
�uid �uxes, but will also give some numerical di�usion as can be seen in
�gure 3.2.

(a) Numerical di�usion (b) No numerical di�usion

Figure 3.2 � Two discretisations of �gure 3.1. The �uid is �uxed according
to the volume �ux and the orientation of �uid in the cell. The dark areas are
the volumes that will be �uxed according to Hirt & Nichols.

The donor�acceptor method was soon found to be a bit too simple and not
accurate enough for many test cases. Several ways of computing the �ux of
C have been proposed. A rather simple geometrical method developed by
Youngs (1982) has been shown to be among the best in several comparisons
(Rudman 1997, Kleefsman 2005).
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3.1 Youngs' VOF

Youngs' VOF method (Youngs 1982) considers all eight neighbouring cells
to �nd the orientation and slope of the free surface in each cell. The surface
is approximated by a straight line and will often be continuous between grid
cells, but this is not guaranteed. The surface can have 16 di�erent basic
con�gurations in a cell, but they can all be represented by rotating the
con�gurations in �gure 3.3. These four con�gurations correspond to four
di�erent ways of computing the �uid �uxes. The main di�erence between
the con�gurations is which of the walls that are wetted.

Figure 3.3 � The four possible interface reconstructions for Youngs' VOF
(Rudman 1997)

Youngs' method works by �rst computing the basic di�usive upwind �uxes
for all cells containing �uid and then computing the outwards �uxes based
on the straight line approximation of the �uid/void interface for the cells
containing the free surface (0 < C < 1).

Rudman (1997) recommends a stencil by Kothe, Mjolsness & Torrey (1991)
for �nding the slope of the surface, β:

nx,i,j =
1
δx

(Ci+1,j+1 + 2Ci+1,j + Ci+1,j−1 − Ci−1,j+1 − 2Ci−1,j − Ci−1,j−1)

ny,i,j =
1
δy

(Ci+1,j+1 + 2Ci,j+1 + Ci−1,j+1 − Ci+1,j−1 − 2Ci,j−1 − Ci−1,j−1)

(3.2)

which gives the surface angle with the x-axis

β = tan−1

(
−nx
ny

)
(3.3)

Rudman (1997) provides a thorough walkthrough of how the �uxes near the
surface are computed in Youngs' method. The fraction of each boundary that
is wetted by �uid, s, is computed from the surface normal β, the fractional
volume of �uid C, and the relevant case from �gure 3.3. The outwards �ux
is then found from the surface fraction, the surface normal and the outwards
velocities. Inward directed velocities are ignored. An example of a computed
�ux volume can be seen in the shaded part of �gure 3.5. Note that the free
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Figure 3.4 � Surface angle Figure 3.5 � Calculated �ux volume

surface angle is taken into account in addition to the wetted part of the grid
cell's right boundary.

The full set of equations for computing the surface cell �ux is replicated in
table 3.1. The subscripts t, r, b and l in the table denote the top, right,
bottom and left edge respectively. Note that some changes have been made
compared to the table in Rudman (1997). Some of the equations were found
to be erroneous when all the equations in the table were recalculated to
�nd the source of a large observed numerical damping. The equations given
in table 3.1 are all calculated from simple geometrical relations and have a
much lower observed numerical damping.

There are two main ways of performing the colour function �uxing when the
inter cell �uxes have been calculated. The choices are the multidimensional
and the direction split �ux methods. The direction split method di�ers
from the multidimensional in that it reconstructs the surface con�guration
once for each axis direction. Alternating for each timestep, the surface is
reconstructed and �uxed �rst in one direction, the colour function �eld is
updated, and then the VOF algorithm runs a second time to compute the
�uxes in the other direction. Rudman (1997) recommends using a direction
split approach to VOF calculations for better accuracy. Rider & Kothe
(1998) prefers the multidimensional method for lower computational cost
and because they �nd it has better symmetry preserving properties. For this
report Rudman (1997) has been followed for the choice of the direction split
method just as for the formulae to compute the surface normal. Both of
these choices di�er from the original algorithm by Youngs (1982).
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3.2 Boundary Conditions

To accommodate a free surface in the tank the pressure iteration has to be
changed to prescribe atmospheric pressure at the free surface. In this thesis
the atmospheric pressure is set to zero. The pressure in the cells containing
the surface is computed from the pressure at the surface and the pressure in
the cell below by assuming a linear variation. The interpolation neighbour
can in general be any of the four neighbouring cells, and not necessarily
the cell in the direction of gravity. This would have allowed for simulating
overturning surfaces. This approach was tested but the simpler version was
chosen due to better observed stability of the computations.

One important note with regards to the pressure iterations is that the full
set of boundary conditions detailed below are only applied once, just after
the guess velocities are calculated. Only the wall boundary conditions are
applied after each pressure iteration. A full set of boundary conditions that
did not cause oscillations and divergence in interaction with the pressure
iteration algorithm has not been found.

Boundary conditions must also be imposed on the velocity �eld. There
are �ve di�erent types of velocities at the free surface when grouping the
velocities at the cell faces by the degree of �lling in the bordering cells. The
velocities in the following are named according to �gure 3.6.

To/From Full Surface Empty
Full FF FS

Surface FS SS SE
Empty SE EE

Figure 3.6 � Cell naming scheme and the corresponding cell face velocities

The �rst class of velocities are those that can be calculated by the momentum
equation. These velocities are FF, SS and FS. The second class of velocities
are the SE velocities. The choice of how to calculate this class of velocities
will have a big impact on the stability and correctness of the results. The
last class are the �ctitious EE velocities that have to be established in order
to use the same numerical scheme for the calculation of the velocities near
the surface as in the rest of the domain. The need for determining these
velocities is purely an artefact of the Navier�Stokes �nite volume solver.
(Chen, Johnson & Raad 1995, Kleefsman 2005)

In the original Marker and Cell (MAC) method by Harlow & Welch (1965)
the free surface normal velocities were calculated by demanding conservation
of mass. Chen et al. (1995) also used mass conservation in their improved
free surface velocity boundary conditions for the MAC method. Kleefsman
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(2005) writes that the conservation of mass method is not very accurate for
simulation of surface waves. The problem lays in the assumption of mass
conservation which does not apply to surface cells with varying degrees of
�lling. Kleefsman recommends a mixed method which uses both conser-
vation of mass and extrapolation of internal velocities to calculate the FS
velocities. For simplicity, and because no big problems were reported for
sloshing simulations by Gerrits (2001), the condition of mass conservation
was chosen for implementation.

Figure 3.7 � Four possible label con�gurations around a surface cell. The
indicated cell is the centre cell for all cases except the rightmost where it is the
bottom cell.

For the leftmost con�guration in �gure 3.7 the following equation is used for
preserving mass. The vertical velocity is chosen such that the divergence is
zero.

vi,jti = vi,jti−1 −
δy

δx
(ui,jti − ui−1,jti) (3.4)

For the cases in the middle the top SE velocity is set equal to the bottom
FS velocity. The right horizontal SE velocity is set equal to the velocity on
the left side. This obviously preserves continuity. For the rightmost case the
top SE velocity is left as is. After some trial and error it was found that
not treating this case di�erent from its neighbours on the sides was the best
solution.

Two methods have been tested for the EE velocities normal to the surface as
no description of these were found in the studied literature. The �rst method
was extrapolation from the SE velocities to preserve a smooth �eld for the
velocity solver. This lead to quickly diverging solutions and was abandoned.
The second method was setting all EE velocities normal to the surface to zero.
This lead to simulations that seemed to give accurate results, so this method
was chosen. When studying the original SOLA�SURF code implementing a
surface height function approach the same method was found, albeit the code
only gave this solution for small surface displacements. When the surface
retracted from a cell the velocities calculated for the �uid that previously
occupied the cell were left in place (Hirt et al. 1975). No reason for this
behaviour was described, so the implemented code explicitly sets the EE
normal velocities to zero.
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Figure 3.8 � Velocity labels near a parallel EE velocity

The EE velocities parallel to the free surface are calculated from balancing
the forces at the surface and demanding that the void in�icts no tangential
stresses in the �uid (Gerrits 2001):

µ

(
∂u⊥
∂x‖

+
∂u‖

∂x⊥

)
= 0 (3.5)

where µ = ρν is the dynamic viscosity of the �uid. This gives, in two
dimensions

∂u

∂y
+
∂v

∂x
= 0 (3.6)

This equation can be discretised on the grid in �gure 3.8 giving

u2 + u1

δy
+
v2 − v1
δx

= 0 (3.7)

One �nal change in the boundary conditions is the special treatment of the
roof. The surface may hit the roof of the tank, and if it does it should be
allowed to detach without sticking, which it will without special treatment
due to the condition of no �ow through the tank boundaries. The only
treatment of roof impact done in this thesis is a small change to the boundary
conditions on the roof to allow for velocities that are pointing into the tank,
while still setting outwards pointing velocities to zero. This will allow for
simulating roof impact in a few cases where the free surface rises to just touch
the roof before descending again. Heavy impacts and fast water upraise in
jets along the walls will still cause the solver to fail as it causes an overturning
free surface.

3.3 The Implemented VOF Solver

The only change to the overall structure of the calculations when adding
a free surface is the inclusion of an Update-Surface-Position(u, v) rou-
tine after the Pressure-Iteration step in the pseudo code in section 2.6.
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In addition the boundary condition and the pressure iteration routines are
altered.

The �ux algorithm to update the free surface position works on the assump-
tion that the velocity �eld is completely divergence free. This assumption is
never fully satis�ed because the pressure iteration routine will never result
in a truly divergence free velocity �eld unless an in�nite number of itera-
tions are performed. The result of this is that errors will be introduced over
time. These errors can lead to small pockets of void arti�cially forming in
the interior of the �uid.

The solver does not implement support for mixing of �uid and void, so void
cells in the interior of the �uid is a stop condition of the solver. As a band
aid to this problem all interior �uid cells are forced to remain at a �lling
level of unity at all times. This will over time increase the amount of �uid
in the tank. Other small errors will also a�ect the average �lling level. To
counter this, a routine is run after the surface position is updated to correct
the amount of �uid in the tank by subtracting or adding an equal amount
of �uid to each column of cells and thus restoring the tank to its original
average �lling level. Since these corrections are very small for each time step
it is believed that they have a low in�uence on the correctness of the solver.

The boundary condition code needs to be able to work no matter how the
surface is oriented. A rotation mechanism is implemented to facilitate this.
A rotated view of the pressure, colour and velocity �elds can be extracted
by an algorithm that is straight forward for the values that are de�ned in
the cell centres and a bit more complicated for the values that are de�ned
at cell edges. This would have enabled the solver to handle arbitrary surface
orientations, but due to problems with the implementation of the generic
pressure boundary conditions, and the choice to limit the validity of these in
section 3.2, no overturning is supported.

Just as for the basic Navier�Stokes solver, the time complexity of the VOF
solver is O(tend n) where n is the number of elements and tend the total sim-
ulated time. For more information on the implementation see appendix A.

3.4 Tests of the VOF Solver

The two major parts of the free surface extension to SOLA are the VOF
�ux algorithm and the boundary conditions on the free surface. The �ux
algorithm is the easiest to test since it can be tested independently of the
rest of the solver code. Realistic tests of the boundary conditions involve
both the �ux algorithm and the basic Navier�Stokes equation solver. Many
micro tests of the boundary condition code have been performed, but it is
hard to predict the behaviour and stability of the solver as a whole without
extensive realistic testing.
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Many tests have been run while developing the VOF solver code and they
are not all written about below. In general it can be said that the major
challenge is the choice of boundary conditions at the free surface. The results
below are all generated with the choices from section 3.2, but some tests have
been run with more success with other choices during the development of the
code. No generic choice of boundary conditions has been found during the
development of the VOF solver that was robust with regards to geometry,
discretisation and excitation.

3.4.1 Testing the VOF Flux Algorithm

The VOF �ux algorithm has been tested by prescribing analytical velocity
and pressure �elds. The tests were performed without any boundary condi-
tions or pressure iterations. The pressure is always zero and the prescribed
velocity �eld is chosen such that it is divergence free.

Basic convection and shear tests have been undertaken to verify that the
algorithm can track a complex surface through the regular grid. The most
complex test that has been run is a case with a square �uid mass with a
cutout in a potential vortex velocity �eld. The results for one revolution of
the square can be seen in �gure 3.9.

From the �gures it can be seen that the �ux algorithm manages to track the
square rather well trough the vortex revolutions. Some blurring of the edges
occurs as the square rotates, but the original form can be easily recognised.
Two modi�cations to the �ux algorithm used for the sloshing simulations
have been made to get these results. No correction is made to the �lling
level as this makes no sense in this context. Also, the internal �uid cells
(F-cells) are not forced to be at C = 1.0 after each �ux calculation.
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(a) θ = 0 (b) θ = π/4 (c) θ = π/2

(d) θ = 3π/4 (e) θ = π (f) θ = 5π/4

(g) θ = 6π/4 (h) θ = 7π/4 (i) θ = 2π

Figure 3.9 � Fluxing of a quadratic �uid shape in a potential �ow vortex.
The rotation is θ and δt = π/100
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3.4.2 Testing a Tilting Tank

One of the problems with free surface boundary conditions is that they may
introduce energy into the �ow and set of unphysical motion in the tank. This
has been a problem with some choices of boundary conditions, and in some
cases still is a problem. To test this, a tank is tilted such that the surface is
at an angle to the x�axis. The expected result is that the free surface forms
a straight line normal to the direction of gravity, and that there is almost no
motion in the tank as the tilting is done slowly to avoid triggering the �rst
sloshing mode.

The test case below is a tank that is 1.73 meters wide and has a �lling
level of 0.5 meters. The external force �eld is slowly changed in a smooth,
quarter sine, motion so that fx goes from 0.0 to −3.4 m/s2. The vertical
gravity is constant at fy = −9.81 m/s2. The discretisation is such that
δx ≈ δy ≈ 0.02 m. This same case failed with unphysical motion being
induced for a tank of width 37.6 cm and a �lling of 18.6 cm (the same
dimensions as used below for testing the resonant motion). The motion
caused a vortex to form in the �uid with an increasing velocity at the surface.
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Figure 3.10 � The surface displacements at the walls of the tank with the
analytical solution in dashed lines.

As can be seen from �gure 3.10, the surface oscillates around the expected
level at both walls. No unphysical velocities such as vortexes appear on the
screenshot from a visualisation in GLview in �gure 3.11. The velocities in
the tank are all low. The velocity at the surface is almost zero as expected.
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Figure 3.11 � The �nal state of the simulation of the tilting tank from Ceetron
GLview. The scalar �eld is the colour function; the vector �eld is the velocity.
Note that the one large velocity that can be seen is situated in the void. It is
a leftover from when the surface passed through the cell and has no e�ect on
the solution.

3.4.3 Testing the Resonant Sloshing Modes

Fluid motion in a rectangular tank has several resonant modes of motion.
The �rst half sine and three quarter sine modes can be seen in �gure 3.12.
The resonant modes of motion will have a large impact on the motions of
�uid in a tank for excitation periods well away from resonance. The Eigen�
frequencies of the �uid motion can be found from (3.8) where n is the mode
number, w is the tank width, h is the average �lling height and g is the
acceleration of gravity. (Solaas 1995)

Figure 3.12 � The two �rst sloshing modes

ωn =
√
nπ

w
g tanh(

nπ

w
h) (3.8)

A simulation to �nd the resonant frequency of the �rst two sloshing modes
was done by starting with no velocities, free surface con�gurations as in
�gure 3.12 and hydrostatic pressure accounting for the surface displacement.
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The width of the tank was 37.6 cm and the average �lling height was 18.6 cm.
The initial surface displacement was 3% of the �lling height. The chosen �uid
was water. The reason for these choices were that they are used in the next
chapter to compare with model tests done by Rognebakke (2002).

Identical results as those calculated by starting out of static equilibrium
were had by starting with an impulse acceleration at t = 0 and the surface
con�guration initially at equilibrium. The spectrum and time series for this
were very similar to the results from the simulation of the �rst sloshing mode
that can be seen in �gure 3.13(a).

0 5 10 15 20 25 30 35 40
t

S
u
rf

a
ce

 d
is

p
la

ce
m

e
n
t

0 5 10 15 20
!

Fr
e
q
u
e
n
cy

 s
p
e
ct

ru
m 8.64

(a) 1st mode

0 5 10 15 20 25 30 35 40
t

S
u
rf

a
ce

 d
is

p
la

ce
m

e
n
t

0 5 10 15 20
!

Fr
e
q
u
e
n
cy

 s
p
e
ct

ru
m

8.64

12.89

15.87 25.62

(b) 2nd mode

Figure 3.13 � The frequency spectrum of the surface elevation near the left
wall from simulations of the �rst two sloshing modes. The frequencies of the
peaks are written on the graphs.
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As can be seen from �gures 3.13(a) and 3.13(b), the frequency of the sim-
ulation results �t very well with the analytical solutions. The analytical
frequencies are 8.66 and 12.78 rad/s for the �rst and second mode respec-
tively. The results for the �rst mode show a better �t than the results for
the second. This is also true for the amplitudes which should stay at 3% of
the tank �lling height as there is no damping in the system.

Negative damping can be seen from the �gures as the amplitudes of the
surface displacement increases over time. This is particularly evident on the
second mode. The reason for this negative damping remains unknown, but
it seems to have little in�uence when the tank is driven by excitations that
do not trigger resonant sloshing.
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Chapter 4

Coupled Simulation of Sloshing

and Ship Motions

4.1 Ship Motions

The rigid body motions of a ship hull in waves can be modelled by a set of
rather simple di�erential equations under the hypothesis that the motions
are linear with respect to the incident wave. This means that the principle of
superposition applies and that the results from multiple waves can be added
together to form the total response to an irregular wave. The assumption
of linearity is rather good, and many tests have been performed that seem
to validate it for moderate wave conditions and forward speeds. Ogilvie
(1964) presents results that show a very good agreement with model tests,
particularly in irregular sea.

Figure 4.1 � The six rigid body motions of a ship

The motion, x(t), of a ship can be described by the following equation when
assuming the ship motions to be time invariant, meaning that there are no
parts of the equation that depend on the absolute time except the excitation
force and the response.[

M +A(ω)
]
ẍ+B(ω)ẋ+ Cx = Fx (4.1)

29



where the terms are as follows

M − Structural mass and inertia

A(ω)−Added mass (frequency dependent)

B(ω)− Linear damping (frequency dependent)

C − Restoring force

F −Harmonic excitation force proportional to x

In the following all equations are given for one degree of freedom. The above
terms can also describe a system with six degrees of freedom if A, B, C and
M are 6 × 6 real matrices. F is then a 6 × 1 vector of complex numbers
to allow the force function to be out of phase with the motion. No further
mention of more than one degree of freedom is given, but all equations are
general if the terms are thought of as having more than one dimension.

The response, x(t), of a linear system to an arbitrary force, f(t), can be
written as follows by making use of the response, r(t), to a unit impulse:

x(t) =
∫ t

−∞
r(t− τ)f(τ)dτ (4.2)

Unfortunately, �nding a generic expressing for r(t) is di�cult as A and B
are frequency dependent. Cummins (1962) shows that the hydrodynamic
equivalent of (4.2) can be written

φ = Λẋ+
∫ t

−∞
Υ(t− τ)ẋ(τ)dτ (4.3)

where φ is the velocity potential resulting from an arbitrary motion x(t). Λ is
the velocity potential during an impulse displacement and Υ is the potential
after the impulse when waves radiate away.

Cummins further shows that this can be used to �nd an expression for the
equation of motion (4.1) where the excitation force is no longer required to
be harmonic. The transient motions can be described by use of a retardation
function, h(t).

[
M +A∞

]
ẍ+B∞ẋ+ Cx+

∫ t

−∞
h(t− τ)ẋ(τ)dτ = f(t) (4.4)

The added mass and damping are here decomposed into frequency dependent
and in�nite frequency parts

A(ω) = a(ω) +A∞

B(ω) = b(ω) +B∞
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4.2 The Retardation Function

Ogilvie (1964) gives the following expressions for the retardation function

h(t) =
2
π

∫ ∞
0

b(ω) cosωt dω

h(t) = − 2
π

∫ ∞
0

ω a(ω) sinωt dω (4.5)

Ogilvie also shows that a relationship between the added mass and damping
coe�cients can be found using a Hilbert transform, also known as a Kramers�
Kronig relationship

A(ω)−A∞ = a(ω) =
2
π

∫ ∞
0

[
B(ω1)−B∞

] dω1

ω2
1 − ω2

B(ω)−B∞ = b(ω) = − 2
π

∫ ∞
0

[
A(ω1)−A∞

] ω2
1dω1

ω2
1 − ω2

(4.6)

These relations hold for any system where h(t) = 0 for t < 0, i.e. any causal
system (Price & Bishop 1974, p. 203). The relations can be used to check the
accuracy of the modelling of A(ω) or B(ω) if they are not known analytically,
but only for discrete values of ω. An analytical model must then be created
and it can be tested by transforming one set of coe�cients to the other and
checking how well they �t to the given discrete values. An other way of
validating the analytical model is to �nd the retardation function and use
the following equations from Ogilvie (1964, p. 38). This is easier to perform
numerically than the integral in (4.6) which has a problematic denominator.

A(ω) = A∞ − 1
ω

∫ ∞
0

h(t) sinωtdt

B(ω) = B∞ +
∫ ∞

0
h(t) cosωtdt (4.7)

4.3 Modelling the Added Mass

The retardation function can be calculated from the added mass as shown
above. A continuous representation of a(ω) is needed in order to perform
this calculation. Greenhow (1986) writes that the asymptotic behaviour of
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the two quantities connected by the Kramers�Kronig relationship in (4.6) is
such that

a(ω) =
k1

ω2
+
k2

ω4
+ · · · when ω →∞ (4.8)

Kvålsvold (1994) uses the following expression for A(ω) when the added
mass is known for a set of frequencies along with the added mass at in�nite
frequency:

A(ω) =

{
Â(ω) for ω ≤ ωu
A∞ + k1

ω2 + k2
ω2 for ω > ωu

(4.9)

The function Â(ω) interpolates the discrete values of the added mass. ωu is
the upper frequency of the discrete values above which no values are known
except A∞. A good interpolation of the discrete values is obtained by using
cubic B-splines. The constant k1 is found by demanding a continuous rep-
resentation of A. Kvålsvold �nds that k2 = 0 is a reasonable approximation.

Unlike Kvålsvold, Rognebakke (2002) uses both k1 and k2 to approximate
the asymptotic behaviour. He calculates k2 from the continuity criterion,
just like Kvålsvold did with k1. He then solves a boundary value problem
to �nd k1. The following equation is the result, where φ∞ is the in�nite
frequency velocity potential and SF is the free surface:

k1 = −ρg
∫
SF

(∂φ∞
∂z

)2ds (4.10)

Equation (4.10) does not guarantee a smooth transition between Â(ω) and
the asymptotic behaviour, but it does give results that correspond very
well to other results from literature (Rognebakke 2002). The advantage
of Kvålsvold's (1994) approach is that it needs no further information about
the body than what is given by the discrete added mass coe�cients.

A combined approach is constructed where k1 and k2 are found by de-
manding continuity in both A(ω) and its derivative. A comparison between
Kvålsvold's C0 continuous approach and the implemented C1 continuous
approach can be seen in �gure 4.2. It should be noted that a smoother tran-
sition does not necessarily mean that the curve is closer to the real behaviour
of the added mass coe�cient. In the case of �gure 4.2, ωu is chosen such that
the C1 continuous approach gives an asymptote that corresponds very well
with the reference, which is a dataset where the added mass is calculated for
many more frequencies than what is normally done (ω ∈ [0, 50]).

32



0 1 2 3 4 5
2=1

)g=d(!

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
2

2
db

½=
A

Asymptotes of A22
0C
1C

Reference

Figure 4.2 � Two approaches for the asymptotic added mass behaviour plotted
against frequency compared to a case where the added mass is calculated for
frequencies 0 to 50. ωu = 10.0 rad/s

4.4 The Implemented Coupled Solver

The implemented solver only handles sway motion, but an extension to more
degrees of freedom should be straight forward. The solver uses the C1 con-
tinuous approach from section 4.3 for modelling the in�nite frequency limit
of the added mass.

The implementation uses a simple �rst order Euler integration routine. Due
to the demands on the time step in the VOF solver, δt is deemed su�ciently
small for this simple method to be accurate. As a perfect coupling of the ship
motions and the sloshing simulation is not possible, the sloshing simulation
runs with an input acceleration calculated from the ship velocity by a �rst
order backward di�erence formula. The VOF simulation runs one time step
with this acceleration and the integrated pressure forces are returned. This
sloshing force is then fed back in to the simulation as a contribution to the
total exciting force in the next time step. The pseudo code below shows the
main structure of the coupled solver.

The time complexity of calculating each convolution integral isO(t). Looking
at the convolution operations needed to simulate a series of length t, the
total runtime of the convolution has an upper bound of O(t2). This can
be improved by looking back in time only a period θ < t. This will give
the correct result if h(t) = 0 for all t > θ. The upper bound on the time
complexity of each evaluation of the convolution integral is then O(θ) = O(1)
if θ is a constant. The upper bound of the whole simulation will be O(t)
which is a signi�cant improvement. For the present case, the VOF solver is
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much slower than the convolution calculation so this optimisation will not
have a signi�cant contribution to the overall run time except for very long
simulations.

Coupled-Solver

Read-Input()
h(t)← Calculate-Retardation-Function(a(ω))
for t← 0 to tend

do

fw ← Wave-Excitation-Force(ω, ζa)
fh ← Hydrodynamical-Force(B∞, C, [x, ẋ]old)
fc ← Retardation-Force(ẋold, h)
fs ← Run-Sloshing-Time-Step(ẍold)
ẍ← Compute-Acceleration(fw, fh, fc, fs,M,A∞)
x, ẋ← Euler-Step(ẍ)
[x, ẋ, ẍ]old ← [x, ẋ, ẍ]

4.5 Tests of the Coupled Solver

Rognebakke (2002) gives experimental and numerical results for the box
shaped hull section in �gure 4.3. The section has two internal tanks, one in
each end. The chosen con�guration is one with a structural mass of 37.01 kg,
an internal �lling height of 18.6 cm in one tank and the other tank empty.

Figure 4.3 � The hull and tank geometry in the coupling simulations.

4.5.1 Testing the Retardation Function

If the asymptotic behaviour of the added mass is modelled correctly, the
equalities in (4.7) should hold and A(ω) and B(ω) should be recreated very
well from the retardation function. The results from calculations using the
C1 continuous added mass coe�cient from �gure 4.2 can be seen in �gure 4.4.
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A very good �t with the added mass can be seen as expected. The damping
does not �t as well, but it is very close.

0 2 4 6 8 10
!

 A22 from h
 A22 data
 B22 from h
 B22 data

Figure 4.4 � A comparison between the coe�cients calculated from the re-
tardation function and the original data points.

Looking at the equation for stable (4.1) and transient motion (4.4) it is clear
that the contribution from the convolution term is such that∫ t

−∞
h(t− τ)ẋ(τ)dτ → a(ω)ẍ+ b(ω)ẋ (4.11)

when the excitation, f(t), is purely sinusoidal at an angular frequency ω.

The results from simulations show that for low wave frequencies equation
(4.11) �ts very well in the steady�state part of the time series. The contri-
bution from the convolution term is slightly lower that the result would have
been with only constant hydrodynamic coe�cients for frequencies higher
than approximately the �rst natural period of sloshing. A test has been run
for the system in �gure 4.3 with a pure sinusoidal incoming wave at di�erent
frequencies. The natural frequency of the tank is 8.66 rad/s. The results
can be seen in �gure 4.5.

4.5.2 Testing the Coupled Motion

The chosen con�guration of the test section from �gure 4.3 with one tank
�lled up to 18.6 cm was subjected to an incoming wave with an amplitude
of 1.5 cm and a frequency of ω ∈ [0.5, 12] rad/s. The grid is coarse at
19x19 elements, but a change to 38x38 elements showed only small changes
so the discretisation was deemed good enough. The time step is 0.005 s.
The program managed to simulate 50 seconds at most wave frequencies, but
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Figure 4.5 � A comparison of the contribution from the convolution term and
the equivalent force from (4.11).

between 8.4 and 9.7 rad/s most simulations broke down due to problems
with roof impact. An example of this can be seen in �gure 4.6

To get results in the frequency range around the �rst natural sloshing fre-
quency, which is the most interesting, the simulations were run again with
an incoming wave amplitude that was �ve times smaller. In �gure 4.7 the
excitation forces for this run is plotted. As can be seen, the sloshing force
has a lowering e�ect on the total force up to the �rst natural frequency of
the tank. The sloshing force then changes phase and has the opposite e�ect
for higher frequencies.

Rognebakke (2002) found that cancellation occurred at a frequency that was
slightly lower than the �rst natural frequency of the tank sloshing motion.
This is not the case for the simulations with the implemented solver. The
solver simulates a ship that is unrestrained, in contrast to the experimental
data that by necessity has some restrainment from the test rig. Cancellation
of the wave excitation force in �gure 4.7 occurs at the �rst natural frequency.
Figure 4.8 shows the simulated motions of the ship hull compared to results
from experiments done by Rognebakke. The results from the simulations
with the low amplitude waves have been multiplied by �ve, and seem to
coincide fairly well with the results from the simulations where the amplitude
was 1.5 cm. This indicates that the coupled system is fairly linear in this
range of wave amplitudes, at least outside the area of cancellation.

From the �gure it can be seen that the results �t fairly well with the ex-
periments in the range of frequencies below the cancelation frequency. The
results are a bit conservative, but this can probably be attributed to the
lack of viscous e�ects in the solution of the external motion and that the
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(a) The surface impacts the roof. (b) The �uid in the upper corner retracts
too slowly and a gap forms.

Figure 4.6 � The sloshing solver breaks down when the �uid impacts the roof.
The vector �eld is the velocities while the scalar �eld in the background is the
colour function. From a simulation at ω = 8.7 rad/s.
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Figure 4.7 � The excitation forces on the coupled system.
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Figure 4.8 � The motion amplitudes of the test section normalised by the
incoming wave amplitude. Results for ζa = 1.5 cm are denoted VOF1, while
the results with a �ve times lower wave are denoted VOF2. The experimental
results are from Rognebakke (2002).

experimental results include a contribution from friction in the bearings of
the test rig. The match is not so good for the upper frequencies, but here
the e�ect of friction in the bearings of the test section from the experiments
has a large impact. A set of simulations where the bearing friction force is
included is written about later in this chapter.

A set of simulations were run with the low amplitude waves where a vis-
cous contribution was added to the left side of the equation of motion (4.4).
The viscous contribution is Bviscẋ|ẋ| where Bvisc = 1

2 CDρb 2.0 (following
Rognebakke 2002) where b is the breadth of the section, 0.6 m, and CD
is approximated to 3.0 (Faltinsen 1990, Eq. 7.24, low KC �ow). The re-
sults can be seen in �gure 4.9 along with the linear sloshing model from
Rognebakke. The �gure shows that the viscous damping only contributes in
the small range above the �rst natural sloshing frequency were the ampli-
tudes of motion and velocity of the test section are large. Since the viscous
damping is a non linear e�ect it can be assumed to have a larger e�ect with
the large wave amplitude. Lastly, the transition between small and large
motions in the �gure can be seen to follow the behaviour of the linear model
from Rognebakke (2002) very closely.

To get a complete comparison with the experimental results, all the signi�-
cant in�uences in the experiment must be included. For the experiments by
Rognebakke this means that the friction force in the bearings of the test rig
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Figure 4.9 � The motion amplitudes of the test section normalised by the
incoming wave amplitude. Results for simulations with and without viscous
damping of the external �ow. The experimental and linear results are from
Rognebakke (2002).

must be included. The friction is an approximately constant force of 2.0 N
acting against the motion, Fbearing = −2.0 sign(ẋ). The results from these
simulations can be seen in �gure 4.10. As the simulations still break down in
the range of frequencies close to the �rst natural frequency of sloshing for the
incoming wave with an 1.5 cm amplitude, no results are given in this range.
The e�ect of the bearing friction force is highly non linear, so no results are
given for the low amplitude wave as these simulations showed little or no
similarity to the results with the larger wave. The friction force could be
scaled down, but the e�ect of this force on the cancellation frequency is also
non linear, so �nding the behaviour in the troublesome frequency range and
comparing the cancelation frequency to that found by Rognebakke remains
impossible with the VOF solver in the present state.
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Figure 4.10 � The motion amplitudes of the test section normalised by the
incoming wave amplitude. Results for simulations with and without a constant
bearing friction force. The experimental results are from Rognebakke (2002).
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Chapter 5

Conclusion

How well can coupled ship motions and sloshing be simulated by simple nu-
merical methods? The answer seems to be rather well, as long as the free
surface in the tank does not hit the roof, at least in this implementation.
With a linear equation of motion for the coupled system and no in�uential
non�linear e�ects in the motion of the �uid in the tank, a low enough in-
coming wave amplitude can be found that lets the system be simulated at
all frequencies. In addition, the results correspond well with experiments for
all the simulations that do not crash the solver. The downside of this ap-
proach is that the solution is no better or worse than the linear model from
Rognebakke (2002), a model that is computationally much less demanding.

The major use case for VOF simulations of sloshing is for simulating non�
linear e�ects and violent sloshing. A beginning of such a use can be seen in
the red triangles in �gure 4.10. The results above the �rst natural frequency
of sloshing can not be simulated well with a linear model, but the VOF solver
gives results that corresponds well with the experimental data. The VOF
method has great potential, but the implemented solver needs to be re�ned
some more to really reap the bene�ts of using a fully non�linear method.

The choice of a simple solution algorithm to Navier�Stokes was a good one,
given the time allotted for the master thesis. The problems encountered
have been much more related to the boundary conditions than to the basic
SOLA solution algorithm which has worked well and not too slowly for the
non�viscous test cases where resolution of the boundary layer is relatively
unimportant. The behaviour of the coupled system can be found in �fteen
to twenty minutes per wave frequency.

As a conclusion it can be said that the presented theory and the imple-
mented code shows great promise for simulations in the domain of ships
with rectangular tanks that are not very large in the direction normal to the
computational xy�plane.
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Chapter 6

Recommendations for Further

Work

6.1 Extending the Implementation

The pressure and velocity boundary conditions on the free surface in the
VOF solver should be improved so that the solver is more robust and can
handle more physical cases. Simulation of overturning surfaces should be
possible with some work. Spray and mixing may also be possible extensions
if the boundary conditions can be made more general.

Roof impact can be studied. This has not been a focus in this thesis, and it
has been avoided in the tests of the solver detailed in this report, except those
mentioned in section 4.5.2, Testing the Coupled Motion. As implemented,
roof impact works in only a few cases with relatively mild sloshing, but in
many cases the surface will detach a bit to slowly from the roof so that the
�uid domain separates into a small, slowly descending part, and a the main
part underneath which descends along the wall at the expected speed. This
causes the solver to crash and should be �xed.

Other possible extensions are simulating coupled sloshing and roll, and cou-
pled sway, roll and heave with sloshing. Internal obstacles can also be intro-
duced into the tank. If this means that the grid must resolve small obstacles,
a non�regular grid can be evaluated. This makes the Navier�Stokes solver a
bit harder to implement, but it should not be too di�cult as Hirt & Nichols
(1981) presents the needed changes. A more involved extension is the ex-
tension to 3D. Changes need to be made to the basic SOLA algorithm, but
the main di�culties will probably be the VOF �ux and boundary condition
calculations which get a whole new level of complexity with the introduction
of a new dimension. The resulting code will probably also be very slow due
to the need for adding more elements, which seriously hampers debugging.
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6.2 Using the Implementation

This thesis has mainly been focused on the theory behind and the imple-
mentation of the coupled VOF solver. The solver can now, when keeping
in mind its limitation, be used for analysis of a range of phenomena from
free surface �ows to coupled simulations of a ship with an anti rolling tank.
Various obstacles can be placed in the tank to dampen the motion and to
tune the natural frequency to �t that of a real ship.

The e�ect on a ship of having a free surface in an internal tank can be
compared to having only a rigid mass. The e�ect of the size and degree of
�lling of the tank can also be studied. Sloshing can also have an e�ect on
the drift forces on a ship, and this e�ect can possibly be studied by using
the code as it is.
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Appendix A

The Implementation Code

The VOF solver code is implemented as a library usable from the Python
high level programming language. It is written in a combination of C++
and Python. A simpli�ed class diagram of the VOF solver can be seen
in �gure A.1. The diagram is drawn according to the Uni�ed Modelling
Language (UML) standard. The container boxes are packages while the
smaller boxes are classes. Triangle connectors denote specialisation while the
diamond shape connectors denote aggregation, classes containing references
to other classes. The structure of the coupled motion solver can be seen in
�gure A.2.

Figure A.1 � A simpli�ed class diagram of pySlosh. The solver inherits the
SOLA and VOF algorithm code from the C++ library and the ability to run
coupled simulations from BaseSolver written in Python.
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Figure A.2 � A simpli�ed class diagram of the coupled motion solver. The
coupled solver uses the the VOF solver and the hydrodynamical coe�cients to
solve the coupled equations in the time domain with Euler's algorithm.

A.1 Overview of the Source Code

The code is included on a CD (see appendix B) and is also available from
http://launchpad.net/pyslosh which also has the development history of
the code with all changes.

The following �les holds the C++ code that implements the speed critical
parts of the coupled solver. This is mainly the Navier�Stokes and VOF code
with some utility classes.

cpp/

Solver classes

vofslosh.hpp

sola_solver.cpp

sola_surf_solver.cpp

youngs_vof_solver.cpp

Container class for holding the simulation input parameters

input.hpp

input.cpp

Utility code

utils.hpp

utils_rotation.hpp
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Code for writing VTF �les (on ASCII format)

glview.cpp

vtf.hpp

vtf.cpp

The following �les holds the C++ code that forms a wrapper layer for Python
around the solver code (uses Boost.Python)

cpp/wrapper/

Main wrapper code

pySlosh.cpp

Wrap the solver classes

solvers.hpp

solvers.cpp

Wrap the boost::numeric::ublas::matrix and vector classes

boost_numeric.hpp

boost_numeric.cpp

The following �les implements the Python part of the VOF solver. The con-
tents are mainly wrapper code, input and output code and Scalable Vector
Graphics export facilities.

python/pySlosh

__init__.py

input.py

utils.py

svg_export.py

boost_numeric.py

base_solver.py

The following �les make up the example solvers that use the pySlosh library
to get the results described in the thesis.

python/pySlosh/example_solvers

__init__.py

analytical_velocities_solver.py

velocities_from_file_solver.py

harmonic_motion_solver.py

tilting_solver.py

natfreq_solver.py

lid_driven_cavity_flow_solver.py
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The following �le implements the coupled solver

python/motions.py

The following �les make up a small library to read HCML �les which are
used for storing the hydrodynamical coe�cients for the coupled analysis.
This code was written to experiment with XML based formats for storing
structured information and have little relevance to the coupled solver except
for reading the input data.

python/hcml

__init__.py

elements.py

metadata.py

The �les in the following directory are used for driving the simulations. The
calculation of the retardation function, plotting and creation of animation
are also done by scripts in this directory. An input �le to run the coupled
simulations in this report is also included. Heavy use is made of the excellent
SciPy and NumPy libraries for numerical calculations and Matplotlib for
plotting. These libraries help bring Python almost on par with Matlab in
features while surpassing it easily for ease of structured coding and general
system integration by virtue of being written for the freely available Python
programming language.

python/examples

Run sloshing and coupled simulations

runsimulation.py

runcoupled.py

debugsimulation.gdb

Calculate the retardation function and plot the results

retardation.py

calculate_h22.py

Generate plots and animations

plot_forces.py

animate.py

pylab_utils.py

Input data for the coupled simulations

rognebakke.hcml

reference.hcml
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In addition to these �les there are also some unit and integration tests
for both the C++ and the Pyhon parts of the code. A build system cre-
ated for the CMake program is used for Make�le generation, compilation,
installation and for running the included tests. Some documentation is
also included. This documentation is readable as pure text �les, but may
also be transformed into for example HTML format due to being written
in reStructuredText format. These �les on HTML format can be found
on http://tormod.landet.net/code/sloshing/ along with the API docu-
mentation of the libraries and links to the source code.

All the code has been tested with C++ compiler GCC version 4.1.3 and
4.2.3 and Python version 2.5 on Linux. With some work on the build system
everything should compile, run and install on most modern operating systems
including Microsoft Windows.
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Appendix B

An Overview of the Contents

of the Attached CD

The included CD has the following contents:

• This report as a PDF �le

• The source code described in appendix A

• An animation of a coupled simulation where the sloshing is so violent
that the VOF solver eventually breaks down.

• An animation of the same time series as in �gure 3.13(b) which is the
simulation of the second natural sloshing mode of motion.
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