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Abstract. As the volume and velocity of data generated by scientific
experiments increase, the analysis of those data inevitably requires HPC
resources. Successful research in a growing number of scientific fields
depends on the ability to analyze data rapidly. In many situations, sci-
entists and engineers want quasi-instant feedback, so that results from
one experiment can guide selection of the next or even improve the course
of a single experiment. Such real-time requirements are hard to meet on
current HPC systems, which are typically batch-scheduled under policies
in which an arriving job is run immediately only if enough resources are
available, and is otherwise queued. Real-time jobs, in order to meet their
requirements, should sometimes have higher priority than batch jobs that
were submitted earlier. Hence, accommodating more real-time jobs will
negatively impact the performance of batch jobs, which may have to be
preempted. The overhead involved in preempting and restarting batch
jobs will, in turn, negatively impact system utilization. Here we evalu-
ate various scheduling schemes to support real-time jobs along with the
traditional batch jobs. We perform simulation studies using trace logs of
Mira, the IBM BG/Q system at Argonne National Laboratory, to quan-
tify the impact of real-time jobs on batch job performance for various
percentages of real-time jobs in the workload. We present new insights
gained from grouping the jobs into different categories and studying the
performance of each category. Our results show that real-time jobs in
all categories can achieve an average slowdown less than 1.5 (most cate-
gories achieve an average slowdown close to 1 with at most 20% increase
in average slowdown for some categories of batch-jobs (average slowdown
for batch jobs in other categories decrease) with 20% or fewer real-time
jobs.

Keywords: Real-time job scheduling; preemptive scheduling; scheduler simu-
lation; supercomputing



1 Introduction

Scientific instruments such as accelerators, telescopes, light sources, and colliders
generate large amounts of data. Because of advances in technology, the rate and
size of these data are rapidly increasing. Advanced instruments such as state-
of-the-art detectors at light source facilities generate tens of terabytes of data
per day, and future camera-storage bus technologies are expected to increase
data rates by an order of magnitude or more. The ability to quickly perform
computations on these data sets will improve the quality of science. A central
theme in experimental and observational science workflow research is the need
for quasi-instant feedback, so that the result of one experiment can guide se-
lection of the next. Online analysis so far has typically been done by dedicated
compute resources available locally at the experimental facilities. With the mas-
sive increase in data volumes, however, the computational power required to do
the fast analysis of these complex data sets often exceeds the resources available
locally. Hence, many instruments are operated in a blind fashion without quick
analysis of the data to give insight into how the experiment is progressing.

Large-scale high-performance computing (HPC) platforms and supercomput-
ing are required in order to do on-demand processing of experimental data. Such
processing will help detect problems in the experimental setup and operational
methods early on and will allow for adjusting experimental parameters on the
fly [41]. Even slight improvements can have far-reaching benefits for many ex-
periments. However, building a large HPC system or supercomputer dedicated
for this purpose is not economical, because the computation in these facilities
typically is relatively small compared with the lengthy process of setting up and
operating the experiments.

We define real-time computing as the ability to perform on-demand execu-
tion. The real-time computation may represent either analysis or simulation.
Recently NERSC set up a “real-time” queue on its new Cori supercomputer to
address real-time analysis needs. It uses a small number of dedicated compute
nodes to serve the jobs in the real-time queue, and it allows jobs in the real-time
queue to take priority on other resources. It is also possible to preempt “killable”
jobs on these other resources.

NERSC is an exception, however. The operating policy of most supercomput-
ers and scientific HPC systems is not suitable for real-time computations. The
systems instead adopt a batch-scheduling model where a job may stay in the
queue for an indeterminate period of time. Thus, existing schedulers have to be
extended to support real-time jobs in addition to the batch jobs. The main chal-
lenge of using supercomputers to do real-time computation is that these systems
do not support preemptive scheduling. A better understanding of preemptive
scheduling mechanisms is required in order to develop appropriate policies that
support real-time jobs while maintaining the efficient use of resources.

In this paper, we present our work on evaluating various scheduling schemes
to support mixes of real-time jobs and traditional batch jobs. We perform simula-
tion studies using trace logs of Mira, the IBM BG/Q system at Argonne National
Laboratory, to quantify the impact of real-time jobs on batch job performance



and system utilization for various percentages of real-time jobs in the workload.
Parallel job scheduling has been widely studied [14, 13, 15]. It includes strate-
gies such as backfilling [25, 33, 23, 35], preemption [26, 19], moldability [29, 9, 36]
malleability [5], techniques to use distributed resources [28, 37], mechanisms to
handle fairness [30, 40], and methods to handle inaccuracies in user run-time es-
timates [39]. Sophisticated scheduling algorithms have been developed that can
optimize resource allocation while also addressing other goals such as minimiz-
ing average slowdown [16] and turnaround time. We explore several scheduling
strategies to make real-time jobs more likely to be scheduled in due time. Al-
though the techniques that we employ are not new, our context and objective
are new. Using Mira trace logs, we quantify the impact of real-time jobs on batch
job performance for various percentages of real-time jobs in the workload. We
present new insights gained from studying the performance of different categories
of jobs grouped based on runtime and the number of nodes used. Our results
show that real-time jobs in all categories can achieve an average slowdown less
than 1.5 (most categories achieve an average slowdown close to 1) with at most
20% increase in average slowdown for some categories of batch jobs (average
slowdown for batch jobs in other categories decreases) with 20% or fewer real-
time jobs. With 30% real-time jobs, slowdown for real-time jobs in one of the
categories goes above 2, but the impact on batch jobs is comparable to the case
with 20% real-time jobs. With 40% or more real-time jobs, average slowdown
of batch jobs in one of the categories increases by around 90%, and the average
slowdown of real-time jobs also goes above 3.

The rest of the paper is organized as follows. Section 2 describes the back-
ground on parallel job scheduling, checkpointing, the Mira supercomputer, and
the simulator used for our study. In Section 3 we discuss related work, and in
Section 4 we give the problem statement. In Section 5 we present the scheduling
techniques studied, and in Section 6 we describe the extensions we did to enable
real-time scheduling in the Qsim simulator. Section 7 presents the experimen-
tal setup and the simulation results of various scheduling techniques. Section 8
provides the conclusions.

2 Background

We provide in this section some background on parallel job scheduling, Mira,
Qsim, and checkpointing.

2.1 Parallel Job Scheduling

Scheduling of parallel jobs can be viewed in terms of a 2D chart with time along
one axis and the number of processors along the other axis. Each job can be
thought of as a rectangle whose width is the user-estimated run time and height
is the number of processors requested. The simplest way to schedule jobs is to
use the first-come, first-served, (FCFS) policy. If the number of free processors
available is less than the number of processors requested by the job at the head



of queue, an FCFS scheduler would leave the free processors idle even if there are
waiting queued jobs requiring less than the available free processors. Backfilling
addresses this issue. It identifies holes in the 2D schedule and smaller jobs that
fit those holes. With backfilling, users are required to provide an estimate of the
length of the jobs submitted for execution. A scheduler can use this information
to determine whether a job is sufficiently small to run without delaying any
previously reserved jobs.

2.2 Mira Supercomputer

Mira is a Blue Gene/Q system operated by the Argonne Leadership Computing
Facility (ALCF) at Argonne National Laboratory [3]. It was ranked 9th in the
2016 Top500 list, with peak performance at 10,066 TFlop/s. Mira is a 48-rack
system, with 786,432 cores. It has a hierarchical structure connected via a 5D
torus network. Nodes are grouped into midplanes, each of which contains 512
nodes; and each rack has two midplanes. Partitions on Mira are composed of
such midplanes. Thus, jobs on Mira are scheduled to run on partitions that have
integer multiples of 512 nodes. The smallest production job on Mira occupies 512
nodes, and the largest job occupies 49,152 nodes. The Cobalt [1] batch scheduler
used on Mira is an open-source, component-based resource management tool
developed at Argonne. It has been used as the job scheduler on Intrepid (the
supercomputer at ALCF before Mira) and is being used in other Blue Gene
systems such as Frost at the National Center for Atmospheric Research [2].

2.3 Qsim Simulator

We used the Qsim discrete event simulator [4] because it was designed for the
Cobalt scheduler. Job scheduling behavior is triggered by job-submit(Q)/job-
start(S)/job-end(E) events. The latest version of Qsim supports three versions
of backfilling-based job scheduling policies: first-fit (FF) backfilling, best-fit (BF)
backfilling, and shortest-job-first (SJF) backfilling [25]. By design, Qsim supports
the simulation only of batch job scheduling. In this study, we extended the Qsim
simulator to support real-time job scheduling using a high-priority queue and
preemption.

2.4 Checkpointing Applications

Checkpoint and restart mechanisms were first introduced into modern super-
computing systems to provide fault tolerance [12]. Checkpointing is the process
of saving a running applications state to nonvolatile storage. The saved state
can be used to restart the application from when the last checkpoint was taken.
Over the years, these mechanisms have evolved along with the new generations
of supercomputing architecture and network developments. Among many varia-
tions, major checkpointing approaches can be categorized as either application
level or system level [12].



In the application-level approach, checkpointing is done by individual ap-
plications (Cornell Checkpoint(pre) Compiler (C3) [31] is an example of this
approach and such works are surveyed in [43]). It requires changes to the appli-
cation code but it can significantly reduce the amount of data that need to be
saved for restarting.

In the system-level approach, checkpointing is done outside of applications.
Checkpointing can be implemented either in the operating systems (MOSIX [7]
and BLCR [11] are examples of this approach) or in the runtime library or
system. In this approach, checkpointing is done by copying the applications
memory into persistent storage without specific knowledge of application. It
does not require any changes to the application.

3 Related Work

Parallel job scheduling has been widely studied [17, 23, 25, 38, 6], and a number of
surveys [14, 13, 15] and evaluations [18, 20, 22, 8] have been published. However,
not been much work has been done in the context of supporting on-demand jobs
on supercomputers that operate in batch-processing mode.

Although preemptive scheduling is universally used at the operating-system
level to multiplex processes on single-processor systems and shared-memory mul-
tiprocessors, it is rarely used in parallel job scheduling. Studies of preemptive
scheduling schemes have focused on their overheads and their effectiveness in
reducing average job turnaround time [24, 10, 34, 8, 19, 21].

Others have studied preemptive scheduling for malleable parallel jobs [10, 27,
32, 44], in which the number of processors used to execute a job is permitted
to vary dynamically over time. In practice, parallel jobs submitted to super-
computer centers are generally rigid; that is, the number of processors used to
execute a job is fixed. The work most similar to ours is SPRUCE (Special Pri-
ority and Urgent Computing Environment) [42], which investigated mechanisms
for supporting urgent jobs such as hurricane analysis on HPC resources. The
authors define urgent computing jobs as having time critical needs, such that
late results are useless. SPRUCE considered only a basic preemptive scheduling
scheme with no checkpointing and assumed that urgent jobs are infrequent. Our
work differs in terms of both its job model and the scheduling schemes consid-
ered. Our job model assumes that jobs with real-time constraints arrive more
frequently and that jobs are not total failure even if the job timing requirements
are missed. We evaluate more sophisticated preemptive scheduling schemes.

4 Problem Statement

Our goal is to study the impact of accommodating real-time jobs in (batch)
supercomputer systems. We consider two kinds of jobs: batch jobs and real-time
jobs. Real-time jobs expect to execute immediately, whereas batch jobs expect
best-effort service. We assume that all jobs are rigid: jobs are submitted to run
on a specified fixed number of processors. We assume that a certain percentage



(R%) of the system workload will be real-time jobs and that the rest are batch
jobs. We study different values of R. We evaluate different scheduling schemes
that prioritize real-time jobs over batch jobs in order to meet the expectations
of real-time jobs to the extent possible. In addition to performance, we study
the impact of various scheduling schemes on system utilization.

5 Scheduling Techniques

We evaluate five scheduling schemes that accommodate real-time jobs in addition
to the traditional batch jobs. Detailed description of the schemes is given below.

5.1 High-Priority Queue-Based Scheduling

Real-time jobs are enqueued in a high-priority queue (hpQ), whereas batch jobs
are enqueued in a normal queue. The scheduler gives priority to the jobs in the
high-priority queue and blocks all the jobs in the normal queue until all the jobs
in the high-priority queue are scheduled.

5.2 Preemptive Real-Time Scheduling

In the preemptive scheduling schemes, if there are not enough resources to sched-
ule a real-time job, the scheduler selects a partition for real-time job that max-
imizes system utilization, preempts any batch job running on this partition, or
its child partitions, and schedule the real-time job. It then resubmits those batch
jobs to the normal queue for later restart/resume. The overhead introduced by
preemption impacts the jobs that are preempted as well as the system utilization.
Checkpointing can help reduce the overhead of preemption, but checkpointing
does not come for free. Checkpointing’s impact on job runtime and system uti-
lization needs to be accounted for as well. For the preemptive scheduling schemes,
tjckpt, t

j
pre, ch

j
ckpt, ch

sys
ckpt, and chsys

pre capture these overheads. Here tjckpt and tjpre
are the additional time incurred for job j due to checkpointing overhead and pre-
emption overhead, respectively; chsys

ckpt and chsys
pre are the core-hours lost by the

system due to checkpointing overhead and preemption overhead, respectively;
and chj

ckpt is core-hours lost by job j due to checkpointing overhead.

PRE-REST: PRE-REST corresponds to preemption and restart of batch
jobs. No system- or application-level checkpointing occurs. Thus, the preempted
jobs have to be restarted from the beginning. Equations 1 to 5 describe the



overhead associated with this scheme.

tjckpt = 0 (1)

tjpre =

#preemptionsj∑
i=1

tjusedi
(2)

chsys
ckpt = 0 (3)

chsys
pre =

∑
k in batch jobs

tkpre ∗ nodesk (4)

chj
ckpt = 0 (5)

Here, #preemptionsj is the number of times job j is preempted, tjusedi
is the

time job j (preempted job) has run in its ith execution, and nodesj is the number
of nodes used by job j.

PRE-CKPT-SYS: This scheme corresponds to the system-level checkpoint
support. All batch jobs are checkpointed periodically by the system (without any
application assistance), and the checkpoint data (the process memory including
the job context) are written to parallel file system (PFS) for job restart. Batch
jobs running on partitions chosen for real-time jobs are killed immediately, and
they are resubmitted to the normal queue. When the preempted batch job gets to
run again, the system resumes it from the latest checkpoint. The system check-
point interval (ckpIntvsys) is universal for all running batch jobs. Equations 6
to 10 describe the overhead incurred by the preempted jobs (in terms of time)
and the system (in terms of core hours).

tjckpt =

b
t
j
runtime

ckpIntvsys
c∑

i=1

ckpDataji
bandwidthwrite

PFS

(6)

tjpre =

#preemptionsj∑
i=1

ckpDatajlatest
bandwidthread

PFS

+ ckpTgapji (7)

chsys
ckpt =

∑
k in batch jobs

tkckpt ∗ nodesk (8)

chsys
pre =

∑
k in batch jobs

tkpre ∗ nodesk (9)

chj
ckpt = 0 (10)

Here ckpDataji is the amount of data to be checkpointed for job j for ith
checkpoint; ckpDatajlatest is the amount of data checkpointed in the most recent
checkpoint for job j; bandwidthwrite

PFS and bandwidthread
PFS represent the write and

read bandwidth of the PFS, respectively; and ckpTgapji is the time elapsed
between the time job j was checkpointed last and the time job j gets preempted
for ith preemption.



PRE-CKPT-APP: This scheme corresponds to the application-level check-
pointing. Applications checkpoint themselves by storing their execution contexts
and recover using that data when restarted without explicit assistance from the
system. The checkpoint interval (ckpIntvjapp) and the amount of data check-

pointed (ckpDataj) change based on the application. Equations 11 to 15 describe
the overhead incurred by the preempted jobs (in terms of time and core hours)
and the system (in terms of core-hours).

tjckpt =

b
t
j
runtime

ckpIntv
j
app

c∑
i=1

ckpDataji
bandwidthwrite

PFS

(11)

tjpre =

#preemptionsj∑
i=1

ckpDatajlatest
bandwidthread

PFS

+ ckpTgapji (12)

chsys
ckpt = 0 (13)

chsys
pre =

∑
k in batch jobs

tkpre ∗ nodesk (14)

chj
ckpt = tjckpt ∗ nodesj (15)

PRE-CKPT: In this scheme, jobs are checkpointed right before they get
preempted. The premise here is that there is interaction between the sched-
uler and the checkpointing module. When the scheduler is about to preempt a
job, it informs the appropriate checkpointing module and waits for a checkpoint
completion notification before it actually preempts the job. The checkpoint and
preemption overhead in this scheme is minimal since there is no need to check-
point at periodic intervals and there will not be any redundant computation
(since checkpoint and preemption happen in tandem). Equations 16 to 20 de-
scribe the overhead incurred by the preempted jobs (in terms of time) and the
system (in terms of core-hours).

tjckpt =

#preemptionsj∑
i=1

ckpDataji
bandwidthwrite

PFS

(16)

tjpre =

#preemptionsj∑
i=1

ckpDataji
bandwidthread

PFS

(17)

chsys
ckpt =

∑
k in batch jobs

tkckpt ∗ nodesk (18)

chsys
pre =

∑
k in batch jobs

tkpre ∗ nodesk (19)

chj
ckpt = 0 (20)



6 Qsim Extensions

We used Qsim [4], an event-driven parallel job scheduling simulator, for our
study. We extended QSim to support preemption and accommodate real-time
jobs. We implemented in Qsim all five scheduling schemes described in the pre-
ceding section. Our extensions provide two ways to mark certain jobs in the job
log as real-time jobs: user-specified and random. In the user-specified approach,
users can provide an index list, and the jobs with the index provided in the list
are picked as real-time jobs. In the random approach, R% of the jobs are picked
randomly as real-time jobs. Our extensions also allow the users to provide inputs
as the following:

– ckpData - amount of data to be checkpointed

– bandwidthwrite
PFS - write bandwidth of parallel file system

– bandwidthread
PFS - read bandwidth of parallel file system

– ckpIntvsys - checkpoint interval for system-level checkpointing

– ckpIntvapp - checkpoint interval for application-level checkpointing (percent-
age of job walltime)

(a) (b)

(c)

Fig. 1. Performance comparison under different real-time job (RTJ) percentage: (a)
job slowdown of PRE-REST, hpQ, and baseline; (b) job turnaround time of PRE-
REST, hpQ, and baseline; (c) system utilization of PRE-REST and hpQ under
different RTJ percentage.



7 Experimental Evaluation

In this section we present details of the experimental setup and the workload
traces used for our experiments. We then present the simulation results.

7.1 Workload Trace

For this study, we used four week-long trace logs collected from the Mira super-
computer at Argonne. The statistics of the logs are summarized in Table 1. The
logs are denoted by Wk-a, Wk-b, Wk-c, and Wk-d to anonymize the specific
week; #Job represents the number of completed jobs in the trace log; AvgNum-
Core represents the average number of cores required by completed jobs in the
trace log; AvgWallTime represents the average wall time (in minutes) required
by completed jobs in the trace log; AvgRsc represents the average amount of re-
sources (in core hours) required by completed jobs in the trace log; and AvgWall-
TimeAccu represents the accuracy of average wall time (in percentage) relative
to the average runtime of completed jobs.

Table 1. Statistics of Mira trace logs.

Log #Job AvgNumCore AvgWallTime AvgRsc AvgWallTimeAccu

(cores) (min) (core hours) (%)

Wk-a 403 2650.9 206.90 7931.1 86.7

Wk-b 1217 2659.8 132.83 5043.5 85.6

Wk-c 852 2437.4 165.39 6206.2 92.3

Wk-d 943 2195.3 235.68 7021.5 81.4

7.2 Experimental Setup

To fully evaluate the performance of all the scheduling schemes under different
amount of real-time jobs, we randomly chose R% (real-time job percentage)
of jobs in the experimental trace log and set them as real-time jobs (RTJ ),
with the rest (100 − R)% as batch jobs (BJ ). In our experiments we used R ∈
{5, 10, 20, 30, 40, 50}. Experimental results were averaged over 20 random sample
groups for each R value.

We analyzed the performance of the scheduling schemes in terms of the fol-
lowing performance metrics.

– Job turnaround time: time difference between job completion time and job
submission time

– Bounded job slowdown (slowdown):

Bounded slowdown = (Wait time + Max(Run time, 10))/

Max(Run time, 10)
(21)



The threshold of 10 minutes was used to limit the influence of very short
jobs on the metric.

– System utilization: proportion of the total available processor cycles that are
used.

System utilization =
(
∑

j runtimej · nodesj + chj
ckpt) + chsys

pre + chsys
ckpt

Makespan · nodestotal
(22)

– Productive utilization (productive util): proportion of the total available pro-
cessor cycles that are used for actual job execution, which excludes check-
point and preemption overhead.

Productive utilization =

∑
j runtimej · nodesj

Makespan · nodestotal
(23)

We compare performance of scheduling schemes described in Section 5 with
the baseline performance. Baseline peformance is obtained by running both RTJ
and BJ as batch jobs on Qsim with the default scheduling algorithm, which is
FCFS with first-fit backfilling. Though we gathered experimental results for four
week-long traces (Wk-a, Wk-b, Wk-c, Wk-d described in Table 1), we present
the results for only Wk-a due to space constraints. We note that the trends for
other three logs are similar to that for the log presented here.

7.3 High-priority Queue and Preemption without Checkpointing

We first evaluated the performance of the high-priority queue and preemption
with no checkpointing (PRE-REST) schemes. Figure 1 shows the average slow-
down and average turnaround time of jobs and system utilization for different
RTJ percentages. From Figures 1(a) and 1(b), we can observe that both the
high-priority queue and PRE-REST schemes improve the performance of RTJ
significantly without a huge impact to the batch jobs when %RTJ ≤ 30.

With the high-priority queue, RTJ achieve much lower job slowdown and job
turnaround time compared with their baseline metrics. But the absolute values
are still much higher than the desired values. For example, job slowdown ranges
from 1.72 to 3.0, significantly higher than desired slowdown of 1. Even though
RTJ have higher priority than BJ, they have to wait for the running batch jobs to
finish if there are not enough free nodes available for RTJ to start immediately.

From Figure 1(a), we see that preemptive scheduling can achieve a slowdown
close to 1 for RTJ for workloads with up to 30% RTJ. For workloads with higher
percentage of real-time jobs (40% and 50%), however, as more system resources
are occupied by RTJ, some RTJ have to wait for the required resources, resulting
in a higher average slowdown (∼1.5) for RTJ.

Comparing hpQ and PRE-REST, we see that PRE-REST is consistently
better than hpQ for RTJ in terms of both slowdown and turnaround time. This
result is expected because RTJ can preempt the running BJ in PRE-REST
while they cannot do that in hpQ. Regarding BJ, we note that PRE-REST is



almost always better than hpQ in terms of average slowdown, whereas hpQ is
almost always better than PRE-REST in terms of average turnaround time. We
conjecture that preemption of batch jobs to schedule RTJ in PRE-REST benefits
the shorter BJ indirectly. In other words, preemption creates opportunities for
shorter BJ to backfill. Of the batch jobs that are preempted, longer jobs will
likely have a hard time backfilling and thus will suffer the most in PRE-REST.
Since hpQ does not allow any batch job to be scheduled if an RTJ is waiting,
the shorter jobs will not be able to backfill even if they could. The average job
slowdown is influenced significantly by the short jobs. In contrast, the average
job turnaround time tends to be influenced much more by the long jobs. Since
PRE-REST causes relatively more negative impact to longer BJ and indirectly
benefits shorter BJ, and since high-priority queue causes more negative impact to
shorter BJ by denying the backfill opportunities that they would have otherwise
had, PRE-REST is better in terms of average slowdown and high-priority queue
is better in terms of average turnaround time for BJ. PRE-REST scheme having
a lower productive utilization than hpQ (see Figure 1(c) and the text below) also
supports our theory.

Figure 1(c) shows overall utilization and productive utilization of PRE-REST
and high-priority queue. We note that overall utilization includes all the usage
of the system including the redundant cycles used by the preempted jobs (if
any) and the cycles spent on checkpointing and preemption (if applicable). In
contrast, productive utilization includes only the cycles used for the productive
execution of the jobs. For high-priority queue, the overall utilization is the same
as that of productive utilization since it does not have any redundant compu-
tations or any other additional overhead. In PRE-REST, portions of preempted
jobs get executed more than once since they have to start from the begining
after each preemption. In Figure 1(c), the bars on the leftmost end (0% RTJ)
correspond to the baseline utilization. We can see that the overall (productive)
utilization for high-priority queue decreases with the increasing percentage of
RTJ. We also see that High-priority queue blocks the batch jobs and prevents
them from backfilling whenever one or more real-time jobs are waiting. Thus,
batch jobs suffer more with increasing numbers of real-time jobs. Although the
overall utilization of PRE-REST is higher than that of high-priority queue, its
productive utilization is lower because of the cycles wasted by the restart of pre-
empted jobs from scratch. Productive utilization for high-priority queue reduces
by 5% (compared with the baseline) when there are 20% real-time jobs and by
10% when there are 50% real-time jobs. In contrast, for PRE-REST, productive
utilization reduces by 15% when there are 20% real-time jobs and by 20% when
there are 50% real-time jobs.

7.4 Performance of Checkpoint-Based Preemptive Scheduling

We compare the performance of preemptive scheduling schemes with the baseline
and hpQ schemes in Figure 2. From Figure 2a, we can see that for RTJ, all
preemptive scheduling schemes can maintain an average slowdown in the range
of [1.0, 1.4], as opposed to slowdowns around 2.0 or above with hpQ and around



8.0 or above with the baseline. Even for BJ, preemptive scheduling schemes with
checkpointing (PRE-CKPT, PRE-CKPT-SYS, and PRE-CKPT-APP) perform
significantly better than hpQ and the baseline when the % RTJ ≤ 30 (see Figure
2b). We note that the average turnaround time results have similar trends as
the average slowdown expect that the improvement for batch jobs for 30% RTJ
is modest. Based on these results, there is no excuse not to support up to 30%
RTJ in the workloads. The performance of RTJ is on the expected lines, but the
performance improvement for batch jobs when %RTJ ≤ 30 is both surprising and
counterintuitive. We suspect that certain categories of BJ are getting benefited
at the expense of certain other categories of BJ. Also, not all RTJ are getting
the same amount of benefit. To understand these results better, we divided the
jobs into four categories: considering two partitions for the number of nodes
used (narrow and wide) and two partitions for the runtime (short and long).
The criteria used for classification is as follows:

– Narrow: number of nodes used is in the range [512, 4096] inclusive (note that
number of nodes allocated on Mira is a multiple of 512)

– Wide: number of nodes used is in the range [4608, 49152] inclusive.
– Short: jobs with runtime ≤ 120 minutes.
– Long: jobs with runtime > 120 minutes.

The performance of the baseline, hpQ, and preemptive scheduling schemes
for narrow-short, narrow-long, wide-short, and wide-long categories of RTJ and
BJ is shown in Figures 3, 4, 5, and 6, respectively. We can see from Figures
3b and 3d that narrow-short batch jobs slowdown and turnaround times with
the preemption schemes are significantly better than the baseline and hpQ for
cases where the %RTJ ≤ 30. For the same cases (%RTJ ≤ 30), however, the
performance of the preemption schemes for narrow-long BJ is comparable to that
of the baseline and hpQ, and for wide-short and wide-long BJ is (significantly)
worse than baseline and hpQ. Since 63% of the total jobs (57% of RTJ and 64%
of BJ) are narrow-short, the overall performance of all jobs shown in Figure
2 is influenced by the performance of narrow-short jobs much more than the
performance of jobs in other categories.

7.5 Impact of Checkpointing Implementations

In this section, we further evaluate the performance of preemptive scheduling in
terms of checkpoint data size and checkpoint interval.

First, to evaluate the performance impact of checkpoint data size, we con-
ducted experiments with different checkpoint data file size for PRE-CKPT. We
define checkpoint data file size per node as dsize, with dsize ∈ {1GB, 4GB,
16GB}, which represent checkpoint data with a compress rate of {92.75%, 75%,
0%} when the system memory size is assumed to be 16 GB. Based on the I/O
performance benchmarks for Mira, we set the I/O bandwidth per node to 2 GB/s
while we set the parallel file system (PFS) bandwidth cap for checkpoint/restart
data write/read to 90% of the PFS bandwidth (240 GB/s). The results of the
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Fig. 2. Performance comparison of baseline, hpQ, PRE-REST, PRE-CKPT, PRE-
CKPT-SYS, and PRE-CKPT-APP schemes.
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Fig. 3. Performance comparison of baseline, hpQ, PRE-REST, PRE-CKPT, PRE-
CKPT-SYS, and PRE-CKPT-APP schemes for narrow-short jobs.
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Fig. 4. Performance comparison of baseline, hpQ, PRE-REST, PRE-CKPT, PRE-
CKPT-SYS, and PRE-CKPT-APP schemes for narrow-long jobs.
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Fig. 5. Performance comparison of baseline, hpQ, PRE-REST, PRE-CKPT, PRE-
CKPT-SYS and PRE-CKPT-APP schemes for wide-short jobs.
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Fig. 6. Performance comparison of baseline, hpQ, PRE-REST, PRE-CKPT, PRE-
CKPT-SYS, and PRE-CKPT-APP schemes for wide-long jobs.

(a) Real-time jobs - slowdown (b) Batch jobs - slowdown

Fig. 7. Performance of PRE-CKPT-SYS for different checkpoint data sizes.

(a) Real-time jobs - slowdown (b) Batch jobs - slowdown

Fig. 8. Performance comparison of PRE-CKPT, PRE-CKPT-SYS, and PRE-CKPT-
APP for different checkpoint intervals.



BJ slowdown are illustrated in Figure 7(b). From the results, we can see the
general trend: the average slowdown for BJ increases as the checkpoint data size
increases. For example, the average slowdown for BJ increases from 6.2 to 7.8
when the checkpoint data size varies from 1 GB to 16 GB for the workload with
10% RTJ. The results of the RTJ slowdown are illustrated in Figure 7(a). There
is no clear trend, which is expected as the checkpoint data size should not affect
RTJ.

Next, we study the impact of different checkpoint intervals for PRE-CKPT-
SYS and PRE-CKP-APP. We study the performance of PRE-CKP-SYS, for
checkpoint intervals int ∈ {15 min, 30 min, 60 min}. These interval values are
selected based on the average walltime of 207 minutes. We study the performance
of PRE-CKP-APP by setting checkpoint intervals to different percentages of
walltime (pcent). We use pcent ∈ {15%, 30%, 50%}. Figure 8 shows RTJ and
BJ slowdowns for PRE-CKPT and for different checkpoint intervals for PRE-
CKP-SYS and PRE-CKP-APP. These results are for checkpoint data file size
per node dsize = 4 GB. (I/O bandwidth per node and the PFS bandwidth
cap are set to the same values mentioned before). No clear trend is seen from
these results. Checkpoint interval should not affect the RTJ performance as only
BJ are checkpointed. Longer checkpoint interval will result in lower checkpoint
overhead for BJ but a potentially higher restart overhead for preempted BJ.
The amount of restart overhead is highly dependent on the schedule. From the
results in Figure 8(b), a checkpoint interval of 30 min for PRE-CKP-SYS and
30% walltime for PRE-CKP-APP perform better for most cases.

7.6 Summary of the Results

Even though the non-preemptive hpQ scheme can drastically reduce the slow-
down of RTJ (4x or more) compared to the baseline scheme that treats all jobs
equally, the absolute values of average slowdown of RTJ is still around 2, which
may not be acceptable for RTJ. Preemption is required to bring the average
slowdown of RTJ close to 1. Surprisingly, both non-preemptive and preemptive
schemes that favor RTJ benefits BJ also, when %RTJ ≤ 30. Further analyses
reveal that, in addition to RTJ narrow-short BJ also benefit significantly from
the schemes that favor RTJ. With preemptive schemes, preemption of wide and
long BJ can help narrow-short BJ (in addition to RTJ) through new backfilling
opportunities. With hpQ, prioritizing RTJ over BJ (and making wide BJ wait)
possibly creates additional backfilling opportunities for narrow-short BJ. When
%RTJ ≤ 20, average slowdowns for narrow-short, narrow-long, and wide-long
RTJ remain very close to 1 for all preemptive schemes; and the average slow-
down for wide-short RTJ is ≤ 1.5 at least for some of the preemptive schemes.
Checkpointing definitely helps reduce the negative impact on BJ. BJ slowdown
increases with increasing checkpoint data size but there no clear trend with re-
spect to checkpoint interval (checkpoint interval of 30 minutes or when interval
is a percentage of walltime, 30% works best).



8 Conclusions

We have presented a simulation-based study of trade-offs that arise when sup-
porting real-time jobs on a batch supercomputer. We studied both preemptive
and non-preemptive scheduling schemes to support real-time jobs using produc-
tion job logs by varying the percentage of real-time jobs in the workload. We
compared both slowdown and turnaround time of real-time and batch jobs ob-
served with these schemes against the ones observed with a baseline, which is
the scheduling policy used in production for the system we studied. We also
analyzed the performance of different categories of jobs and provided detailed
insights. We showed that preemptive scheduling schemes can help real-time jobs
in all categories achieve an average slowdown less than 1.5 with at most 20% in-
crease in average slowdown for some categories of batch-jobs when the workload
has 20% or fewer real-time jobs.
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