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Abstract—With the wide adoption of high-performance pro-
cessors and accelerators, large-scale computer vision applica-
tions have gained great performance improvement. However, it
often requires extensive experiments and expertise to achieve
optimal performance from manually-tuned programs, and the
programs often need to be re-tuned when transplanted to a
different platform, or using a different system configuration.

To overcome this problem, in this paper we proposed
HetroCV, a programmer-directed auto-tuning framework and
runtime for computer vision applications on heterogeneous
CPU-MIC platform. In HetroCV auto-tuning framework, com-
putation units in the application pipeline are categorized in
to one of three patterns: Map, Stencil and MapReduce, and
program statistics are extracted from units’ meta-information.
Machine learning is adopted to train models for each pattern
using the tuned parameters and program statistics from trial-
run sets, so that when a new unit is presented, HetroCV auto-
tuner can use the corresponding trained model to generate op-
timized tuning parameters. In HetroCV runtime, performance
models for processor and co-processor are built to predict
the prospective execution time of each computation unit in
the application pipeline. We adopted the maximum-throughput
mapping strategy, thus each unit would be mapped dynamically
to the processor/co-processor queue, which would generate the
minimum overall execution time.

Experiments on two medical image processing applications
running on heterogeneous platform composed of Intel Xeon
CPU and Intel Phi co-processor showed advanced performance
over naive OpenMP tuning and Genetic Algorithm (GA) based
heuristic tuning.

Keywords-Online auto-tuning; runtime; heterogeneous plat-
form; Intel MIC architecture; image processing;

I. INTRODUCTION

As the rapid development of digital imaging devices and

the large increase of images and video generated from social

media, there has been a surge of interest in image processing

applications and softwares. At the same time, the image

processing algorithms they depended on are evolving in both

complexity and scale, which made them in great need of

high performance computing implementations. Meanwhile,

as the growing of high-performance field, there have been

more and more types of high-performance computing de-

vices developed and applied into HPC appications, from the

early SMP devices, GPGPUs, to the more recent many-core

architecture Intel Phi coprocessors [1]. To take advantage

the computing power, extensive work have been devoted

to accelerate the computational intensive image processing

[2]–[5] and computer vision [6], [7] applications on high-

performance platforms.
However, most of the work so far focused only on specific

application and running platform, which made them unable

to be directly ported to other platforms. The applications

have to be re-coded or re-tuned on other platforms, which

to a great extend stall the application and development of

new algorithms. With high-heterogenity and high-diversity

of platforms becoming the main stream computation power,

there comes the great need for novel platform indepen-

dent programming framework for image processing and

computer vision applications. Hadile [8], [9] was proposed

as a solution. The domain-specific language (DSL) was

built upon PetaBricks [10], an heuristic auto-tuning frame-

work. However, Hadile focused only on the stencil-centered

computations, and did not provide optimization to other

computations patterns existed in image processing pilelines.

On the other hand, the high time cost of heuristic tuning

(using PetaBricks framework) made it impractical for real-

time image processing applications.
To overcome these shortcomings, in this paper, we pro-

posed HetroCV, an auto-tuning framework and runtime

for image processing applications on heterogeneous CPU-

MIC platforms. HetroCV represents computation units in

the image-processing pipelines with three basic patterns:

Map, Stencil and MapReduce, and uses program statistics

extracted from the computation units to predict the optimal

tuning parameters on-line through machine learning. In ad-

dition, HetroCV build performance models for the processor

and the coprocessor of the heterogeneous platforms, and map

the tuned computation units to either processor queue or

coprocessor queue using the maximum throughput mapping
strategy. The main contributions of the paper are:

• Pattern-based representation for computation units in

image processing pipeline.

• A machine learning based auto-tuning framework for
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multi-core processor and MIC co-processor.

• Runtime scheduler for dynamic work balance between

processor and co-processor.

The rest of the paper is organized as follows. Pattern-

based image-processing and optimization are introduced in

Section II. HetroCV auto-tuning framework and runtime

are detailed in Section III. Experiments on real image-

processing pipeline and results are illustrated in Section IV.

Section V discusses prior work on auto-tuning frameworks,

followed by conclusion in Section VI.

II. CHARACTERIZE IMAGE-PROCESSING COMPUTATION

Recent works in computer vision and image processing

field [19]–[21] have adopted the idea to consider computer

vision and image processing applications as streams of

computation units. We recognized that, based on compu-

tation and data access patterns, the streamed computation

units can be grouped into several basic categories. And the

computation units from the same category share the same

parameter searching space for performance optimization. In

HetroCV, we adopt the “streamed computation units” idea

and categorized those computation units into 3 basic of

computation patterns, and later use this pattern information

as part of the meta-information in the auto-tuning of each

computation unit.

A. Patterns in Image-processing Pipelines

Comparing to scientific computations which emphasis

on matrix operation, image-processing applications show

different computational pattern, most of which can be char-

acterized by the following three patterns: Map, Stencil, and

MapReduce.

Map-pattern. Map pattern is defined as a group of data-

parallel operations which are independent from each other.

This operation was usually operated on a single pixel or

a line of pixels, such as the gray-value transformations or

binary operations on an image. Though simple, map pattern

contributes to a large amount of computation in most image-

processing applications. Figure 1(a) illustrated one operation

of Map-pattern.

Stencil-pattern. Stencil pattern is defined as a group of

operations which was conducted on image patches, and the

image patches have overlaps with each other. The filtering-

like operations are typical stencil pattern operation. Though

they can also be treated as naive data-parallel operations,

efficient data access and reuse of the overlapped data create

new challenges during parallel programming and optimiza-

tion. Figure 1(b) showed one operation of stencil-pattern.

MapReduce-pattern. Here we adopt the computation

flow introduced by Google [38], and define the MapReduce

pattern similarly. MapReduce pattern is a 2-phase pattern,

in which phase 1 is composed of group of independent,

usually data-parallel computations; while phase 2 works on

the combination of independent results from phase 1. The

(a) (b)

(c)

Figure 1. Illustrations of pattern-based image-processing operations. (a)
Map-pattern operation, (b) Stencil-pattern operation, and (c) MapReduce-
pattern operation.

majority of clustering algorithm follows the map-reduce

pattern. Figure 1(c) showed one operation of MapReduce

pattern.

B. Parallel Pattern-unit Computation

Extensive former studies in static tuning algorithm [8],

[10], [25] have been working on code optimizations along

two dimensions: computation granularity and storage gran-

ularity. So for performance optimization of pattern-based

computations in HetroCV, we follow these two dimensions

and extend them into the following sub-dimensions for

computation units of each pattern.

Table I
OPTIMIZATION PARAMETERS FOR PATTERN UNITS

Pattern Optimization Parameters
Map-pattern blockY num, blockX num, iSimd, thNi

Stencil-pattern blockY num, blockX num, iSimd,
index PW , index BF , index SW , thNi

MapReduce-pattern blockY num, blockX num, iSimd
iR blockY num, iR blockX num, thNi

1) Tiling: Parallelizing the computation on an image by

tiling is to distribute the data-independent computation onto

parallel computation units. In HetroCV, we evenly distribute

each image into blockY num× blockX num tiles.

2) Vectorization: To fully utilize the vector processing

capabilities of the modern processors and co-processor [11]–

[14]. In HetroCV, we use iSimd to indicate whether the

inner most loop of a set of nested loops was vectorized or

not (iSimd = 1 indicates the inner most loop is vectorized,

vice versa). s

3) Breadth first / sliding window: Breadth first and slid-

ing window [8] are computation-granularity optimizations

for stencil computations. In HetroCV, we adopt them as opti-

mizations for Stencil-pattern computation units. For Stencil-

pattern computations, we notice that, when the kernel size is

relative small, neither breadth first nor sliding window can

achieve better performance compared to original pixel-wise

stencil computation. So in HetroCV, we use index PW = 1
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Figure 2. Overview of HetroCV auto-tuning framework and runtime.

to indicate pixel-wise stencil computation, in addition to

index BF = 1 / index SW = 1 which indicates breadth

first / sliding window stencil computation.

4) Partition: According to map-reduce programming

model [38], the output of map() functions would be par-

titioned into N sets as inputs to the N reduce() func-

tions. In HetroCV, for MapReduce-pattern, the output from

map() function were partitioned into iR blockY num ×
iR blockX num sets.

5) Multi-threading: In our CPU-MIC platfrom, both

processor and MIC coprocessor support software multi-

threading. So here use thNP and thNC to represent the

OpenMP thread number used on the processor and co-

processor, in which thNP ∈ {8, 16, 32, 64}, thNC ∈
{60, 120, 180, 240}.

In summary, the optimization parameters for computation

units of each pattern are showed in Table I.

III. HETROCV AUTO-TUNING FRAMEWORK AND

RUNTIME

In this section, we detailed the proposed HetroCV auto-

tuning framework and rumtime for pattern-based image

processing pipelines. Figure 2 gives an overview of HetroCV,

which consists of 3 layers:

• Application interface. As a programmer directed tun-

ing framework, in HetroCV, function variants and

meta-information for computation units were gathered

through the application interface. A pattern unit was

generated to store the function variants and unit meta-

information for each computation unit in the appli-

cation. Pattern units were stored in a pattern queue.

After an application was launched, the data-dependency

analysis unit dequeues the ”data-ready” pattern-unit for

auto-tuning.

• HetroCV Auto-tuner. HetroCV auto-tuner built learn-

ing based models for optimization parameter predic-

tions. The models were trained by a pre-defined training

set at launch time. After that, optimization parameters

were predicted for each dequeued pattern-unit.

• HetroCV Runtime. A performance model of the target

hardware platform was built in HetroCV runtime. Pre-

dicted running time on processor and co-processor were

generated, then the pattern-unit were mapped to the

target processor/co-processor which gave the shortest

overall task time.

A. Application Interface

1) Function variations and meta-information: In Het-

roCV, function variants were presented to the auto-tuning

framework through application interface.

In addition to function variants, meta-information was

passed through the application interface. Here in HetroCV,

meta-information was composed of 2 parameters describing

the computation unit it attached to. One parameter was an in-

dex indicating the pattern type of the unit (iPattern type ∈
{0, 1, 2}); the other parameter was a histogram describing

the statistic of computation in the unit, basicHist (detailed

in section III-B2).

2) Data-dependency analysis: To achieve optimal perfor-

mance, independent computation units should be executed in

parallel. In HetroCV, a data dependency graph was built for

all the patten units in the pattern queue, and updated after

a pattern unit was added or completed. In this way, all the

”data ready” pattern units will be tuned and launched in

parallel.

B. HetroCV Auto-tuner

1) Learning based auto-tuning: Given an algorithm,

auto-tuners work through the parameter space to search for

the optimal parameter. However, high-dimension parameter

often make exhaustively searching impractical for real-time

applications. Even for the limited optimal parameter space

we define in Tabel I, exhaustive search would not meet the

performance requirement. So in HetroCV, we adopt the idea

of the learning based auto-tuning.

We built 3 classifiers for the 3 types of computation units

using support-vector machine [15]. Before the application

was launched, exhaustive-searching based tuning was first

performed on a set of training applications for each pattern.

The classifiers were trained using the computation unit

statistics and the optimal parameters from these sets. Later

when a new pattern unit from the application arrives at the

auto-tuner, the tuning classifier of this pattern type would

predict optimal tuning parameters based on the computation

unit statistic feature of the unit.

2) Computation unit statistic: Performance of each com-

putation unit was determined by the computations it com-

pletes and their data access patterns, thus the optimal tun-

ing parameters for this unit were also determined by the

computations completed in the unit and the data access

patterns. In HetroCV, we designed a histogram to describe

the computation statistic feature of each computation unit.
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For a computation unit CUi, we define the computation

statistic basicHisti as,

basicHisti = [num dReadi, num dWritei,

num Readi, num Writei,

num addsubi, num muldivi,

num complexi].

(1)

In which num dReadi and num dWritei represent the

numbers of delayed-read and delayed-write operations in

computation unit CUi. Here we define a delayed-read as a

column-major order read, and a delayed-write as a column-

major order write of an array. As in HetroCV, the images

were stored in memory as a row-major array, a column-major

order read/write to an image array would have lower access

speed than a row-major order access. And num Readi,
num Writei represent the number of row-major order

read/write operations in computation unit CUi.

num addsubi represents the number of addition or sub-

traction operations in computation unit CUi; num muldivi
represents the number of multiplication or division opera-

tions in the computation unit, and num complexi repre-

sents other complex computations as square root operation

in the computation unit.

Given the function variations for processor and copro-

cessor, the computation unit statics are calculated from

the dynamic instructions generated by the Intel compiler

[28]. The compiler generates intermediate assembler-level

instructions from Intel AVX [29] and SSE [30] instruction

sets. The total number of instructions per thread is based on

the thread number and data partition on each threads. We

use instructions from all threads to calculate the computation

unit statics of each categories: memory access, computation

and control.

3) Training Set: To train the auto-tuning classifier for

each pattern type of computation units, we built a training set

for each pattern from element image-processing operations,

showed in Table II (in which type “M”, “S”, “MR” stand

for Map-pattern, Stencil-pattern and MapReduce-pattern re-

spectively). Those operations were selected as we try to use

typical yet diverse element operations to represent compu-

tation from each pattern.

Table II
AUTO-TUNING CLASSIFIER TRAINING SET APPLICATIONS

Training Application Pattern Type
RGB to HSI color-space Transformation M

Gradient computation M
Mean filtering S

Gaussian filtering S
Histogram Calculation MR

RGB to HSI color-space transformation. Pixel-wise

operation to transform the pixel values under RGB color

model to the ones under HSI model.

Gradient computation. Column-wise and row-wise

operation to compute gradient image Im gx and Im gy
from gray-level image Im gray.

Mean filtering. Separable image smooth operation by

replacing each pixel value with the average value in a

(2rfilter +1)× (2rfilter +1) window centered at the pixel,

in which rfilter is the filtering window size.
Gaussian filtering. Un-separable image smooth operation

by replacing each pixel value with the value of the Gaussian

kernel convolution of a (2rfilter+1)×(2rfilter+1) window

centered at the pixel, in which rfilter is the filtering window

size.
Histogram calculation Operation to calculate a 3 ∗

bin num-bin color histogram of image Im rgb.

C. HetroCV Runtime
Offloading is the most widely used mode for com-

puting on heterogeneous platforms composed of CPU(s)

and coprocessor(s). Before an application was deployed on

such platform, the computation intensive and non-intensive

sections were identified from either trial-runs or theatrical

analysis. Then the computation intensive sections would

be programmed into a kernel function that can run on

coprocessor(s).
By using offloading-mode, applications will benefit from

the speed-up(s) of the kernel function(s), however, in some

cases, data-transfering overhead between CPU and copro-

cessor becomes too large and deteriorates the overall per-

formance. And for a certain application, this balance often

varies based on the input data scale, which made hard-

coded application using offloading not robust to input scale

changes. On the other side, even for cases when the kernel

speed-ups weren’t out-beat by the overheads, offloading

often leaves the CPU(s) idle and wait on the results from

the coprocessos(s), which would to a waste of the CPU

computing power.
To provide more robust performance, and increase the

utilization of the CPU(s) on heterogeneous nodes, in this

section, we introduce the HetroCV runtime for the hetero-

geneous CPU-Xeon Phi coprocessor node. The runtime is

in charge of scheduling the application computation units

base on a novel 2-phase dynamic mapping scheme. During

the 1st phase, the mapping scheme acted upon a heuristic

processor performance model got from trial-runs; then in

the 2nd phase, the real time performance parameters of the

computing node were learned on-line. In this study, we use

the simple processor-accelerator model on the CPU-MIC

computing node in the 1st phase of the mapping scheme.
1) Performance model and performance prediction: We

adopt the heterogeneous platform performance model pro-

posed in work [16], [39], and model the computing time

on processor(P)/co-processor(C) T as combination of data

movement time Tm and computation time T c.

Ti = Tm
i + T c

i , i ∈ {P,C} (2)
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In which the data movement time Tm equals a latency ts for

the first unit of data, plus the transfer time dN ∗ tw for the

following dN units of data, in which tw represents the unit

transfer time. The computation time T c equals the amount

of work unit cN divided by the processing rate η.

Tm
i = tsi + twi ∗ dNi, i ∈ {P,C} (3)

T c
i = cNi/ηi (4)

From comparing the performances characters between

processors and coprocessors, we know that processors have

fast memory access rate and relatively slow computation rate

compared to coprocessors, while coprocessors have slow

memory access rate and fast computation rate. Here we

can assume that the data movement latency and unit data

transfer time can be neglected on processors, thus we have

tsc = twc = 0. Together with equation 2 3 and 4, we

can have the approximate computing time on processor and

coprocessor as

Tp = cNp/ηp (5)

Tc = tsc + twc ∗ dNc + cNc/ηc (6)

Ti = ep0 + ep1 ∗ dNc, i ∈ {P,C} (7)

In HetroCV, we adopt the approximate performance

model from equation 5 and 6, and use linear fitting to get

the performance model parameter 1/ηp, tsc, twc and 1/ηc.

The execution time from the trial-runs in auto-tuner training

phase were used to calculate the initial value for the param-

eters. For each trial-run, the data transfer amount dN were

extracted directly from the kernel functions, and computation

amount cN were calculated from the computation statistics

(from section III-B2) of each computation unit.

Given the computation statistic basicHisti of a com-

putation unit CUi, we can have the approximate total

computation amount compNi through

compNi = basicHisti · compHisti (8)

in which, compHisti is 7× 1 vector concatenated from the

element computation amount for each collum in computation

statics basicHisti. In our study, we use compHisti =
[1, 1, 2, 2, 1, 2, 3]′.

2) Computation unit scheduling: HetroCV runtime keeps

2 queues for efficient patten-unit mapping, one for processor

and the other for coprocessor. The computation units mapped

to each queue will be executed and dequeue on a FIFO basis.

In the HetroCV processing pipeline, after a computation

unit CUi got the optimal parameters from the auto-tuner,

expected performances for this unit on processor expTpi and

coprocessor expTci can be calculated from the performance

prediction based on equation 8.

To maximize the throughput of the pipeline (minimize

the response time), in HetroCV runtime, we adopted the

(a)

(b)

Figure 3. Workflow of the selected experiment applications. (a) Work-
flow of the histopathology cell retrieval application, (b) workflow of the
histopathology cell detection application.

Maximum-throughput mapping strategy: a computation unit

CUi will be given a queue label qLi ∈ {P,C} and be

mapped to processor queue (qLi = P ) or coprocessor queue

(qLi = C) whichever gives a smaller overall expected

complete time for the whole queue qT+
i , i ∈ {P,C}, with

unit i added to the queue. The strategy can be illustrated as

qLi =

{
P if qT+

p < qT+
c

C otherwise.
(9)

in which, the overall expected complete time equals the

expected complete time of the queue and the expect per-

formance time for unit i.

qT+
p = qTp + expTpi, if qLi = P

qT+
c = qTc + expTci, if qLi = C

(10)

qTp =
∑
u

expTpu, qLu = P

qTc =
∑
v

expTcv, qLv = C
(11)

IV. EVALUATION

To evaluate the performance of proposed HetroCV auto-

tuning framework and runtime, we tested the HetroCV

auto-tuner and runtime on 2 medical image processing

applications. The applications are from our Computer-Aided

Diagnosis(CAD) research [20] [21] at Center of Biomedical

Imaging and Informatics, Rutgers RWJ Medical School.

The workflow and the element pattern-units summary of

the two applications are showed in Figure 3(a), 3(b) and

Table III. Here, we use “CBIR” and “CD” as abbreviations

for testing application content-based image retrieval and

histopathology cell detection.

Content-based image retrieval Cell retrieval procedure

uses color histogram as image feature, and works to retrieve

image patches that shares resemblance to the input query

image from the dataset images.
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Table III
ELEMENT PATTERN-UNIT SUMMARY FROM TESTING APPLICATIONS

Pattern-unit Name Pattern Type Description
HAH+Dis (CBIR) M HAH [20] feature and distance calculation

Grad x (CD) M Gradient calculation on x-direction
Grad y (CD) M Gradient calculation on y-direction

Mag (CD) M Magnitude calculation of the 2D gradient vector
Ang (CD) M Phase angle calculation of the 2D gradient vector

mFilter (CD) S Gaussian filter on the 2d gradient vector magnitude
aFilter (CD) M Normalization filter on the 2d gradient phase angle
Voting (CD) MR Pixel-based voting algorithm [21]

Histopathology cell detection Cell detection procedure

detects the center of all the cells in the image according to

the gray-level information, and has been widely used as the

first step of many histopathology analysis applications.

We use TACC Stampede [17] system as experimental

testbed. Each compute nodes on Stampede is composed of

2 Xeon E5-2680 processors and 1 Intel Xeon Phi SE10P

Coprocessor, connected through PCIe express interface.

A. HetroCV Auto-tuner

1) HetroCV auto-tuner v.s naive OpenMP tuning: By

using OpenMP, applications with data parallel computa-

tions would achieve performance increase on both CPU

processor and Intel MIC co-processor; with the software

threads number being the only tunable parameter. To give

a thorough evaluation of the HetroCV auto-tuner, we first

compared the pattern-units performances from HetroCV

auto-tuner generated parameters with the ones got under

different OpenMP software thread number. Here, we use

thN cpu and thN mic to represent the OpenMP thread

number used for testing on multi-core CPU and Xeon Phi co-

processor respectively. In which, thN cpu ∈ [8, 16, 24, 32],
thN mic ∈ [60, 120, 180, 240].

The performance comparisons of pattern-units from the

content-based image retrieval application with multiple

input data size are showed in Figure 4(a) for performances

on multi-core CPU and Figure 4(b) for performances on

Xeon Phi coprocessor. Performance comparisons of pattern-

units from the hitopathology image cell detection appli-

cation with variate input data size are showed in Figure

5 for performances on multi-core CPU and Figure 6 for

performances on Xeon Phi coprocessor.

From the experiments we can see that, the optimal soft-

ware thread number for OpenMP varied among different

program units and among different input dataset sizes,

which make it hard to achieve optimal performance through

manually tuning. The results also proofed that, by adopt-

ing pattern-specific parameter space, HetroCV auto-tuner

were able to out-perform the best performance that can be

achieved from naive OpenMP tuning.

2) HetroCV auto-tuner v.s heuristic searching: Genetic

algorithms [18] (GA) are a group of heuristic searching

algorithms widely used for optimal parameter selection, and

(a)

(b)

Figure 4. Time performance comparison between tunable OpenMP thread
number and HetroCV auto-tuner of computation sections from content-
based image retrieval application on multi-core CPU and Xeon Phi co-
processor.

have been adopted for parameter auto-tuning in various

previous works such as PetaBricks [10] and Hadile [8].

To evaluate the performance of HetroCV auto-tuner, we

compared the performance and tuning cost of HetroCV auto-

tuner and the ones from GA-based tuning adopted in work

[8] [10].

For content-based image retrieval application and

histopathology cell detection application, the parameters

listed in Table I composed a parameter space of 3-dimension

and 24-dimension. Following work in [8], we built the initial

population for the GA algorithm for faster convergence. The

initial population was built from parameters indicating that
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5. Time performance comparison between tunable OpenMP thread
number and HetroCV auto-tuner of computation sections from histopathol-
ogy cell detection application on multi-core CPU. In which, (a)(b)(c)(d)(e)
show time performances of Map-pattern Grad x(), Grad y(), Mag(), Ang(),
aFilter() section; (f) shows time performances of Stencil-pattern mFilter()
section, and (g)(h)(i) show time performance of MapReduce-pattern Vot-
ing() section.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 6. Time performance comparison between tunable OpenMP
thread number and HetroCV auto-tuner of computation sections from
histopathology cell detection application on Xeon Phi co-processor. In
which, (a)(b)(c)(d)(e) show time performances of Map-pattern Grad x(),
Grad y(), Mag(), Ang(), aFilter() section; (f) shows time performances of
Stencil-pattern mFilter() section, and (g)(h)(i) show time performance of
MapReduce-pattern Voting() section.
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Figure 7. Performance comparison between HetroCV auto-tuner and GA-
based tuning of computation sections from histopathology cell detection
application. Trail id = 1, 2, 3 represent performance from HetroCV auto-
tuning, trial id = 4 represent performance from GA-based tuning.

functions are deployed (1) fully breadth first mode in both
computation and storage, or (2) fully parallelized and tiled,

or (3) parallelized over y-direction. Then the population was

expand with randomly generated populations.

In our experiment, we used 8-population/generation, and

50% elitism rate for GA iteration. The overall application

performance was used as the convergence criteria. Figure

7 showed the performance comparison between HetroCV

auto-tuner and GA-based tuning of computation sections

from histopathology cell detection application.

B. HetroCV Runtime

The heuristic parameters in equation 7 and the unit data

offload (uploading) time are summarized in Table IV.

V. RELATED WORK

Large scale and data-intensive applications have been

shown to benefit significantly from tuning and workflow

optimization on both heterogeneous systems and multiple

sites infrastructures [31]–[37]. Here we discuss some of the

prior work.

Auto-tuning strategies were proposed to optimize the

performance of applications with variable input scale and

application parameters [22] [8]; under system load variation

[23] or after transfered between platforms [25]. Automatic

code generator and programmer directed auto-tuners have

been proved to out-performed manually tuned applications

on CPU-based [10] [23] and accelerator-based systems [24]

[25].

Early auto-tuning strategies can be categorized into offline

tuning and online tuning; learning-based and model-based

tuning were later proposed. For offline tuning methods,

a parameter space is built, and the optimal parameter is

searched through heuristic searching over the parameter

space. Genetic algorithms (GA) were adopted in PetaBricks

[10] and Halide [8] for offline tuning. Although effective,

offline tuning algorithm often result in over-length tuning

time for larger parameter space.

Unlike offline tuning, online tuning methods chose opti-

mal parameter at runtime. SiblingRavalry [23] used a two-

path trial and online tuning to select the better performanced

one at runtime. Online tuning methods are less computa-

tional expensive than offline methods, however it covers less

of the parameter space.

Learning-based tuning methods were proposed to over-

come the long searching time of offline tuning, by learning

from the optimal parameters got from offline tuning of the

training sets. Nitro [24] used statistic parameters of the input

data as parameters, and trained a support-vector machine

(SVM) for optimal parameter prediction. However, only

certain statistic features from input dataset were adopted in

Nitro. We extend this classification feature into both function

and input data statistic parameters.

Auto-tuing can be more accurate by combing the platform

information, J.Meng et al. [26] built an analytical model to

tune the performance on CPU-GPU platform with the GPU

performance model from work [27]. However, only limited

research have been conducted on accurately modeling of the

state of art platforms.

VI. CONCLUSION

In this paper we present HetroCV, a programmer-directed

auto-tuning framework and runtime for computer vision

applications on heterogeneous MIC platform. In HetroCV

auto-tuning framework, the computational sections are cat-

egorized according to the computation and data access

pattern, and the program statistics of the sections are pro-

vided as additional meta-information. Performance predic-

tion models are built from trial run of training sets from each

pattern, and when a new section is presented later, HetroCV

can consult the corresponding model to select the appropriate

tuning parameters. In HetroCV runtime, performance models

for processor and co-processor are built to predict the

prospective time performance for each application section,

and the section would be mapped to processor/co-processor

which have the shortest predicted computing time.

Experiments on 2 real-world medical image process-

ing applications running heterogeneous platform composed

of CPU-MIC(Intel Phi co-processor) computational nodes,

showed promising performance comparing to manually tun-

ing and Genetic Algorithm based tuning.
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