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Abstract— Gleason-grading of prostate cancer pathology
specimens reveal the malignancy of the cancer tissues, thus
provides critical guidance for prostate cancer diagnoses and
treatment. Computer-aided automatic grading methods have
been providing efficient and result-consistent alternative to
traditional manually slide reading approach, through statistical
and structural feature analysis of the digitized pathology slides.
In this paper, we propose a novel automatic Gleason grading
algorithm through local structure model learning and classifica-
tion. We use attributed graph to represent the tissue glandular
structures in histopathology images; representative sub-graphs
features were learned as bags-of-words features from labeled
samples of each grades. Then structural similarity between
sub-graphs in the unlabeled images and the representative
sub-graphs were obtained using the learned codebook. Gleason
grade was given based on an overall similarity score. We val-
idated the proposed algorithm on 300 prostate histopathology
images from the TCGA dataset, and the algorithm achieved
average grading accuracy of 91.25%, 76.36% and 64.75% on
images with Gleason grade 3, 4 and 5 respectively.

I. INTRODUCTION

Prostate cancer has become the 2nd most common cancer
in American men, and also the 2nd leading cause of cancer
death in American men, according to the latest statistics from
the American Cancer Society reported in March, 2014 [1].
Successful treatment for prostate cancer largely depends on
early diagnosis [20], which is determined mainly via the
pathology analysis of biopsy samples [2].

As there are major biological deformation to the tissue
cell structure as prostate cancer originates and develops, a
grading system based on tissue cells deformation, the Glea-
son grading system [3], was developed and widely adopted
to measure the malignance of caner tissue. In the Gleason
system, a grade of 1 to 5 is given to the sampled prostate
tissue based on the tissue architecture. Grade 1 corresponds
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Fig. 1. Example histopathology images of Gleason grade 3(a), grade 4(b)
and grade 5(c).

to well-differentiated structure with the highest degree of
resemblance to normal tissues, while grade 5 corresponds
to poorly differentiated tissue with the highest degree of
resemblance to cancer tissues. In pathology practice, only
tissue with a Grade of 3 and higher are considered carcinoma,
so in this work we only focus on the inter-class classification
among Grade 3, 4, and 5. Figure 1 illustrated the represen-
tative tissue samples of Gleason score 3, 4 and 5.

With the widely used of digital pathology systems and
whole-slide imaging (WSI) technology in prostate cancer
research field, lots of work has been dedicated in devel-
oping automatic analysis and grading algorithms [4]–[10]
in the past few years. Early auto-grading algorithm [4], [5]
used statistical features to capture the structure differences
between tissue images of different grades. Huang et.al [4]
used fractal-dimension (FR), a texture feature to capture
the local-repentance appeared in tissue patches. Doyle et
al. [5] combined first-order statistic feature with texture
features (co-occurrence feature [11] and Gabor feature [12]),
and generated a concatenated feature of 927 dimensions.
Although showed good classification accuracies, it requires
a higher feature dimension to achieve high classification
accuracy, as well as effective feature selection and dimension
reduction methods. In work [5], Doyle et al. used AdaBoost
[13] classifier to select the most effective features from the
927 dimension feature.

Later research [6]–[10] tried to directly extract the
component-level information from the tissue images by mod-
eling and quantifying the organization and distribution of the
histopathological components within tissues. In work [6]–[9]
, graph-based feature were proposed to model and quantify
global structural organization. Recently, Ozdemir et al. [10]
introduced to use attributed sub-graph to model the local
structural features. However in the work, the classifications
were conducted in a semi-automatic way through comparing
to pre-selected sub-graphs from groud-truth query images.

Inspired by the work in [10] in this paper we propose a
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Fig. 2. Overview of the proposed algorithm.

novel automatic Gleason grading algorithm based on local
structural modeling. We use attributed graph to represent
the tissue glandular structures in histopathology images, and
introduce a distribution histogram to model the labeled sub-
graph and quantify the similarity between local structures.
The rest of the paper is organized as follows, in Section
II we describe our local structure feature modeling based
automatic-grading algorithm; the evaluation results were
detailed in Section III; with concluding remarks in Section
IV.

II. METHODOLOGY

A. Overview

Figure 2 gives an overview of the proposed automatic
grading method. The method is composed of 2 phases:
training phase and auto-grading phase. (1) During the train-
ing phase, sub-graphs were built based on the segmented
tissue components (nuclei and lumen in this study), and the
local structure features were extracted from the sub-graphs.
A codebook was learned from the local structure feature
set using bag-of-words [15] method. Then based on the
learned codebook, each set of local structure features can be
represented using one word-frequency feature. A multi-class
SVM classifier was then trained from the word-frequency
features. (2) During the auto-grading phase, local structure
features were extracted similarly from the sub-graphs built
on the unlabeled input image, and the class label of the
unlabeled image were assigned by the multi-class SVM
classifier using the word-frequency features mapped from
the codebook. Each step will be detailed in the following
sections.

B. Tissue Component Segmentation

In order to capture the centroids of the lumen regions,
we used a 2-level segmentation method. In the 1st level,
tissue image were segmented into 4 groups: nuclei, lumen,
stroma and cytoplasm using a trained Bayes classifier. The
classifier used the RGB value as the feature and trained
from a labeled sample set of 1600 points, with 400 points

(a) (b)

(c) (d)

Fig. 3. Lumen and nuclei segmentation. (a) Original image, (b)segmented
nuclei region, (c) segmented lumen regions, (d) detected lumen and nuclei
centroids.

from each category. Then in level-2, we adopted the method
from [14] and used Fast Radial Symmetry Transform (FRST)
feature as marker to perform a marker-controlled watershed
segmentation. The centroids were refined using additional
criterias. Figure 3(c) and 3(b) showed the segmented nuclei
and lumen region of a sample image (Figure 3(a)), and the
nuclei and lumen centroids from level-2 segmentation were
showed in Figure 3(d).

C. Local Structure Modeling

As illustrated in Figure 1, the spatial distribution and
organization of nuclei and lumen in the prostate tissue
characterize the malignance of the tissue sample. In this
method, we only focus on building a tissue graph to represent
the spatial distribution of nuclei and lumen in the tissue
sample.

1) Local Structure Grouping: Normal prostate
histopathology tissue consists of gland units surrounded by
fibromuscular tissue (named stroma), which mechanically
supports the gland units. Each gland unit is composed
of rows of epithelial cells situated around a duct(named
lumen). To better capture the glandular structure in the
tissue, we group the tissue component into lumen-centered
local groups. Let NucC and LumC represent the centroid
sets of the segmented nuclei and lumen region in the image,
with Nnuc and Nlum equal the number of nuclei and lumen
regions segmented. And define LumBiL as the iLth lumen
boundary, in which iL ∈ [1, 2, ..., Nlum]. To group the
nuclei with its nearest lumen area, we define the grouping
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Fig. 4. Nuclei-lumen local grouping result of grade 3(a) and grade 4(b)
images.

Fig. 5. Illustration of LNCL feature on a pseudo gland.

criteria as in Equation 1 and Equation 2.

gidNi = j,∀i ∈ [1, 2, ..., Nlum], DisNLc
j < DisNLc

i (1)

DisNLc
i = min(disNLb

j,k ), k ∈ LumBjL (2)

In which, gidNi is the grouping label of the ith nuclei,
DisNLb

j,k represent the distance between the ith nuclei and
the jth lumen boundary point. Figure 4 showed the grouping
results of nuclei and lumen elements on sample images of
grade 3 and grade 4.

2) Lumen-nuclei Co-location (LNCL) Feature: In this
work, we design a new feature lumen-nuclei co-location
(LNCL) to quantize the organization and distribution of
nuclei and lumen in a local group. LNCL feature is built to
model the statistic distribution of distance and tilting angle
between each pair of component elements in a local glandular
group. In our study, we use 2 groups of component elements:
nuclei-lumen (NL) and nuclei-nuclei (NN). Figure 5 illustrate
the NL and NN pairs on a pseudo gland unit. LNCL feature
is defined as:

LNCL = [histNL
dis , hist

NL
ang, hist

NN
dis , histNN

ang ], (3)

In which, histNL
dis (histNN

dis ), histNL
ang (histNN

ang ) represent the
histogram of distance and tilting angle between the nuclei-
lumen (nuclei-nuclei) pairs within a local glandular group.

3) Relaxed-LNCL (rLNCL) Feature: Due to the
histopathology structure, lumen regions were not present in
some tissue structures. Using the grouping criteria, in these
cases, the nuclei will be grouped with the nearest lumen
element. Although not grouped as exist glandular unit, the
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Fig. 6. LNCL (rLNCL) feature from sample structure group of Grade 3(a),
4(b) and 5(c) tissue region.

histograms (in Equation 3) still captures the organization
and distribution of between the nuclei, we refer to them as
relaxed-LNCL features. Figure 6 showed example LNCL
(rLNCL) feature from sample structure group from tissue
of different Gleason grade.

D. Grade Classification through Bags of Words

To quantify the element-wise similarity between structure
groups from different images, we adopt the bag-of-words
[15] paradigm for LNCL based grade classification. Here
we use K-means [16] clustering algorithm and hard-assign
to build a codebook from the LNCL (rLNCL) feature set
calculated with all labeled (training) images. Then a 3-class
SVM classifier (one-vs-one) was trained using the mapped
word-frequency feature. With the learned classifier, during
the auto-grading phase, the output of the 3-class SVM will
be the auto-grading label for the unlabeled input image.

III. EXPERIMENTAL EVALUATION

A. Dataset

We tested the proposed auto-grading algorithm on a
dataset of 300 H&E stained prostate histopathology images.
The images were selected as region-of-interest (ROI)s of
whole-slide images from National Cancer Institute (NCI)
[18] the Cancer Genome Atlas (TCGA) [19] database. The
ROIs were sampled at 40X magnification, and pixel resolu-
tion of 2048×2048 from the whole-slide images. The images
are chosen evenly with ground-truth labeled Grade 3, 4 and
5.

B. Results

1) Classification Accuracy: We evaluated the grading al-
gorithm using 10-folds cross validation, and the classification
accuracy on images of groud-truth Gleason scores 3, 4 and 5
are showed in Table I. Here we use codebook size K = 300.
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TABLE I
CLASSIFICATION ACCURACY ON DATASET WITH DIFFERENT

GROUND-TRUTH GLEASON SCORE %

Test Dataset High Low Average
Grade 3 carcinoma 93.75 87.50 91.25
Grade 4 carcinoma 86.36 63.64 76.36
Grade 5 carcinoma 72.72 60.81 64.75

Fig. 7. Classification accuracy comparison between the proposed algorithm
and classification algorithm in [17].

We further evaluate the proposed local-structure based
LNCL (rLNCL) feature by comparing it with our statistic
feature based former work [17]. Comparison results in Figure
7 showed that structure feature outperformed statistic feature
in testing images with more structural characteristic (Grade
3).

2) Parameter Analysis: To test the bag-of-words paradigm
under different parameters, we evaluated the performance
of the classification using different codebook sizes, K ∈
{200, 250, 300, 350, 400}. The classification accuracy of the
proposed algorithm under different codebook sizes were
showed below in Figure 8.

IV. CONCLUSION

In this paper, we proposed a novel automatic Gleason
grading algorithm through supervised tissue structure learn-
ing and supervised classification. Representative sub-graphs
features were modeled by a novel lumen-nuclei co-location

Fig. 8. Classification accuracy of the proposed algorithm under different
codebook sizes.

(LNCL) feature and learned as bags-of-words features from
labeled samples of each grades. Structural similarity between
sub-graphs in the unlabeled images and the representa-
tive sub-graphs were obtained using the learned codebook
and 3-class SVM classifier. Validation on sampled prostate
histopathology images showed average grading accuracy of
91.25%, 76.36% and 64.75% respectively on Grade 3, 4 and
5 samples respectively.
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