Skip to content
基于自然语言理解与机器学习的聊天机器人,支持多用户并发及自定义多轮对话
Branch: master
Clone or download
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
chat 修改端口配置问题 Jul 31, 2018
docs Add LOGO Jun 22, 2018
tests 修改端口配置问题 Jul 31, 2018
.gitignore
.travis.yml Add coverage Jan 27, 2018
AUTHORS 添加用户管理注册及知识库管理 May 19, 2017
ChangeLog Update requirements.txt Jul 25, 2018
LICENSE Initial commit Apr 20, 2017
README.md Modify conf Jul 19, 2018
desktop.ini Debug type of tid and ftid Jan 25, 2018
requirements.txt Update requirements.txt Jul 25, 2018
setup.cfg Debug publish Jan 30, 2018
setup.py Add kmserver Jan 30, 2018
tox.ini Add coverage Jan 27, 2018

README.md

Chat

Chatbot based on natural language understanding and machine learning.

基于自然语言理解与机器学习的聊天机器人

Documentation Status PyPI Version

chat

这就是 Chat

  • Chat 是一个基于自然语言理解与机器学习的语义理解库。
  • Chat 提供丰富的语义分析工具与语义知识图的构建工具,非常适合从0开始迅速搭建自己的聊天机器人,也能够减少工程师在实际开发当中的重复工作。
  • Chat 非常易于修改和扩展,可以方便地个性化定制。
  • Chat 支持多用户并发及自定义的多轮对话场景。

如果您有如下需求,欢迎选择 Chat:

  • 想从0开始迅速搭建自己的聊天机器人
  • 想了解自然语言处理与机器学习算法在问答中的应用
  • 想智能化生活工作,提升效率
  • 对知识图谱以及 KBQA 感兴趣,想从0开始构建自己的知识图谱

Chat适用的Python版本是:Python 3.3-3.6

Installation 安装

pip install --upgrade chat

Tutorial 快速开始

Step 1 在终端中启动数据库

(推荐)方式1:直接使用 chat/tests/nlu.db 这个已经初始化的数据库

使用方法:对于安装版的 neo4j 手选 nlu.db 所在路径进行连接;对于免安装版本的将 nlu.db 放到 neo4j/data/databases/ 目录下并修改 neo4j/conf/neo4j.conf 文件中

# The name of the database to mount
dbms.active_database=nlu.db

已经包含了3个用户及其知识库配置,具体的用户信息可直接查看数据库 User 或者 chat/tests/test_user.txt

说明:chat/tests/ 目录下的示例知识库:

chat.xls 基础问答(命令+闲聊)
chat_bank.xls 银行业务(里面有一个详细的自定义多轮对话示例以及两个单节点场景示例)
chat_hospital.xls 医院事务(业务问答)

方式2:需自定义数据库,将其密码设为'train'

若要修改密码:可在 chat/conf/self.conf 中修改 [neo4j] 选项 password)

neo4j start

Step 2 初始化语义知识库

2.1 启动语义服务器并保持 (详见 chat/tests/test_server.py,可命令行运行 python test_server.py)

启动前请将 chat/conf/self.conf 中 [path] 下的 log(问答日志) 和 do_not_know(回答不了的问题日志) 修改为自己的路径

from chat import server

server.start()

2.2 导入测试知识库(若 Step 1 中使用 chat/tests/nlu.db 则直接进入 Step 3) (详见 chat/tests/test_graph.py,可命令行运行 python test_graph.py)

from chat.graph import Database

# 初始化实例的时候若指定 userid 参数则会被导入 userid 对应用户,若不指定则导入通用用户
kb = Database(password='train')
kb.reset(filename='chat.xls')

Step 3 开始聊天

(推荐)方式1:启动语义客户端(详见 chat/tests/test_client.py,可命令行运行 python test_client.py)

可同时独立运行多个客户端,各个客户端的场景对话不会相互影响。

推荐使用已经提供的 test_client_bank.py 和 test_client_hospital.py 测试

from chat import client

# userid 和 key 可在已有的3个测试用户中选或者自己添加
client.start(userid="您的 userid", key="您的 key")

方式2:使用 chat.qa 子模块

from chat.qa import Robot
from chat.config import getConfig

robot = Robot(password=getConfig("neo4j", "password"))
result = robot.search(question="您的自定义问题", userid="您的 userid", key="您的 key")
answer = result['content']
print(answer)

Chat 的设计原则

  • 用户友好:用户的使用体验始终是我们考虑的首要和中心内容。Chat 遵循减少认知困难的最佳实践:Chat 提供一致而简洁的 API, 能够极大减少一般应用下用户的工作量,同时,Chat 提供清晰和具有实践意义的 Bug 反馈。
  • 模块性:完全独立可配置的模块可以用最少的代价自由组合在一起,您可以使用它们来构建自己的模块。
  • 易扩展性:添加新模块超级容易,只需要仿照现有的模块编写新的类或函数即可。创建新模块的便利性使得 Chat 更适合于快速开发。
  • 知识图谱:基于图数据库的知识图表达提供了更快的搜索速度与智能。

您可以在 Read the docs 中阅读官方中文文档。

如果您阅读在线中文文档时有什么问题,您可以在 Github 上下载这个项目,然后去 /docs/build/html/index.html 阅读离线中文文档。

非常感谢各位 Github 小伙伴的贡献

代码贡献

建议贡献

TimLoveFreedom 具体内容:分享支持

zheyang0715 具体内容:chat.semantic.synonym_cut 句尾标点符号过滤

zhengxijiang 具体内容:chat.server 场景并发中 robot 实例化

文档贡献

Mirza Zulfan 具体内容:设计 chat LOGO

如果想了解更多,也欢迎扫二维码加我微信分享交流。

Rain

Copyright © 2017 Decalogue. All Rights Reserved.

关于作者:Decalogue

You can’t perform that action at this time.