
Systematic load balancing block
randomization for arbitrary individual
assignment probabilities
Macartan

September 3, 2017

1 The function
2 Illustration: One arm

2.1 Total selected is as tight as possible
2.2 Total selected in each block is also as tight as possible
2.3 True assignment probabilities are respected at the lowest level

3 Illustration: Multiple arms
3.1 Multiple Treatments Illustration
3.2 Similarly total selected in each bin is tight but not as tight as possible
3.3 But again the true probabilities preserved at unit level (and so also at block levels)

4 Harder designs
5 Illustration of simple applications

5.1 Just provided
5.2 Just blocks provided
5.3 Just probability vector provided
5.4 Treatment probabilities do not have to sum to 1
5.5 Probabilities that exceed 1

6 Thoughts on integration with randomizr
6.1 Function to select
6.2 Speed:

6.2.1 Easy case — defaults to randomizr
6.2.2 Hard case — defaults to prob_ra

Description of a randomization function that handles heterogeneous probabilities and awkward integer
blocks sizes. The function is a lot slower than randomizr for routine tasks but can handle less routine tasks
that randomizr cannot.

Two illustrations of functionality made possible with this function.

1: Jack and Jill have a race. Jill is faster than Jack and has a higher probability of winning. You want to
simulate a distribution of wins. This is a situation where probabilites are heterogeneous and in which there is
a target number of units to be selected. This problem is neither simple nor complete, as understood by
randomizr .

2: You have 2 districts with 3 villages each. You want to assign 3 villages to treatment, blocking by district,
and with equal probabilities for all units. This randomization requires an allocation both across and within
blocks whereas randomizr only allocates within blocks. More generally, the issues here is that the target
number to be assigned in a given block is not an integer.

n
b

p

These problems can both occur in a given problem and indeed you would expect them to whenever there are
generic probabilities and blocks. They are not convoluted examples and it would be nice to have functionality
that can handle them.

1 The function
The basic function works by doing systematic sampling over a random (but block preserving) order.

.prob_ra <- function(p = .5,
 b = NULL,
 n = NULL,
 tol = 10){
 # Housekeeping

 if(is.null(n)) {if(!is.null(b)) n <- length(b)
 if(is.null(b) & length(p)>1) n <- length(p)}
 if(length(p) == 1) p <- rep(p, n)
 if(is.null(b)) b <- rep(1, n)
 p <- round(p, tol)
 m <- ceiling(sum(p))

 if(m == 0) return(rep(0, length(p)))

 # Figure out if we have to deal with a random total
 tag <- m > floor(sum(p))

 if(tag){
 p <- c(p, ceiling(sum(p)) - sum(p))
 n <- n+1
 b <- c(b, ".dummy")
 }

 base <- p - p%%1
 p <- p - base

 # randomly order blocks then reorder within blocks
 b_names <- unique(b)
 k <- length(b_names)
 seq1 <- rep(NA, length(b))
 b_shuffle <- sample(1:k)
 for(j in 1:k) seq1[b==b_names[j]] <- b_shuffle[j]
 seq2 <- rank(seq1 + runif(n))
 p[seq2] <- p

 # Now do systematic assignment
 s <- (cumsum(p) +m*runif(1))%%m
 e <- s - floor(s)
 out <- 1*(e < c(e[n], e[-n]))
 out <- out[seq2]
 out <- out + base
 if(tag) out <- out[-n]
 return(out)
}

The more general function applies this for each treatment:

prob_ra <- function(p = .5,
 b = NULL,
 n = NULL){

if(is.null(ncol(p))) {Z <- .prob_ra(p, b, n)
} else {
Z <- matrix(NA, nrow(p), ncol(p))
Z[,1] <- .prob_ra(p[,1],b,n)

for(j in 2:ncol(p)){
 q <- p[,j]
 q[apply(Z, 1, sum, na.rm = TRUE)==1] <- 0
 q <- q/(1-apply(as.matrix(p[,1:(j-1)]), 1, sum, na.rm = TRUE))
 q[is.nan(q)] <- 0
 Z[,j] <- .prob_ra(as.vector(q), b, n)
 }
Z <-Z%*%matrix(1:ncol(p),ncol(p))
}
Z}

2 Illustration: One arm
With random data:

s <- 100
p <- runif(s)
b <- sample(1:5, s, replace = TRUE, prob = 1:5)
sims <- 10000
runs <- replicate(sims, prob_ra(p, b))

2.1 Total selected is as tight as possible
There should only be a unit difference between the totals assigned in any set of runs:

table(apply(runs, 2, sum))

48 49
1959 8041

2.2 Total selected in each block is also as tight as
possible

Should be only max 1 unit between min and max

bin_dist <- apply(runs, 2, function(j) table(b, j)[,2])
table_check <- t(rbind(apply(bin_dist, 1, function(j) c(mean(j), min(j), max(j)))))
colnames(table_check) <- c("sim_p", "min", "max")

kable(round(cbind(size = table(b), true_p = aggregate(p, by = list(b), FUN = sum)[,2]
, table_check), 2))

sizesize true_ptrue_p sim_psim_p minmin maxmax

10 4.66 4.66 4 5

11 5.33 5.34 5 6

22 9.59 9.58 9 10

21 10.43 10.43 10 11

36 18.80 18.79 18 19

2.3 True assignment probabilities are respected at
the lowest level
plot(p, apply(runs, 1, mean), xlim = c(0,1), ylim = c(0,1))
abline(0,1)

3 Illustration: Multiple arms
The function can also be used sequentially for multiple treatment. In this case it implements the based
treatment in a hierarchical manner, which preserves individual probabilities, but prioritizes balancing by
order.

3.1 Multiple Treatments Illustration
s <- 100
b <- sample(1:5, s, replace = TRUE, prob = 1:5)
p1 <- runif(s)
p2 <- runif(s)*(1-p1)
p <- cbind(p1,p2)

Note that t2 will be systematic, like t1, given t1, but not unconditionally systematic

We do two step allocation: first allocate t1 optimally and then given this allocation we allocate t2. We do this
many times to check that the probability of assignments are all correct for p2.

runs2 <- replicate(sims, 1*(as.vector(prob_ra(p))==2))

TRhe result is much tighter than independent, but not as tight as possible as possible

par(mfrow=c(1,2))
indep <- replicate(sims, sum(rbinom(length(p2), 1, p2)))
hist(indep, main = "Total t2 allocation | indep")
hist(apply(runs2, 2, sum), main = "Total t2 allocation | scheme", xlim = range(indep)
)

(Aside: would be useful to compare with distribution given random independent block targets.)

3.2 Similarly total selected in each bin is tight but
not as tight as possible
Ideally max 1 unit between min and max

bin_dist <- apply(runs2, 2, function(j) table(b, j)[,2])
table_check <- t(rbind(apply(bin_dist, 1, function(j) c(mean(j), min(j), max(j)))))
colnames(table_check) <- c("sim_p", "min", "max")

kable(round(cbind(size = table(b), true_p = aggregate(p2, by = list(b), FUN = sum)[,2
], table_check), 2))

sizesize true_ptrue_p sim_psim_p minmin maxmax

5 1.13 1.14 0 5

10 1.71 1.72 0 7

20 7.07 7.04 1 14

27 7.53 7.55 2 14

38 7.63 7.62 2 15

3.3 But again the true probabilities preserved at
unit level (and so also at block levels)
plot(p2, apply(runs2, 1, mean), xlim = c(0,1), ylim = c(0,1))
abline(0,1)

4 Harder designs
Multiple treatments and arms can be difficult sometimes.

“Neat” designs with no integer issues are handled easily:

b <- rep(1:4, each = 4)
p <- matrix(.25, 16, 4)
z <- prob_ra(b=b, p = p)
table(b, z)

z
b 1 2 3 4
1 1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1 1

A hard example with reasonable solution:

p <- rbind(c(2/3, 1/3, 0),
 c(0, 2/3, 1/3),
 c(1/3, 0, 2/3))
p <- rbind(p,p,p,p)
b <- rep(1:2, each = 6)
z <- prob_ra(b=b, p = p)
table(z, b)

b
z 1 2
1 2 2
2 2 3
3 2 1

another hard one:

p <- t(replicate(12, c(.5, .25, .25)))
b <- rep(1:4, each = 3)
z <- prob_ra(b=b, p = p)
table(z, b)

b
z 1 2 3 4
1 2 1 1 2
2 1 1 1 0
3 0 1 1 1

A harder case with suboptimal results and where ordering matters

Here is a hard case with no blocks but multiple treatments. The issue is that optimality depends on the
ordering of the blocks.

Consider this:

sims <- 10000
p <- t(matrix(c(.15,.65,.2, .47, .48, .05), 3,2))
p

[,1] [,2] [,3]
[1,] 0.15 0.65 0.20
[2,] 0.47 0.48 0.05

runs <- sapply(1:sims, function(j) prob_ra(p = p))
round(sapply(1:3, function(j) apply(runs==j, 1, sum)), 2)/sims

[,1] [,2] [,3]
[1,] 0.1442 0.6553 0.2005
[2,] 0.4728 0.4778 0.0494

Assignment probabilities are hard. But ideally there would be at least one unit in treatment 2 in each draw,
but sometimes none here….

set.seed(17)
prob_ra(p = p)

[,1]
[1,] 3
[2,] 1

Report the number in T2 in each draw:

share_in_t2 <- table(apply(runs==2, 2, sum))/sims
share_in_t2

0 1 2
0.1228 0.6213 0.2559

This has too much diversity as seen here by the set of cases in which no unit is assigned to T2. Though it still
produces the correct allocations on average:

c(expectation = sum(p[,2]), average = (share_in_t2%*%as.numeric(names(share_in_t2))))

expectation average
1.1300 1.1331

Compare with this:

p <- p[, c(2,1,3)]
p

[,1] [,2] [,3]
[1,] 0.65 0.15 0.20
[2,] 0.48 0.47 0.05

runs2 <- sapply(1:sims, function(j) prob_ra(p = p))
round(sapply(1:3, function(j) apply(runs2==j, 1, mean)), 2)

[,1] [,2] [,3]
[1,] 0.64 0.15 0.21
[2,] 0.49 0.47 0.05

share_in_t1 <- table(apply(runs2==1, 2, sum))/sims
share_in_t1

1 2
0.8704 0.1296

c(expectation = sum(p[,1]), average = (share_in_t1%*%as.numeric(names(share_in_t1))))

expectation average
1.1300 1.1296

Note that in the first case the treatment is alternatively given to 1 or no units; in the second case it is given to
1 or 2 units.

So interestingly smart ordering can solve the problem; perhaps this can be partly built into the method.

5 Illustration of simple applications
The function is general enough to do normal blocks an clusters (with a wrapper that supplies cluster
information) though it’s probably a lot slower than randomizr functions for standard designs.

5.1 Just provided
prob_ra(n = 4)

[1] 0 1 0 1

5.2 Just blocks provided
Here a matched pair

prob_ra(b=rep(1:5, each = 3))

[1] 0 1 0 1 0 1 1 0 0 0 0 1 1 1 0

n

b

5.3 Just probability vector provided
prob_ra(p = c(.4, .6))

[1] 0 1

5.4 Treatment probabilities do not have to sum to
1
Here probabilities for two treatments are provided and so there is an implicit residual category. The residual
is assigned label 0.

p <- matrix(c(.25,.35,.4, .47, .48, .05), 3,2)
p

[,1] [,2]
[1,] 0.25 0.47
[2,] 0.35 0.48
[3,] 0.40 0.05

set.seed(2)
prob_ra(p = p)

[,1]
[1,] 2
[2,] 0
[3,] 1

5.5 Probabilities that exceed 1
One can think of the probability vector as reporting the expected number of units rather than the
probability. In this case the values can exceed 1. This is useful for example if one simply wanted to do the
allocation across blocks and do the within block allocation is a second stage.

prob_ra(p = c(1.2, .8, 2.1, .9))

[1] 1 1 2 1

round(apply(replicate(2000, prob_ra(p = c(1.2, .8, 2.1, .9))), 1, mean),2)

p

[1] 1.22 0.79 2.10 0.90

6 Thoughts on integration with randomizr

6.1 Function to select
One could combine with randomizr by employing a general function that either determines whether
balancing should be used for optimality or lets the user decide. Here is an example (not very general, just for
the 50% probability assignment default).

randomize <- function(b, between_block = NULL){
 if(is.null(between_block)) {between_block <- sum(table(b)%%2)>0; print(paste("betwe
en_block set to", between_block))}
 if(between_block) out <- prob_ra(b = b)
 if(!between_block) out <- block_ra(block_var = b)
 out
}

Three applications:

set.seed(1)
randomize(b=rep(1:2, each = 3), between_block = NULL)

[1] "between_block set to TRUE"

[1] 0 1 1 1 0 0

set.seed(1)
randomize(b=rep(1:2, each = 3), between_block = TRUE)

[1] 0 1 1 1 0 0

set.seed(1)
randomize(b=rep(1:2, each = 3), between_block = FALSE)

[1] 1 1 0 1 1 0

6.2 Speed:
This just does time on a single instance of a big many block problem.

record <- function(f){
 start.time <- Sys.time()
 f
 Sys.time() - start.time
}

6.2.1 Easy case — defaults to randomizr

b <- rep(1:50000, each = 4)
easy <- c(
 null = record(randomize(b=b, between_block = NULL)),
 prob_ra = record(randomize(b=b, between_block = TRUE)),
 randomizr_A = record(randomize(b=b, between_block = FALSE)),
 randomizr_B = record(block_ra(block_var = b))
)

[1] "between_block set to FALSE"

6.2.2 Hard case — defaults to prob_ra

b <- rep(1:50000, each = 3)
hard <- c(
 null = record(randomize(b=b, between_block = NULL)),
 prob_ra = record(randomize(b=b, between_block = TRUE)),
 randomizr_A = record(randomize(b=b, between_block = FALSE)),
 randomizr_B = record(block_ra(block_var = b))
)

[1] "between_block set to TRUE"

kable(cbind(easy, hard))

easyeasy hardhard

null 1.349885 25.072606

prob_ra 35.158895 23.158884

randomizr_A 1.134067 2.324931

randomizr_B 1.068285 2.323533

So randomizr is a lot faster and is rightly selected for the problems that don’t require balancing (easy
above). For hard problems there is a speed / efficiency trade off which users can decide on. The wrapper
doesn’t slow things down. A tricky feature for the speed/efficiency tradeoff is that the speed gains are very
important for the simulations where they are done many times but not so important for an actual
assignment decision.

