diff --git a/List.lp b/List.lp index 45d8ccf..c507c55 100644 --- a/List.lp +++ b/List.lp @@ -1069,7 +1069,7 @@ end; opaque symbol mem_head [a] beq (x:τ a) l : π (beq x x = true) → π (∈ beq x (x ⸬ l)) ≔ begin - assume a beq x l hrefl; simplify; rewrite hrefl; apply ⊤ᵢ; + assume a beq x l hrefl; rewrite hrefl; apply ⊤ᵢ; end; opaque symbol mem_tail [a] (beq: τ a → τ a → 𝔹) (n m: τ a) (l: 𝕃 a) : diff --git a/Z.lp b/Z.lp index f46909b..c695737 100644 --- a/Z.lp +++ b/Z.lp @@ -501,7 +501,7 @@ symbol ≐_compat_add x y z : π ((x ≐ y) = (x + z ≐ y + z)) ≔ begin assume x y z; rewrite ≐_sub; rewrite .[x in _ = x] ≐_sub; - simplify; rewrite distr_—_+; rewrite .[— y + — z] +_com; + rewrite distr_—_+; rewrite .[— y + — z] +_com; rewrite +_assoc; rewrite left +_assoc z (— z) (— y); rewrite -_same z; reflexivity; end; @@ -545,7 +545,7 @@ end; symbol <_compat_add x y a : π (x < y ⇒ x + a < y + a) ≔ begin assume x y a; simplify; assume H; rewrite ≐_sub; - simplify; rewrite +_assoc; rewrite .[y + a] +_com; + rewrite +_assoc; rewrite .[y + a] +_com; rewrite distr_—_+; rewrite left +_assoc a (— a) (— y); rewrite -_same; rewrite left +_assoc; simplify; rewrite left ≐_sub; refine H;