SERVO MOTORS AND MOTION CONTROL
SYSTEMS
(Motion Control Systems: Theoretical Background:
«Feedback Control»-Lecture 7)




Feedback control properties

» The main principle in control engineering

« Typically model based (but not required to be) T

» Produces control signals after an error has
occurred

FB

» Disturbance rejection is achieved

- Effect of process parameter variations is reduced
 Leads to a closed loop

« May lead to instability if designed incorrectly

« Sensor noise may be amplified and deteriorate performance



Feedforward control properties

Reference signal —» Feed fclrrward »( —» Process —— Output
contro

« Produces control signals prior to that an error has occurred

« Uses carefully designed reference signals to make the process follow
the references “exactly”



 The regulator problem: -> FEEDBACK

Find a feedback controller that satisfies the specifications on

-sensor noise, disturbance rejection and robustness to model and parameter
uncertainties

 The servo problem: -> FEED FORWARD

Find a feed forward controller that tracks the references according to
specifications (a feedback must already exist)

-Steady state accuracy, overshoot, tracking error, settling time



« More design freedom with Output feedback, also called 2DOF control
Error feedback Output feedback

Ue u y e u )4

> G, Gp - ——» Gy -{ ) > G, -
. G |la—

u = control or input signal, y = output or measured signal, u. = reference or command signal

- Example PD-control

If, G.(s) = Gds) = P+Ds, then both structures are equal

Example. If we don’t want derivative action on the reference signal we should
instead choose Geds) = P and G,(s) = P+Ds.



Load disturbance, v(s)
Sensor noise, n(s)
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* TF from reference, u, to output y are different.



. _ B(s) Control law
Set. Gp(s) A(s) - S Output feedback
» u(s) = }_EHC —E}; ;
. 5)
G =
) = Res) ¢
Ue . u 5 y
I(s) R 4 ; n
G =
%) T Rs) T s [
R
Closed loop respones
BT BR BS For error feedback is, T = S
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* Model based T.F control design

./ = 0.08: rotor inertia
DC-motor model from lec. 2 Jo = k,i—do k = 3.6:torque constant

m

_ ja d = 0.45: friction coefficient
sety=9andu =i st GP(S) = 128) = 2’” i rotor current
u(s) Js  +ds

1.) Start simple, try position feedback » = P(u_-y)

(@ : angular position

2.) Calculate c.l. poles
with: Gp(s) = 8G) and G.(s) = Sts) _ P and fo - sy _ P

Als) R(s) 1 Ris) 1
kP
Closed loop poles, Gvu _ ARB+TBS _ m

J52 +ds + Pkm

2
-> 2:nd order poly. -> solve for s, , from Js~ +ds + Pk, = 0.



* Plot the c.l. poles as a function of one variable

the variable could be either a control parameter or a process parameter

Here we choose P as the varying variable. Matlab code for the calculations:
m= 0.08; d = 0.45; km = 3.6;
Pvec = 0:.01:1;
for n = 1l:length(Pvec), Poles(:,n) = roots([J d Pvec(n)*km]);end
plot(real (Poles(1l, :)),imag(Poles(l,:)),"'r."',real(Poles(2,:)),imag(Poles(2,:)),'b.")

sgrid
Normally we don't want to have a step re- g O 0000802801008
sponse with an overshoot. Arobotarm could [ - f s
collide with an object! 21094, REE T
Choose fastest poles with £ > 0.8 -> P = 0.27 0f X—
. : I oy 1]
which gives o, = 3.49 2084 BT
. 08 el o 4
Try: . 064 05°]0380280100%

5 = tf(km, [J d 0]); rlocus(G,Pvec),P = rlocfind(3) 8 —4 9 0




2
k P (k_P)/J ®
_ m _ m _ 0
» Closed loop Gru = — = -

Js +ds+k, P sz+(d,/J)s+(ka)/J 52+2Cm+m§

where o, = 3.49 and ¢ = 0.806

Step Response

But what if we want a faster step re-
sponse, higher o, with the same

£>08 ?7?
Try position and velocity feedback!




. - Al _S_DstP e & i
New control law « = —P(uc—_v)—Ddt -> G (s) = = ,Gls) = =3
k P
+ How do we choose D? G, =2 - -
Ve AR+BS  Js2+(d+Dk, )s+k P
aroot locus can not be done on both P ® 082 57 | 058 0aF 028 014
and D at the same time lets try multiple ol 2 5
| = ; D=0.5
root locuses on P with D ={0.5 1.0 1.3}; Loars - ]
g
With b = 1.5 we can choose i o . . :
(04, C) = [15.0.82] whichis 5 times fast- £ b i
er than without velocity feedback with ol g
the same ¢. ag |
0.82 07 0.56 042 028 0.14
Is there a way to get any desired speed =2 20 = 10 s 0

o, and damping £ ?



* Solving for s in the c.l. denominator polynomial with position and
2 (d+ kmD} k

. H m
velocity feedback gives 4, = 4R+B5 ="+ ———s+t P =0

- 2 control parameters and a second order polynomial, that is, we can choose
any c.|. poles by selecting P & D in a proper way such that.

A (s) =4, (s)

m

. : : 2
where 4 is the desired closed loop polynomiale.g. 4 = s+ 20, 0, s+ 0

This gives
(D) = = U Ive in Mapl
f = 2(;-:0}”3 -> D= —-d+ ZC,O)H?J Se Soive In iviaple
k
m 2 2
2p = o J
J m p = km
m



Pole Placement Design

T

Model: ¥ = 4x+ Bu, where x = ESTRSYRUE

Control law: v = —Lx+w, where L = [7)s 15 l)]

Closed loop: s = Ax+Bu = Ax—BLx+Bw = (4—BL)x+ Bw

The poles of the c.l. are totally defined by L, eigenvalues of the matrix, (4 - BL)
L is easiest found numerically in Matlab using the "acker’ command.

Advantage, easy to calculate L for for any model, also high order.



The state vector x must be available from measurements or from designing a
state observer.

X =AX +Bu+K(y-Cx)=(4-KC)X +Bu+Ky,design Kinthesamewayas L.

Closed loop system

w State feedback controller
r Lo |: | | Controlled y
fi u system

g

-L

Y il
. State observer |




Calculate the state space model of the DC-motor, choose x; = ¢.x, = ¢

whichgives 4= 1 | B = 0 and ¢ = [ o|.

0—d/J k,/J

A= [0 1;0 -d/J]; B = [0;km/J]; ¢ = [1 0]; D =0; Gss = s5(A,B,C,D);
wl = 20; zeta = 0.8;
roles = roots([l Z*zeta*wl w0™2])
poles =

-16.0000 +12.00001

-16.0000 -12.00001

L = acker(Gss.a,Gss.b,poles) % OBS L(1) = P, and L(2Z) = D
I =

g8.8889 0.58861
damp (A-B*L)
Eigenvalus Damping Frag. (rad/s)

-1.60e+001 + 1.20e+0011 8.00e-001 2.00=+001

-1.60e+001 - 1.20e+0011i 8.00e-001 2.00=+001




1.) Select control structure, %.?)'

2.) Calculate the c.|. polynomilal
4_/(s) = AR+ BS (characteristic equation).

s

=T
<

=1 1! <
N ]~

3.) Select a desired c.|. polynomial,
A4(s) =4, (s)4,(s) where deg(4 ;) = deg(4,))

m

and deg(4,) = deg(4), Which gives deg(4,) = deg(4;) - deg(4,,).

m m

4 ) Solve for the parameters in R(s) and S(s) in the so called Diophantine eq.
A (s) = 4,(5)4,(5).

D.) Set the f.f. polynomial to 7(s) = tod (s) where 7, is a static gain that gives unit

dc-gain in the c.l. T.F. from «_ to y.



BT __ BT _Bipd, Bi

G, ()= ——— = — =
J!”C(S} AR+ BS Ac! A?HAO Am

, chose 7, such that,

1_ B8¢) _ BO)
f Am(s) ~0 Am(o) -

Ue u y
(s) isthe same as 4, (s) ~— ™

i.) the order of G,

and thereby also the order of the process
A(s), (see last slide).

b1y
ST
Y
b 1
Y

i) The dc gainis one, G, (0) = 1.



J = 0.1:rotor inertia

k
m 3.6 36 A
Gp(s) =i — = k,, = 3.6:torque constant

Jso+ds 01s°+045s s> +4.5s

d = 0.45: friction coefficient

BEY... S5y
R(s) stry

1.) PD-control with L.p. filter structure

3 2 i
2) C. polynomial A, =AR+BS = s +s57(45+r,) +s(4.5r,+36s,) + 365,
3.) Select desired C.| polynomial Step Response
2 2 1
dg=A4,4, = (s +2os+a ) (s+a) Sl e

From some specifications we want:
Rise time should be less than 0.5 s.

One possible selection of the

c.l. poles is ®=10.=09a =10 © 02 04 06 08 1




4,) Diophantine equation 4_; = 4 ;

53 +52(4.5 Try) Ts5(4.5ry+36s,)+ 365, = 53 +32({1 +2lo) +s(2loa + (02) + (1)2(1

gives: 45+r, = 28
4.5r,+36s, = 280
365, = 1000

ro = 233 S _ 4.8s5+278
5o = 27.8 m—- R 5+235
s; = 4.8

Check! roots of :
AR+BS =0



5.)

Feed forward part I(s) = 4,1,

. Bt 361
T.F from reference to output Gvu (s) = B—f - _0_ > 0

e ARTBS A, (249854100
100 _
calculate ly = 53 and I(s) = 2.8s +28
gives wa (s) = 100
o s~ +28s+100

with the control law u(s) = I §v _ 28s+28 4.8s +27.8

R RY T S+235 T Ts+235 ¢




« Normally we need the order of r(s) to be at least the same as for s(s).
This giVES a proper t.f. GC(S) = % (the order of the numerator is not higher than that of the

denominator).
« PD type controllers can however be used. (derivation of position to velocity)

« Atime delay of at least one sample will be introduced if the order of &(s)
is higher then s(s).

« A good choice is thereby to have the same order of s(s) and r(s), and
if the order of s(s) is one less than .4(s) then complete control in terms
of poles and their c.l. locations is possible.

« Which orderis then good to use? -depends on the control problem such
as: Integral control, sensor noise, disturbances efc.



and the Diophantine exp. 4R +BS = 4_4

’ m o

I
e 1y
I

Process: Gp

P-ctrl. G, =< =— Dio. s+a+s;=s5+a (4, =1)

= Ln

. . B S _ SD
P-ctrl. with LP-filter. 6, = = =
R s+

. 2 , _ -
- Dio. s™+(ry+a)s+(bsy+ary) = (s+a)(s+p)

S 58 +SO ) ) _
Pl-ctrl. G, = F ,Dio. s"+(a+bs))s+bsy = (st a)s+p)

Pl-ctrl. with LP-filt.

G =5 _ 157 % Dio s3+'a+r 52+'b3 +ary)s + bs =(52+2§ms+0)2 s+ a
c R S(S+?’0), . ( 0) ( 1 0) 0 ) )




b

Process: G, = 5 c.l. dynamics 4R + BS and the Diophantine exp.

E B (s+a)s
s.5ts
PD-ctrl. G, = S- L 0 pi. 52+(bs +a)s+bs, = 52+2gm+mz
R 1 1 0
. ] S 518+50
PD-ctrl. with LP-filter. G.=% =
R S+r0

Dio. 53 +(a+ ?‘0)52 t(bsy tary)s +bsy = (52 +2Cos + (02)('5 +a)

3252+513+50
PID-ctrl. 6, = < = ,

hy

|

Dio. 53 +(a+ bsz)sz tbsys+bsy = (52 +2Cos + mz)(s +a)



Pl-ctrl. G, =

Dio. 53 + asz + bsls + bso = (52 +2Cos + 0)2)(5' +a)
(not solvable! 3:rd order Dio. with only two control parameters)

) . 518 Ts
Pl-ctrl. with LP-filt. G. =

S
R s(stry)’

(observe degR > degS)

Dio. 53 +(a+ r0)52 + (.?)s1 targ)s+ bso = ('32 +2Cos + 0)2)(5 +a)

2
558 + 518 + S0

: . S
PID-ctrl. with LP-filt. G. R

s(s+ry)

. 4 3 2 2 2.2 2
Dio. s t(rogta)s +(bs,tary)s +bsys+bsy = (s +20 o st )(s T2{,0,5+t0,)



* Intuitively in time domain, but for design in complex plane.

* Need for translation between planes

Pole—Zero Map
14 . . . . 50 e — — —
A Setting f » " 0.86 - 076 05 05 034 016
X ettling time: e.g., 2% Fo X
127 s - 0.04 _ P
| within final value. wf - \min(c)
1 5 - 20'_0.935111_5_1};(@0) . N
sl T i 10+ o g E Iﬂlt(ﬂ)o)
. = 14 T 80 .. ey ....40 2 il :é
o
06} g -0}
0.4l Rise time: | ~20{ 9985
: time from 5% to 95% a0t
02l of reference step. ] _o|®* N4
o - 086 076 0% 05 034 0.16
0 - - - : : - 100 -80 60 -40 20 0
D 005 01 015 02 025 03 Real Axis

select c.l. poles: uneven order process: (T @)

2 2
even order process: (s +20oys + o)



« The rise time for higer order systems will be slower (superposition)

o = 10,£ = 1 forall models

s+ o

2
0]

2 2
s +20os o

3
(0]

('32 +2Cms + mz)(s + )

4
O]

2 3 2

2 = = o~ =
(s T20os+to )s t2los+o )



- Example, gain from sensor noise at 50 Hz to output must be less than ()

TF from noise to output

20

o
=
8
2 =0
c
5
=
= 0.01
-120 - iu |1 |2 |3 4T = 01
10 10 10 10 10 10

Crannanre fradican

 Example of a specification on t.f. from noise to output
G,,(i50) <—-40db



Analog control system
implementation

Controller

u(t)

Continuous time
process

y(t)

Sensor

y(t)

Continuous

Time invariant
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: Digital control system :

1 |

: Constant sampling frequency :

1 |

1 |

I R IF--------------1

: Syplmg p(Tm)| - Controller a(zm| AetuRten : :"{’) Continuous time | :

: Ge(2) e : 1 process 1
| X ! !

: . _ __ _ Synchronized actions . T !

: Antialiasing filter Sensor :
Sampling interval T = t[n] - t[n-1] ! Analogue components |
y, y(t[n])

The control signal is typically | Discrete signal m

constant over the sampling Delayed signal @

irltel'val, ZOH. Time varying >t

T




- sampling at constant frequency (constant sampling interval)
« synchronism between sampling and actuation

- zerodelay between sampling and actuation (clearly we can not achieve
this exactly, execution of the control algorithm takes time)

1

sample calculate |actuate sample| calculate actuate

time



« single rate systems
- high sampling rate is costly
- the frequency should be set in relation to the fastest dynamics in the
closed loop characteristics (i.e. bandwidth, rise-time) of the feedback,
observer or model following.
- or 4-10 samples per rise time

Step Response Step Response




+— »Gi{2) > [L——+——»(Gy(s) -

Computer Gals)

N
A

|
|
l Go(2) |
|
|

 The sampling frequency must be faster then the fastest dynamic
mode in the control system, which could be either:

 inthe feedback%, In the feedforward % or in the closed loop 4R + BS. It can

also be taken from the bandwidth or crossover frequency of the controller.

 If the fastest pole is w, then the sampling frequency should be

o, = [10...30]e, and thereby sampling time 7 = i—“

5



Mapping s-plane to the z-plane

 Poles
A continuous time pole s = a + bi
Is mapped to a discrete time Aim

pole by - = ¢*’s where 7, is

the sampling period. RH ity
(From the definition of the z- : é;gowr [
transform ) o

& i re

The continuous time stability bor-
ders = jo, ® = [-o, 0] IS

1 \ : 1 i i :
-1 -08 -06 -04 -02 D 02 04 06 08 1

JjoT, .
=e = cos((x)TS)+lsm(_0)TS)

which is the unit circle.



v - Forward difference approximation (Euler's method)
- Backward difference
o dz(tr) ”x(t)_;it_TS) _ I_lex(_-) ) ::}:x(_-)

« Tustins approximation, (bilinear transformation), (Trapezoidal method)

x(t+T)—1 .
oo dxny 2 IH-L 21 )
dt Tx(t+T)+1 T (z+1)

5

| | | | -
n—1 n n+1 n+2 f




Ex. for a PID controller with Euler forward

2 1 0
S(s) _ %25 TS1575g Si) L s
R(s) s(s+7g) : R(Z) zZ— l(: —1 . )
T.S T.S' 0

Use Maple!

Tustin is availabe for numeric approximation in Matlab, Control Toolbox



‘ zx[ﬁ' + 1] —x[n]

= Ax[n] + Bu[n]

TS
Euler forward v = Gl
Delay
x[n+1] = x[n] + T Ax[n] + T Buls e
x[n] = (1 + T A)x[n-1]+ Ts
v[in] = Cx[n]
X = xn] _;[ﬂ —11 _ Ax[n] +Buln]
5
Euler backward y = Cx[n] No delay
x[n] = x[n—=1]+ T Ax[n] + T Bu[n] /

x[n] = (1+ TSA)_lx[n —1]+(1+ TSA



Mapping of poles

« The stability region in the continuous time case (left half plane) corre-
sponds to the unit circle in the discrete time case.

im

A im mn

re re
Forward difference Backward difference Tustin
5T, T 7 1+(sT )/2
-z =e zl+sTS ::eS‘z 1 :=ess~ 2

15T, 1—(sT,)/2




» Compare simulated step response (in Simulink)
« 1.) With continuos prosess model and continuous controller

« 2.) With continuous process model discrete time controller.

e Compare the phase and amplitude margins
« 1.) With continuos prosess model and continuous controller
« 2.) With a zoh model of the process and the discrete time controller

« |tis not possible to make a bode or nyquist plot in matlab for a combined
continuous and discrete time model.



« The continuos time controller is
T(s) S(s)

u(s) = RGs ) . R(5)1 v - ,
+ After a discrete time <
approximation we have R

), _5G@),
R) T RG)

u(z) =

« Select the sampling period [10, 30] times faster than the c.I. poles.
(Observe that the poles are in rad/s)

» Use Tustins approximationin Matlab, j) forthe feedback part G _(s) = }%
and, ii) for the feedforward part G,(s) = HS; separatly.



Position control with PD controller

Bs) K/
A(s)y  s(s+d/J)’

with current as input!

Process: G,(s) =

S(s) _ 51575
R(s) s +r0

PD-controller with L.P. filter G (s) = -> 4R+ BS, third order

c.l. poles, specification 4, (s)4,(s) = (s*+ 2505+ 0" )(s + )

Calculate {s,.s,.r,} by solving

_ dry, K, K i
53+(5’+r0)52+[70+171)5+% = (5" 2Lostel)s o, With o, = 0, = o

o P i2te’ Fo2diol-doJ+d 2oJrod-d o J
{s1= LF0= .50 =
JKi 7 K




Based on specifications, choose » = 50 and ¢ = 0.8, which gives

: ) ) 1.4 8§85 56¢+ 0
S(s) _ 138852778 ooy T(s) _ ‘oo _ 55.565 +2778

R(s) s+ 1344 R(s) R s+ 1344

Approximate a discrete time implementation with e.g. Tustin, select the
sampling period from rule of thumb 7 _= 2—“ = 0.006.

20

S(z) _ 1048:-929 T(:) _ 45.5:-337
R(z) --043 ' R(2) --043

Control law: R(z)u(z) = T(z)u (=) - S(z)¥(=)

(z—043)u = (45.52-33.7)u, - (104.8:-92.9)y  shift with S gives the control,

uln] = 043u[n—11+455u [n]-33.7u [n~1]-1048y[n] + 92.9y[n - 1]



Simulated step response:

blue line, continuos time controller

red line, discrete time controller with Ts =6 ms
green line, discrete time controller with Ts = 10 ms
red line, discrete time controller with Ts = 20 ms

position signal

control signal

Position [rad]
Current [A]

04r

0 0.05 01 0.15 02 0.25 0 0.05 0.1 0.15 02 0.25
Time [s] Time [s]




Model/Margin

Amplitude

Continuous
Disc. 6 ms

Disc. 10 ms
Disc. 20 ms

54
16
12
5.6

Magnitude (dB)

Fhase (deq)

Bode Diagram

Frequency (rad/sec)




Polynomial approach to poleplacement feedback design

Mapping of time domain specifications to pole location
specifications.

Selection of sample period for a discrete time implementation
based on specifications.

Approximation of the continuos time controller to a discrete time
controller with e.g., Euler or Tustin.

Evaluate the approximation in time and frequency planes.




Modelling and design completely in discrete time from the start.

"How does the computer see the process”

A good reference is:
Computer Controlled Systems - Theory and design, Third edition
Astrém and Wittenmark

Prentice Hall, ISBN 0-13-314899-8

Transformation of an existing continuous time design to discrete time.

"How do we approximate a continuous time controllers diff. eq. as good as
possible to a digital computer”

- Continuous time design taking computer characteristics into account.




The process to be controlled is first modelled (continuous time).

The process model is then transformed into a discrete time model using
zero order hold sampling (zoh).

The control design (e.g. pole placement design) is performed
completely in the discrete domain. (With new rules for pole placement).

« Advantage:
Better performance when the sampling period is "to slow"

» Disadvantage:
Some of the physical insight is lost when leaving the differential
equations in favour of the difference equations.




Digital control system

Operator communication
Diagnostics

Data communication
Machine monitoring

etc.

Other tasks

Constant sampling frequency

l

Sampling Controller Actuation

Ge(2)

»(r)

=
—

—
—

Continuous time
process

1

Antialiasing filter Sensor

Sampling interval T, = t[n] - t[n-1] Analogue components

y, y(t[n])

The control signal is typically | Discrete signal m

constant over the sampling Delayed signal @
interval, ZOH. Time varying

- 1




sampling at constant frequency (constant sampling interval)
synchronism between sampling and actuation

zero delay between sampling and actuation (clearly we can not achieve
this exactly, execution of the control algorithm takes time)

!

calculate |actuate calculate |actuate

Ts




LL — processor u(nl,)

- /fH__11(r?TS) Jj

sampling

The signal y(t) which is generated by the process with the model

y(s) = Gy(s)u(s):

Is EXACTLY described at each sampling instance,
nTs withn=1,2,3...., by the mode|

y(2) = Gp(2)u(2):
If u(nTg) is constant during the sampling period and
Go(z) Is the zero order hold model of G4(s).




Consider the state space model

X(t) = A-x(f)+ B -u(r)

¥(t) = C-x(1)

The corresponding discrete time model describes the system only at the
sampling instants ¢[#]. Given that we know the state vector at sample 7[«]
we may integrate the continuous time system from r[»] to 7[» + 1]. This gives

the discrete time state space system

x[n+1] = @-x[n]+ 1" u[n]

vin] = C-x[n]

The new system matrices @ and I are given on the next slide.




Assuming that the system is sampled with sampling interval 7, i.e.

ffn+1]—1[n] = T, and that the input is constant during the sampling interval (re-

ferred to as zero order hold sampling), the system matrices A and B are replaced
by ® and I respectively

AT,
= &

T_A

5 5
F=‘[oe ds - B

The @ matrix defies the pole locations of the discrete time system. Note that
the discrete time poles are different from the continuous time poles.

The discrete model reflects the system behaviour at sampling instants only, i.e.
system dynamics may be hidden by the sampling procedure.

« @ and T are derived in Computer control ch. 3




_ Backward Euler
2nd order continuous _ . . — .
time system N

i T
0 1|..10],
-1 -1 |

08F

06k ero-order hold
samplin
04l pling

(1] = | 066 0.53| -0 034] 1
~0.53 0.13 0.53

vin] = |1 o]x[n]




« The discrete time transfer function is calculated from the discrete
time state space model.

s.s. model, x[n+1] = ©x[n]+Tu[n]
v[n] = Cx[n]
the shift operator z, x[n+1] = zx[n]

hence, (- - @)x[n] = Tu[n]
v[n] = Cx[n]

x[n] = {':—(I))_IFH[H]
v[n] = Cx[n] = C(:—tb}_ll“n[n]

The discrete time transfer function G(z) = % - Cz-d) T




ZOH is NOT an approximation as Euler or Tustin.

ZOH should NOT be used to approximate continuous time
controllers since the average delay will be a half sample period.
(see slide 4.2.6.)

The zoh model is calculated from the continuous time state space
model and a sampling period.

The zoh model is a discrete time state space model, but can be
converted to a discrete time transfer function.




Specifications are often given in the time domain, e.g., step
response and response to external disturbances.

 The time domain specifications are converted to continuous poles.

« The continuous poles are converted to discrete poles.

The control structure, 1.e., S(s) and R(s) are selected.

« The control structure is converted to a discrete version, S(z) and R(z).




A continuous time pole s = ¢+ i is mapped to a discrete time pole by

- = ¢*Ls where 1, is the sampling period. ( See lecture 2.1)

A first order polynomial P _(s) = s+a has
pole at s = —«

which gives a discrete time pole at

—aT . ;
= = *and a discrete time

—aT

5

polynomial P (z) = z-e

0, P,(z) = z—1 (integrator) ->: =1
—», P(z) = z(very fastl) ->:-=0
—aT

5

) =z—-e€




A second order polynomial

2 2
P, (s) = 5" +2L0ys + o has poles at

§] 5 = —Logtingdl —(;2, calculating

T .
Z) 5 = ¢ -2 gives the second order
discrete time polynomial,

d, ~
L G0l 2
Py 2e cos(mDTS 1-¢& )

Py

Matlab: >> poles_disc=exp(poles_cont*Ts)

The frequencies are scaled with Ts.
And that n is the highest freq. (Nyquist freq.)




« The single discrete time pole : = « with -1 <« <0 can not be mapped to

a single continuous time pole since s = % Is a complex number.

5

1

« Example: G(z) = 06

A

with 7, =

im _ Step response of G(z) = _+11

1




b”: + ... +EJO

Calculate the process model, G,(2) = iﬁf

) _
)

:m+am_1_ T...Ta,
Chose control structure, P, PD, Pl etc. which gives the structure of s(:)

and R(z)
-more on next slide on the discrete time versions

Determine the order of the closed loop, 4R +BS

Given the closed loop specifications define the desired closed loop
polynomial 4_,z) = 4, (2)4,(z), where 4 has the same order as 4.

m

Calculate the coefficients in s and r by solving the Diophantine equation
AR+BS =4 4

m- o




|

» Togetintegralaction - In a discrete time controller the factor (--1)

should be included in . ( " = 1 with ¢ = 0)

Ps+1

T

ex. Pl controller, G_.(s) =

S(s) _ 51575

hence, R(s)

» To get derivative action in the controller.

G.(s) =Ds+P

S(s) _ 5157 Sg . S(2) - .
hence = ives = s,z+ however this is not proper since

uln] = —s,v[n+11-s,v[n]. ( The notion of velocity in the control is lost!)




To get it proper include a time constantin R.

SGs) _*1° 750 \ieh gives 22 — 7T

0 i - .
RGs)  s+ry’ RG) - o7 with the implementation.

hence,

"0
(z+rgu = (syzt50)¥ and u[n] = rou[n]—sv[n]—sqvin—1]
* PID control

2
+ + . . . .
G(s) = Ds SP‘S !'is not proper, include a time constant in R

2
SAZ +51_+SD

% which gives S(2) _ 2

2 P b5 s+
_ Ds +Ps+1 S(s) _ %2 TESTS
G) = =T D hence, R(s) S(s +7g) R(z) (z=1)z+T1p)




Time response. Simulation in Simulink with discrete time
controller and continuous time process model. Not possible in
Matlab with e.g. 'step’.

- Sensor simulation, sampling and noise.

- Disturbance, external load...

- Antialiasing filter

Frequency response. Must be done with discrete time controller
and discrete time process model. Include a discrete time version
of the antialiasing filter!

- phase and amplitude margin
- load and sensor noise
- robustness from Sensitivity function, (more in lecture 7).




The digital implementation of a controller on a microprocessor
‘'sees’ the process model as the zoh model.

Select a sample time and calculate the zoh model

Design the controller based on the zoh model

« Convertthe closedloop continuous poles from the specifications to discrete
poles

Convert the control structure from continuous time to discrete time.

Calculate the control parameters exactly in the same way as in the contin-
uous time case.

Advantage, very long sample periods are possible

Disadvantage, some of the physical insight is lost




b

Motor from voltage to position G,(s) = SGra)

From specifications we wantc.l. poles at o, = —50 rad/s with minimum damping

Z=009.

Sampling period from rule of thumb in the interval 7. = [ 2n _2n }

§ 100)0’ 300,

b,z+b
2

0

ZOH sampling of G,(s) gives G,(2) = (second order)

Design a PD controller of first order,




Compute c.l. polynomial, 4_;(z) = 4(2)R(z) + B(z)S(z)

5
Acf:=23+[al+rﬂ+b} slyzm+(a0+al vO+b0si +b1350)z+alr0+ b0 s0

Select the desired c.l. polynomial as the third order polynomial
A.(z) = 4,(2)4,(z) where 4, Is second order (same as 4(z)).

_ 2
A.(2) = (2 tpiztp)ztpy)

Solve for the three unknown control parameters {s,,s,,7,}.

bﬂaﬁ—b0a12+b}aﬂa1+bﬂalp2—b}aﬂp2—b{}p1+bip0

sl =

2 2
—b0al b1+ b0~ + a0 bl

2
—a0 al b0+ a0~ bl —a0 bl pl + a0 p2 b0+ p0al bl — p0 b0

s0=

2 2
—b0 al bl + b0~ + a0 bl

2 7

—al b0* + b1 b0 a0 — b1 b0 pl + b1 p0 + p2 b0*

r0
-
—b0 al bl + bO* + a0 b1~




pr  BIy4, BI,

+ Select the feed forward part, 7 = 7,4, giving the c.|. TR B - 14 -

m o m

» Try different sampling periods, 7= 27, = [30,20,10] = [4, 6, 12]ms
O
0

Same behaviour for all versions!




A sine wave signal with frequency o sampled with freq. og = 20 (circles)

0.5 1 15 2 25 3 35 4

It clearly appears that sampling at this frequency gives nothing!

« Shannons sampling theorem: A continuous time signal with a fourier trans-
form equal to zero outside the interval (-oq, ©g) Is given uniquely by equidistant

sampling with a frequency og higher that 2o.

* In a sampled system the important frequency »./2 is also referred to

as the Nyquist frequency. Signals with frequency lower than the Nyquist
frequency can be reconstructed after sampling.




o [L >

SAMPLING
1Hz

A square signal with an
overlaid noise signal,
sin(0.97). (Blue line V1 ).

Sampling v, with 1 Hz, (black

X) gives a new frequency with
0.1 Hz. (same as y, redline).




The signal v,(7) = CDS{z'ﬂ'fl t)  with the frequency fl = 0.9 Hz, is sampled with the frequency
FS = 1 Hz.

: : . n
The signal is sampled at the time instants 7 = I*T wheren = 1...=
s

},s](-?;-') = cos(ZT[f]ﬁ = cos(1.8wn)
cos(2nn—027n)

cos(2nn—27m0.1n)

= cos(Zn{).l%) = cos(27f51)

The frequency f, = 0.9 Hzis said to be an alias of the frequency 7, = 0.1 (Hz) when
it is sampled at 1 Hz.




GI6 — J_LL —  y1_samp

Analog SAMPLING v1_samp
LP filter 1Hz

Analog pre filter

Bode Diagram

Magnitude (dB)

10" 10°

Framisnmars fvmsdlannal




Real signals are not band limited. High frequency components must be
filtered away to avoid aliasing.

For digital/discrete sensors the aliasing problem is less aggravating.

The prefilter is typically implemented as an analog filter with resistors,
capacitors and an operational amplifier.

The filter should be taken into account in control design.

NEVER IMPLEMENT A FEEDBACK LOOP WITHOUT ANTIALIASING
FILTER ON ALL AD-CONVERTERS




single rate systems

- high sampling rate is costly

- the frequency should be set in relation to the fastest dynamics in the
closed loop characteristics (i.e. bandwidth, rise-time) of the feedback,
observer or model following.

- or 4-10 samples per rise time

Step Response
P po Step Response

e




Computer

Make a preliminary continuous time design of the controller G.(s) and Gg(s)

It gives the fastest closed loop bandwidths, o, and cross-over frequencies, o, for the various
parts of the control system, normally the c.l. poles.

Select Sampling frequency o € [10, 30]max(m,. o ) and calculate G.(z) and Gg{z)

Design an anti-aliasing filter G,(s) with a bandwidth of o < [0.17, 0.33]035

- [10, 30]

max{(:)b, mf]




 Often you will not have a free choice of selecting the sampling
period. Based on implementation HW you will "get" a T;.

 Choice of microprocessor for the implementation.

high cost processor:
floating point arithmetic, 32/64 bit , 20-200 Mhz CPU clock
-> high sampling frequency

low cost processor:
fixed point arithmetic, 8/16 bit, 4-30 Mhz CPU clock
-> low sampling frequency

* A lot of more functions have to run on the same processor.
less time for the controller code to execute.




The frequency response of the filter is known and should be
realised as a electrical circuit.

For example:

Lowpass filter for antialiasing

Highpass filter for rejection of dc-level signals
Bandpass filter for passing of specific frequencies
Bandstop filter for blocking of specific frequencies

Passive circuits

Based only on resistors, capacitors and inductors

Active circuits

Also includes a active component such as a transistor or op amplifier.




Bode Diagram

Example with
R = 10 kQ and
C = 100 pF.

Magnitude (dB)
©WN N4 h
oo ;Mo oo W,

>
w
T

Also possible as RL
circuits.

Phase (deg)
| |
8 & o

(=]




Phase (deg) Magnitude (dB)

(R/L)s
s>+ (R/L)s+1/(LC)

Bode Diagram

Ui

U

[

s>+ 1/(LC)

s+ (R/L)s+1/(LC)

Ui




Maximum gain of a passive filter is unity.
The inductor in a passive filter may be large.

Can require very small capacitors for lowpass filters with low
cutoff frequency.

Active filters are simple to connect in cascade for higher order
filters.

Active filters may become unstable.




If the sampling period is slow compared to the frequency of the
closed loop poles. Then the cutoff frequency of the lowpass filter
will be to close to the

The antialiasing filter gives a undesired phase lag to the controller.

v,(s) = G (s)v(s), v () Will lag y(r) In phase.

This can be avoided by designing the pole placement controller
ON G, (5)G,(s) Instead of only on G, (s).

The order of the controller polynomial must be increased by the

same order as the Low pass filter.
- Otherwise is it not possible to choose c.l. poles freely.




Using the same example as above with Ts=712 ms.

- which is 10 times faster than the c.l. poles. o = ?—“ = 524 rad/s

5
-chose a 1:st order L.P filter in between o) and - O, = 5o, = 250 rad/s

1/(RC)
s+1/(RC)

Transfer function for 1:storder L P filterg, = where 1/(RC) = o,.

Transfer function of both dc motor and filter is 3:rd order
G, (s) = b/(Rc)

)% 3 2 |
s +(a+1/(RC))s +(a/(RC))s

2
bz_

3 2
z +a2d +ald+a0

+bl:+bi)

also of third order

Zoh of Gp(s) IS G,p(3) =




2
§ _ 542 +Sl:+so

» Select a second order controller
z +r1:+50

* 5:th order closed loop polynomial

Acf:=25+(a2+r1+5232}z4+(b.332+b231+aI+a2rI+rﬂ)z3+(bﬂ.92+bISl+b230+a0+a1 r1+a2rﬂ)22
+(a0rl+alr0+b0sl+bls0)z+alr0+ b0s0

Select the desired c.l. polynomial: A,,,(z) same order as A(z) =3. Then A,(2)
must be of second order.

2 _ 2
Aci - Aon = (= +p1??1:+pm{))(:+prr?){: +p01:+p00)
V V
A4 A

m o

Solve for the unknown control parameters, r; and s; as a function of the
known process parameters, a;and b; and desired polynimial coefficients p;.

Calculate 7(z) = 4 (2)7,




With antialiasing filter, With antialiasing filter,
but it is not included and it is included

in the design in the design

(second order controller). (Third order controller).




Two design concepts (continuous, discrete, combination of both)
Rules of thumb for selection of sampling period.
However, often the microprocessor gives the minimum sampling period.

If the sampling period is to "close" to the c.|. poles is it better to design the
controller in discrete time.

Antialiasing filter is absolutely necessary when you are using an analog sensor
as feedback signal.

If the lowpass filter frequency is to "close" to the c.|. poles, include it in the
controller design.

Analysis of the effects of the transformation of the control design from
continuous to discrete time e.g., phase and amplitude margins.
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