

Web Application Report

This report includes important security information about your web application.

Security Report
This report was created by HCL AppScan Standard 10.4.0
Scan started: 11/2/2023 10:39:49 AM

Table of Contents

Introduction
General Information
Login Settings

Summary
Issue Types
Vulnerable URLs
Fix Recommendations
Security Risks
Causes
WASC Threat Classification

Issues Sorted by Issue Type
Blind SQL Injection 1

SQL Injection 4

Integer Overflow 2

Phishing Through URL Redirection 1

Reflected Cross Site Scripting 8

Cookie with Insecure or Improper or Missing SameSite attribute 2

Cross-Site Request Forgery 5

Database Error Pattern Found 6

Direct Access to Administration Pages 2

Host Header Injection 1

Inadequate Account Lockout 1

Link Injection (facilitates Cross-Site Request Forgery) 6

Missing Secure Attribute in Encrypted Session (SSL) Cookie 1

Older TLS Version is Supported 1

Phishing Through Frames 7

SHA-1 cipher suites were detected 1

Session Identifier Not Updated 1

Autocomplete HTML Attribute Not Disabled for Password Field 4

Body Parameters Accepted in Query 3

Cacheable SSL Page Found 17

Credit Card Number Pattern Found (Visa) 4

Encryption Not Enforced 1

Missing "Content-Security-Policy" header 1

Missing HttpOnly Attribute in Session Cookie 1

10/05/2024 1

Missing or insecure "X-Content-Type-Options" header 1

Missing or insecure Cross-Frame Scripting Defence 1

Missing or insecure HTTP Strict-Transport-Security Header 1

Query Parameter in SSL Request 11

Unnecessary Http Response Headers found in the Application 1

Application Error 7

Email Address Pattern Found 4

HTML Comments Sensitive Information Disclosure 4

Missing "Referrer policy" Security Header 1

Possible Server Path Disclosure Pattern Found 1

How to Fix
Blind SQL Injection
SQL Injection
Integer Overflow
Phishing Through URL Redirection
Reflected Cross Site Scripting
Cookie with Insecure or Improper or Missing SameSite attribute
Cross-Site Request Forgery
Database Error Pattern Found
Direct Access to Administration Pages
Host Header Injection
Inadequate Account Lockout
Link Injection (facilitates Cross-Site Request Forgery)
Missing Secure Attribute in Encrypted Session (SSL) Cookie
Older TLS Version is Supported
Phishing Through Frames
SHA-1 cipher suites were detected
Session Identifier Not Updated
Autocomplete HTML Attribute Not Disabled for Password Field
Body Parameters Accepted in Query
Cacheable SSL Page Found
Credit Card Number Pattern Found (Visa)
Encryption Not Enforced
Missing "Content-Security-Policy" header
Missing HttpOnly Attribute in Session Cookie
Missing or insecure "X-Content-Type-Options" header
Missing or insecure Cross-Frame Scripting Defence
Missing or insecure HTTP Strict-Transport-Security Header
Query Parameter in SSL Request
Unnecessary Http Response Headers found in the Application
Application Error
Email Address Pattern Found
HTML Comments Sensitive Information Disclosure
Missing "Referrer policy" Security Header
Possible Server Path Disclosure Pattern Found

Application Data
Cookies
JavaScripts
Parameters
Comments

10/05/2024 2

Visited URLs
Failed Requests
Filtered URLs
Components

10/05/2024 3

Introduction
This report contains the results of a web application security scan performed by HCL AppScan Standard.

Critical severity issues: 5
High severity issues: 11
Medium severity issues: 34
Low severity issues: 46
Informational severity issues: 17
Total security issues included in the report: 113
Total security issues discovered in the scan: 113

General Information
Scan file name: demo.testfire.net

Scan started: 11/2/2023 10:39:49 AM

Test policy: Default

CVSS version: 3.1

Test optimization level: Fast

Host demo.testfire.net

Port 443

Operating system: Unknown

Web server: Apache

Application server: Tomcat

Login Settings
Login method: Recorded login

Concurrent logins: Enabled

In-session detection: Enabled

In-session pattern: >Sign Off<

Tracked or session ID cookies: JSESSIONID
AltoroAccounts

Tracked or session ID parameters:

Login sequence: https://demo.testfire.net/

10/05/2024 4

https://demo.testfire.net/login.jsp
https://demo.testfire.net/doLogin
https://demo.testfire.net/bank/main.jsp

10/05/2024 5

TOC

Summary

Issue Types 34

Issue Type Number of Issues

C Blind SQL Injection 1

C SQL Injection 4

H Integer Overflow 2

H Phishing Through URL Redirection 1

H Reflected Cross Site Scripting 8

M Cookie with Insecure or Improper or Missing SameSite attribute 2

M Cross-Site Request Forgery 5

M Database Error Pattern Found 6

M Direct Access to Administration Pages 2

M Host Header Injection 1

M Inadequate Account Lockout 1

M Link Injection (facilitates Cross-Site Request Forgery) 6

M Missing Secure Attribute in Encrypted Session (SSL) Cookie 1

M Older TLS Version is Supported 1

M Phishing Through Frames 7

M SHA-1 cipher suites were detected 1

M Session Identifier Not Updated 1

L Autocomplete HTML Attribute Not Disabled for Password Field 4

L Body Parameters Accepted in Query 3

L Cacheable SSL Page Found 17

L Credit Card Number Pattern Found (Visa) 4

L Encryption Not Enforced 1

L Missing "Content-Security-Policy" header 1

L Missing HttpOnly Attribute in Session Cookie 1

L Missing or insecure "X-Content-Type-Options" header 1

L Missing or insecure Cross-Frame Scripting Defence 1

L Missing or insecure HTTP Strict-Transport-Security Header 1

L Query Parameter in SSL Request 11

L Unnecessary Http Response Headers found in the Application 1

I Application Error 7

I Email Address Pattern Found 4

10/05/2024 6

TOC

TOC

I HTML Comments Sensitive Information Disclosure 4

I Missing "Referrer policy" Security Header 1

I Possible Server Path Disclosure Pattern Found 1

Vulnerable URLs 27

URL Number of Issues

C https://demo.testfire.net/bank/ccApply 4

C https://demo.testfire.net/bank/showTransactions 9

C https://demo.testfire.net/doLogin 7

H https://demo.testfire.net/bank/doTransfer 7

H https://demo.testfire.net/bank/showAccount 6

H https://demo.testfire.net/bank/customize.jsp 9

H https://demo.testfire.net/bank/queryxpath.jsp 7

H https://demo.testfire.net/index.jsp 6

H https://demo.testfire.net/search.jsp 5

H https://demo.testfire.net/sendFeedback 5

H https://demo.testfire.net/util/serverStatusCheckService.jsp 5

M https://demo.testfire.net/ 11

M https://demo.testfire.net/admin/admin.jsp 6

M https://demo.testfire.net/admin/ 1

M https://demo.testfire.net/login.jsp 6

L https://demo.testfire.net/bank/apply.jsp 2

L https://demo.testfire.net/bank/main.jsp 2

L https://demo.testfire.net/bank/transaction.jsp 1

L https://demo.testfire.net/bank/transfer.jsp 2

L https://demo.testfire.net/feedback.jsp 2

L https://demo.testfire.net/status_check.jsp 1

L https://demo.testfire.net/subscribe.jsp 1

L https://demo.testfire.net/survey_questions.jsp 3

L https://demo.testfire.net/swagger/properties.json 2

I https://demo.testfire.net/doSubscribe 1

I https://demo.testfire.net/swagger/swagger-ui-bundle.js 1

I https://demo.testfire.net/swagger/swagger-ui-standalone-preset.js 1

Fix Recommendations 28

Remediation Task Number of Issues

H Disable redirection to external sites based on parameter values 1

10/05/2024 7

#fix_53140

TOC

H Review possible solutions for hazardous character injection 32

H Verify that parameter values are in their expected ranges and types. Do not output
debugging error messages and exceptions

9

M Add the 'Secure' attribute to all sensitive cookies 1

M Apply proper authorization to administration scripts 2

M Change server's supported ciphersuites 1

M Change session identifier values after login 1

M Construct HTTP headers very carefully, avoiding the use of non-validated/unsanitized
input data

1

M Enforce account lockout after several failed login attempts 1

M Review possible solutions for configuring SameSite Cookie attribute to recommended
values

2

M Use a different signature algorithm for the certificate. See "Fix Recommentation" for
specific server instructions

1

M Validate the value of the "Referer" header, and use a one-time-nonce for each
submitted form

5

L Add the 'HttpOnly' attribute to all session cookies 1

L Always use SSL and POST (body) parameters when sending sensitive information. 11

L Config your server to use the "Content-Security-Policy" header with secure policies 1

L Config your server to use the "Referrer Policy" header with secure policies 1

L Config your server to use the "X-Content-Type-Options" header with "nosniff" value 1

L Config your server to use the "X-Frame-Options" header with DENY or SAMEORIGIN
value

1

L Correctly set the "autocomplete" attribute to "off" 4

L Do not accept body parameters that are sent in the query string 3

L Do not allow sensitive information to leak. 1

L Download the relevant security patch for your web server or web application. 1

L Enforce the use of HTTPS when sending sensitive information 1

L Implement the HTTP Strict-Transport-Security policy with a long "max-age" 1

L Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-
cache" headers to their responses.

17

L Remove credit card numbers from your website 4

L Remove e-mail addresses from the website 4

L Remove sensitive information from HTML comments 4

Security Risks 14

Risk Number of Issues

C It is possible to view, modify or delete database entries and tables 11

H It is possible to gather sensitive debugging information 9

H It is possible to persuade a naive user to supply sensitive information such as
username, password, credit card number, social security number etc.

23

H It may be possible to steal or manipulate customer session and cookies, which might
be used to impersonate a legitimate user, allowing the hacker to view or alter user
records, and to perform transactions as that user

18

M Prevent cookie information leakage by restricting cookies to first-party or same-site 2

10/05/2024 8

#fix_52000
#fix_50300
#fix_50300
#fix_52740
#fix_54860
#fix_61754
#fix_60310
#fix_61481
#fix_61481
#fix_59220
#fix_61797
#fix_61797
#fix_61030
#fix_61030
#fix_60130
#fix_60130
#fix_52741
#fix_52720
#fix_61770
#fix_61771
#fix_61767
#fix_61763
#fix_61763
#fix_61640
#fix_61757
#fix_MA_attInformationLeakage
#fix_60510
#fix_52721
#fix_61750
#fix_60210
#fix_60210
#fix_59161
#fix_60260
#fix_50750

TOC

context, Attacks can extend to Cross-Site-Request-Forgery (CSRF) attacks if there are
no additional protections in place (such as Anti-CSRF tokens).

M It may be possible to force an end-user to execute unwanted actions on a web
application in which they're currently authenticated.

5

M It might be possible to escalate user privileges and gain administrative permissions
over the web application

3

M It is possible to deface the site content through web-cache poisoning 1

M It is possible to upload, modify or delete web pages, scripts and files on the web server 6

M It may be possible to steal user and session information (cookies) that was sent during
an encrypted session

1

L It may be possible to bypass the web application's authentication mechanism 4

L It is possible to gather sensitive information about the web application such as
usernames, passwords, machine name and/or sensitive file locations

38

L It may be possible to steal sensitive data such as credit card numbers, social security
numbers etc. that are sent unencrypted

12

I It is possible to retrieve the absolute path of the web server installation, which might
help an attacker to develop further attacks and to gain information about the file system
structure of the web application

1

Causes 32

Cause Number of Issues

C Sanitation of hazardous characters was not performed correctly on user input 20

C Sanitization of hazardous characters was not performed correctly on user input. 4

C Dynamically generating queries that include unvalidated user input can lead to SQL
injection attacks. An attacker can insert SQL commands or modifiers in the user input
that can cause the query to behave in an unsafe manner.

4

C Without sufficient validation and encapsulation of user-controllable inputs, the
generated SQL query can cause those inputs to be interpreted as SQL instead of
ordinary user data. This can be used to alter query logic to bypass security checks, or to
insert additional statements that modify the back-end database, possibly including
execution of system commands.

4

C SQL payloads can enter the system through any untrusted data, including user input,
data previously stored in the database, files, 3rd party APIs, and more.

4

H An Integer Overflow (or wraparound) occurs when a value that is too large is stored
(larger than the maximum value the variable can hold) in an integer data type (including
byte, short, long, and other types). The most significant bits of the integer are lost, and
the remaining value is relative to the minimum value (either 0 or very negative value for
signed types).

2

H The web application redirects users to an external site based on untrusted data. 1

H In particular, the submitted request was found to include a URL as a parameter. The
web application uses this value to redirect the user's browser to the specified URL.

1

H An attacker can modify this URL value to an arbitrary address. The attacker would then
cause the victim to submit the altered request, thus being redirected to a site of the
attacker's choosing.

1

H Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code
to the victim's browser, mostly using JavaScript. A vulnerable web application might
embed untrusted data in the output, without filtering or encoding it. In this way, an
attacker can inject a malicious script to the application, and the script will be returned in
the response. This will then run on the victim's browser.

8

H In particular, sanitization of hazardous characters was not performed correctly on user
input or untrusted data.

8

10/05/2024 9

H In reflected attacks, an attacker tricks an end user into sending request containing
malicious code to a vulnerable Web server, which then reflects the attack back to the
end user's browser.

8

H The server receives the malicious data directly from the HTTP request and reflects it
back in the HTTP response. The most common method of sending malicious content is
adding it as a parameter in a URL that is posted publicly or e-mailed directly to the
victim. URLs that contain the malicious script constitute the core of many phishing
schemes, whereby the convinced victim visits a URL that refers to a vulnerable site.
The site then reflects the malicious content back to the victim, and then the content is
executed by the victim's browser.

8

M Sensitive Cookie with Improper or Insecure or Missing SameSite Attribute 2

M This vulnerability arises because the application allows the user to perform some
sensitive action without verifying that the request was sent intentionally.

5

M An attacker can cause a victim's browser to emit an HTTP request to an arbitrary URL
in the application. When this request is sent from an authenticated victim's browser, it
will include the victim's session cookie or authentication header. The application will
accept this as a valid request from an authenticated user.

5

M When a web server is designed to receive a request from a client without any
mechanism for verifying that it was intentionally sent, an attacker may be able to trick a
client into making an unintentional request from a different site, which will be treated as
an authentic request by the application. This can be done by submitting a form, loading
an image, sending an XMLHttpRequest in JavaScript, and more.

5

M For example, this IMG tag can be embedded in an attacker's webpage, and the victim's
browser will submit a request to retrieve the image. This valid request will be processed
by the application, and the browser will not display a broken image. `<img
src="https://myapp.com/transfer?acct=VICTIM&amount=10000" width=0 height=0
border=0>`. As a result, money is transferred from the victim's account to the attacker,
using the victim’s session.

5

M The web server or application server are configured in an insecure way 4

M Lack of input validation and sanitization 1

M Insecure web application programming or configuration 23

M The web application sends non-secure cookies over SSL 1

L Sensitive information might have been cached by your browser 17

L The application does not use a secure channel, such as TLS/SSL, to exchange
sensitive information.

1

L An attacker with access to the network traffic can eavesdrop on packets over the
connection. This attack is not technically difficult, but does require physical access to
some portion of the network over which the sensitive data travels.

1

L The web application sets session cookies without the HttpOnly attribute 1

L Query parameters were passed over SSL, and may contain sensitive information 11

I Proper bounds checking were not performed on incoming parameter values 7

I No validation was done in order to make sure that user input matches the data type
expected

7

I Many web application programmers use HTML comments to help debug the application
when needed. While adding general comments is very useful, some programmers tend
to leave important data in client-side comments, such as filenames related to the web
application, links which were not meant to be browsed by users, old code fragments
including passwords, etc.

4

I Comments such as BUG, FIXME, and TODO may be an indication of missing security
functionality and checking. Others indicate code problems that you should fix, such as
hard-coded variables, error handling, not using stored procedures, and performance
issues. Comments in HTML and JavaScript are usually easily viewable by end users.

4

I Latest patches or hotfixes for 3rd. party products were not installed 1

10/05/2024 10

TOCWASC Threat Classification

Threat Number of Issues

Abuse of Functionality 1

Brute Force 1

Content Spoofing 13

Cross-site Request Forgery 5

Cross-site Scripting 8

Information Leakage 64

Integer Overflows 2

Predictable Resource Location 2

Server Misconfiguration 4

Session Fixation 1

SQL Injection 11

URL Redirector Abuse 1

10/05/2024 11

http://projects.webappsec.org/Abuse-of-Functionality
http://projects.webappsec.org/Brute-Force
http://projects.webappsec.org/Content-Spoofing
http://projects.webappsec.org/Cross-Site-Request-Forgery
http://projects.webappsec.org/Cross-Site Scripting
http://projects.webappsec.org/Information-Leakage
http://projects.webappsec.org/Integer-Overflows
http://projects.webappsec.org/Predictable-Resource-Location
http://projects.webappsec.org/Server-Misconfiguration
http://projects.webappsec.org/Session-Fixation
http://projects.webappsec.org/SQL-Injection
http://projects.webappsec.org/URL-Redirector-Abuse

TOC

TOC

Issues Sorted by Issue Type

C Blind SQL Injection 1 TOC

Issue 1 of 1

Blind SQL Injection
Severity: Critical

CVSS Score: 9,4

URL: https://demo.testfire.net/bank/ccApply

Entity: passwd (Parameter)

Risk: It is possible to view, modify or delete database entries and tables

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter passwd manipulated from: **CONFIDENTIAL 0** to: %27+%7C%7C+%27%27+%7C%7C+%27**CONFIDENTIAL 0**

Parameter passwd manipulated from: **CONFIDENTIAL 0** to: %27+%7C%7C+%27+%7C%7C+%27**CONFIDENTIAL 0**

Parameter passwd manipulated from: **CONFIDENTIAL 0** to: **CONFIDENTIAL 0**%27+%7C%7C+%27+%7C%7C+%27

Parameter passwd manipulated from: **CONFIDENTIAL 0** to: **CONFIDENTIAL 0**%27+%7C%7C+%27%27+%7C%7C+%27

Reasoning: The test result seems to indicate a vulnerability because it shows that values can be appended to parameter values,
indicating that they were embedded in an SQL query. In this test, three (or sometimes four) requests are sent. The last
is logically equal to the original, and the next-to-last is different. Any others are for control purposes. A comparison of
the last two responses with the first (the last is similar to it, and the next-to-last is different) indicates that the
application is vulnerable.

C SQL Injection 4 TOC

Issue 1 of 4

10/05/2024 12

https://demo.testfire.net/bank/ccApply

TOC

SQL Injection
Severity: Critical

CVSS Score: 9,4

URL: https://demo.testfire.net/bank/showTransactions

Entity: startDate (Parameter)

Risk: It is possible to view, modify or delete database entries and tables

Cause: Sanitization of hazardous characters was not performed correctly on user input.
Dynamically generating queries that include unvalidated user input can lead to SQL injection attacks. An attacker can insert
SQL commands or modifiers in the user input that can cause the query to behave in an unsafe manner.
Without sufficient validation and encapsulation of user-controllable inputs, the generated SQL query can cause those inputs to
be interpreted as SQL instead of ordinary user data. This can be used to alter query logic to bypass security checks, or to
insert additional statements that modify the back-end database, possibly including execution of system commands.
SQL payloads can enter the system through any untrusted data, including user input, data previously stored in the database,
files, 3rd party APIs, and more.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter startDate manipulated from: 2019-01-01 to: 2019-01-01\'%20having%201=1--%20

Reasoning: The test result seems to indicate a vulnerability because the response contains SQL Server errors. This suggests that
the test managed to penetrate the application and reach the SQL query itself, by injecting hazardous characters.

Issue 2 of 4

Raw Test Response:

...

 org.apache.jasper.servlet.JspServlet.service(JspServlet.java:339)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:731)
 org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:52)
 com.ibm.security.appscan.altoromutual.filter.AuthFilter.doFilter(AuthFilter.java:67)
 com.ibm.security.appscan.altoromutual.servlet.AccountViewServlet.doPost(AccountViewServlet.java:78)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:650)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:731)
 org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:52)
 com.ibm.security.appscan.altoromutual.filter.AuthFilter.doFilter(AuthFilter.java:67)
</pre></p><p>Root Cause <pre>java.sql.SQLSyntaxErrorException: Syntax error: Encountered "having" at line
1, column 141.
 org.apache.derby.impl.jdbc.SQLExceptionFactory40.getSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.Util.generateCsSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.TransactionResourceImpl.wrapInSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.TransactionResourceImpl.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedConnection.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.ConnectionChild.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedStatement.execute(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedStatement.executeQuery(Unknown Source)
 com.ibm.security.appscan.altoromutual.util.DBUtil.getTransactions(DBUtil.java:403)
...

10/05/2024 13

https://demo.testfire.net/bank/showTransactions

TOC

SQL Injection
Severity: Critical

CVSS Score: 9,4

URL: https://demo.testfire.net/bank/showTransactions

Entity: endDate (Parameter)

Risk: It is possible to view, modify or delete database entries and tables

Cause: Sanitization of hazardous characters was not performed correctly on user input.
Dynamically generating queries that include unvalidated user input can lead to SQL injection attacks. An attacker can insert
SQL commands or modifiers in the user input that can cause the query to behave in an unsafe manner.
Without sufficient validation and encapsulation of user-controllable inputs, the generated SQL query can cause those inputs to
be interpreted as SQL instead of ordinary user data. This can be used to alter query logic to bypass security checks, or to
insert additional statements that modify the back-end database, possibly including execution of system commands.
SQL payloads can enter the system through any untrusted data, including user input, data previously stored in the database,
files, 3rd party APIs, and more.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter endDate manipulated from: 2019-01-01 to: 2019-01-01\'%20having%201=1--%20

Reasoning: The test result seems to indicate a vulnerability because the response contains SQL Server errors. This suggests that
the test managed to penetrate the application and reach the SQL query itself, by injecting hazardous characters.

Issue 3 of 4

Raw Test Response:

...

 org.apache.jasper.servlet.JspServlet.service(JspServlet.java:339)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:731)
 org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:52)
 com.ibm.security.appscan.altoromutual.filter.AuthFilter.doFilter(AuthFilter.java:67)
 com.ibm.security.appscan.altoromutual.servlet.AccountViewServlet.doPost(AccountViewServlet.java:78)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:650)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:731)
 org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:52)
 com.ibm.security.appscan.altoromutual.filter.AuthFilter.doFilter(AuthFilter.java:67)
</pre></p><p>Root Cause <pre>java.sql.SQLSyntaxErrorException: Syntax error: Encountered "having" at line
1, column 167.
 org.apache.derby.impl.jdbc.SQLExceptionFactory40.getSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.Util.generateCsSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.TransactionResourceImpl.wrapInSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.TransactionResourceImpl.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedConnection.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.ConnectionChild.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedStatement.execute(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedStatement.executeQuery(Unknown Source)
 com.ibm.security.appscan.altoromutual.util.DBUtil.getTransactions(DBUtil.java:403)
...

10/05/2024 14

https://demo.testfire.net/bank/showTransactions

TOC

SQL Injection
Severity: Critical

CVSS Score: 9,4

URL: https://demo.testfire.net/doLogin

Entity: uid (Parameter)

Risk: It is possible to view, modify or delete database entries and tables

Cause: Sanitization of hazardous characters was not performed correctly on user input.
Dynamically generating queries that include unvalidated user input can lead to SQL injection attacks. An attacker can insert
SQL commands or modifiers in the user input that can cause the query to behave in an unsafe manner.
Without sufficient validation and encapsulation of user-controllable inputs, the generated SQL query can cause those inputs to
be interpreted as SQL instead of ordinary user data. This can be used to alter query logic to bypass security checks, or to
insert additional statements that modify the back-end database, possibly including execution of system commands.
SQL payloads can enter the system through any untrusted data, including user input, data previously stored in the database,
files, 3rd party APIs, and more.

Fix: Review possible solutions for hazardous character injection

Difference: Cookie JSESSIONID removed from request: 6354734A2B825ABCB2DC812C04629BE8

Parameter uid manipulated from: jsmith to: jsmith%27%3B+select+*+from+master..sysmessages--

Reasoning: The test result seems to indicate a vulnerability because the response contains SQL Server errors. This suggests that
the test managed to penetrate the application and reach the SQL query itself, by injecting hazardous characters.

Issue 4 of 4

Raw Test Response:

...

<!-- TOC END -->

 <td valign="top" colspan="3" class="bb">
 <div class="fl" style="width: 99%;">

 <h1>Online Banking Login</h1>

 <!-- To get the latest admin login, please contact SiteOps at 415-555-6159 -->
 <p>
 Syntax error: Encountered ";" at line 1, column 52.
 </p>

 <form action="doLogin" method="post" name="login" id="login" onsubmit="return (confirminput(login));">
 <table>
 <tr>
 <td>
 Username:
 </td>
 <td>

...

10/05/2024 15

https://demo.testfire.net/doLogin

SQL Injection
Severity: Critical

CVSS Score: 9,4

URL: https://demo.testfire.net/doLogin

Entity: passw (Parameter)

Risk: It is possible to view, modify or delete database entries and tables

Cause: Sanitization of hazardous characters was not performed correctly on user input.
Dynamically generating queries that include unvalidated user input can lead to SQL injection attacks. An attacker can insert
SQL commands or modifiers in the user input that can cause the query to behave in an unsafe manner.
Without sufficient validation and encapsulation of user-controllable inputs, the generated SQL query can cause those inputs to
be interpreted as SQL instead of ordinary user data. This can be used to alter query logic to bypass security checks, or to
insert additional statements that modify the back-end database, possibly including execution of system commands.
SQL payloads can enter the system through any untrusted data, including user input, data previously stored in the database,
files, 3rd party APIs, and more.

Fix: Review possible solutions for hazardous character injection

Difference: Cookie JSESSIONID removed from request: 6354734A2B825ABCB2DC812C04629BE8

Parameter passw manipulated from: **CONFIDENTIAL 0** to:
CONFIDENTIAL 0%27%3B+select+*+from+master..sysmessages--

Reasoning: The test result seems to indicate a vulnerability because the response contains SQL Server errors. This suggests that
the test managed to penetrate the application and reach the SQL query itself, by injecting hazardous characters.

Raw Test Response:

...

<!-- TOC END -->

 <td valign="top" colspan="3" class="bb">
 <div class="fl" style="width: 99%;">

 <h1>Online Banking Login</h1>

 <!-- To get the latest admin login, please contact SiteOps at 415-555-6159 -->
 <p>
 Syntax error: Encountered ";" at line 1, column 76.
 </p>

 <form action="doLogin" method="post" name="login" id="login" onsubmit="return (confirminput(login));">
 <table>
 <tr>
 <td>
 Username:
 </td>
 <td>

...

10/05/2024 16

https://demo.testfire.net/doLogin

TOC

H Integer Overflow 2 TOC

Issue 1 of 2

Integer Overflow
Severity: High

CVSS Score: 8,6

URL: https://demo.testfire.net/bank/showAccount

Entity: listAccounts (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: An Integer Overflow (or wraparound) occurs when a value that is too large is stored (larger than the maximum value the
variable can hold) in an integer data type (including byte, short, long, and other types). The most significant bits of the integer
are lost, and the remaining value is relative to the minimum value (either 0 or very negative value for signed types).

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter listAccounts manipulated from: 800003 to: 99999999999999999999

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

Raw Test Response:

...

Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Referer: https://demo.testfire.net/bank/main.jsp
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 0

HTTP/1.1 500 Internal Server Error
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=utf-8
Content-Language: en
Content-Length: 3642
Date: Thu, 02 Nov 2023 09:09:21 GMT
Connection: close

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">H1 {font-
family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-size:22px;} H2 {font-family:Tahoma,Arial,sans-
serif;color:white;background-color:#525D76;font-size:16px;} H3 {font-family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:14px;} BODY
...

10/05/2024 17

https://demo.testfire.net/bank/showAccount

TOC

TOC

Issue 2 of 2

Integer Overflow
Severity: High

CVSS Score: 8,6

URL: https://demo.testfire.net/bank/doTransfer

Entity: toAccount (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: An Integer Overflow (or wraparound) occurs when a value that is too large is stored (larger than the maximum value the
variable can hold) in an integer data type (including byte, short, long, and other types). The most significant bits of the integer
are lost, and the remaining value is relative to the minimum value (either 0 or very negative value for signed types).

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter toAccount manipulated from: 800003 to: -99999999999999999999

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

H Phishing Through URL Redirection 1 TOC

Issue 1 of 1

Raw Test Response:

...

Referer: https://demo.testfire.net/bank/transfer.jsp
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 94

fromAccount=800003&toAccount=-99999999999999999999&transferAmount=1234&transfer=Transfer+Money

HTTP/1.1 500 Internal Server Error
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=utf-8
Content-Language: en
Content-Length: 1815
Date: Thu, 02 Nov 2023 09:12:08 GMT
Connection: close

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">H1 {font-
family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-size:22px;} H2 {font-family:Tahoma,Arial,sans-
serif;color:white;background-color:#525D76;font-size:16px;} H3 {font-family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:14px;} BODY
...

10/05/2024 18

https://demo.testfire.net/bank/doTransfer

TOC

Phishing Through URL Redirection
Severity: High

CVSS Score: 8,2

URL: https://demo.testfire.net/bank/customize.jsp

Entity: content (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: The web application redirects users to an external site based on untrusted data.
In particular, the submitted request was found to include a URL as a parameter. The web application uses this value to redirect
the user's browser to the specified URL.
An attacker can modify this URL value to an arbitrary address. The attacker would then cause the victim to submit the altered
request, thus being redirected to a site of the attacker's choosing.

Fix: Disable redirection to external sites based on parameter values

Difference: Parameter content manipulated from: customize.jsp to: http://demo.testfire.net

Reasoning: The test result seems to indicate a vulnerability because the response contains a redirection to demo.testfire.net,
showing that the application allows redirection to external sites, a weakness which can be exploited for phishing
attacks.

H Reflected Cross Site Scripting 8 TOC

Issue 1 of 8

Reflected Cross Site Scripting
Severity: High

CVSS Score: 7,1

URL: https://demo.testfire.net/sendFeedback

Entity: sendFeedback (Page)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

10/05/2024 19

https://demo.testfire.net/bank/customize.jsp
https://demo.testfire.net/sendFeedback

Difference: Parameter cfile manipulated from: comments.txt to: %3E%22%27%3E%3Cscript%3Ealert%28237%29%3C%2Fscript%3E

Parameter name manipulated from: John+Smith to: %3E%22%27%3E%3Cscript%3Ealert%28237%29%3C%2Fscript%3E

Parameter email_addr manipulated from: 753+Main+Street to:
%3E%22%27%3E%3Cscript%3Ealert%28237%29%3C%2Fscript%3E

Parameter subject manipulated from: 1234 to: %3E%22%27%3E%3Cscript%3Ealert%28237%29%3C%2Fscript%3E

Parameter comments manipulated from: 1234 to: %3E%22%27%3E%3Cscript%3Ealert%28237%29%3C%2Fscript%3E

Parameter submit manipulated from: +Submit+ to: %3E%22%27%3E%3Cscript%3Ealert%28237%29%3C%2Fscript%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Test Response

Raw Test Response:

...

Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 369

cfile=%3E%22%27%3E%3Cscript%3Ealert%28237%29%3C%2Fscript%3E&name=%3E%22%27%3E%3Cscript%3Ealert%28237%29%3C%2Fscript%3E&emai
l_addr=%3E%22%27%3E%3Cscript%3Ealert%28237%29%3C%2Fscript%3E&subject=%3E%22%27%3E%3Cscript%3Ealert%28237%29%3C%2Fscript%3E&
comments=%3E%22%27%3E%3Cscript%3Ealert%28237%29%3C%2Fscript%3E&submit=%3E%22%27%3E%3Cscript%3Ealert%28237%29%3C%2Fscript%3E

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 7182
Date: Thu, 02 Nov 2023 09:04:22 GMT

Simulation of the pop-up that
appears when this page is
opened in a browser

237

10/05/2024 20

TOCIssue 2 of 8

Reflected Cross Site Scripting
Severity: High

CVSS Score: 7,1

URL: https://demo.testfire.net/search.jsp

Entity: query (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter query manipulated from: 1234 to: 1234%3Cscript%3Ealert%281207%29%3C%2Fscript%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

...

...

 <td valign="top" colspan="3" class="bb">

 <div class="fl" style="width: 99%;">

 <h1>Thank You</h1>

 <p>Thank you for your comments, >"'><script>alert(237)</script>. They will be reviewed by our Customer Service staff
and given the full attention that they deserve.

 However, the email you gave is incorrect () and you will not receive a response.

 </p>

 </div>
 </td>
</div>

...

Test Response

10/05/2024 21

https://demo.testfire.net/search.jsp

Raw Test Response:

...

Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Referer: https://demo.testfire.net/bank/main.jsp
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 6997
Date: Thu, 02 Nov 2023 09:08:35 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

...

...

 <div class="fl" style="width: 99%;">

Simulation of the pop-up that
appears when this page is
opened in a browser

1207

10/05/2024 22

TOCIssue 3 of 8

Reflected Cross Site Scripting
Severity: High

CVSS Score: 7,1

URL: https://demo.testfire.net/bank/customize.jsp

Entity: customize.jsp (Page)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter content manipulated from: customize.jsp to: %3E%22%27%3E%3Cscript%3Ealert%28358%29%3C%2Fscript%3E

Parameter lang manipulated from: international to: %3E%22%27%3E%3Cscript%3Ealert%28358%29%3C%2Fscript%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

 <h1>Search Results</h1>

 <p>No results were found for the query:

 1234<script>alert(1207)</script>

 </div>
 </td>
</div>

<!-- BEGIN FOOTER -->

...

Test Response

10/05/2024 23

https://demo.testfire.net/bank/customize.jsp

Raw Test Response:

...

Referer: https://demo.testfire.net/bank/customize.jsp
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 5584
Date: Thu, 02 Nov 2023 09:05:21 GMT

...

...

 <td valign="top" colspan="3" class="bb">
 <div class="fl" style="width: 99%;">

 <h1>Customize Site Language</h1>

 <form method="post">
 <p>
 Current Language: >"'><script>alert(358)</script>
 </p>

Simulation of the pop-up that
appears when this page is
opened in a browser

358

10/05/2024 24

TOCIssue 4 of 8

Reflected Cross Site Scripting
Severity: High

CVSS Score: 7,1

URL: https://demo.testfire.net/util/serverStatusCheckService.jsp

Entity: HostName (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter HostName manipulated from: AltoroMutual to:
AltoroMutual%5C%3C%2Fscript%5C%3E%5C%3Csvg%2Fonload%3Dalert%282132%29+width%3D100%5C%2F%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

 <p>
 You can change the language setting by choosing:
 </p>
 <p>
 International
 English
 </p>

...

Test Response

10/05/2024 25

https://demo.testfire.net/util/serverStatusCheckService.jsp

TOCIssue 5 of 8

Raw Test Response:

...

Sec-Fetch-Mode: cors
Sec-Fetch-Dest: empty
Referer: https://demo.testfire.net/status_check.jsp
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 107
Date: Thu, 02 Nov 2023 09:11:26 GMT

{
 "HostName": "AltoroMutual\</script\>\<svg/onload=alert(2132) width=100\/>",
 "HostStatus": "OK"
}
...

Simulation of the pop-up that
appears when this page is
opened in a browser

2132

10/05/2024 26

Reflected Cross Site Scripting
Severity: High

CVSS Score: 7,1

URL: https://demo.testfire.net/index.jsp

Entity: content (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter content manipulated from: personal.htm to:
personal.htmhj%3Cscript%0A%3Eeval%28%27ale%27%2B%27rt%27%2B%27%28%27138%27%29%27%29%3C%2Fscript%3Ehj

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Test Response

Simulation of the pop-up that
appears when this page is
opened in a browser

138

10/05/2024 27

https://demo.testfire.net/index.jsp

TOCIssue 6 of 8

Reflected Cross Site Scripting
Severity: High

CVSS Score: 7,1

URL: https://demo.testfire.net/sendFeedback

Entity: name (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter name manipulated from: John+Smith to: John+Smith<script>alert(1508)</script>

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

Raw Test Response:

...

 </td>
<!-- TOC END -->

 <td valign="top" colspan="3" class="bb">

 <p>Failed due to The requested resource (/static/personal.htmhj<script
>eval('ale'+'rt'+'('138')')</script>hj) is not available</p>

 </td>

</div>

<!-- BEGIN FOOTER -->

...

Test Response

10/05/2024 28

https://demo.testfire.net/sendFeedback

Raw Test Response:

...

Sec-Fetch-Dest: document
Referer: https://demo.testfire.net/feedback.jsp
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 132

cfile=comments.txt&name=John+Smith<script>alert(1508)
</script>&email_addr=753+Main+Street&subject=1234&comments=1234&submit=+Submit+

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 7204
Date: Thu, 02 Nov 2023 09:09:08 GMT

...

...

 <td valign="top" colspan="3" class="bb">

Simulation of the pop-up that
appears when this page is
opened in a browser

1508

10/05/2024 29

TOCIssue 7 of 8

Reflected Cross Site Scripting
Severity: High

CVSS Score: 7,1

URL: https://demo.testfire.net/bank/queryxpath.jsp

Entity: query (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter query manipulated from: Enter title (e.g. Watchfire) to:
Enter+title+%28e.g.+Watchfire%29%22+onMouseOver%3Dalert%282236%29%2F%2F

Reasoning: The test successfully embedded a script in the response, which will be executed once the user activates the
OnMouseOver function (i.e., hovers with the mouse cursor over the vulnerable control). This means that the
application is vulnerable to Cross-Site Scripting attacks.

 <div class="fl" style="width: 99%;">

 <h1>Thank You</h1>

 <p>Thank you for your comments, John Smith<script>alert(1508)</script>. They will be reviewed by our Customer Service
staff and given the full attention that they deserve.

 However, the email you gave is incorrect (753 main street) and you will not receive a response.

 </p>

 </div>
 </td>
</div>

...

Test Response

10/05/2024 30

https://demo.testfire.net/bank/queryxpath.jsp

Raw Test Response:

...

Referer: https://demo.testfire.net/bank/queryxpath.jsp
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 5658
Date: Thu, 02 Nov 2023 09:11:43 GMT

...

...

<!-- MEMBER TOC END -->
 <td valign="top" colspan="3" class="bb">

 <div class="fl" style="width: 99%;">
 <h1>Search News Articles</h1>
 <form id="QueryXpath" method="get" action="https://demo.testfire.net/bank/queryxpath.jsp">
 Search our news articles database

 <input type="hidden" id=content" name="content" value="queryxpath.jsp"/>
 <input type="text" id="query" name="query" width=450 value="Enter title (e.g. Watchfire)" onMouseOver=alert(2236)//"/>
 <input type="submit" width=75 id="Button1" value="Query">

Simulation of the pop-up that
appears when this page is
opened in a browser

2236

10/05/2024 31

TOCIssue 8 of 8

Reflected Cross Site Scripting
Severity: High

CVSS Score: 7,1

URL: https://demo.testfire.net/bank/customize.jsp

Entity: lang (Parameter)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using
JavaScript. A vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way,
an attacker can inject a malicious script to the application, and the script will be returned in the response. This will then run on
the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server,
which then reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most
common method of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to
the victim. URLs that contain the malicious script constitute the core of many phishing schemes, whereby the convinced victim
visits a URL that refers to a vulnerable site. The site then reflects the malicious content back to the victim, and then the content
is executed by the victim's browser.

Fix: Review possible solutions for hazardous character injection

Difference: Parameter lang manipulated from: international to: international%3Cimg+src%3Djavascript%3Aalert%282527%29%3E

Reasoning: The test result seems to indicate a vulnerability because Appscan successfully embedded a script in the response,
which will be executed when the page loads in the user's browser.

 News title not found, try again

 </form>
 </div>
 </td>
</div>

...

Test Response

10/05/2024 32

https://demo.testfire.net/bank/customize.jsp

Raw Test Response:

...

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: https://demo.testfire.net/bank/customize.jsp?content=customize.jsp&lang=international
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 5598
Date: Thu, 02 Nov 2023 09:12:24 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

...

...

 <td valign="top" colspan="3" class="bb">
 <div class="fl" style="width: 99%;">

 <h1>Customize Site Language</h1>

Simulation of the pop-up that
appears when this page is
opened in a browser

2527

10/05/2024 33

 <form method="post">
 <p>
 Current Language: international
 </p>

 <p>
 You can change the language setting by choosing:
 </p>
 <p>
 International
 English
 </p>

...

10/05/2024 34

TOC

TOC

M Cookie with Insecure or Improper or Missing SameSite attribute 2 TOC

Issue 1 of 2

Cookie with Insecure or Improper or Missing SameSite attribute
Severity: Medium

CVSS Score: 4,7

URL: https://demo.testfire.net/

Entity: JSESSIONID (Cookie)

Risk: Prevent cookie information leakage by restricting cookies to first-party or same-site context, Attacks can extend to Cross-Site-
Request-Forgery (CSRF) attacks if there are no additional protections in place (such as Anti-CSRF tokens).

Cause: Sensitive Cookie with Improper or Insecure or Missing SameSite Attribute

Fix: Review possible solutions for configuring SameSite Cookie attribute to recommended values

Difference:

Reasoning: The response contains Sensitive Cookie with Insecure or Improper or Missing SameSite attribute, which may lead to
Cookie information leakage, which may extend to Cross-Site-Request-Forgery(CSRF) attacks if there are no additional
protections in place.

Issue 2 of 2

Original Response

...

Accept-Language: en-US
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:02:19 GMT
Set-Cookie: JSESSIONID=992EEE657118C508CE46528D92B33F19; Path=/; Secure; HttpOnly

...

10/05/2024 35

https://demo.testfire.net/

TOC

Cookie with Insecure or Improper or Missing SameSite attribute
Severity: Medium

CVSS Score: 4,7

URL: https://demo.testfire.net/

Entity: AltoroAccounts (Cookie)

Risk: Prevent cookie information leakage by restricting cookies to first-party or same-site context, Attacks can extend to Cross-Site-
Request-Forgery (CSRF) attacks if there are no additional protections in place (such as Anti-CSRF tokens).

Cause: Sensitive Cookie with Improper or Insecure or Missing SameSite Attribute

Fix: Review possible solutions for configuring SameSite Cookie attribute to recommended values

Difference: Cookie JSESSIONID removed from request: 6354734A2B825ABCB2DC812C04629BE8

Reasoning: The response contains Sensitive Cookie with Insecure or Improper or Missing SameSite attribute, which may lead to
Cookie information leakage, which may extend to Cross-Site-Request-Forgery(CSRF) attacks if there are no additional
protections in place.

M Cross-Site Request Forgery 5 TOC

Issue 1 of 5

Original Response

...

uid=jsmith&passw=**CONFIDENTIAL 0**&btnSubmit=Login

HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
Location: /bank/main.jsp
Content-Length: 0
Date: Thu, 02 Nov 2023 09:16:37 GMT
Set-Cookie: JSESSIONID=A70AB3F35180E4CF9391E8983E9C3583; Path=/; Secure; HttpOnly
Set-Cookie:
AltoroAccounts="ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjguMjkxMjcyMDg1NTE3OTNFMjB8NDUzOTA
4MjAzOTM5NjI4OH5DcmVkaXQgQ2FyZH4tMS45OTk1NDM0MDEyNzg3MTIzMkUxOHw="; Version=1

GET /bank/main.jsp HTTP/1.1
Cookie: JSESSIONID=A70AB3F35180E4CF9391E8983E9C3583;
AltoroAccounts="ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjguMjkxMjcyMDg1NTE3OTNFMjB8NDUzOTA
4MjAzOTM5NjI4OH5DcmVkaXQgQ2FyZH4tMS45OTk1NDM0MDEyNzg3MTIzMkUxOHw="
Accept-Language: en-US
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: https://demo.testfire.net/doLogin

...

10/05/2024 36

https://demo.testfire.net/

Cross-Site Request Forgery
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/bank/showTransactions

Entity: showTransactions (Page)

Risk: It may be possible to force an end-user to execute unwanted actions on a web application in which they're currently
authenticated.

Cause: This vulnerability arises because the application allows the user to perform some sensitive action without verifying that the
request was sent intentionally.
An attacker can cause a victim's browser to emit an HTTP request to an arbitrary URL in the application. When this request is
sent from an authenticated victim's browser, it will include the victim's session cookie or authentication header. The application
will accept this as a valid request from an authenticated user.
When a web server is designed to receive a request from a client without any mechanism for verifying that it was intentionally
sent, an attacker may be able to trick a client into making an unintentional request from a different site, which will be treated as
an authentic request by the application. This can be done by submitting a form, loading an image, sending an XMLHttpRequest
in JavaScript, and more.
For example, this IMG tag can be embedded in an attacker's webpage, and the victim's browser will submit a request to
retrieve the image. This valid request will be processed by the application, and the browser will not display a broken image.
``. As a result, money is
transferred from the victim's account to the attacker, using the victim’s session.

Fix: Validate the value of the "Referer" header, and use a one-time-nonce for each submitted form

Difference: Header sec-ch-ua removed from request: "Not)A;Brand";v="24", "Chromium";v="116"

Header sec-ch-ua-mobile removed from request: ?0

Header sec-ch-ua-platform removed from request: "Windows"

Header Upgrade-Insecure-Requests removed from request: 1

Header Origin manipulated from: https://demo.testfire.net to: https://bogus.origin.hcl.com

Header Sec-Fetch-Site removed from request: same-origin

Header Sec-Fetch-Mode removed from request: navigate

Header Sec-Fetch-User removed from request: ?1

Header Sec-Fetch-Dest removed from request: document

Header Referer manipulated from: https://demo.testfire.net/bank/transaction.jsp to:
https://bogus.referer.hcl.com

Reasoning: The test result seems to indicate a vulnerability because the Test Response is identical to the Original Response,
indicating that the Cross-Site Request Forgery attempt was successful, even though it included a fictive 'Referer'
header.

Original Response Test Response

≈

10/05/2024 37

https://demo.testfire.net/bank/showTransactions

TOC

TOC

Issue 2 of 5

Cross-Site Request Forgery
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/bank/doTransfer

Entity: doTransfer (Page)

Risk: It may be possible to force an end-user to execute unwanted actions on a web application in which they're currently
authenticated.

Cause: This vulnerability arises because the application allows the user to perform some sensitive action without verifying that the
request was sent intentionally.
An attacker can cause a victim's browser to emit an HTTP request to an arbitrary URL in the application. When this request is
sent from an authenticated victim's browser, it will include the victim's session cookie or authentication header. The application
will accept this as a valid request from an authenticated user.
When a web server is designed to receive a request from a client without any mechanism for verifying that it was intentionally
sent, an attacker may be able to trick a client into making an unintentional request from a different site, which will be treated as
an authentic request by the application. This can be done by submitting a form, loading an image, sending an XMLHttpRequest
in JavaScript, and more.
For example, this IMG tag can be embedded in an attacker's webpage, and the victim's browser will submit a request to
retrieve the image. This valid request will be processed by the application, and the browser will not display a broken image.
``. As a result, money is
transferred from the victim's account to the attacker, using the victim’s session.

Fix: Validate the value of the "Referer" header, and use a one-time-nonce for each submitted form

Difference: Header Referer manipulated from: https://demo.testfire.net/bank/transfer.jsp to:
https://bogus.referer.hcl.com

Header Origin added to request: https://bogus.origin.hcl.com

Reasoning: The test result seems to indicate a vulnerability because the Test Response is identical to the Original Response,
indicating that the Cross-Site Request Forgery attempt was successful, even though it included a fictive 'Referer'
header.

Issue 3 of 5

Original Response Test Response

≈

10/05/2024 38

https://demo.testfire.net/bank/doTransfer

TOC

Cross-Site Request Forgery
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/bank/customize.jsp

Entity: customize.jsp (Page)

Risk: It may be possible to force an end-user to execute unwanted actions on a web application in which they're currently
authenticated.

Cause: This vulnerability arises because the application allows the user to perform some sensitive action without verifying that the
request was sent intentionally.
An attacker can cause a victim's browser to emit an HTTP request to an arbitrary URL in the application. When this request is
sent from an authenticated victim's browser, it will include the victim's session cookie or authentication header. The application
will accept this as a valid request from an authenticated user.
When a web server is designed to receive a request from a client without any mechanism for verifying that it was intentionally
sent, an attacker may be able to trick a client into making an unintentional request from a different site, which will be treated as
an authentic request by the application. This can be done by submitting a form, loading an image, sending an XMLHttpRequest
in JavaScript, and more.
For example, this IMG tag can be embedded in an attacker's webpage, and the victim's browser will submit a request to
retrieve the image. This valid request will be processed by the application, and the browser will not display a broken image.
``. As a result, money is
transferred from the victim's account to the attacker, using the victim’s session.

Fix: Validate the value of the "Referer" header, and use a one-time-nonce for each submitted form

Difference: Header Referer manipulated from: https://demo.testfire.net/bank/customize.jsp to:
https://bogus.referer.hcl.com

Header Origin added to request: https://bogus.origin.hcl.com

Reasoning: The test result seems to indicate a vulnerability because the Test Response is identical to the Original Response,
indicating that the Cross-Site Request Forgery attempt was successful, even though it included a fictive 'Referer'
header.

Issue 4 of 5

Original Response Test Response

≈

10/05/2024 39

https://demo.testfire.net/bank/customize.jsp

Cross-Site Request Forgery
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/bank/ccApply

Entity: ccApply (Page)

Risk: It may be possible to force an end-user to execute unwanted actions on a web application in which they're currently
authenticated.

Cause: This vulnerability arises because the application allows the user to perform some sensitive action without verifying that the
request was sent intentionally.
An attacker can cause a victim's browser to emit an HTTP request to an arbitrary URL in the application. When this request is
sent from an authenticated victim's browser, it will include the victim's session cookie or authentication header. The application
will accept this as a valid request from an authenticated user.
When a web server is designed to receive a request from a client without any mechanism for verifying that it was intentionally
sent, an attacker may be able to trick a client into making an unintentional request from a different site, which will be treated as
an authentic request by the application. This can be done by submitting a form, loading an image, sending an XMLHttpRequest
in JavaScript, and more.
For example, this IMG tag can be embedded in an attacker's webpage, and the victim's browser will submit a request to
retrieve the image. This valid request will be processed by the application, and the browser will not display a broken image.
``. As a result, money is
transferred from the victim's account to the attacker, using the victim’s session.

Fix: Validate the value of the "Referer" header, and use a one-time-nonce for each submitted form

Difference: Header sec-ch-ua removed from request: "Not)A;Brand";v="24", "Chromium";v="116"

Header sec-ch-ua-mobile removed from request: ?0

Header sec-ch-ua-platform removed from request: "Windows"

Header Upgrade-Insecure-Requests removed from request: 1

Header Origin manipulated from: https://demo.testfire.net to: https://bogus.origin.hcl.com

Header Sec-Fetch-Site removed from request: same-origin

Header Sec-Fetch-Mode removed from request: navigate

Header Sec-Fetch-User removed from request: ?1

Header Sec-Fetch-Dest removed from request: document

Header Referer manipulated from: https://demo.testfire.net/bank/apply.jsp to: https://bogus.referer.hcl.com

Reasoning: The test result seems to indicate a vulnerability because the Test Response is identical to the Original Response,
indicating that the Cross-Site Request Forgery attempt was successful, even though it included a fictive 'Referer'
header.

Original Response Test Response

≈

10/05/2024 40

https://demo.testfire.net/bank/ccApply

TOCIssue 5 of 5

Cross-Site Request Forgery
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/admin/admin.jsp

Entity: admin.jsp (Page)

Risk: It may be possible to force an end-user to execute unwanted actions on a web application in which they're currently
authenticated.

Cause: This vulnerability arises because the application allows the user to perform some sensitive action without verifying that the
request was sent intentionally.
An attacker can cause a victim's browser to emit an HTTP request to an arbitrary URL in the application. When this request is
sent from an authenticated victim's browser, it will include the victim's session cookie or authentication header. The application
will accept this as a valid request from an authenticated user.
When a web server is designed to receive a request from a client without any mechanism for verifying that it was intentionally
sent, an attacker may be able to trick a client into making an unintentional request from a different site, which will be treated as
an authentic request by the application. This can be done by submitting a form, loading an image, sending an XMLHttpRequest
in JavaScript, and more.
For example, this IMG tag can be embedded in an attacker's webpage, and the victim's browser will submit a request to
retrieve the image. This valid request will be processed by the application, and the browser will not display a broken image.
``. As a result, money is
transferred from the victim's account to the attacker, using the victim’s session.

Fix: Validate the value of the "Referer" header, and use a one-time-nonce for each submitted form

Difference: Header Referer manipulated from: https://demo.testfire.net/admin/admin.jsp to: https://bogus.referer.hcl.com

Header Origin added to request: https://bogus.origin.hcl.com

Reasoning: The test result seems to indicate a vulnerability because the Test Response is identical to the Original Response,
indicating that the Cross-Site Request Forgery attempt was successful, even though it included a fictive 'Referer'
header.

M Database Error Pattern Found 6 TOC

Original Response Test Response

≈

10/05/2024 41

https://demo.testfire.net/admin/admin.jsp

TOC

TOC

Issue 1 of 6

Database Error Pattern Found
Severity: Medium

CVSS Score: 5,3

URL: https://demo.testfire.net/bank/showTransactions

Entity: showTransactions (Global)

Risk: It is possible to view, modify or delete database entries and tables

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter startDate manipulated from: 2019-01-01 to: %3E%22%27%3E%3Cscript%3Ealert%28340%29%3C%2Fscript%3E

Parameter endDate manipulated from: 2019-01-01 to: %3E%22%27%3E%3Cscript%3Ealert%28340%29%3C%2Fscript%3E

Reasoning: The test result seems to indicate a vulnerability because the response contains SQL Server errors. This suggests that
the test managed to penetrate the application and reach the SQL query itself, by injecting hazardous characters.

Issue 2 of 6

Raw Test Response:

...

 org.apache.jasper.servlet.JspServlet.service(JspServlet.java:339)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:731)
 org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:52)
 com.ibm.security.appscan.altoromutual.filter.AuthFilter.doFilter(AuthFilter.java:67)
 com.ibm.security.appscan.altoromutual.servlet.AccountViewServlet.doPost(AccountViewServlet.java:78)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:650)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:731)
 org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:52)
 com.ibm.security.appscan.altoromutual.filter.AuthFilter.doFilter(AuthFilter.java:67)
</pre></p><p>Root Cause <pre>java.sql.SQLSyntaxErrorException: Syntax error: Encountered ">" at line 1,
column 131.
 org.apache.derby.impl.jdbc.SQLExceptionFactory40.getSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.Util.generateCsSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.TransactionResourceImpl.wrapInSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.TransactionResourceImpl.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedConnection.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.ConnectionChild.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedStatement.execute(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedStatement.executeQuery(Unknown Source)
 com.ibm.security.appscan.altoromutual.util.DBUtil.getTransactions(DBUtil.java:403)
...

10/05/2024 42

https://demo.testfire.net/bank/showTransactions

TOC

Database Error Pattern Found
Severity: Medium

CVSS Score: 5,3

URL: https://demo.testfire.net/bank/showTransactions

Entity: startDate (Global)

Risk: It is possible to view, modify or delete database entries and tables

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter startDate manipulated from: 2019-01-01 to: 2019-01-01WFXSSProbe%27%22%29%2F%3E

Reasoning: The test result seems to indicate a vulnerability because the response contains SQL Server errors. This suggests that
the test managed to penetrate the application and reach the SQL query itself, by injecting hazardous characters.

Issue 3 of 6

Database Error Pattern Found
Severity: Medium

CVSS Score: 5,3

URL: https://demo.testfire.net/bank/showTransactions

Entity: endDate (Global)

Risk: It is possible to view, modify or delete database entries and tables

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter endDate manipulated from: 2019-01-01 to: 2019-01-01WFXSSProbe%27%22%29%2F%3E

Raw Test Response:

...

 org.apache.jasper.servlet.JspServlet.service(JspServlet.java:339)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:731)
 org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:52)
 com.ibm.security.appscan.altoromutual.filter.AuthFilter.doFilter(AuthFilter.java:67)
 com.ibm.security.appscan.altoromutual.servlet.AccountViewServlet.doPost(AccountViewServlet.java:78)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:650)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:731)
 org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:52)
 com.ibm.security.appscan.altoromutual.filter.AuthFilter.doFilter(AuthFilter.java:67)
</pre></p><p>Root Cause <pre>java.sql.SQLSyntaxErrorException: Syntax error: Encountered "\"" at line
1, column 149.
 org.apache.derby.impl.jdbc.SQLExceptionFactory40.getSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.Util.generateCsSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.TransactionResourceImpl.wrapInSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.TransactionResourceImpl.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedConnection.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.ConnectionChild.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedStatement.execute(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedStatement.executeQuery(Unknown Source)
 com.ibm.security.appscan.altoromutual.util.DBUtil.getTransactions(DBUtil.java:403)
...

10/05/2024 43

https://demo.testfire.net/bank/showTransactions
https://demo.testfire.net/bank/showTransactions

TOC

Reasoning: The test result seems to indicate a vulnerability because the response contains SQL Server errors. This suggests that
the test managed to penetrate the application and reach the SQL query itself, by injecting hazardous characters.

Issue 4 of 6

Database Error Pattern Found
Severity: Medium

CVSS Score: 5,3

URL: https://demo.testfire.net/doLogin

Entity: uid (Global)

Risk: It is possible to view, modify or delete database entries and tables

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Cookie JSESSIONID removed from request: 6354734A2B825ABCB2DC812C04629BE8

Parameter uid manipulated from: jsmith to: %27%20%7C%20%27id

Reasoning: The test result seems to indicate a vulnerability because the response contains SQL Server errors. This suggests that
the test managed to penetrate the application and reach the SQL query itself, by injecting hazardous characters.

Raw Test Response:

...

 org.apache.jasper.servlet.JspServlet.service(JspServlet.java:339)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:731)
 org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:52)
 com.ibm.security.appscan.altoromutual.filter.AuthFilter.doFilter(AuthFilter.java:67)
 com.ibm.security.appscan.altoromutual.servlet.AccountViewServlet.doPost(AccountViewServlet.java:78)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:650)
 javax.servlet.http.HttpServlet.service(HttpServlet.java:731)
 org.apache.tomcat.websocket.server.WsFilter.doFilter(WsFilter.java:52)
 com.ibm.security.appscan.altoromutual.filter.AuthFilter.doFilter(AuthFilter.java:67)
</pre></p><p>Root Cause <pre>java.sql.SQLSyntaxErrorException: Syntax error: Encountered "\"" at line
1, column 175.
 org.apache.derby.impl.jdbc.SQLExceptionFactory40.getSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.Util.generateCsSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.TransactionResourceImpl.wrapInSQLException(Unknown Source)
 org.apache.derby.impl.jdbc.TransactionResourceImpl.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedConnection.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.ConnectionChild.handleException(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedStatement.execute(Unknown Source)
 org.apache.derby.impl.jdbc.EmbedStatement.executeQuery(Unknown Source)
 com.ibm.security.appscan.altoromutual.util.DBUtil.getTransactions(DBUtil.java:403)
...

Raw Test Response:

...

Cookie: JSESSIONID=3D882747A7B986CE04069E8D2E7D98EE
Accept-Language: en-US
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: https://demo.testfire.net/doLogin
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1

10/05/2024 44

https://demo.testfire.net/doLogin

TOCIssue 5 of 6

Database Error Pattern Found
Severity: Medium

CVSS Score: 5,3

URL: https://demo.testfire.net/doLogin

Entity: passw (Global)

Risk: It is possible to view, modify or delete database entries and tables

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Cookie JSESSIONID removed from request: 6354734A2B825ABCB2DC812C04629BE8

Parameter passw manipulated from: **CONFIDENTIAL 0** to: %27%20%7C%20%27id

Reasoning: The test result seems to indicate a vulnerability because the response contains SQL Server errors. This suggests that
the test managed to penetrate the application and reach the SQL query itself, by injecting hazardous characters.

Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:16:57 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

...

...

<!-- TOC END -->

 <td valign="top" colspan="3" class="bb">
 <div class="fl" style="width: 99%;">

 <h1>Online Banking Login</h1>

 <!-- To get the latest admin login, please contact SiteOps at 415-555-6159 -->
 <p>
 Syntax error: Encountered "|" at line 1, column 47.
 </p>

 <form action="doLogin" method="post" name="login" id="login" onsubmit="return (confirminput(login));">
 <table>
 <tr>
 <td>
 Username:
 </td>
 <td>

...

Raw Test Response:

...

Cookie: JSESSIONID=F1B1BDA62907DE850B7BDD9187DDE686

10/05/2024 45

https://demo.testfire.net/doLogin

TOCIssue 6 of 6

Database Error Pattern Found
Severity: Medium

CVSS Score: 5,3

URL: https://demo.testfire.net/doLogin

Entity: doLogin (Global)

Risk: It is possible to view, modify or delete database entries and tables

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Cookie JSESSIONID removed from request: 6354734A2B825ABCB2DC812C04629BE8

Parameter uid manipulated from: jsmith to: %3E%22%27%3E%3Cscript%3Ealert%283063%29%3C%2Fscript%3E

Accept-Language: en-US
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: https://demo.testfire.net/doLogin
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:17:03 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

...

...

<!-- TOC END -->

 <td valign="top" colspan="3" class="bb">
 <div class="fl" style="width: 99%;">

 <h1>Online Banking Login</h1>

 <!-- To get the latest admin login, please contact SiteOps at 415-555-6159 -->
 <p>
 Syntax error: Encountered "|" at line 1, column 69.
 </p>

 <form action="doLogin" method="post" name="login" id="login" onsubmit="return (confirminput(login));">
 <table>
 <tr>
 <td>
 Username:
 </td>
 <td>

...

10/05/2024 46

https://demo.testfire.net/doLogin

TOC

Parameter passw manipulated from: **CONFIDENTIAL 0** to:
%3E%22%27%3E%3Cscript%3Ealert%283063%29%3C%2Fscript%3E

Parameter btnSubmit manipulated from: Login to: %3E%22%27%3E%3Cscript%3Ealert%283063%29%3C%2Fscript%3E

Reasoning: The test result seems to indicate a vulnerability because the response contains SQL Server errors. This suggests that
the test managed to penetrate the application and reach the SQL query itself, by injecting hazardous characters.

M Direct Access to Administration Pages 2 TOC

Issue 1 of 2

Raw Test Response:

...

Cookie: JSESSIONID=451F61901D2D552744B713243E2BDD96
Accept-Language: en-US
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: https://demo.testfire.net/doLogin
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:16:40 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

...

...

<!-- TOC END -->

 <td valign="top" colspan="3" class="bb">
 <div class="fl" style="width: 99%;">

 <h1>Online Banking Login</h1>

 <!-- To get the latest admin login, please contact SiteOps at 415-555-6159 -->
 <p>
 Syntax error: Encountered "<" at line 1, column 49.
 </p>

 <form action="doLogin" method="post" name="login" id="login" onsubmit="return (confirminput(login));">
 <table>
 <tr>
 <td>
 Username:
 </td>
 <td>

...

10/05/2024 47

Direct Access to Administration Pages
Severity: Medium

CVSS Score: 5,3

URL: https://demo.testfire.net/admin/

Entity: admin.jsp (Page)

Risk: It might be possible to escalate user privileges and gain administrative permissions over the web application

Cause: The web server or application server are configured in an insecure way

Fix: Apply proper authorization to administration scripts

Difference: Method manipulated from: HEAD to: GET

Path manipulated from: /admin/clients.xls to: /admin/admin.jsp

Reasoning: AppScan requested a file which is probably not a legitimate part of the application. The response status was 200 OK.
This indicates that the test succeeded in retrieving the content of the requested file.

Test Request: Test Response

10/05/2024 48

https://demo.testfire.net/admin/

...

Accept: text/html,application/xhtml+xml,ap
plication/xml;q=0.9,*/*;q=0.8
Referer: https://demo.testfire.net/index.j
sp?content=personal_other.htm
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; W
OW64) AppleWebKit/537.36 (KHTML, like Geck
o) Chrome/100.0.4896.127 Safari/537.36
Cookie: JSESSIONID=6354734A2B825ABCB2DC812
C04629BE8; AltoroAccounts=ODAwMDAyflNhdmlu
Z3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMD
AzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIw
fDQ1MzkwODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LT
EuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:14:55 GMT

...

...

 }
 </script>

 <!-- Be careful what you change. All ch
anges are made directly to AltoroJ databas
e. -->
 <div class="fl" style="width: 99%;">
 <p><span style="color:#FF0066;font-size:
12pt;font-weight:bold;">

 </p>

 <h1>Edit User Information</h1>

 <table width="100%" border="0">
 <!-- action="addAccount" -->
 <form id="addAccount" name="addAccount"
action="" method="post">
 <tr>
 <td colspan="4">
 <h2>Add an account to an existing
user</h2>
 </td>
 </tr>
 <tr>
 <th>
 Users:
 </th>
 <th>
 Account Types:
 </th>

10/05/2024 49

GET /admin/admin.jsp HTTP/1.1
Accept-Language: en-US
Accept: text/html,application/xhtml+xml,ap
plication/xml;q=0.9,*/*;q=0.8
Referer: https://demo.testfire.net/index.j
sp?content=personal_other.htm
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; W
OW64) AppleWebKit/537.36 (KHTML, like Geck
o) Chrome/100.0.4896.127 Safari/537.36
Cookie: JSESSIONID=6354734A2B825ABCB2DC812
C04629BE8; AltoroAccounts=ODAwMDAyflNhdmlu
Z3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMD
AzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIw
fDQ1MzkwODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LT
EuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 0

...

...

 </select>
 </td>
 <td>
 <Select name="accttypes">
 <option Value="Checking">Checkin
g</option>
 <option Value="Savings" Selected
>Savings</option>
 <option Value="IRA">IRA</option>
 </Select></td>
 <td></td>
 <td><input type="submit" value="Add
Account"></td>
 </tr>
 </form>

 <!-- action="changePassword" -->
 <form id="changePass" name="changePass
" action="" method="post" onsubmit="return
confirmpass(this);">
 <tr>
 <td colspan="4"><h2>

Change u
ser's password</h2></td>
 </tr>
 <tr>
 <th>
 Users:
 </th>
 <th>
 Password:
 </th>
 <th>

...

...

 </select>
 </td>
 <td>
 <input type="password" name="passw
ord1">
 </td>
 <td>
 <input type="password" name="passw
ord2">
 </td>
 <td>
 <input type="submit" name="change"
value="Change Password">
 </td>
 </tr>
 </form>
 <!-- action="addUser" -->
 <form method="post" name="addUser" act
ion="" id="addUser" onsubmit="return confi
rmpass(this);">
 <tr>
 <td colspan="4"><h2>

Add an n
ew user</h2></td>
 </tr>

10/05/2024 50

TOCIssue 2 of 2

Direct Access to Administration Pages
Severity: Medium

CVSS Score: 5,3

URL: https://demo.testfire.net/

Entity: admin.jsp (Page)

Risk: It might be possible to escalate user privileges and gain administrative permissions over the web application

Cause: The web server or application server are configured in an insecure way

Fix: Apply proper authorization to administration scripts

Difference: Path manipulated from: /login.jsp to: /admin/admin.jsp

 <tr>
 <th>
 First Name:

 Last Name:
 </th>
 <th>
 Username:

...

...

 <td>
 <input type="text" name="username"
>
 </td>
 <td>
 <input type="password" name="passw
ord1">

 <input type="password" name="passw
ord2">
 </td>
 <td>
 <input type="submit" name="add" va
lue="Add User">
 </td>
 </tr>
 <tr>
 <td colspan="4">It is highly recomme
nded that you leave the username as first
 initial last name.
 </td>
 </tr>
 </form>

...

10/05/2024 51

https://demo.testfire.net/

Reasoning: AppScan requested a file which is probably not a legitimate part of the application. The response status was 200 OK.
This indicates that the test succeeded in retrieving the content of the requested file.

Test Request: Test Response

10/05/2024 52

...

Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Referer: https://demo.testfire.net/
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812
C04629BE8
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:14:50 GMT

...

...

 }
 </script>

 <!-- Be careful what you change. All ch
anges are made directly to AltoroJ databas
e. -->
 <div class="fl" style="width: 99%;">
 <p><span style="color:#FF0066;font-size:
12pt;font-weight:bold;">

 </p>

 <h1>Edit User Information</h1>

 <table width="100%" border="0">
 <!-- action="addAccount" -->
 <form id="addAccount" name="addAccount"
action="" method="post">
 <tr>
 <td colspan="4">
 <h2>Add an account to an existing
user</h2>
 </td>
 </tr>
 <tr>
 <th>
 Users:
 </th>
 <th>
 Account Types:
 </th>

...

...

 </select>
 </td>

10/05/2024 53

GET /admin/admin.jsp HTTP/1.1
Host: demo.testfire.net
Connection: keep-alive
sec-ch-ua: "Not)A;Brand";v="24", "Chromium
";v="116"
sec-ch-ua-mobile: ?0
sec-ch-ua-platform: "Windows"
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, lik
e Gecko) Chrome/116.0.0.0 Safari/537.36
Accept: text/html,application/xhtml+xml,ap
plication/xml;q=0.9,image/avif,image/webp,
image/apng,*/*;q=0.8,application/signed-ex
change;v=b3;q=0.7
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Referer: https://demo.testfire.net/
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812
C04629BE8
Content-Length: 0

 <td>
 <Select name="accttypes">
 <option Value="Checking">Checkin
g</option>
 <option Value="Savings" Selected
>Savings</option>
 <option Value="IRA">IRA</option>
 </Select></td>
 <td></td>
 <td><input type="submit" value="Add
Account"></td>
 </tr>
 </form>

 <!-- action="changePassword" -->
 <form id="changePass" name="changePass
" action="" method="post" onsubmit="return
confirmpass(this);">
 <tr>
 <td colspan="4"><h2>

Change u
ser's password</h2></td>
 </tr>
 <tr>
 <th>
 Users:
 </th>
 <th>
 Password:
 </th>
 <th>

...

...

 </select>
 </td>
 <td>
 <input type="password" name="passw
ord1">
 </td>
 <td>
 <input type="password" name="passw
ord2">
 </td>
 <td>
 <input type="submit" name="change"
value="Change Password">
 </td>
 </tr>
 </form>
 <!-- action="addUser" -->
 <form method="post" name="addUser" act
ion="" id="addUser" onsubmit="return confi
rmpass(this);">
 <tr>
 <td colspan="4"><h2>

Add an n
ew user</h2></td>
 </tr>
 <tr>
 <th>
 First Name:

 Last Name:
 </th>
 <th>

10/05/2024 54

TOC

M Host Header Injection 1 TOC

Issue 1 of 1

Host Header Injection
Severity: Medium

CVSS Score: 5,3

URL: https://demo.testfire.net/bank/queryxpath.jsp

Entity: queryxpath.jsp (Page)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It is possible to deface the site content through web-cache poisoning

Cause: Lack of input validation and sanitization

Fix: Construct HTTP headers very carefully, avoiding the use of non-validated/unsanitized input data

 Username:

...

...

 <td>
 <input type="text" name="username"
>
 </td>
 <td>
 <input type="password" name="passw
ord1">

 <input type="password" name="passw
ord2">
 </td>
 <td>
 <input type="submit" name="add" va
lue="Add User">
 </td>
 </tr>
 <tr>
 <td colspan="4">It is highly recomme
nded that you leave the username as first
 initial last name.
 </td>
 </tr>
 </form>

...

10/05/2024 55

https://demo.testfire.net/bank/queryxpath.jsp

TOC

Difference: Header Host manipulated from: demo.testfire.net to: appscanheaderinjection.com

Reasoning: The value AppScan injected seems to be included in the response.

M Inadequate Account Lockout 1 TOC

Issue 1 of 1

Inadequate Account Lockout
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/doLogin

Entity: passw (Parameter)

Risk: It might be possible to escalate user privileges and gain administrative permissions over the web application

Cause: Insecure web application programming or configuration

Fix: Enforce account lockout after several failed login attempts

Difference: Cookie JSESSIONID removed from request: 6354734A2B825ABCB2DC812C04629BE8

Parameter passw manipulated from: **CONFIDENTIAL 0** to: 4ppSc4n

Reasoning: Two legitimate login attempts were sent, with several false login attempts in between. The last response was identical
to the first. This suggests that there is inadequate account lockout enforcement, allowing brute-force attacks on the
login page. (This is true even if the first response was not a successful login page.)

Raw Test Response:

...

 Customize Site Language

 </td>
<!-- MEMBER TOC END -->
 <td valign="top" colspan="3" class="bb">

 <div class="fl" style="width: 99%;">
 <h1>Search News Articles</h1>
 <form id="QueryXpath" method="get" action="https://appscanheaderinjection.com/bank/queryxpath.jsp">
 Search our news articles database

 <input type="hidden" id=content" name="content" value="queryxpath.jsp"/>
 <input type="text" id="query" name="query" width=450 value="Enter title (e.g. Watchfire)"/>
 <input type="submit" width=75 id="Button1" value="Query">

 </form>

...

10/05/2024 56

https://demo.testfire.net/doLogin

TOC

M Link Injection (facilitates Cross-Site Request Forgery) 6 TOC

Issue 1 of 6

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/search.jsp

Entity: query (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter query manipulated from: 1234 to: %22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF1311.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Test Response

10/05/2024 57

https://demo.testfire.net/search.jsp

TOCIssue 2 of 6

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/index.jsp

Entity: content (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter content manipulated from: personal.htm to:
%22%27%3E%3CA+HREF%3D%22%2FWF_XSRF1434.html%22%3EInjected+Link%3C%2FA%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Test Response

10/05/2024 58

https://demo.testfire.net/index.jsp

TOCIssue 3 of 6

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/util/serverStatusCheckService.jsp

Entity: HostName (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter HostName manipulated from: AltoroMutual to: %22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF2178.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Test Response

10/05/2024 59

https://demo.testfire.net/util/serverStatusCheckService.jsp

TOC

TOC

Issue 4 of 6

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/sendFeedback

Entity: name (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter name manipulated from: John+Smith to: %22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF1576.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 5 of 6

Test Response

10/05/2024 60

https://demo.testfire.net/sendFeedback

TOC

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/bank/queryxpath.jsp

Entity: query (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter query manipulated from: Enter title (e.g. Watchfire) to:
%22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF2333.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

Issue 6 of 6

Test Response

10/05/2024 61

https://demo.testfire.net/bank/queryxpath.jsp

Link Injection (facilitates Cross-Site Request Forgery)
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/bank/customize.jsp

Entity: lang (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter lang manipulated from: international to: %22%27%3E%3CIMG+SRC%3D%22%2FWF_XSRF2482.html%22%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a link to the file
"WF_XSRF.html".

M Missing Secure Attribute in Encrypted Session (SSL) Cookie 1 TOC

Test Response

10/05/2024 62

https://demo.testfire.net/bank/customize.jsp

TOC

TOC

Issue 1 of 1

Missing Secure Attribute in Encrypted Session (SSL) Cookie
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/

Entity: AltoroAccounts (Cookie)

Risk: It may be possible to steal user and session information (cookies) that was sent during an encrypted session

Cause: The web application sends non-secure cookies over SSL

Fix: Add the 'Secure' attribute to all sensitive cookies

Difference: Cookie JSESSIONID removed from request: 6354734A2B825ABCB2DC812C04629BE8

Reasoning: AppScan found that an encrypted session (SSL) is using a cookie without the "secure" attribute.

M Older TLS Version is Supported 1 TOC

Issue 1 of 1

Original Response

...

uid=jsmith&passw=**CONFIDENTIAL 0**&btnSubmit=Login

HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
Location: /bank/main.jsp
Content-Length: 0
Date: Thu, 02 Nov 2023 09:16:37 GMT
Set-Cookie: JSESSIONID=A316AA5F42F8A4FF124E05481469C272; Path=/; Secure; HttpOnly
Set-Cookie:
AltoroAccounts="ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjguMjkxMjcyMDg1NTE3OTNFMjB8NDUzOTA
4MjAzOTM5NjI4OH5DcmVkaXQgQ2FyZH4tMS45OTk1NDM0MDEyNzg3MTIzMkUxOHw="; Version=1

GET /bank/main.jsp HTTP/1.1
Cookie: JSESSIONID=A316AA5F42F8A4FF124E05481469C272;
AltoroAccounts="ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjguMjkxMjcyMDg1NTE3OTNFMjB8NDUzOTA
4MjAzOTM5NjI4OH5DcmVkaXQgQ2FyZH4tMS45OTk1NDM0MDEyNzg3MTIzMkUxOHw="
Accept-Language: en-US
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: https://demo.testfire.net/doLogin

...

10/05/2024 63

https://demo.testfire.net/

TOC

Older TLS Version is Supported
Severity: Medium

CVSS Score: 5,3

URL: https://demo.testfire.net/login.jsp

Entity: demo.testfire.net (Page)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: The web server or application server are configured in an insecure way

Fix: Use a different signature algorithm for the certificate. See "Fix Recommentation" for specific server instructions

Difference:

Reasoning: AppScan discovered that the server supports an older TLS version (either TLSv1.0 or TLSv1.1)

M Phishing Through Frames 7 TOC

Issue 1 of 7

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Date: Thu, 02 Nov 2023 09:00:33 GMT
Content-Length: 8519

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

...

10/05/2024 64

https://demo.testfire.net/login.jsp

TOC

TOC

Phishing Through Frames
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/search.jsp

Entity: query (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter query manipulated from: 1234 to:
1234%27%22%3E%3Ciframe+id%3D1323+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishing.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 2 of 7

Phishing Through Frames
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/index.jsp

Entity: content (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter content manipulated from: personal.htm to:
personal.htm%27%22%3E%3Ciframe+id%3D1437+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishing.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 3 of 7

10/05/2024 65

https://demo.testfire.net/search.jsp
https://demo.testfire.net/index.jsp

TOC

TOC

Phishing Through Frames
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/sendFeedback

Entity: name (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter name manipulated from: John+Smith to:
John+Smith%27%22%3E%3Ciframe+id%3D1587+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishing.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 4 of 7

Phishing Through Frames
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/sendFeedback

Entity: email_addr (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter email_addr manipulated from: 753+Main+Street to:
753+Main+Street%27%22%3E%3Ciframe+id%3D1647+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishing.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 5 of 7

10/05/2024 66

https://demo.testfire.net/sendFeedback
https://demo.testfire.net/sendFeedback

TOC

TOC

Phishing Through Frames
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/util/serverStatusCheckService.jsp

Entity: HostName (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter HostName manipulated from: AltoroMutual to:
AltoroMutual%27%22%3E%3Ciframe+id%3D2180+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishing.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 6 of 7

Phishing Through Frames
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/bank/queryxpath.jsp

Entity: query (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter query manipulated from: Enter title (e.g. Watchfire) to:
Enter+title+%28e.g.+Watchfire%29%27%22%3E%3Ciframe+id%3D2349+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishing.html%
3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

Issue 7 of 7

10/05/2024 67

https://demo.testfire.net/util/serverStatusCheckService.jsp
https://demo.testfire.net/bank/queryxpath.jsp

TOC

Phishing Through Frames
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/bank/customize.jsp

Entity: lang (Parameter)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.

Cause: Sanitation of hazardous characters was not performed correctly on user input

Fix: Review possible solutions for hazardous character injection

Difference: Parameter lang manipulated from: international to:
international%27%22%3E%3Ciframe+id%3D2486+src%3Dhttp%3A%2F%2Fdemo.testfire.net%2Fphishing.html%3E

Reasoning: The test result seems to indicate a vulnerability because the test response contained a frame/iframe to URL
"http://demo.testfire.net/phishing.html".

M SHA-1 cipher suites were detected 1 TOC

Issue 1 of 1

SHA-1 cipher suites were detected
Severity: Medium

CVSS Score: 5,3

URL: https://demo.testfire.net/login.jsp

Entity: demo.testfire.net (Page)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: The web server or application server are configured in an insecure way

Fix: Change server's supported ciphersuites

Difference:

Reasoning: AppScan determined that the site uses weak cipher suites by successfully creating SSL connections using each of the
weak cipher suites listed here.

Verify that the site uses the cryptographically weak cipher suites listed here.

The following weak cipher suites are supported by the server:
Id Name SSL Version

51 TLS_DHE_RSA_WITH_AES_128_CBC_SHA TLS 1.0

57 TLS_DHE_RSA_WITH_AES_256_CBC_SHA TLS 1.0

10/05/2024 68

https://demo.testfire.net/bank/customize.jsp
https://demo.testfire.net/login.jsp

TOC

M Session Identifier Not Updated 1 TOC

Issue 1 of 1

Session Identifier Not Updated
Severity: Medium

CVSS Score: 6,5

URL: https://demo.testfire.net/doLogin

Entity: doLogin (Page)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: Insecure web application programming or configuration

Fix: Change session identifier values after login

Difference:

Reasoning: The test result seems to indicate a vulnerability because the session identifiers in the Original Request and in the
Response are identical. They should have been updated in the response.

49171 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS 1.0

49172 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS 1.0

51 TLS_DHE_RSA_WITH_AES_128_CBC_SHA TLS 1.1

57 TLS_DHE_RSA_WITH_AES_256_CBC_SHA TLS 1.1

49171 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS 1.1

49172 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS 1.1

51 TLS_DHE_RSA_WITH_AES_128_CBC_SHA TLS 1.2

57 TLS_DHE_RSA_WITH_AES_256_CBC_SHA TLS 1.2

49171 TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA TLS 1.2

49172 TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA TLS 1.2

Original Request Original Response

10/05/2024 69

https://demo.testfire.net/doLogin

uid=jsmith&passw=**CONFIDENTIAL 0**&btnSub
mit=Login

HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
Location: /bank/main.jsp
Content-Length: 0
Date: Thu, 02 Nov 2023 09:00:35 GMT
Set-Cookie: AltoroAccounts=ODAwMDAyflNhdml
uZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwM
DAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTI
wfDQ1MzkwODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+L
TEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8

GET /bank/main.jsp HTTP/1.1
Host: demo.testfire.net
Connection: keep-alive
Cache-Control: max-age=0
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0;
Win64; x64) AppleWebKit/537.36 (KHTML, lik
e Gecko) Chrome/116.0.0.0 Safari/537.36
Accept: text/html,application/xhtml+xml,ap
plication/xml;q=0.9,image/avif,image/webp,
image/apng,*/*;q=0.8,application/signed-ex
change;v=b3;q=0.7
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
...

10/05/2024 70

TOC

TOC

L Autocomplete HTML Attribute Not Disabled for Password Field 4 TOC

Issue 1 of 4

Autocomplete HTML Attribute Not Disabled for Password Field
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/login.jsp

Entity: login.jsp (Page)

Risk: It may be possible to bypass the web application's authentication mechanism

Cause: Insecure web application programming or configuration

Fix: Correctly set the "autocomplete" attribute to "off"

Difference:

Reasoning: AppScan has found that a password field does not enforce the disabling of the autocomplete feature.

Issue 2 of 4

Raw Test Response:

...

 </td>
 <td>
 </td>
 </tr>
 <tr>
 <td>
 Password:
 </td>
 <td>
 <input type="password" id="passw" name="passw" style="width: 150px;">
 </td>
 </tr>
 <tr>
 <td></td>
 <td>
 <input type="submit" name="btnSubmit" value="Login">
 </td>
 </tr>
 </table>

...

10/05/2024 71

https://demo.testfire.net/login.jsp

TOC

Autocomplete HTML Attribute Not Disabled for Password Field
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/apply.jsp

Entity: apply.jsp (Page)

Risk: It may be possible to bypass the web application's authentication mechanism

Cause: Insecure web application programming or configuration

Fix: Correctly set the "autocomplete" attribute to "off"

Difference:

Reasoning: AppScan has found that a password field does not enforce the disabling of the autocomplete feature.

Issue 3 of 4

Autocomplete HTML Attribute Not Disabled for Password Field
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/ccApply

Entity: ccApply (Page)

Risk: It may be possible to bypass the web application's authentication mechanism

Cause: Insecure web application programming or configuration

Fix: Correctly set the "autocomplete" attribute to "off"

Difference:

Raw Test Response:

...

 </td>
<!-- MEMBER TOC END -->
 <td valign="top" colspan="3" class="bb">
 <div class="fl" style="width: 99%;">
 <h1>Altoro Mutual Gold Visa Application</h1>
 <p>No application is needed.To approve your new $10000 Altoro Mutual Gold Visa
with an 7.9% APR simply
enter your password below.</p>
 <p>

 </p>
 <form method="post" name="Credit" action="ccApply"><table border=0><tr><td>Password:</td><td><input type="password"
name="passwd"></td></tr><tr><td></td><td><input type="submit" name="Submit" value="Submit"></td></tr></table></form>
 </div>
 </td>
</div>

<!-- BEGIN FOOTER -->

</tr>

...

10/05/2024 72

https://demo.testfire.net/bank/apply.jsp
https://demo.testfire.net/bank/ccApply

TOC

Reasoning: AppScan has found that a password field does not enforce the disabling of the autocomplete feature.

Issue 4 of 4

Autocomplete HTML Attribute Not Disabled for Password Field
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/admin/admin.jsp

Entity: admin.jsp (Page)

Risk: It may be possible to bypass the web application's authentication mechanism

Cause: Insecure web application programming or configuration

Fix: Correctly set the "autocomplete" attribute to "off"

Difference:

Reasoning: AppScan has found that a password field does not enforce the disabling of the autocomplete feature.

Raw Test Response:

...

 </td>
<!-- MEMBER TOC END -->
 <td valign="top" colspan="3" class="bb">
 <div class="fl" style="width: 99%;">
 <h1>Altoro Mutual Gold Visa Application</h1>
 <p>No application is needed.To approve your new $10000 Altoro Mutual Gold Visa
with an 7.9% APR simply
enter your password below.</p>
 <p>
 Login Failed: We're sorry, but this username or password was not found in our system. Please try again.
 </p>
 <form method="post" name="Credit" action="ccApply"><table border=0><tr><td>Password:</td><td><input type="password"
name="passwd"></td></tr><tr><td></td><td><input type="submit" name="Submit" value="Submit"></td></tr></table></form>
 </div>
 </td>
</div>

<!-- BEGIN FOOTER -->

</tr>

...

Raw Test Response:

...

 <option value="jsmith">jsmith</option>

 <option value="sspeed">sspeed</option>

 <option value="tuser">tuser</option>

 </select>
 </td>
 <td>
 <input type="password" name="password1">
 </td>
 <td>
 <input type="password" name="password2">
 </td>

10/05/2024 73

https://demo.testfire.net/admin/admin.jsp

TOC

L Body Parameters Accepted in Query 3 TOC

Issue 1 of 3

Body Parameters Accepted in Query
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/doTransfer

Entity: doTransfer (Page)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Do not accept body parameters that are sent in the query string

Difference: Body Parameter removed from request: 800003

Query Parameter added to request: 800003

Body Parameter removed from request: 800003

 <td>
 <input type="submit" name="change" value="Change Password">
 </td>
 </tr>
 </form>
 <!-- action="addUser" -->
 <form method="post" name="addUser" action="" id="addUser" onsubmit="return confirmpass(this);">
 <tr>

...

...

 <td>
 <input type="text" name="firstname">

 <input type="text" name="lastname">
 </td>
 <td>
 <input type="text" name="username">
 </td>
 <td>
 <input type="password" name="password1">

 <input type="password" name="password2">
 </td>
 <td>
 <input type="submit" name="add" value="Add User">
 </td>
 </tr>
 <tr>
 <td colspan="4">It is highly recommended that you leave the username as first
 initial last name.
 </td>

...

10/05/2024 74

https://demo.testfire.net/bank/doTransfer

TOC

Query Parameter added to request: 800003

Body Parameter removed from request: 1234

Query Parameter added to request: 1234

Body Parameter removed from request: Transfer Money

Query Parameter added to request: Transfer Money

Method manipulated from: POST to: GET

Reasoning: The test result seems to indicate a vulnerability because the Test Response is similar to the Original Response,
indicating that the application processed body parameters that were submitted in the query

Issue 2 of 3

Body Parameters Accepted in Query
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/showTransactions

Entity: showTransactions (Page)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Do not accept body parameters that are sent in the query string

Difference: Body Parameter removed from request: 2019-01-01

Query Parameter added to request: 2019-01-01

Body Parameter removed from request: 2019-01-01

Query Parameter added to request: 2019-01-01

Method manipulated from: POST to: GET

Reasoning: The test result seems to indicate a vulnerability because the Test Response is similar to the Original Response,
indicating that the application processed body parameters that were submitted in the query

Original Response Test Response

≈

Original Response Test Response

10/05/2024 75

https://demo.testfire.net/bank/showTransactions

TOCIssue 3 of 3

Body Parameters Accepted in Query
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/admin/admin.jsp

Entity: admin.jsp (Page)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Do not accept body parameters that are sent in the query string

Difference: Body Parameter removed from request: sspeed

Query Parameter added to request: sspeed

Body Parameter removed from request: Savings

Query Parameter added to request: Savings

Method manipulated from: POST to: GET

Reasoning: The test result seems to indicate a vulnerability because the Test Response is similar to the Original Response,
indicating that the application processed body parameters that were submitted in the query

≈

Original Response Test Response

10/05/2024 76

https://demo.testfire.net/admin/admin.jsp

TOC

L Cacheable SSL Page Found 17 TOC

Issue 1 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/login.jsp

Entity: login.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

≈

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:02:50 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

10/05/2024 77

https://demo.testfire.net/login.jsp

TOC

TOC

Issue 2 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/index.jsp

Entity: index.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Issue 3 of 17

...

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:02:21 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

...

10/05/2024 78

https://demo.testfire.net/index.jsp

TOC

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/feedback.jsp

Entity: feedback.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Issue 4 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/swagger/properties.json

Entity: properties.json (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:02:53 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

...

10/05/2024 79

https://demo.testfire.net/feedback.jsp
https://demo.testfire.net/swagger/properties.json

TOC

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Issue 5 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/queryxpath.jsp

Entity: queryxpath.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Accept-Ranges: bytes
ETag: W/"9400-1553517609517"
Last-Modified: Mon, 25 Mar 2019 12:40:09 GMT
Content-Type: application/json
Content-Length: 9400
Date: Thu, 02 Nov 2023 09:04:58 GMT

{
 "basePath": "/api",
 "paths": {
 "/login": {
 "get": {
 "tags": [
 "1. Login"
] ,
 "summary": "Check if any user is logged in",
 "description": "If a user is loggedin the username will be returned",
 "operationId": "checkLogin",
...

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 5598
Date: Thu, 02 Nov 2023 09:02:55 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

10/05/2024 80

https://demo.testfire.net/bank/queryxpath.jsp

TOC

TOC

Issue 6 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/transaction.jsp

Entity: transaction.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Issue 7 of 17

...

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:02:55 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >
...

10/05/2024 81

https://demo.testfire.net/bank/transaction.jsp

TOC

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/apply.jsp

Entity: apply.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Issue 8 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/customize.jsp

Entity: customize.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 5710
Date: Thu, 02 Nov 2023 09:03:18 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

...

10/05/2024 82

https://demo.testfire.net/bank/apply.jsp
https://demo.testfire.net/bank/customize.jsp

TOC

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Issue 9 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/main.jsp

Entity: main.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 5553
Date: Thu, 02 Nov 2023 09:02:56 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

...

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 6109
Date: Thu, 02 Nov 2023 09:02:58 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

10/05/2024 83

https://demo.testfire.net/bank/main.jsp

TOC

TOC

Issue 10 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/transfer.jsp

Entity: transfer.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Issue 11 of 17

...

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 7230
Date: Thu, 02 Nov 2023 09:02:58 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

...

10/05/2024 84

https://demo.testfire.net/bank/transfer.jsp

TOC

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/search.jsp

Entity: search.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Issue 12 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/showAccount

Entity: showAccount (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 6969
Date: Thu, 02 Nov 2023 09:03:42 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

...

10/05/2024 85

https://demo.testfire.net/search.jsp
https://demo.testfire.net/bank/showAccount

TOC

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Issue 13 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/subscribe.jsp

Entity: subscribe.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:03:42 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

...

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:04:20 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

10/05/2024 86

https://demo.testfire.net/subscribe.jsp

TOC

TOC

Issue 14 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/status_check.jsp

Entity: status_check.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Issue 15 of 17

...

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:03:21 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

...

10/05/2024 87

https://demo.testfire.net/status_check.jsp

TOC

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/util/serverStatusCheckService.jsp

Entity: serverStatusCheckService.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Issue 16 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/survey_questions.jsp

Entity: survey_questions.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 59
Date: Thu, 02 Nov 2023 09:04:49 GMT

{
 "HostName": "AltoroMutual",
 "HostStatus": "OK"
}...

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1

10/05/2024 88

https://demo.testfire.net/util/serverStatusCheckService.jsp
https://demo.testfire.net/survey_questions.jsp

TOCIssue 17 of 17

Cacheable SSL Page Found
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/admin/admin.jsp

Entity: admin.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Sensitive information might have been cached by your browser

Fix: Prevent caching of SSL pages by adding "Cache-Control: no-store" and "Pragma: no-cache" headers to their responses.

Difference:

Reasoning: The application has responded with a response that indicates the page should be cached, but cache controls aren't
set (you can set "Cache-Control: no-store" or "Cache-Control: no-cache" or "Pragma: no-cache" to prevent caching).

Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:05:32 GMT

...

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:25:06 GMT

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" >

<head>
...

10/05/2024 89

https://demo.testfire.net/admin/admin.jsp

TOC

TOC

L Credit Card Number Pattern Found (Visa) 4 TOC

Issue 1 of 4

Credit Card Number Pattern Found (Visa)
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/main.jsp

Entity: main.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Remove credit card numbers from your website

Difference:

Reasoning: The response contains a complete Visa credit card number.

Issue 2 of 4

Raw Test Response:

...

 <form name="details" method="get" action="showAccount">
 <table border="0">
 <TR valign="top">
 <td>View Account Details:</td>
 <td align="left">
 <select size="1" name="listAccounts" id="listAccounts">
 <option value="800002" >800002 Savings</option>
<option value="800003" >800003 Checking</option>
<option value="4539082039396288" >4539082039396288 Credit Card</option>

 </select>
 <input type="submit" id="btnGetAccount" value=" GO ">
 </td>
 </tr>
 <tr>
 <td colspan="2"><table width=590 border=0><tr><td><h2>Congratulations!
</h2></td></tr><tr><td>You have been pre-approved for an Altoro Gold Visa with a credit limit of $10000!</td></tr><tr>
<td>Click Here to apply.</td></tr></table></td>
 </tr>

...

10/05/2024 90

https://demo.testfire.net/bank/main.jsp

TOC

Credit Card Number Pattern Found (Visa)
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/transfer.jsp

Entity: transfer.jsp (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Remove credit card numbers from your website

Difference:

Reasoning: The response contains a complete Visa credit card number.

Issue 3 of 4

Raw Test Response:

...

 <table cellSpacing="0" cellPadding="1" width="100%" border="0">
 <tr>
 <td>From Account:
 </td>
 <td>
 <select size="1" id="fromAccount" name="fromAccount">
 <option value="800002" >800002 Savings</option>
<option value="800003" >800003 Checking</option>
<option value="4539082039396288" >4539082039396288 Credit Card</option>

 </select>
 </td>
 </tr>
 <tr>
 <td>To Account:</td>
 <td>
 <select size="1" id="toAccount" name="toAccount">
 <option value="800002">800002 Savings</option>
<option value="800003">800003 Checking</option>
<option value="4539082039396288">4539082039396288 Credit Card</option>

 </select>
 </td>
 </tr>
 <tr>
 <td> Amount to Transfer:
 </td>
 <td><input type="text" id="transferAmount" name="transferAmount"></td>
 </tr>

...

10/05/2024 91

https://demo.testfire.net/bank/transfer.jsp

TOC

Credit Card Number Pattern Found (Visa)
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/showAccount

Entity: showAccount (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Remove credit card numbers from your website

Difference:

Reasoning: The response contains a complete Visa credit card number.

Issue 4 of 4

Credit Card Number Pattern Found (Visa)
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/doTransfer

Entity: doTransfer (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Remove credit card numbers from your website

Difference:

Raw Test Response:

...

 <tr>
 <th colSpan="2">
 Balance Detail</th></tr>
 <tr>
 <th align="left" width="80%" height="26">
 <form id="Form1" method="get" action="showAccount">
 <select size="1" name="listAccounts" id="listAccounts">
 <option value="800003">800003 Checking</option>
<option value="800002">800002 Savings</option>
<option value="4539082039396288">4539082039396288 Credit Card</option>

 </select>
 <input type="submit" id="btnGetAccount" Value="Select Account">
 </FORM>
 </th>
 <th align="middle" height="26">
 Amount
 </th>
 </tr>

...

10/05/2024 92

https://demo.testfire.net/bank/showAccount
https://demo.testfire.net/bank/doTransfer

TOC

Reasoning: The response contains a complete Visa credit card number.

L Encryption Not Enforced 1 TOC

Issue 1 of 1

Encryption Not Enforced
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/

Entity: demo.testfire.net (Page)

Risk: It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted

Cause: The application does not use a secure channel, such as TLS/SSL, to exchange sensitive information.
An attacker with access to the network traffic can eavesdrop on packets over the connection. This attack is not technically
difficult, but does require physical access to some portion of the network over which the sensitive data travels.

Fix: Enforce the use of HTTPS when sending sensitive information

Difference: Scheme manipulated from: https to: http

Raw Test Response:

...

 <table cellSpacing="0" cellPadding="1" width="100%" border="0">
 <tr>
 <td>From Account:
 </td>
 <td>
 <select size="1" id="fromAccount" name="fromAccount">
 <option value="800002" >800002 Savings</option>
<option value="800003" >800003 Checking</option>
<option value="4539082039396288" >4539082039396288 Credit Card</option>

 </select>
 </td>
 </tr>
 <tr>
 <td>To Account:</td>
 <td>
 <select size="1" id="toAccount" name="toAccount">
 <option value="800002">800002 Savings</option>
<option value="800003">800003 Checking</option>
<option value="4539082039396288">4539082039396288 Credit Card</option>

 </select>
 </td>
 </tr>
 <tr>
 <td> Amount to Transfer:
 </td>
 <td><input type="text" id="transferAmount" name="transferAmount"></td>
 </tr>

...

10/05/2024 93

https://demo.testfire.net/

TOC

Port manipulated from: 443 to: 80

Header Host manipulated from: demo.testfire.net to: demo.testfire.net:80

Reasoning: The test response is very similar to the original response. This indicates that the the resource was successfully
accessed using HTTP instead of HTTPS.

L Missing "Content-Security-Policy" header 1 TOC

Issue 1 of 1

Missing "Content-Security-Policy" header
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/

Entity: demo.testfire.net (Page)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Config your server to use the "Content-Security-Policy" header with secure policies

Difference:

Reasoning: AppScan detected that the Content-Security-Policy response header is missing or with an insecure policy, which
increases exposure to various cross-site injection attacks

Original Response Test Response

≈

Raw Test Response:

...

Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Referer: https://demo.testfire.net/status_check.jsp

10/05/2024 94

https://demo.testfire.net/

TOC

L Missing HttpOnly Attribute in Session Cookie 1 TOC

Issue 1 of 1

Missing HttpOnly Attribute in Session Cookie
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/

Entity: AltoroAccounts (Cookie)

Risk: It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user,
allowing the hacker to view or alter user records, and to perform transactions as that user

Cause: The web application sets session cookies without the HttpOnly attribute

Fix: Add the 'HttpOnly' attribute to all session cookies

Difference: Cookie JSESSIONID removed from request: 6354734A2B825ABCB2DC812C04629BE8

Reasoning: AppScan found that a session cookie is used without the "HttpOnly" attribute.

Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Accept-Ranges: bytes
ETag: W/"1427-1548795420000"
Last-Modified: Tue, 29 Jan 2019 20:57:00 GMT
Content-Type: text/html
Content-Length: 1427
Date: Thu, 02 Nov 2023 09:14:35 GMT

<!-- HTML for static distribution bundle build -->
<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Swagger UI</title>
 <link rel="stylesheet" type="text/css" href="./swagger-ui.css" >
 <link rel="icon" type="image/png" href="./favicon-32x32.png" sizes="32x32" />
 <link rel="icon" type="image/png" href="./favicon-16x16.png" sizes="16x16" />
 <style>
...

Original Response

...

uid=jsmith&passw=**CONFIDENTIAL 0**&btnSubmit=Login

HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
Location: /bank/main.jsp

10/05/2024 95

https://demo.testfire.net/

TOC

L Missing or insecure "X-Content-Type-Options" header 1 TOC

Issue 1 of 1

Missing or insecure "X-Content-Type-Options" header
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/

Entity: demo.testfire.net (Page)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Config your server to use the "X-Content-Type-Options" header with "nosniff" value

Difference:

Reasoning: AppScan detected that the "X-Content-Type-Options" response header is missing or has an insecure value, which
increases exposure to drive-by download attacks

Content-Length: 0
Date: Thu, 02 Nov 2023 09:16:37 GMT
Set-Cookie: JSESSIONID=18046DD169D1DA3A5265A8F55B1ED898; Path=/; Secure; HttpOnly
Set-Cookie:
AltoroAccounts="ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjguMjkxMjcyMDg1NTE3OTNFMjB8NDUzOTA
4MjAzOTM5NjI4OH5DcmVkaXQgQ2FyZH4tMS45OTk1NDM0MDEyNzg3MTIzMkUxOHw="; Version=1

GET /bank/main.jsp HTTP/1.1
Cookie: JSESSIONID=18046DD169D1DA3A5265A8F55B1ED898;
AltoroAccounts="ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjguMjkxMjcyMDg1NTE3OTNFMjB8NDUzOTA
4MjAzOTM5NjI4OH5DcmVkaXQgQ2FyZH4tMS45OTk1NDM0MDEyNzg3MTIzMkUxOHw="
Accept-Language: en-US
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: https://demo.testfire.net/doLogin

...

Raw Test Response:

...

Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7
Sec-Fetch-Site: none
Sec-Fetch-Mode: navigate
Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Accept-Language: en-US
Content-Length: 0

HTTP/1.1 200 OK

10/05/2024 96

https://demo.testfire.net/

TOC

L Missing or insecure Cross-Frame Scripting Defence 1 TOC

Issue 1 of 1

Missing or insecure Cross-Frame Scripting Defence
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/

Entity: demo.testfire.net (Page)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Config your server to use the "X-Frame-Options" header with DENY or SAMEORIGIN value

Difference:

Reasoning: AppScan detected that the X-Frame-Options response header is missing or with insecure value, which may allow
Cross-Frame Scripting attacks

Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:02:20 GMT
Set-Cookie: JSESSIONID=6E9208129C77FD658F688F6A07E27501; Path=/; Secure; HttpOnly

...

Raw Test Response:

...

Referer: https://demo.testfire.net/bank/main.jsp
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked

10/05/2024 97

https://demo.testfire.net/

TOC

L Missing or insecure HTTP Strict-Transport-Security Header 1 TOC

Issue 1 of 1

Missing or insecure HTTP Strict-Transport-Security Header
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/

Entity: demo.testfire.net (Page)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Implement the HTTP Strict-Transport-Security policy with a long "max-age"

Difference:

Reasoning: AppScan detected that the HTTP Strict-Transport-Security response header is missing or with insufficient "max-age"

Date: Thu, 02 Nov 2023 09:03:42 GMT

...

Raw Test Response:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:02:20 GMT
Set-Cookie: JSESSIONID=6E9208129C77FD658F688F6A07E27501; Path=/; Secure; HttpOnly

<!-- BEGIN HEADER -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
...

10/05/2024 98

https://demo.testfire.net/

TOC

TOC

L Query Parameter in SSL Request 11 TOC

Issue 1 of 11

Query Parameter in SSL Request
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/util/serverStatusCheckService.jsp

Entity: HostName (Parameter)

Risk: It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted

Cause: Query parameters were passed over SSL, and may contain sensitive information

Fix: Always use SSL and POST (body) parameters when sending sensitive information.

Difference:

Reasoning: AppScan found parameters in the query part of the HTTP request, which was sent over SSL.

Issue 2 of 11

Original Request

...
GET /util/serverStatusCheckService.jsp?HostName=AltoroMutual HTTP/1.1
Host: demo.testfire.net
Connection: keep-alive
sec-ch-ua: "Not)A;Brand";v="24", "Chromium";v="116"
sec-ch-ua-mobile: ?0
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36
sec-ch-ua-platform: "Windows"
Accept: */*
Sec-Fetch-Site: same-origin
Sec-Fetch-Mode: cors

...

10/05/2024 99

https://demo.testfire.net/util/serverStatusCheckService.jsp

TOC

Query Parameter in SSL Request
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/search.jsp

Entity: query (Parameter)

Risk: It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted

Cause: Query parameters were passed over SSL, and may contain sensitive information

Fix: Always use SSL and POST (body) parameters when sending sensitive information.

Difference:

Reasoning: AppScan found parameters in the query part of the HTTP request, which was sent over SSL.

Issue 3 of 11

Query Parameter in SSL Request
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/index.jsp

Entity: content (Parameter)

Risk: It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted

Cause: Query parameters were passed over SSL, and may contain sensitive information

Fix: Always use SSL and POST (body) parameters when sending sensitive information.

Difference:

Reasoning: AppScan found parameters in the query part of the HTTP request, which was sent over SSL.

Original Request

...
GET /search.jsp?query=1234 HTTP/1.1
Host: demo.testfire.net
Connection: keep-alive
sec-ch-ua: "Not)A;Brand";v="24", "Chromium";v="116"
sec-ch-ua-mobile: ?0
sec-ch-ua-platform: "Windows"
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7
Sec-Fetch-Site: same-origin

...

Original Request

...
GET /index.jsp?content=personal.htm HTTP/1.1
Host: demo.testfire.net
Connection: keep-alive

10/05/2024 100

https://demo.testfire.net/search.jsp
https://demo.testfire.net/index.jsp

TOC

TOC

Issue 4 of 11

Query Parameter in SSL Request
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/showAccount

Entity: listAccounts (Parameter)

Risk: It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted

Cause: Query parameters were passed over SSL, and may contain sensitive information

Fix: Always use SSL and POST (body) parameters when sending sensitive information.

Difference:

Reasoning: AppScan found parameters in the query part of the HTTP request, which was sent over SSL.

Issue 5 of 11

sec-ch-ua: "Not)A;Brand";v="24", "Chromium";v="116"
sec-ch-ua-mobile: ?0
sec-ch-ua-platform: "Windows"
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7
Sec-Fetch-Site: same-origin

...

Original Request

...
GET /bank/showAccount?listAccounts=800003 HTTP/1.1
Host: demo.testfire.net
Connection: keep-alive
sec-ch-ua: "Not)A;Brand";v="24", "Chromium";v="116"
sec-ch-ua-mobile: ?0
sec-ch-ua-platform: "Windows"
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7
Sec-Fetch-Site: same-origin

...

10/05/2024 101

https://demo.testfire.net/bank/showAccount

TOC

Query Parameter in SSL Request
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/survey_questions.jsp

Entity: step (Parameter)

Risk: It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted

Cause: Query parameters were passed over SSL, and may contain sensitive information

Fix: Always use SSL and POST (body) parameters when sending sensitive information.

Difference:

Reasoning: AppScan found parameters in the query part of the HTTP request, which was sent over SSL.

Issue 6 of 11

Query Parameter in SSL Request
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/customize.jsp

Entity: content (Parameter)

Risk: It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted

Cause: Query parameters were passed over SSL, and may contain sensitive information

Fix: Always use SSL and POST (body) parameters when sending sensitive information.

Difference:

Reasoning: AppScan found parameters in the query part of the HTTP request, which was sent over SSL.

Original Request

...
GET /survey_questions.jsp?step=a HTTP/1.1
Host: demo.testfire.net
Connection: keep-alive
sec-ch-ua: "Not)A;Brand";v="24", "Chromium";v="116"
sec-ch-ua-mobile: ?0
sec-ch-ua-platform: "Windows"
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7
Sec-Fetch-Site: same-origin

...

Original Request

...
POST /bank/customize.jsp?content=customize.jsp&lang=international HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Cookie: JSESSIONID=1DAB8EDCD7B25D3144C0FAEF39C14A1C;

10/05/2024 102

https://demo.testfire.net/survey_questions.jsp
https://demo.testfire.net/bank/customize.jsp

TOC

TOC

Issue 7 of 11

Query Parameter in SSL Request
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/queryxpath.jsp

Entity: content (Parameter)

Risk: It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted

Cause: Query parameters were passed over SSL, and may contain sensitive information

Fix: Always use SSL and POST (body) parameters when sending sensitive information.

Difference:

Reasoning: AppScan found parameters in the query part of the HTTP request, which was sent over SSL.

Issue 8 of 11

AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Accept-Language: en-US
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: https://demo.testfire.net/bank/customize.jsp?content=customize.jsp&lang=international
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36
Content-Length: 0

...

Original Request

...
GET /bank/queryxpath.jsp?content=queryxpath.jsp&query=Enter+title+%28e.g.+Watchfire%29 HTTP/1.1
Host: demo.testfire.net
Connection: keep-alive
sec-ch-ua: "Not)A;Brand";v="24", "Chromium";v="116"
sec-ch-ua-mobile: ?0
sec-ch-ua-platform: "Windows"
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7
Sec-Fetch-Site: same-origin

...

10/05/2024 103

https://demo.testfire.net/bank/queryxpath.jsp

TOC

Query Parameter in SSL Request
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/index.jsp

Entity: job (Parameter)

Risk: It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted

Cause: Query parameters were passed over SSL, and may contain sensitive information

Fix: Always use SSL and POST (body) parameters when sending sensitive information.

Difference:

Reasoning: AppScan found parameters in the query part of the HTTP request, which was sent over SSL.

Issue 9 of 11

Query Parameter in SSL Request
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/queryxpath.jsp

Entity: query (Parameter)

Risk: It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted

Cause: Query parameters were passed over SSL, and may contain sensitive information

Fix: Always use SSL and POST (body) parameters when sending sensitive information.

Difference:

Reasoning: AppScan found parameters in the query part of the HTTP request, which was sent over SSL.

Original Request

...
GET /index.jsp?content=inside_jobs.htm&job=OperationalRiskManager:RiskManagement HTTP/1.1
Cookie: JSESSIONID=1DAB8EDCD7B25D3144C0FAEF39C14A1C;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Accept-Language: en-US
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: https://demo.testfire.net/index.jsp?content=inside_jobs.htm
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36
Content-Length: 0

...

Original Request

...
GET /bank/queryxpath.jsp?content=queryxpath.jsp&query=Enter+title+%28e.g.+Watchfire%29 HTTP/1.1
Host: demo.testfire.net
Connection: keep-alive
sec-ch-ua: "Not)A;Brand";v="24", "Chromium";v="116"

10/05/2024 104

https://demo.testfire.net/index.jsp
https://demo.testfire.net/bank/queryxpath.jsp

TOC

TOC

Issue 10 of 11

Query Parameter in SSL Request
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/bank/customize.jsp

Entity: lang (Parameter)

Risk: It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted

Cause: Query parameters were passed over SSL, and may contain sensitive information

Fix: Always use SSL and POST (body) parameters when sending sensitive information.

Difference:

Reasoning: AppScan found parameters in the query part of the HTTP request, which was sent over SSL.

Issue 11 of 11

sec-ch-ua-mobile: ?0
sec-ch-ua-platform: "Windows"
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.7
Sec-Fetch-Site: same-origin

...

Original Request

...
POST /bank/customize.jsp?content=customize.jsp&lang=international HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Cookie: JSESSIONID=1DAB8EDCD7B25D3144C0FAEF39C14A1C;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Accept-Language: en-US
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Referer: https://demo.testfire.net/bank/customize.jsp?content=customize.jsp&lang=international
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36
Content-Length: 0

...

10/05/2024 105

https://demo.testfire.net/bank/customize.jsp

TOC

Query Parameter in SSL Request
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/survey_questions.jsp

Entity: txtEmail (Parameter)

Risk: It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted

Cause: Query parameters were passed over SSL, and may contain sensitive information

Fix: Always use SSL and POST (body) parameters when sending sensitive information.

Difference:

Reasoning: AppScan found parameters in the query part of the HTTP request, which was sent over SSL.

L Unnecessary Http Response Headers found in the Application 1 TOC

Issue 1 of 1

Unnecessary Http Response Headers found in the Application
Severity: Low

CVSS Score: 3,7

URL: https://demo.testfire.net/login.jsp

Entity: demo.testfire.net (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Do not allow sensitive information to leak.

Difference:

Original Request

...
GET /survey_questions.jsp?step=done&txtEmail=jsmith%40mail.com HTTP/1.1
Sec-Fetch-Site: same-origin
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/83.0.4103.106 Safari/537.36
Referer: https://demo.testfire.net/survey_questions.jsp?step=email
Cookie: JSESSIONID=F6E6D029107D8ECB49D0B44354696654
Connection: keep-alive
Host: demo.testfire.net
Upgrade-Insecure-Requests: 1
Sec-Fetch-Mode: navigate
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,application/signed-
exchange;v=b3;q=0.9

...

10/05/2024 106

https://demo.testfire.net/survey_questions.jsp
https://demo.testfire.net/login.jsp

Reasoning: The response contains unnecessary headers, which may help attackers in planning further attacks.
Raw Test Response:

...

Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Referer: https://demo.testfire.net/
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8
Content-Length: 0

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:01:47 GMT

...

10/05/2024 107

TOC

TOC

I Application Error 7 TOC

Issue 1 of 7

Application Error
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/bank/showAccount

Entity: listAccounts (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter listAccounts manipulated from: 800003 to: %00

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

Issue 2 of 7

Raw Test Response:

...

Sec-Fetch-User: ?1
Sec-Fetch-Dest: document
Referer: https://demo.testfire.net/bank/main.jsp
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 0

HTTP/1.1 500 Internal Server Error
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=utf-8
Content-Language: en
Content-Length: 2233
Date: Thu, 02 Nov 2023 09:09:32 GMT
Connection: close

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">H1 {font-
family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-size:22px;} H2 {font-family:Tahoma,Arial,sans-
serif;color:white;background-color:#525D76;font-size:16px;} H3 {font-family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:14px;} BODY
...

10/05/2024 108

https://demo.testfire.net/bank/showAccount

TOC

Application Error
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/bank/doTransfer

Entity: transferAmount (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter transferAmount manipulated from: 1234 to:

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

Issue 3 of 7

Raw Test Response:

...

Referer: https://demo.testfire.net/bank/transfer.jsp
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 75

fromAccount=800003&toAccount=800003&transferAmount=&transfer=Transfer+Money

HTTP/1.1 500 Internal Server Error
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=utf-8
Content-Language: en
Content-Length: 1794
Date: Thu, 02 Nov 2023 09:12:15 GMT
Connection: close

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">H1 {font-
family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-size:22px;} H2 {font-family:Tahoma,Arial,sans-
serif;color:white;background-color:#525D76;font-size:16px;} H3 {font-family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:14px;} BODY
...

10/05/2024 109

https://demo.testfire.net/bank/doTransfer

TOC

Application Error
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/bank/showTransactions

Entity: startDate (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter startDate manipulated from: 2019-01-01 to: \"

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

Issue 4 of 7

Raw Test Response:

...

Sec-Fetch-Dest: document
Referer: https://demo.testfire.net/bank/transaction.jsp
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 31

startDate=\"&endDate=2019-01-01

HTTP/1.1 500 Internal Server Error
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=utf-8
Content-Language: en
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:12:10 GMT
Connection: close

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">H1 {font-
family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-size:22px;} H2 {font-family:Tahoma,Arial,sans-
serif;color:white;background-color:#525D76;font-size:16px;} H3 {font-family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:14px;} BODY
...

10/05/2024 110

https://demo.testfire.net/bank/showTransactions

TOC

Application Error
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/bank/doTransfer

Entity: toAccount (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter toAccount manipulated from: 800003 to: %27

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

Issue 5 of 7

Raw Test Response:

...

Referer: https://demo.testfire.net/bank/transfer.jsp
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 76

fromAccount=800003&toAccount=%27&transferAmount=1234&transfer=Transfer+Money

HTTP/1.1 500 Internal Server Error
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=utf-8
Content-Language: en
Content-Length: 1775
Date: Thu, 02 Nov 2023 09:12:10 GMT
Connection: close

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">H1 {font-
family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-size:22px;} H2 {font-family:Tahoma,Arial,sans-
serif;color:white;background-color:#525D76;font-size:16px;} H3 {font-family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:14px;} BODY
...

10/05/2024 111

https://demo.testfire.net/bank/doTransfer

TOC

Application Error
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/bank/showTransactions

Entity: endDate (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter endDate manipulated from: 2019-01-01 to: %00

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

Issue 6 of 7

Raw Test Response:

...

Sec-Fetch-Dest: document
Referer: https://demo.testfire.net/bank/transaction.jsp
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 32

startDate=2019-01-01&endDate=%00

HTTP/1.1 500 Internal Server Error
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=utf-8
Content-Language: en
Transfer-Encoding: chunked
Date: Thu, 02 Nov 2023 09:12:10 GMT
Connection: close

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">H1 {font-
family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-size:22px;} H2 {font-family:Tahoma,Arial,sans-
serif;color:white;background-color:#525D76;font-size:16px;} H3 {font-family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:14px;} BODY
...

10/05/2024 112

https://demo.testfire.net/bank/showTransactions

TOC

Application Error
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/bank/doTransfer

Entity: transfer (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter transfer manipulated from: transfer to: __ORIG_VAL__.

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

Issue 7 of 7

Raw Test Response:

...

Referer: https://demo.testfire.net/bank/transfer.jsp
Host: demo.testfire.net
User-Agent: Mozilla/5.0 (Windows NT 6.2; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.4896.127 Safari/537.36
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 80

fromAccount=800003&toAccount=800003&transferAmount=1234&transfer.=Transfer+Money

HTTP/1.1 500 Internal Server Error
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=utf-8
Content-Language: en
Content-Length: 1808
Date: Thu, 02 Nov 2023 09:12:01 GMT
Connection: close

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">H1 {font-
family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-size:22px;} H2 {font-family:Tahoma,Arial,sans-
serif;color:white;background-color:#525D76;font-size:16px;} H3 {font-family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:14px;} BODY
...

10/05/2024 113

https://demo.testfire.net/bank/doTransfer

TOC

Application Error
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/bank/ccApply

Entity: passwd (Parameter)

Risk: It is possible to gather sensitive debugging information

Cause: Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

Fix: Verify that parameter values are in their expected ranges and types. Do not output debugging error messages and exceptions

Difference: Parameter passwd manipulated from: **CONFIDENTIAL 0** to: %27

Reasoning: The application has responded with an error message, indicating an undefined state that may expose sensitive
information.

I Email Address Pattern Found 4 TOC

Issue 1 of 4

Raw Test Response:

...

Sec-Fetch-Dest: document
Referer: https://demo.testfire.net/bank/apply.jsp
Accept-Language: en-US
Cookie: JSESSIONID=6354734A2B825ABCB2DC812C04629BE8;
AltoroAccounts=ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0NzM3ODg1RTIwfDQ1Mzkw
ODIwMzkzOTYyODh+Q3JlZGl0IENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8
Content-Length: 24

passwd=%27&Submit=Submit

HTTP/1.1 500 Internal Server Error
Server: Apache-Coyote/1.1
Content-Type: text/html;charset=utf-8
Content-Language: en
Content-Length: 1004
Date: Thu, 02 Nov 2023 09:13:14 GMT
Connection: close

<!doctype html><html lang="en"><head><title>HTTP Status 500 – Internal Server Error</title><style type="text/css">H1 {font-
family:Tahoma,Arial,sans-serif;color:white;background-color:#525D76;font-size:22px;} H2 {font-family:Tahoma,Arial,sans-
serif;color:white;background-color:#525D76;font-size:16px;} H3 {font-family:Tahoma,Arial,sans-serif;color:white;background-
color:#525D76;font-size:14px;} BODY
...

10/05/2024 114

https://demo.testfire.net/bank/ccApply

TOC

Email Address Pattern Found
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/doSubscribe

Entity: doSubscribe (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Remove e-mail addresses from the website

Difference:

Reasoning: The response contains an e-mail address that may be private.

Issue 2 of 4

Email Address Pattern Found
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/swagger/properties.json

Entity: properties.json (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Remove e-mail addresses from the website

Raw Test Response:

...

 <h1>Subscribe</h1>

 <p>We recognize that things are always evolving and changing here at Altoro Mutual.
 Please enter your email below and we will automatically notify of noteworthy events.</p>

 <form action="doSubscribe" method="post" name="subscribe" id="subscribe" onsubmit="return
confirmEmail(txtEmail.value);">
 <table>
 <tr>
 <td colspan="2">
 <div style="font-weight: bold; font-size: 12px; color: red;" id="message">Thank you. Your email
test@altoromutual.com has been accepted.</div>
 </td>
 </tr>
 <tr>
 <td>
 Email:
 </td>
 <td>
 <input type="text" id="txtEmail" name="txtEmail" value="" style="width: 150px;">
 </td>

...

10/05/2024 115

https://demo.testfire.net/doSubscribe
https://demo.testfire.net/swagger/properties.json

TOC

Difference:

Reasoning: The response contains an e-mail address that may be private.

Issue 3 of 4

Email Address Pattern Found
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/swagger/swagger-ui-standalone-preset.js

Entity: swagger-ui-standalone-preset.js (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Remove e-mail addresses from the website

Difference:

Reasoning: The response contains an e-mail address that may be private.

Raw Test Response:

...

],
 "properties": {
 "name": {
 "type": "string",
 "example": "J Smith"
 },
 "email": {
 "type": "string",
 "format": "email",
 "example": "jsmtih@altoromutual.com"
 },
 "subject": {
 "type": "string",
 "example": "Amazing web design"
 },
 "message": {
 "type": "string",
 "example": "I like the new look of your applicaiton"
 }

...

Raw Test Response:

...

...on(t){
/*!
 * The buffer module from node.js, for the browser.
 *
 * @author Feross Aboukhadijeh <feross@feross.org> <http://feross.org>
 * @license MIT
 */
var r=n(325),i=n(326),o=n(167);function u(){return s.TYPE...

...

...

...&t.__esModule?t:{default:t}}var a={string:function(){return"string"},string_email:function()

10/05/2024 116

https://demo.testfire.net/swagger/swagger-ui-standalone-preset.js

TOCIssue 4 of 4

Email Address Pattern Found
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/swagger/swagger-ui-bundle.js

Entity: swagger-ui-bundle.js (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Remove e-mail addresses from the website

Difference:

Reasoning: The response contains an e-mail address that may be private.

{return"user@example.com"},"string_date-time":function(){return(new Date).toISOString()},number:function(){return
0},number_...

...

Raw Test Response:

...

...on(e){
/*!
 * The buffer module from node.js, for the browser.
 *
 * @author Feross Aboukhadijeh <feross@feross.org> <http://feross.org>
 * @license MIT
 */
var r=n(529),o=n(530),i=n(261);function a(){return s.TYPE...

...

...
&&"function"==typeof t.callee?"Arguments":a}},function(e,t){var n=0,r=Math.random();e.exports=function(e)
{return"Symbol(".concat(void 0===e?"":e,")_",(++n+r).toString(36))}},function(e,t,n){var
r=n(74),o=n(33).document,i=r(o)&&r(o.createElement);e.exports=function(e){return i?o.createElement(e):{}}},function(e,t,n)
{var r=n(242)("keys"),o=n(167);e.exports=function(e){return r[e]||(r[e]=o(e))}},function(e,t,n){var
r=n(117).f,o=n(118),i=n(17)("toStringTag");e.exports=function(e,t,n){e&&!o(e=n?e:e.prototype,i)&&r(e,i,
{configurable:!0,value:t})}},function(e,t,n){"use strict";var r=n(121);e.exports.f=function(e){return new function(e){var
t,n;this.promise=new e(function(e,r){if(void 0!==t||void 0!==n)throw TypeError("Bad Promise
constructor");t=e,n=r}),this.resolve=r(t),this.reject=r(n)}(e)}},function(e,t,n){var
r=n(256),o=n(53);e.exports=function(e,t,n){if(r(t))throw TypeError("String#"+n+" doesn't accept regex!");return
String(o(e))}},function(e,t,n){var r=n(17)("match");e.exports=function(e){var t=/./;try{"/./"[e](t)}catch(n){try{return
t[r]=!1,!"/./"[e](t)}catch(e){}}return!0}},function(e,t,n){t.f=n(19)},function(e,t,n){var
r=n(21),o=n(15),i=n(114),a=n(174),u=n(40).f;e.exports=function(e){var t=o.Symbol||(o.Symbol=i?{}:r.Symbol||
{});"_"==e.charAt(0)||e in t||u(t,e,{value:a.f(e)})}},function(e,t){t.f=Object.getOwnPropertySymbols},function(e,t)
{},function(e,t,n){"use strict";(function(t){
/*!
 * @description Recursive object extending
 * @author Viacheslav Lotsmanov <lotsmanov89@gmail.com>
 * @license MIT
 *
 * The MIT License (MIT)
 *
 * Copyright (c) 2013-2018 Viacheslav Lotsmanov
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
...

10/05/2024 117

https://demo.testfire.net/swagger/swagger-ui-bundle.js

TOC

I HTML Comments Sensitive Information Disclosure 4 TOC

Issue 1 of 4

HTML Comments Sensitive Information Disclosure
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/bank/showAccount

Entity: To modify account information do not connect to SQL source directly. Make all changes (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Many web application programmers use HTML comments to help debug the application when needed. While adding general
comments is very useful, some programmers tend to leave important data in client-side comments, such as filenames related
to the web application, links which were not meant to be browsed by users, old code fragments including passwords, etc.
Comments such as BUG, FIXME, and TODO may be an indication of missing security functionality and checking. Others
indicate code problems that you should fix, such as hard-coded variables, error handling, not using stored procedures, and
performance issues. Comments in HTML and JavaScript are usually easily viewable by end users.

Fix: Remove sensitive information from HTML comments

Difference:

Reasoning: AppScan discovered HTML comments containing what appears to be sensitive information.

...

...&e.__esModule?e:{default:e}}var u={string:function(){return"string"},string_email:function()
{return"user@example.com"},"string_date-time":function(){return(new Date).toISOString()},number:function(){return
0},number_...

...

...

...r r,o,i;o=this,i=function(){
/*!
 * Autolinker.js
 * 0.15.3
 *
 * Copyright(c) 2015 Gregory Jacobs <greg@greg-jacobs.com>
 * MIT Licensed. http://www.opensource.org/licenses/mit-license.php
 *
 * https://github.com/gregj...

...

Original Response

...

 <td valign="top" colspan="3" class="bb">

 <div class="fl" style="width: 99%;">

10/05/2024 118

https://demo.testfire.net/bank/showAccount

TOCIssue 2 of 4

HTML Comments Sensitive Information Disclosure
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/login.jsp

Entity: To get the latest admin login, please contact SiteOps at 415-555-6159 (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Many web application programmers use HTML comments to help debug the application when needed. While adding general
comments is very useful, some programmers tend to leave important data in client-side comments, such as filenames related
to the web application, links which were not meant to be browsed by users, old code fragments including passwords, etc.
Comments such as BUG, FIXME, and TODO may be an indication of missing security functionality and checking. Others
indicate code problems that you should fix, such as hard-coded variables, error handling, not using stored procedures, and
performance issues. Comments in HTML and JavaScript are usually easily viewable by end users.

Fix: Remove sensitive information from HTML comments

Difference:

Reasoning: AppScan discovered HTML comments containing what appears to be sensitive information.

 <!-- To modify account information do not connect to SQL source directly. Make all changes
 through the admin page. -->

 <h1>Account History - 800003 Checking</h1>

 <table width="590" border="0">
 <tr>
 <td colspan=2>
 <table cellSpacing="0" cellPadding="1" width="100%" border="1">
 <tr>
 <th colSpan="2">

...

Original Response

...

 </td>
<!-- TOC END -->

 <td valign="top" colspan="3" class="bb">
 <div class="fl" style="width: 99%;">

 <h1>Online Banking Login</h1>

 <!-- To get the latest admin login, please contact SiteOps at 415-555-6159 -->
 <p>

 </p>

 <form action="doLogin" method="post" name="login" id="login" onsubmit="return (confirminput(login));">
 <table>
 <tr>
 <td>
 Username:

...

10/05/2024 119

https://demo.testfire.net/login.jsp

TOC

TOC

Issue 3 of 4

HTML Comments Sensitive Information Disclosure
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/admin/admin.jsp

Entity: Be careful what you change. All changes are made directly to AltoroJ database. (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Many web application programmers use HTML comments to help debug the application when needed. While adding general
comments is very useful, some programmers tend to leave important data in client-side comments, such as filenames related
to the web application, links which were not meant to be browsed by users, old code fragments including passwords, etc.
Comments such as BUG, FIXME, and TODO may be an indication of missing security functionality and checking. Others
indicate code problems that you should fix, such as hard-coded variables, error handling, not using stored procedures, and
performance issues. Comments in HTML and JavaScript are usually easily viewable by end users.

Fix: Remove sensitive information from HTML comments

Difference:

Reasoning: AppScan discovered HTML comments containing what appears to be sensitive information.

Issue 4 of 4

Original Response

...

 myform.password2.value="";
 myform.password1.focus();
 alert ("Passwords do not match");
 return false;
 }

 }
 </script>

 <!-- Be careful what you change. All changes are made directly to AltoroJ database. -->
 <div class="fl" style="width: 99%;">
 <p>

 </p>

 <h1>Edit User Information</h1>

 <table width="100%" border="0">
 <!-- action="addAccount" -->

...

10/05/2024 120

https://demo.testfire.net/admin/admin.jsp

TOC

HTML Comments Sensitive Information Disclosure
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/admin/admin.jsp

Entity: action="changePassword" (Page)

Risk: It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Many web application programmers use HTML comments to help debug the application when needed. While adding general
comments is very useful, some programmers tend to leave important data in client-side comments, such as filenames related
to the web application, links which were not meant to be browsed by users, old code fragments including passwords, etc.
Comments such as BUG, FIXME, and TODO may be an indication of missing security functionality and checking. Others
indicate code problems that you should fix, such as hard-coded variables, error handling, not using stored procedures, and
performance issues. Comments in HTML and JavaScript are usually easily viewable by end users.

Fix: Remove sensitive information from HTML comments

Difference:

Reasoning: AppScan discovered HTML comments containing what appears to be sensitive information.

I Missing "Referrer policy" Security Header 1 TOC

Issue 1 of 1

Original Response

...

 <option Value="Checking">Checking</option>
 <option Value="Savings" Selected>Savings</option>
 <option Value="IRA">IRA</option>
 </Select></td>
 <td></td>
 <td><input type="submit" value="Add Account"></td>
 </tr>
 </form>

 <!-- action="changePassword" -->
 <form id="changePass" name="changePass" action="" method="post" onsubmit="return confirmpass(this);">
 <tr>
 <td colspan="4"><h2>

Change user's password</h2></td>
 </tr>
 <tr>
 <th>
 Users:
 </th>
 <th>

...

10/05/2024 121

https://demo.testfire.net/admin/admin.jsp

TOC

Missing "Referrer policy" Security Header
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/

Entity: demo.testfire.net (Page)

Risk: It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social
security number etc.
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or
sensitive file locations

Cause: Insecure web application programming or configuration

Fix: Config your server to use the "Referrer Policy" header with secure policies

Difference:

Reasoning: AppScan detected that the Referrer Policy Response header is missing or with an insecure policy, which increases
exposure to various cross-site injection attacks

I Possible Server Path Disclosure Pattern Found 1 TOC

Issue 1 of 1

Possible Server Path Disclosure Pattern Found
Severity: Informational

CVSS Score: 0,0

URL: https://demo.testfire.net/feedback.jsp

Entity: feedback.jsp (Page)

Risk: It is possible to retrieve the absolute path of the web server installation, which might help an attacker to develop further attacks
and to gain information about the file system structure of the web application

Cause: Latest patches or hotfixes for 3rd. party products were not installed

Fix: Download the relevant security patch for your web server or web application.

Difference:

Reasoning: The response contains the absolute paths and/or filenames of files on the server.
Raw Test Response:

...

 <p>Our Frequently Asked Questions area will help you with many of your inquiries.

 If you can't find your question, return to this page and use the e-mail form below.</p>

 <p>IMPORTANT! This feedback facility is not secure. Please do not send any

 account information in a message sent from here.</p>

 <form name="cmt" method="post" action="sendFeedback">

10/05/2024 122

https://demo.testfire.net/
https://demo.testfire.net/feedback.jsp

 <!--- Dave- Hard code this into the final script - Possible security problem.
 Re-generated every Tuesday and old files are saved to .bak format at L:\backup\website\oldfiles --->
 <input type="hidden" name="cfile" value="comments.txt">

 <table border=0>
 <tr>
 <td align=right>To:</td>
 <td valign=top>Online Banking </td>
 </tr>
 <tr>
 <td align=right>Your Name:</td>

...

10/05/2024 123

TOC

How to Fix

Blind SQL Injection

Cause:
Sanitation of hazardous characters was not performed correctly on user input

Risk:
It is possible to view, modify or delete database entries and tables
The software constructs all or part of an SQL command using externally-influenced input, but fails to neutralize elements that could modify the
SQL command when it is sent to the database.
Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL query can cause those inputs to be
interpreted as SQL instead of ordinary user data. This can be used to alter query logic to bypass security checks, or to insert additional
statements that modify the back-end database, possibly including execution of system commands.
For example, let's say we have an HTML page with a login form, which eventually runs the following SQL query on the database using the
user input:
SELECT * FROM accounts WHERE username='$user' AND password='$pass'
The two variables, $user and $pass, contain the user credentials entered by the user in the login form.
If the user has input "jsmith" as the username, and "Demo1234" as the password, the SQL query will look like this:
SELECT * FROM accounts WHERE username='jsmith' AND password='Demo1234'
But if the user input "'" (a single apostrophe) as the username, and "'" (a single apostrophe) as the password, the SQL query will look like this:
SELECT * FROM accounts WHERE username=''' AND password='''
This, of course, is a malformed SQL query, and will invoke an error message, which may be returned in the HTTP response.
An error such as this informs the attacker that an SQL Injection has succeeded, which will lead the attacker to attempt further attack vectors.
Blind SQL Injection is similar of SQL Injection. The difference lies in the fact that to leverage it, the attacker does not need to look for SQL
errors in the response. Therefore, the method AppScan uses to identify it is also different.
Instead of attempting to invoke an SQL error, AppScan locates scripts that are susceptible to SQL injection, by manipulating the logic of the
application through multiple requests.
The technique calls for sending requests whose vulnerable parameter (the parameter that gets embedded in the SQL query) is modified so
that the response indicates whether the data is used in SQL query context or not. The modification involves the use of an AND Boolean
expression with the original string, which evaluates once as True and once as False. In one case, the net result should be identical to the
original result (a successful login), and in the other case, the result should be significantly different (a failed login). An OR expression which
evaluates as True may also be useful for some rare cases.
If the original data is numeric, a simpler trick can be played. Let's consider original data 123. This can be replaced with 0+123 in one request,
and with 456+123 in another. The result of the first request should be identical to the original result, whereas the result of the second request
should be different (as the number is evaluated as 579). For some cases, we still need a version of the attack described above (using AND
and OR), but without escaping from string context.
The concept behind Blind SQL Injection is that it is possible, even without receiving direct data from the database (in the form of an error
message, or leaked information), to extract data from the database, one bit at a time, or to modify the query in a malicious way. The idea is
that the application's behavior (returning responses that are identical or different to the original response) can provide a single bit of
information about the evaluated (modified) query, meaning, it's possible for the attacker to formulate an SQL Boolean expression whose
evaluation (single bit) is compromised in the form of the application behavior (identical/un-identical to the original behavior).

Affected Products:
This issue may affect different types of products.

10/05/2024 124

Fix Recommendation:

General

There are several mitigation techniques:
[1] Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness or provides constructs that make it easier to avoid.
[2] Strategy: Parameterization
If available, use structured mechanisms that automatically enforce separation between data and code. These mechanisms may be able to
provide the relevant quoting, encoding, and validation automatically, instead of relying on the developer to provide this at every point where
output is generated.
[3] Strategy: Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks.
[4] Strategy: Output Encoding
If you need to use dynamically-generated query strings or commands in spite of the risk, properly quote arguments, and escape any special
characters within those arguments.
[5] Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy: a whitelist of acceptable inputs that strictly conform to
specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on detecting for malicious or malformed inputs with a blacklist. However, blacklists can be useful for detecting potential attacks or determining
which inputs are so malformed that they should be rejected outright.
Here are two possible ways to protect your web application against SQL injection attacks:
[1] Use a stored procedure rather than dynamically built SQL query string. The way parameters are passed to SQL Server stored procedures,
prevents the use of apostrophes and hyphens.
Here is a simple example of how to use stored procedures in ASP.NET:
' Visual Basic example Dim DS As DataSet Dim MyConnection As SqlConnection Dim MyCommand As SqlDataAdapter Dim SelectCommand
As String = "select * from users where username = @username" ... MyCommand.SelectCommand.Parameters.Add(New
SqlParameter("@username", SqlDbType.NVarChar, 20)) MyCommand.SelectCommand.Parameters("@username").Value =
UserNameField.Value // C# example String selectCmd = "select * from Authors where state = @username"; SqlConnection myConnection =
new SqlConnection("server=..."); SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd, myConnection);
myCommand.SelectCommand.Parameters.Add(new SqlParameter("@username", SqlDbType.NVarChar, 20));
myCommand.SelectCommand.Parameters["@username"].Value = UserNameField.Value;
[2] You can add input validation to Web Forms pages by using validation controls. Validation controls provide an easy-to-use mechanism for all
common types of standard validation - for example, testing for valid dates or values within a range - plus ways to provide custom-written
validation. In addition, validation controls allow you to completely customize how error information is displayed to the user. Validation controls
can be used with any controls that are processed in a Web Forms page's class file, including both HTML and Web server controls.
In order to make sure user input contains only valid values, you can use one of the following validation controls:
a. "RangeValidator": checks that a user's entry (value) is between specified lower and upper boundaries. You can check ranges within pairs of
numbers, alphabetic characters, and dates.
b. "RegularExpressionValidator": checks that the entry matches a pattern defined by a regular expression. This type of validation allows you to
check for predictable sequences of characters, such as those in social security numbers, e-mail addresses, telephone numbers, postal codes,
and so on.
Important note: validation controls do not block user input or change the flow of page processing; they only set an error state, and produce error
messages. It is the programmer's responsibility to test the state of the controls in the code before performing further application-specific actions.
There are two ways to check for user input validity:
1. Testing for a general error state:
In your code, test the page's IsValid property. This property rolls up the values of the IsValid properties of all the validation controls on the page
(using a logical AND). If one of the validation controls is set to invalid, the page's property will return false.
2. Testing for the error state of individual controls:
Loop through the page's Validators collection, which contains references to all the validation controls. You can then examine the IsValid property
of each validation control.
** Prepared Statements:
There are 3 possible ways to protect your application against SQL injection, i.e. malicious tampering of SQL parameters. Instead of dynamically
building SQL statements, use:
[1] PreparedStatement, which is precompiled and stored in a pool of PreparedStatement objects. PreparedStatement defines setters to register
input parameters that are compatible with the supported JDBC SQL data types. For example, setString should be used for input parameters of
type VARCHAR or LONGVARCHAR (refer to the Java API for further details). This way of setting input parameters prevents an attacker from
manipulating the SQL statement through injection of bad characters, such as apostrophe.
Example of how to use a PreparedStatement in J2EE:
// J2EE PreparedStatemenet Example // Get a connection to the database Connection myConnection; if (isDataSourceEnabled()) { // using the
DataSource to get a managed connection Context ctx = new InitialContext(); myConnection =
((DataSource)ctx.lookup(datasourceName)).getConnection(dbUserName, dbPassword); } else { try { // using the DriverManager to get a JDBC
connection Class.forName(jdbcDriverClassPath); myConnection = DriverManager.getConnection(jdbcURL, dbUserName, dbPassword); } catch
(ClassNotFoundException e) { ... } } ... try { PreparedStatement myStatement = myConnection.prepareStatement("select * from users where
username = ?"); myStatement.setString(1, userNameField); ResultSet rs = myStatement.executeQuery(); ... rs.close(); } catch (SQLException

10/05/2024 125

sqlException) { ... } finally { myStatement.close(); myConnection.close(); }
[2] CallableStatement, which extends PreparedStatement to execute database SQL stored procedures. This class inherits input setters from
PreparedStatement (see [1] above).
The following example assumes that this database stored procedure has been created:
CREATE PROCEDURE select_user (@username varchar(20))
AS SELECT * FROM USERS WHERE USERNAME = @username;
Example of how to use a CallableStatement in J2EE to execute the above stored procedure:
// J2EE PreparedStatemenet Example // Get a connection to the database Connection myConnection; if (isDataSourceEnabled()) { // using the
DataSource to get a managed connection Context ctx = new InitialContext(); myConnection =
((DataSource)ctx.lookup(datasourceName)).getConnection(dbUserName, dbPassword); } else { try { // using the DriverManager to get a JDBC
connection Class.forName(jdbcDriverClassPath); myConnection = DriverManager.getConnection(jdbcURL, dbUserName, dbPassword); } catch
(ClassNotFoundException e) { ... } } ... try { PreparedStatement myStatement = myConnection.prepareCall("{?= call select_user ?,?}");
myStatement.setString(1, userNameField); myStatement.registerOutParameter(1, Types.VARCHAR); ResultSet rs =
myStatement.executeQuery(); ... rs.close(); } catch (SQLException sqlException) { ... } finally { myStatement.close(); myConnection.close(); }
[3] Entity Bean, which represents an EJB business object in a persistent storage mechanism. There are two types of entity beans: bean-
managed and container-managed. With bean-managed persistence, the developer is responsible of writing the SQL code to access the
database (refer to sections [1] and [2] above). With container-managed persistence, the EJB container automatically generates the SQL code.
As a result, the container is responsible of preventing malicious attempts to tamper with the generated SQL code.
Example of how to use an Entity Bean in J2EE:
// J2EE EJB Example try { // lookup the User home interface UserHome userHome = (UserHome)context.lookup(User.class); // find the User
remote interface User = userHome.findByPrimaryKey(new UserKey(userNameField)); ... } catch (Exception e) { ... }
RECOMMENDED JAVA TOOLS
N/A
REFERENCES
https://docs.oracle.com/javase/7/docs/api/java/sql/PreparedStatement.html
https://docs.oracle.com/javase/7/docs/api/java/sql/CallableStatement.html
** Input Data Validation:
While data validations may be provided as a user convenience on the client-tier, data validation must be performed on the server-tier using
Servlets. Client-side validations are inherently insecure because they can be easily bypassed, e.g. by disabling Javascript.
A good design usually requires the web application framework to provide server-side utility routines to validate the following:
[1] Required field
[2] Field data type (all HTTP request parameters are Strings by default)
[3] Field length
[4] Field range
[5] Field options
[6] Field pattern
[7] Cookie values
[8] HTTP Response
A good practice is to implement the above routine as static methods in a "Validator" utility class. The following sections describe an example
validator class.
[1] Required field
Always check that the field is not null and its length is greater than zero, excluding leading and trailing white spaces.
Example of how to validate required fields:
// Java example to validate required fields public Class Validator { ... public static boolean validateRequired(String value) { boolean isFieldValid =
false; if (value != null && value.trim().length() > 0) { isFieldValid = true; } return isFieldValid; } ... } ... String fieldValue =
request.getParameter("fieldName"); if (Validator.validateRequired(fieldValue)) { // fieldValue is valid, continue processing request ... }
[2] Field data type
In web applications, input parameters are poorly typed. For example, all HTTP request parameters or cookie values are of type String. The
developer is responsible for verifying the input is of the correct data type. Use the Java primitive wrapper classes to check if the field value can
be safely converted to the desired primitive data type.
Example of how to validate a numeric field (type int):
// Java example to validate that a field is an int number public Class Validator { ... public static boolean validateInt(String value) { boolean
isFieldValid = false; try { Integer.parseInt(value); isFieldValid = true; } catch (Exception e) { isFieldValid = false; } return isFieldValid; } ... } ... //
check if the HTTP request parameter is of type int String fieldValue = request.getParameter("fieldName"); if (Validator.validateInt(fieldValue)) { //
fieldValue is valid, continue processing request ... }
A good practice is to convert all HTTP request parameters to their respective data types. For example, the developer should store the
"integerValue" of a request parameter in a request attribute and use it as shown in the following example:
// Example to convert the HTTP request parameter to a primitive wrapper data type // and store this value in a request attribute for further
processing String fieldValue = request.getParameter("fieldName"); if (Validator.validateInt(fieldValue)) { // convert fieldValue to an Integer Integer
integerValue = Integer.getInteger(fieldValue); // store integerValue in a request attribute request.setAttribute("fieldName", integerValue); } ... //
Use the request attribute for further processing Integer integerValue = (Integer)request.getAttribute("fieldName"); ...
The primary Java data types that the application should handle:
- Byte
- Short
- Integer
- Long

10/05/2024 126

https://docs.oracle.com/javase/7/docs/api/java/sql/PreparedStatement.html
https://docs.oracle.com/javase/7/docs/api/java/sql/CallableStatement.html

- Float
- Double
- Date
[3] Field length
Always ensure that the input parameter (whether HTTP request parameter or cookie value) is bounded by a minimum length and/or a maximum
length.
Example to validate that the length of the userName field is between 8 and 20 characters:
// Example to validate the field length public Class Validator { ... public static boolean validateLength(String value, int minLength, int maxLength)
{ String validatedValue = value; if (!validateRequired(value)) { validatedValue = ""; } return (validatedValue.length() >= minLength &&
validatedValue.length() <= maxLength); } ... } ... String userName = request.getParameter("userName"); if
(Validator.validateRequired(userName)) { if (Validator.validateLength(userName, 8, 20)) { // userName is valid, continue further processing ... } }
[4] Field range
Always ensure that the input parameter is within a range as defined by the functional requirements.
Example to validate that the input numberOfChoices is between 10 and 20:
// Example to validate the field range public Class Validator { ... public static boolean validateRange(int value, int min, int max) { return (value >=
min && value <= max); } ... } ... String fieldValue = request.getParameter("numberOfChoices"); if (Validator.validateRequired(fieldValue)) { if
(Validator.validateInt(fieldValue)) { int numberOfChoices = Integer.parseInt(fieldValue); if (Validator.validateRange(numberOfChoices, 10, 20)) {
// numberOfChoices is valid, continue processing request ... } } }
[5] Field options
Often, the web application presents the user with a set of options to choose from, e.g. using the SELECT HTML tag, but fails to perform server-
side validation to ensure that the selected value is one of the allowed options. Remember that a malicious user can easily modify any option
value. Always validate the selected user value against the allowed options as defined by the functional requirements.
Example to validate the user selection against a list of allowed options:
// Example to validate user selection against a list of options public Class Validator { ... public static boolean validateOption(Object[] options,
Object value) { boolean isValidValue = false; try { List list = Arrays.asList(options); if (list != null) { isValidValue = list.contains(value); } } catch
(Exception e) { } return isValidValue; } ... } ... // Allowed options String[] options = {"option1", "option2", "option3"); // Verify that the user selection
is one of the allowed options String userSelection = request.getParameter("userSelection"); if (Validator.validateOption(options, userSelection)) {
// valid user selection, continue processing request ... }
[6] Field pattern
Always check that the user input matches a pattern as defined by the functionality requirements. For example, if the userName field should only
allow alpha-numeric characters, case insensitive, then use the following regular expression:
^[a-zA-Z0-9]*$
Java 1.3 or earlier versions do not include any regular expression packages. Apache Regular Expression Package (see Resources below) is
recommended for use with Java 1.3 to resolve this lack of support. Example to perform regular expression validation:
// Example to validate that a given value matches a specified pattern // using the Apache regular expression package import
org.apache.regexp.RE; import org.apache.regexp.RESyntaxException; public Class Validator { ... public static boolean matchPattern(String
value, String expression) { boolean match = false; if (validateRequired(expression)) { RE r = new RE(expression); match = r.match(value); }
return match; } ... } ... // Verify that the userName request parameter is alpha-numeric String userName = request.getParameter("userName"); if
(Validator.matchPattern(userName, "^[a-zA-Z0-9]*$")) { // userName is valid, continue processing request ... }
Java 1.4 introduced a new regular expression package (java.util.regex). Here is a modified version of Validator.matchPattern using the new Java
1.4 regular expression package:
// Example to validate that a given value matches a specified pattern // using the Java 1.4 regular expression package import
java.util.regex.Pattern; import java.util.regexe.Matcher; public Class Validator { ... public static boolean matchPattern(String value, String
expression) { boolean match = false; if (validateRequired(expression)) { match = Pattern.matches(expression, value); } return match; } ... }
[7] Cookie value
Use the javax.servlet.http.Cookie object to validate the cookie value. The same validation rules (described above) apply to cookie values
depending on the application requirements, e.g. validate a required value, validate length, etc.
Example to validate a required cookie value:
// Example to validate a required cookie value // First retrieve all available cookies submitted in the HTTP request Cookie[] cookies =
request.getCookies(); if (cookies != null) { // find the "user" cookie for (int i=0; i<cookies.length; ++i) { if (cookies[i].getName().equals("user")) { //
validate the cookie value if (Validator.validateRequired(cookies[i].getValue()) { // valid cookie value, continue processing request ... } } } }
[8] HTTP Response
[8-1] Filter user input
To guard the application against cross-site scripting, sanitize HTML by converting sensitive characters to their corresponding character entities.
These are the HTML sensitive characters:
< > " ' % ;) (& +
Example to filter a specified string by converting sensitive characters to their corresponding character entities:
// Example to filter sensitive data to prevent cross-site scripting public Class Validator { ... public static String filter(String value) { if (value == null)
{ return null; } StringBuffer result = new StringBuffer(value.length()); for (int i=0; i<value.length(); ++i) { switch (value.charAt(i)) { case '<':
result.append("<"); break; case '>': result.append(">"); break; case '"': result.append("""); break; case '\'': result.append("'"); break; case '%':
result.append("%"); break; case ';': result.append(";"); break; case '(': result.append("("); break; case ')': result.append(")"); break; case '&':
result.append("&"); break; case '+': result.append("+"); break; default: result.append(value.charAt(i)); break; } return result; } ... } ... // Filter the
HTTP response using Validator.filter PrintWriter out = response.getWriter(); // set output response out.write(Validator.filter(response));
out.close();
The Java Servlet API 2.3 introduced Filters, which supports the interception and transformation of HTTP requests or responses.
Example of using a Servlet Filter to sanitize the response using Validator.filter:

10/05/2024 127

// Example to filter all sensitive characters in the HTTP response using a Java Filter. // This example is for illustration purposes since it will filter
all content in the response, including HTML tags! public class SensitiveCharsFilter implements Filter { ... public void doFilter(ServletRequest
request, ServletResponse response, FilterChain chain) throws IOException, ServletException { PrintWriter out = response.getWriter();
ResponseWrapper wrapper = new ResponseWrapper((HttpServletResponse)response); chain.doFilter(request, wrapper); CharArrayWriter caw
= new CharArrayWriter(); caw.write(Validator.filter(wrapper.toString())); response.setContentType("text/html");
response.setContentLength(caw.toString().length()); out.write(caw.toString()); out.close(); } ... public class CharResponseWrapper extends
HttpServletResponseWrapper { private CharArrayWriter output; public String toString() { return output.toString(); } public
CharResponseWrapper(HttpServletResponse response){ super(response); output = new CharArrayWriter(); } public PrintWriter getWriter(){
return new PrintWriter(output); } } } }
[8-2] Secure the cookie
When storing sensitive data in a cookie, make sure to set the secure flag of the cookie in the HTTP response, using Cookie.setSecure(boolean
flag) to instruct the browser to send the cookie using a secure protocol, such as HTTPS or SSL.
Example to secure the "user" cookie:
// Example to secure a cookie, i.e. instruct the browser to // send the cookie using a secure protocol Cookie cookie = new Cookie("user",
"sensitive"); cookie.setSecure(true); response.addCookie(cookie);
RECOMMENDED JAVA TOOLS
The two main Java frameworks for server-side validation are:
[1] Jakarta Commons Validator (integrated with Struts 1.1)
The Jakarta Commons Validator is a powerful framework that implements all the above data validation requirements. These rules are configured
in an XML file that defines input validation rules for form fields. Struts supports output filtering of dangerous characters in the [8] HTTP
Response by default on all data written using the Struts 'bean:write' tag. This filtering may be disabled by setting the 'filter=false' flag.
Struts defines the following basic input validators, but custom validators may also be defined:
required: succeeds if the field contains any characters other than white space.
mask: succeeds if the value matches the regular expression given by the mask attribute.
range: succeeds if the value is within the values given by the min and max attributes ((value >= min) & (value <= max)).
maxLength: succeeds if the field is length is less than or equal to the max attribute.
minLength: succeeds if the field is length is greater than or equal to the min attribute.
byte, short, integer, long, float, double: succeeds if the value can be converted to the corresponding primitive.
date: succeeds if the value represents a valid date. A date pattern may be provided.
creditCard: succeeds if the value could be a valid credit card number.
e-mail: succeeds if the value could be a valid e-mail address.
Example to validate the userName field of a loginForm using Struts Validator:
<form-validation> <global> ... <validator name="required" classname="org.apache.struts.validator.FieldChecks" method="validateRequired"
msg="errors.required"> </validator> <validator name="mask" classname="org.apache.struts.validator.FieldChecks" method="validateMask"
msg="errors.invalid"> </validator> ... </global> <formset> <form name="loginForm"> <!-- userName is required and is alpha-numeric case
insensitive --> <field property="userName" depends="required,mask"> <!-- message resource key to display if validation fails --> <msg
name="mask" key="login.userName.maskmsg"/> <arg0 key="login.userName.displayname"/> <var> <var-name>mask</var-name> <var-
value>^[a-zA-Z0-9]*$</var-value> </var> </field> ... </form> ... </formset> </form-validation>
[2] JavaServer Faces Technology
JavaServer Faces Technology is a set of Java APIs (JSR 127) to represent UI components, manage their state, handle events and input
validation.
The JavaServer Faces API implements the following basic validators, but custom validators may be defined:
validate_doublerange: registers a DoubleRangeValidator on a component
validate_length: registers a LengthValidator on a component
validate_longrange: registers a LongRangeValidator on a component
validate_required: registers a RequiredValidator on a component
validate_stringrange: registers a StringRangeValidator on a component
validator: registers a custom Validator on a component
The JavaServer Faces API defines the following UIInput and UIOutput Renderers (Tags):
input_date: accepts a java.util.Date formatted with a java.text.Date instance
output_date: displays a java.util.Date formatted with a java.text.Date instance
input_datetime: accepts a java.util.Date formatted with a java.text.DateTime instance
output_datetime: displays a java.util.Date formatted with a java.text.DateTime instance
input_number: displays a numeric data type (java.lang.Number or primitive), formatted with a java.text.NumberFormat
output_number: displays a numeric data type (java.lang.Number or primitive), formatted with a java.text.NumberFormat
input_text: accepts a text string of one line.
output_text: displays a text string of one line.
input_time: accepts a java.util.Date, formatted with a java.text.DateFormat time instance
output_time: displays a java.util.Date, formatted with a java.text.DateFormat time instance
input_hidden: allows a page author to include a hidden variable in a page
input_secret: accepts one line of text with no spaces and displays it as a set of asterisks as it is typed
input_textarea: accepts multiple lines of text
output_errors: displays error messages for an entire page or error messages associated with a specified client identifier
output_label: displays a nested component as a label for a specified input field
output_message: displays a localized message
Example to validate the userName field of a loginForm using JavaServer Faces:

10/05/2024 128

<%@ taglib uri="https://docs.oracle.com/javaee/6/tutorial/doc/glxce.html" prefix="h" %> <%@ taglib uri="http://mrbool.com/how-to-create-a-
login-validation-with-jsf-java-server-faces/27046" prefix="f" %> ... <jsp:useBean id="UserBean" class="myApplication.UserBean"
scope="session" /> <f:use_faces> <h:form formName="loginForm" > <h:input_text id="userName" size="20"
modelReference="UserBean.userName"> <f:validate_required/> <f:validate_length minimum="8" maximum="20"/> </h:input_text> <!-- display
errors if present --> <h:output_errors id="loginErrors" clientId="userName"/> <h:command_button id="submit" label="Submit"
commandName="submit" /><p> </h:form> </f:use_faces>
REFERENCES
Java API 1.3 -
https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
Java API 1.4 -
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
Java Servlet API 2.3 -
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
Java Regular Expression Package -
http://jakarta.apache.org/regexp/
Jakarta Validator -
http://jakarta.apache.org/commons/validator/
JavaServer Faces Technology -
http://www.javaserverfaces.org/
** Error Handling:
Many J2EE web application architectures follow the Model View Controller (MVC) pattern. In this pattern a Servlet acts as a Controller. A Servlet
delegates the application processing to a JavaBean such as an EJB Session Bean (the Model). The Servlet then forwards the request to a JSP
(View) to render the processing results. Servlets should check all input, output, return codes, error codes and known exceptions to ensure that
the expected processing actually occurred.
While data validation protects applications against malicious data tampering, a sound error handling strategy is necessary to prevent the
application from inadvertently disclosing internal error messages such as exception stack traces. A good error handling strategy addresses the
following items:
[1] Defining Errors
[2] Reporting Errors
[3] Rendering Errors
[4] Error Mapping
[1] Defining Errors
Hard-coded error messages in the application layer (e.g. Servlets) should be avoided. Instead, the application should use error keys that map to
known application failures. A good practice is to define error keys that map to validation rules for HTML form fields or other bean properties. For
example, if the "user_name" field is required, is alphanumeric, and must be unique in the database, then the following error keys should be
defined:
(a) ERROR_USERNAME_REQUIRED: this error key is used to display a message notifying the user that the "user_name" field is required;
(b) ERROR_USERNAME_ALPHANUMERIC: this error key is used to display a message notifying the user that the "user_name" field should be
alphanumeric;
(c) ERROR_USERNAME_DUPLICATE: this error key is used to display a message notifying the user that the "user_name" value is a duplicate
in the database;
(d) ERROR_USERNAME_INVALID: this error key is used to display a generic message notifying the user that the "user_name" value is invalid;
A good practice is to define the following framework Java classes which are used to store and report application errors:
- ErrorKeys: defines all error keys
// Example: ErrorKeys defining the following error keys: // - ERROR_USERNAME_REQUIRED // - ERROR_USERNAME_ALPHANUMERIC // -
ERROR_USERNAME_DUPLICATE // - ERROR_USERNAME_INVALID // ... public Class ErrorKeys { public static final String
ERROR_USERNAME_REQUIRED = "error.username.required"; public static final String ERROR_USERNAME_ALPHANUMERIC =
"error.username.alphanumeric"; public static final String ERROR_USERNAME_DUPLICATE = "error.username.duplicate"; public static final
String ERROR_USERNAME_INVALID = "error.username.invalid"; ... }
- Error: encapsulates an individual error
// Example: Error encapsulates an error key. // Error is serializable to support code executing in multiple JVMs. public Class Error implements
Serializable { // Constructor given a specified error key public Error(String key) { this(key, null); } // Constructor given a specified error key and
array of placeholder objects public Error(String key, Object[] values) { this.key = key; this.values = values; } // Returns the error key public String
getKey() { return this.key; } // Returns the placeholder values public Object[] getValues() { return this.values; } private String key = null; private
Object[] values = null; }
- Errors: encapsulates a Collection of errors
// Example: Errors encapsulates the Error objects being reported to the presentation layer. // Errors are stored in a HashMap where the key is
the bean property name and value is an // ArrayList of Error objects. public Class Errors implements Serializable { // Adds an Error object to the
Collection of errors for the specified bean property. public void addError(String property, Error error) { ArrayList propertyErrors =
(ArrayList)errors.get(property); if (propertyErrors == null) { propertyErrors = new ArrayList(); errors.put(property, propertyErrors); }
propertyErrors.put(error); } // Returns true if there are any errors public boolean hasErrors() { return (errors.size > 0); } // Returns the Errors for
the specified property public ArrayList getErrors(String property) { return (ArrayList)errors.get(property); } private HashMap errors = new
HashMap(); }
Using the above framework classes, here is an example to process validation errors of the "user_name" field:
// Example to process validation errors of the "user_name" field. Errors errors = new Errors(); String userName =
request.getParameter("user_name"); // (a) Required validation rule if (!Validator.validateRequired(userName)) { errors.addError("user_name",

10/05/2024 129

https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
http://jakarta.apache.org/regexp/
http://jakarta.apache.org/commons/validator/
http://www.javaserverfaces.org/

new Error(ErrorKeys.ERROR_USERNAME_REQUIRED)); } // (b) Alpha-numeric validation rule else if (!Validator.matchPattern(userName, "^[a-
zA-Z0-9]*$")) { errors.addError("user_name", new Error(ErrorKeys.ERROR_USERNAME_ALPHANUMERIC)); } else { // (c) Duplicate check
validation rule // We assume that there is an existing UserValidationEJB session bean that implements // a checkIfDuplicate() method to verify if
the user already exists in the database. try { ... if (UserValidationEJB.checkIfDuplicate(userName)) { errors.addError("user_name", new
Error(ErrorKeys.ERROR_USERNAME_DUPLICATE)); } } catch (RemoteException e) { // log the error logger.error("Could not validate user for
specified userName: " + userName); errors.addError("user_name", new Error(ErrorKeys.ERROR_USERNAME_DUPLICATE); } } // set the
errors object in a request attribute called "errors" request.setAttribute("errors", errors); ...
[2] Reporting Errors
There are two ways to report web-tier application errors:
(a) Servlet Error Mechanism
(b) JSP Error Mechanism
[2-a] Servlet Error Mechanism
A Servlet may report errors by:
- forwarding to the input JSP (having already stored the errors in a request attribute), OR
- calling response.sendError with an HTTP error code argument, OR
- throwing an exception
It is good practice to process all known application errors (as described in section [1]), store them in a request attribute, and forward to the input
JSP. The input JSP should display the error messages and prompt the user to re-enter the data. The following example illustrates how to
forward to an input JSP (userInput.jsp):
// Example to forward to the userInput.jsp following user validation errors RequestDispatcher rd =
getServletContext().getRequestDispatcher("/user/userInput.jsp"); if (rd != null) { rd.forward(request, response); }
If the Servlet cannot forward to a known JSP page, the second option is to report an error using the response.sendError method with
HttpServletResponse.SC_INTERNAL_SERVER_ERROR (status code 500) as argument. Refer to the javadoc of
javax.servlet.http.HttpServletResponse for more details on the various HTTP status codes. Example to return a HTTP error:
// Example to return a HTTP error code RequestDispatcher rd = getServletContext().getRequestDispatcher("/user/userInput.jsp"); if (rd == null) {
// messages is a resource bundle with all message keys and values
response.sendError(HttpServletResponse.SC_INTERNAL_SERVER_ERROR,
messages.getMessage(ErrorKeys.ERROR_USERNAME_INVALID)); }
As a last resort, Servlets can throw an exception, which must be a subclass of one of the following classes:
- RuntimeException
- ServletException
- IOException
[2-b] JSP Error Mechanism
JSP pages provide a mechanism to handle runtime exceptions by defining an errorPage directive as shown in the following example:
<%@ page errorPage="/errors/userValidation.jsp" %>
Uncaught JSP exceptions are forwarded to the specified errorPage, and the original exception is set in a request parameter called
javax.servlet.jsp.jspException. The error page must include a isErrorPage directive as shown below:
<%@ page isErrorPage="true" %>
The isErrorPage directive causes the "exception" variable to be initialized to the exception object being thrown.
[3] Rendering Errors
The J2SE Internationalization APIs provide utility classes for externalizing application resources and formatting messages including:
(a) Resource Bundles
(b) Message Formatting
[3-a] Resource Bundles
Resource bundles support internationalization by separating localized data from the source code that uses it. Each resource bundle stores a
map of key/value pairs for a specific locale.
It is common to use or extend java.util.PropertyResourceBundle, which stores the content in an external properties file as shown in the following
example:
ErrorMessages.properties
required user name error message error.username.required=User name field is
required # invalid user name format error.username.alphanumeric=User name must be alphanumeric # duplicate user name error message
error.username.duplicate=User name {0} already exists, please choose another one ...
Multiple resources can be defined to support different locales (hence the name resource bundle). For example, ErrorMessages_fr.properties can
be defined to support the French member of the bundle family. If the resource member of the requested locale does not exist, the default
member is used. In the above example, the default resource is ErrorMessages.properties. Depending on the user's locale, the application (JSP
or Servlet) retrieves content from the appropriate resource.
[3-b] Message Formatting
The J2SE standard class java.util.MessageFormat provides a generic way to create messages with replacement placeholders. A
MessageFormat object contains a pattern string with embedded format specifiers as shown below:
// Example to show how to format a message using placeholder parameters String pattern = "User name {0} already exists, please choose
another one"; String userName = request.getParameter("user_name"); Object[] args = new Object[1]; args[0] = userName; String message =
MessageFormat.format(pattern, args);
Here is a more comprehensive example to render error messages using ResourceBundle and MessageFormat:
// Example to render an error message from a localized ErrorMessages resource (properties file) // Utility class to retrieve locale-specific error
messages public Class ErrorMessageResource { // Returns the error message for the specified error key in the environment locale public String
getErrorMessage(String errorKey) { return getErrorMessage(errorKey, defaultLocale); } // Returns the error message for the specified error key

10/05/2024 130

in the specified locale public String getErrorMessage(String errorKey, Locale locale) { return getErrorMessage(errorKey, null, locale); } // Returns
a formatted error message for the specified error key in the specified locale public String getErrorMessage(String errorKey, Object[] args, Locale
locale) { // Get localized ErrorMessageResource ResourceBundle errorMessageResource = ResourceBundle.getBundle("ErrorMessages",
locale); // Get localized error message String errorMessage = errorMessageResource.getString(errorKey); if (args != null) { // Format the
message using the specified placeholders args return MessageFormat.format(errorMessage, args); } else { return errorMessage; } } // default
environment locale private Locale defaultLocale = Locale.getDefaultLocale(); } ... // Get the user's locale Locale userLocale =
request.getLocale(); // Check if there were any validation errors Errors errors = (Errors)request.getAttribute("errors"); if (errors != null &&
errors.hasErrors()) { // iterate through errors and output error messages corresponding to the "user_name" property ArrayList userNameErrors =
errors.getErrors("user_name"); ListIterator iterator = userNameErrors.iterator(); while (iterator.hasNext()) { // Get the next error object Error error
= (Error)iterator.next(); String errorMessage = ErrorMessageResource.getErrorMessage(error.getKey(), userLocale); output.write(errorMessage
+ "\r\n"); } }
It is recommended to define a custom JSP tag, e.g. displayErrors, to iterate through and render error messages as shown in the above example.
[4] Error Mapping
Normally, the Servlet Container will return a default error page corresponding to either the response status code or the exception. A mapping
between the status code or the exception and a web resource may be specified using custom error pages. It is a good practice to develop static
error pages that do not disclose internal error states (by default, most Servlet containers will report internal error messages). This mapping is
configured in the Web Deployment Descriptor (web.xml) as specified in the following example:
<!-- Mapping of HTTP error codes and application exceptions to error pages --> <error-page> <exception-
type>UserValidationException</exception-type> <location>/errors/validationError.html</error-page> </error-page> <error-page> <error-
code>500</exception-type> <location>/errors/internalError.html</error-page> </error-page> <error-page> ... </error-page> ...
RECOMMENDED JAVA TOOLS
The two main Java frameworks for server-side validation are:
[1] Jakarta Commons Validator (integrated with Struts 1.1)
The Jakarta Commons Validator is a Java framework that defines the error handling mechanism as described above. Validation rules are
configured in an XML file that defines input validation rules for form fields and the corresponding validation error keys. Struts provides
internationalization support to build localized applications using resource bundles and message formatting.
Example to validate the userName field of a loginForm using Struts Validator:
<form-validation> <global> ... <validator name="required" classname="org.apache.struts.validator.FieldChecks" method="validateRequired"
msg="errors.required"> </validator> <validator name="mask" classname="org.apache.struts.validator.FieldChecks" method="validateMask"
msg="errors.invalid"> </validator> ... </global> <formset> <form name="loginForm"> <!-- userName is required and is alpha-numeric case
insensitive --> <field property="userName" depends="required,mask"> <!-- message resource key to display if validation fails --> <msg
name="mask" key="login.userName.maskmsg"/> <arg0 key="login.userName.displayname"/> <var> <var-name>mask</var-name> <var-
value>^[a-zA-Z0-9]*$</var-value> </var> </field> ... </form> ... </formset> </form-validation>
The Struts JSP tag library defines the "errors" tag that conditionally displays a set of accumulated error messages as shown in the following
example:
<%@ page language="java" %> <%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %> <%@ taglib uri="/WEB-INF/struts-bean.tld"
prefix="bean" %> <html:html> <head> <body> <html:form action="/logon.do"> <table border="0" width="100%"> <tr> <th align="right">
<html:errors property="username"/> <bean:message key="prompt.username"/> </th> <td align="left"> <html:text property="username"
size="16"/> </td> </tr> <tr> <td align="right"> <html:submit><bean:message key="button.submit"/></html:submit> </td> <td align="right">
<html:reset><bean:message key="button.reset"/></html:reset> </td> </tr> </table> </html:form> </body> </html:html>
[2] JavaServer Faces Technology
JavaServer Faces Technology is a set of Java APIs (JSR 127) to represent UI components, manage their state, handle events, validate input,
and support internationalization.
The JavaServer Faces API defines the "output_errors" UIOutput Renderer, which displays error messages for an entire page or error messages
associated with a specified client identifier.
Example to validate the userName field of a loginForm using JavaServer Faces:
<%@ taglib uri="https://docs.oracle.com/javaee/6/tutorial/doc/glxce.html" prefix="h" %> <%@ taglib uri="http://mrbool.com/how-to-create-a-
login-validation-with-jsf-java-server-faces/27046" prefix="f" %> ... <jsp:useBean id="UserBean" class="myApplication.UserBean"
scope="session" /> <f:use_faces> <h:form formName="loginForm" > <h:input_text id="userName" size="20"
modelReference="UserBean.userName"> <f:validate_required/> <f:validate_length minimum="8" maximum="20"/> </h:input_text> <!-- display
errors if present --> <h:output_errors id="loginErrors" clientId="userName"/> <h:command_button id="submit" label="Submit"
commandName="submit" /><p> </h:form> </f:use_faces>
REFERENCES
Java API 1.3 -
https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
Java API 1.4 -
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
Java Servlet API 2.3 -
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
Java Regular Expression Package -
http://jakarta.apache.org/regexp/
Jakarta Validator -
http://jakarta.apache.org/commons/validator/
JavaServer Faces Technology -
http://www.javaserverfaces.org/
** Filter User Input

10/05/2024 131

https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
http://jakarta.apache.org/regexp/
http://jakarta.apache.org/commons/validator/
http://www.javaserverfaces.org/

Before passing any data to a SQL query, it should always be properly filtered with whitelisting techniques. This cannot be over-emphasized.
Filtering user input will correct many injection flaws before they arrive at the database.
** Quote User Input
Regardless of data type, it is always a good idea to place single quotes around all user data if this is permitted by the database. MySQL allows
this formatting technique.
** Escape the Data Values
If you're using MySQL 4.3.0 or newer, you should escape all strings with mysql_real_escape_string(). If you are using an older version of
MySQL, you should use the mysql_escape_string() function. If you are not using MySQL, you might choose to use the specific escaping function
for your particular database. If you are not aware of an escaping function, you might choose to utilize a more generic escaping function such as
addslashes().
If you're using the PEAR DB database abstraction layer, you can use the DB::quote() method or use a query placeholder like ?, which
automatically escapes the value that replaces the placeholder.
REFERENCES
http://ca3.php.net/mysql_real_escape_string
http://ca.php.net/mysql_escape_string
http://ca.php.net/addslashes
http://pear.php.net/package-info.php?package=DB
** Input Data Validation:
While data validations may be provided as a user convenience on the client-tier, data validation must always be performed on the server-tier.
Client-side validations are inherently insecure because they can be easily bypassed, e.g. by disabling Javascript.
A good design usually requires the web application framework to provide server-side utility routines to validate the following:
[1] Required field
[2] Field data type (all HTTP request parameters are Strings by default)
[3] Field length
[4] Field range
[5] Field options
[6] Field pattern
[7] Cookie values
[8] HTTP Response
A good practice is to implement a function or functions that validates each application parameter. The following sections describe some example
checking.
[1] Required field
Always check that the field is not null and its length is greater than zero, excluding leading and trailing white spaces.
Example of how to validate required fields:
// PHP example to validate required fields function validateRequired($input) { ... $pass = false; if (strlen(trim($input))>0){ $pass = true; } return
$pass; ... } ... if (validateRequired($fieldName)) { // fieldName is valid, continue processing request ... }
[2] Field data type
In web applications, input parameters are poorly typed. For example, all HTTP request parameters or cookie values are of type String. The
developer is responsible for verifying the input is of the correct data type.
[3] Field length
Always ensure that the input parameter (whether HTTP request parameter or cookie value) is bounded by a minimum length and/or a maximum
length.
[4] Field range
Always ensure that the input parameter is within a range as defined by the functional requirements.
[5] Field options
Often, the web application presents the user with a set of options to choose from, e.g. using the SELECT HTML tag, but fails to perform server-
side validation to ensure that the selected value is one of the allowed options. Remember that a malicious user can easily modify any option
value. Always validate the selected user value against the allowed options as defined by the functional requirements.
[6] Field pattern
Always check that user input matches a pattern as defined by the functionality requirements. For example, if the userName field should only
allow alpha-numeric characters, case insensitive, then use the following regular expression:
^[a-zA-Z0-9]+$
[7] Cookie value
The same validation rules (described above) apply to cookie values depending on the application requirements, e.g. validate a required value,
validate length, etc.
[8] HTTP Response
[8-1] Filter user input
To guard the application against cross-site scripting, the developer should sanitize HTML by converting sensitive characters to their
corresponding character entities. These are the HTML sensitive characters:
< > " ' % ;) (& +
PHP includes some automatic sanitization utility functions, such as htmlentities():
$input = htmlentities($input, ENT_QUOTES, 'UTF-8');
In addition, in order to avoid UTF-7 variants of Cross-site Scripting, you should explicitly define the Content-Type header of the response, for
example:
<?php header('Content-Type: text/html; charset=UTF-8'); ?>
[8-2] Secure the cookie

10/05/2024 132

http://ca3.php.net/mysql_real_escape_string
http://ca.php.net/mysql_escape_string
http://ca.php.net/addslashes
http://pear.php.net/package-info.php?package=DB

TOC

When storing sensitive data in a cookie and transporting it over SSL, make sure that you first set the secure flag of the cookie in the HTTP
response. This will instruct the browser to only use that cookie over SSL connections.
You can use the following code example, for securing the cookie:
<$php $value = "some_value"; $time = time()+3600; $path = "/application/"; $domain = ".example.com"; $secure = 1; setcookie("CookieName",
$value, $time, $path, $domain, $secure, TRUE); ?>
In addition, we recommend that you use the HttpOnly flag. When the HttpOnly flag is set to TRUE the cookie will be made accessible only
through the HTTP protocol. This means that the cookie won't be accessible by scripting languages, such as JavaScript. This setting can
effectively help to reduce identity theft through XSS attacks (although it is not supported by all browsers).
The HttpOnly flag was Added in PHP 5.2.0.
REFERENCES
[1] Mitigating Cross-site Scripting With HTTP-only Cookies:
http://msdn2.microsoft.com/en-us/library/ms533046.aspx
[2] PHP Security Consortium:
http://phpsec.org/
[3] PHP & Web Application Security Blog (Chris Shiflett):
http://shiflett.org/

CWE:
89

External References:
"Web Application Disassembly with ODBC Error Messages" (By David Litchfield)
"Using Binary Search with SQL Injection" (By Sverre H. Huseby)

SQL Injection

Cause:
Sanitization of hazardous characters was not performed correctly on user input.
Dynamically generating queries that include unvalidated user input can lead to SQL injection attacks. An attacker can insert SQL commands
or modifiers in the user input that can cause the query to behave in an unsafe manner.
Without sufficient validation and encapsulation of user-controllable inputs, the generated SQL query can cause those inputs to be interpreted
as SQL instead of ordinary user data. This can be used to alter query logic to bypass security checks, or to insert additional statements that
modify the back-end database, possibly including execution of system commands.
SQL payloads can enter the system through any untrusted data, including user input, data previously stored in the database, files, 3rd party
APIs, and more.

Risk:
Potential consequences include the loss of:
Confidentiality - Since SQL databases generally hold sensitive data, loss of confidentiality is a frequent problem with SQL injection
vulnerabilities.
Authentication - If poor SQL commands are used to check user names and passwords, it may be possible to connect to a system as another
user with no previous knowledge of the password.
Authorization - If authorization information is held in a SQL database, it may be possible to change this information through the successful
exploitation of a SQL injection vulnerability.
Integrity - Just as it may be possible to read sensitive information, it is also possible to make changes or even delete this information with a
SQL injection attack.

10/05/2024 133

http://msdn2.microsoft.com/en-us/library/ms533046.aspx
http://phpsec.org/
http://shiflett.org/
http://cwe.mitre.org/data/definitions/89.html
http://www.cgisecurity.com/lib/webappdis.doc
http://shh.thathost.com/text/binary-search-sql-injection.txt

TOC

Fix Recommendation:

General

Use stored procedures with parameters to prevent injection of SQL commands in data, or at least parameterized database calls that do not allow
the injection of code. Do not include any dynamic SQL execution in the stored procedures.
An even better solution is to use an ORM (object-relational mapping) framework such as Hibernate or EntityFramework, if you have one
available on your platform.
Ensure that all user input is validated and filtered on the server side, not just to disallow bad characters such as a single quote (') and double
quotes ("), but rather to only allow safe characters. Narrowly define the set of safe characters based on the expected value of the parameter in
the request.
Use escaping functions on all user input.
Configure the application identity for the least database privileges that are required to accomplish the necessary tasks. Harden the database
server to disable any unneeded functionality, such as shell commands.

CWE:
89

External References:
OWASP - SQL Injection Prevention Cheat Sheet

Integer Overflow

Cause:
An Integer Overflow (or wraparound) occurs when a value that is too large is stored (larger than the maximum value the variable can hold) in an
integer data type (including byte, short, long, and other types). The most significant bits of the integer are lost, and the remaining value is relative
to the minimum value (either 0 or very negative value for signed types).

Risk:
When an integer overflow occurs, the interpreted value will appear to have 'wrapped around' past the maximum value and reset back to the
minimum value.
The value can unexpectedly become zero or negative. This can have security implications if the value is used to control looping, manage
resources (such as memory allocation), or make business logic decisions.
For example, an integer overflow can give money to the customer in addition to their purchases, when the transaction is completed.
In particular, if a mathematical operation results in a number larger than the maximum possible for the integer type, the value wraps around
and the variable is set to zero, or negative.
i=UINT_MAX+1; // Maximum value for a variable of type unsigned int - 4294967295 (0xffffffff). The result is: i=0

Fix Recommendation:

General

Validate all inputs are within an expected range and the sign before relying on their values or using them in arithmetic calculations.
Be sure to check both upper bounds and lower bounds, including negative lower bounds for signed integers (integer overflow is also possible
with very large negative numbers).
Use unsigned integers where possible.
Consider using a safe integer-handling library (such as C/C++ SafeInt or IntegerLib).
Consider enabling compiler extensions that prevent some classes of buffer overflows.

CWE:
190

10/05/2024 134

http://cwe.mitre.org/data/definitions/89.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
http://cwe.mitre.org/data/definitions/190.html

TOC

External References:
SafeInt Library

Phishing Through URL Redirection

Cause:
The web application redirects users to an external site based on untrusted data.
In particular, the submitted request was found to include a URL as a parameter. The web application uses this value to redirect the user's
browser to the specified URL.
An attacker can modify this URL value to an arbitrary address. The attacker would then cause the victim to submit the altered request, thus
being redirected to a site of the attacker's choosing.

Risk:
This vulnerability can allow an attacker to take advantage of the trust the user holds for the application, causing them to trust an arbitrary site
under control of the attacker as well. This would often be leveraged through the use of phishing techniques.
Phishing is a social engineering technique where an attacker masquerades as a legitimate entity with which the victim might do business in
order to prompt the user to reveal some confidential information (frequently authentication credentials) that can later be used by an attacker.
Phishing is essentially a form of information gathering or "fishing" for information.
An attacker may successfully launch a phishing scam and steal user credentials or other sensitive information such as credit card number,
social security number, and more.
It can also be possible to redirect the user to install malware that could infect the user's computer.

Exploit Example:
The following example shows a URL redirection to untrusted site.
The redir parameter is used to redirect the user to a different page automatically.

[REQUEST]
GET /MyPage.php?redir=/AnotherPage.php HTTP/1.1

[RESPONSE]

An attacker might trick the GET parameter used to redirect the user to an external site

[REQUEST]
GET /MyPage.php?redir=https://www.malware.com HTTP/1.1

[RESPONSE]

10/05/2024 135

https://docs.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-160

TOC

Fix Recommendation:

General

Avoid redirecting requests based on untrusted data if possible.
If relying on user input cannot be avoided, the URL should first be validated before redirection. Data that a user can modify must be treated as
untrusted data.
A unique token, linked to the current user session, should be sent along with the redirect field value. This unique token should then be verified
by the server before the actual redirect takes place. This ensures that attackers would have a harder time using the redirect field to propagate
their malicious activities, since they cannot guess the user's session token.
Sanitize input by comparing to a predefined list of trusted URLs, based on an allow-list.
Force all redirects to first go through a page notifying users that they are about to leave your site, with the destination clearly displayed, and
have them click a link to confirm.

CWE:
601

External References:
Unvalidated Redirects and Forwards Cheat Sheet

Reflected Cross Site Scripting

Cause:
Cross-site scripting (XSS) vulnerabilities arise when an attacker sends malicious code to the victim's browser, mostly using JavaScript. A
vulnerable web application might embed untrusted data in the output, without filtering or encoding it. In this way, an attacker can inject a
malicious script to the application, and the script will be returned in the response. This will then run on the victim's browser.
In particular, sanitization of hazardous characters was not performed correctly on user input or untrusted data.
In reflected attacks, an attacker tricks an end user into sending request containing malicious code to a vulnerable Web server, which then
reflects the attack back to the end user's browser.
The server receives the malicious data directly from the HTTP request and reflects it back in the HTTP response. The most common method
of sending malicious content is adding it as a parameter in a URL that is posted publicly or e-mailed directly to the victim. URLs that contain
the malicious script constitute the core of many phishing schemes, whereby the convinced victim visits a URL that refers to a vulnerable site.
The site then reflects the malicious content back to the victim, and then the content is executed by the victim's browser.

Risk:
XSS attacks can expose the user's session cookie, allowing the attacker to hijack the user's session and gain access to the user's account,
which could lead to impersonation of users.
An attacker could modify and view the users' records and perform transactions as those users. The attacker may be able to perform privileged
operations on behalf of the user, or gain access to any sensitive data belonging to the user. This would be especially dangerous if the user
has administrator permissions.
The attacker could even run a malicious script on the victim's browser which would redirect the user to other pages or sites, modify content
presentation, or even make it possible to run malicious software or a crypto miner.

Exploit Example:
The following example shows a script that returns a parameter value in the response.
The parameter value is sent to the script using a GET request, and then returned in the response embedded in the HTML.

[REQUEST]
GET /index.aspx?name=JSmith HTTP/1.1

10/05/2024 136

http://cwe.mitre.org/data/definitions/601.html
https://cheatsheetseries.owasp.org/cheatsheets/Unvalidated_Redirects_and_Forwards_Cheat_Sheet.html

[RESPONSE]
HTTP/1.1 200 OK
Server: SomeServer
Date: Sun, 01 Jan 2002 00:31:19 GMT
Content-Type: text/html
Accept-Ranges: bytes
Content-Length: 27

<HTML>
Hello JSmith
</HTML>

An attacker might leverage the attack like this. In this case, the JavaScript code will be executed by the browser.

[REQUEST]
GET /index.aspx?name=>"'><script>alert('XSS')</script> HTTP/1.1

[RESPONSE]
HTTP/1.1 200 OK
Server: SomeServer
Date: Sun, 01 Jan 2002 00:31:19 GMT
Content-Type: text/html
Accept-Ranges: bytes
Content-Length: 83

<HTML>
Hello >"'><script>alert('XSS')</script>
</HTML>

10/05/2024 137

TOC

Fix Recommendation:

General

Fully encode all dynamic data from an untrusted source that is inserted into the webpage, to ensure it is treated as literal text and not as a script
that could be executed or markup that could be rendered.
Consider the context in which your data will be used, and contextually encode the data as close as possible to the actual output: e.g. HTML
encoding for HTML content; HTML Attribute encoding for data output to attribute values; JavaScript encoding for dynamically generated
JavaScript. For example, when HTML encoding non-alphanumeric characters into HTML entities, `<` and `>` would become `<` and `>`.
As an extra defensive measure, validate all external input on the server, regardless of source. Carefully check each input parameter against a
rigorous positive specification (allowlist) defining data type; size; range; format; and acceptable values. Regular expressions or framework
controls may be useful in some cases, though this is not a replacement for output encoding.
Output encoding and data validation must be done on all untrusted data, wherever it comes from: e.g. form fields, URL parameters, web service
arguments, cookies, any data from the network, environment variables, reverse DNS lookups, query results, request headers, URL components,
e-mail, files and filenames, databases, and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.
For every web page that is returned by the server, explicitly set the `Content-Type` HTTP response header. This header value should define a
specific character encoding (charset), such as `ISO-8859-1` or `UTF-8`. When an encoding is not specified, the web browser may choose a
different encoding by guessing which encoding is actually being used by the web page, which would allow a potential attacker to bypass XSS
protections.
Additionally, set the `httpOnly` flag on the session cookie, to prevent any XSS exploits from stealing a user's cookie.
Prefer using a framework or standard library that prevents this vulnerability by automatically encoding all dynamic output based on context, or at
least that provides constructs that make it easier to avoid.
For every web page that is returned by the server, explicitly set the `Content-Security-Policy` HTTP response header, In order to make it
significantly more difficult for the attacker to actually exploit the XSS attack.

CWE:
79

External References:
Cross-site Scripting (XSS)
OWASP XSS Cheat Sheet

Cookie with Insecure or Improper or Missing SameSite attribute

Cause:
Sensitive Cookie with Improper or Insecure or Missing SameSite Attribute

Risk:
Prevent Cookie information leakage by restricting cookies to first-party or same-site context
Attacks can extend to Cross-Site-Request-Forgery (CSRF) attacks if there are no additional protections in place (such as Anti-CSRF tokens).
The SameSite attribute controls how cookies are sent for cross-domain requests.
The attribute may have three values: 'Lax', 'Strict', or 'None'. If 'None' is used, a website may create a cross-domain POST HTTP request to
another website, and the browser automatically adds cookies to this request.
This may lead to Cross-Site-Request-Forgery (CSRF) attacks if there are no additional protections in place (such as Anti-CSRF tokens).
Modes and their uses:
'Lax' mode: the cookie will only be sent with a top-level get request.
'Strict' mode; the cookie will not be sent with any cross-site usage even if the user follows a link to another website.
'None' mode: the cookie will be sent with the cross-site requests.
The attribute having: 'Lax' or 'None' must have 'Secure' Flag set and must be transferred over https.
Example - Set-Cookie: key=value; SameSite=Lax;Secure
Setting attribute to 'Strict' is the recommended option.
Example - Set-Cookie: key=value; SameSite=Strict

10/05/2024 138

http://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

TOC

Affected Products:
This issue may affect different types of products.

Fix Recommendation:

General

[1] Review possible solutions for configuring SameSite Cookie attribute to recommended values.
[2] Restrict Cookies to a first-party or same-site context.
[3] Verify and set the SameSite attribute of your cookie to Strict, to ensure that the cookie will only be sent in a first-party context.
[4] Or, if you want to relax the restrictions of first-party context, then verify and set the SameSite attribute of the cookie to Lax with Secure Flag
enabled and transferred over HTTPS.

CWE:
1275

External References:
WASC Threat Classification: Information Leakage
SameSite Cookies

Cross-Site Request Forgery

Cause:
This vulnerability arises because the application allows the user to perform some sensitive action without verifying that the request was sent
intentionally.
An attacker can cause a victim's browser to emit an HTTP request to an arbitrary URL in the application. When this request is sent from an
authenticated victim's browser, it will include the victim's session cookie or authentication header. The application will accept this as a valid
request from an authenticated user.
When a web server is designed to receive a request from a client without any mechanism for verifying that it was intentionally sent, an
attacker may be able to trick a client into making an unintentional request from a different site, which will be treated as an authentic request by
the application. This can be done by submitting a form, loading an image, sending an XMLHttpRequest in JavaScript, and more.
For example, this IMG tag can be embedded in an attacker's webpage, and the victim's browser will submit a request to retrieve the image.
This valid request will be processed by the application, and the browser will not display a broken image. ``. As a result, money is transferred from the
victim's account to the attacker, using the victim’s session.

Risk:
An attacker can exploit this vulnerability to perform sensitive actions in another user's account, or using their privileges.
It may be possible to force an end-user to execute unwanted actions on a web application in which they're currently authenticated. This would
allow the attacker to alter user records and to perform transactions as that user.
If the user is currently logged-in to the victim site, the request will automatically use the user's credentials such as session cookies, IP
address, and other browser authentication methods. Using this method, the attacker forges the victim's identity and submits actions on their
behalf.
The severity of this vulnerability depends on the affected functionality in context of the application. For example, a CSRF attack on a search
page is less severe than a CSRF attack on a money-transfer or profile-update page.

10/05/2024 139

http://cwe.mitre.org/data/definitions/1275.html
http://www.webappsec.org/projects/threat/classes/information_leakage.shtml
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

TOC

Fix Recommendation:

General

Set all session and authentication cookies to include the `SameSite` attribute, setting it to `Strict` or `Lax`. When setting this attribute to `Lax`
ensure that no sensitive action can be performed via a `GET` request, as per the HTTP standard.
Use built-in CSRF protection provided by the platform or framework, and ensure to activate it appropriately whether in configuration or code.
If your platform does not provide a built-in anti-CSRF mechanism, consider integrating a well-vetted library to implement the protection, such as
OWASP CSRFGuard.
Avoid building a custom anti-CSRF implementation, as this can be complicated to achieve correctly without allowing trivial bypass. If you
absolutely must do so due to lack of standard library support, you should generate a secure, random and non-predictable token (e.g. GUID v4)
on the server and embed it in each HTML form, while binding it to the user's session. Upon receiving the submitted form, verify that the included
form token matches the token previously bound to the user. It is also feasible to embed the CSRF token in a designated cookie ('double-
submitted cookie'), or even better use a custom request header - when the server receives these together with the submitted form token, it is
simple to validate that they match (instead of storing in the user's session).
An alternative approach would be to require user reauthentication for specific actions, to ensure the user's active confirmation. Note that this
would substantially impact user experience, so this should be used sparingly and only for especially sensitive actions.
Verify the source of the request by validating the `Origin` header if present, or at least the `Referer` header. Discard sensitive requests that
originate from a different site.

CWE:
352

External References:
OWASP CSRF Cheat Sheet
OWASP CSRFGuard

Database Error Pattern Found

Cause:
Sanitation of hazardous characters was not performed correctly on user input

10/05/2024 140

http://cwe.mitre.org/data/definitions/352.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-csrfguard/

Risk:
It is possible to view, modify or delete database entries and tables
AppScan discovered Database Errors in the test response, that may have been triggered by an attack other than SQL Injection.
It is possible, though not certain, that this error indicates a possible SQL Injection vulnerability in the application.
If it does, please read the following SQL Injection advisory carefully.
The software constructs all or part of an SQL command using externally-influenced input, but it incorrectly neutralizes special elements that
could modify the intended SQL command when sent to the database.
Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL query can cause those inputs to be
interpreted as SQL instead of ordinary user data. This can be used to alter query logic to bypass security checks, or to insert additional
statements that modify the back-end database, and possibly including execution of system commands.
For example, let's say we have an HTML page with a login form, which eventually runs the following SQL query on the database using the
user input:
SELECT * FROM accounts WHERE username='$user' AND password='$pass'
The two variables, $user and $pass, contain the user credentials entered by the user in the login form.
Therefore, if the user has input "jsmith" as the username, and "Demo1234" as the password, the SQL query will look like this:
SELECT * FROM accounts WHERE username='jsmith' AND password='Demo1234'
But if the user input "'" (a single apostrophe) as the username, and "'" (a single apostrophe) as the password, the SQL query will look like this:
SELECT * FROM accounts WHERE username=''' AND password='''
This, of course, is a malformed SQL query, and will invoke an error message, which may be returned in the HTTP response.
An error such as this informs the attacker that an SQL Injection has succeeded, which will lead the attacker to attempt further attack vectors.
Sample Exploit:
The following C# code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query
restricts the items displayed to those where owner matches the user name of the currently-authenticated user.
... string userName = ctx.getAuthenticatedUserName(); string query = "SELECT * FROM items WHERE owner = "'" + userName + "' AND
itemname = '" + ItemName.Text + "'"; sda = new SqlDataAdapter(query, conn); DataTable dt = new DataTable(); sda.Fill(dt); ...
The query that this code intends to execute follows:
SELECT * FROM items WHERE owner = AND itemname = ;
However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only
behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string "name' OR
'a'='a" for itemName, then the query becomes the following:
SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name' OR 'a'='a';
The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so the query becomes logically equivalent to the
much simpler query:
SELECT * FROM items;

Affected Products:
This issue may affect different types of products.

10/05/2024 141

Fix Recommendation:

General

There are several mitigation techniques:
[1] Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur, or provides constructs that make it easier to avoid.
[2] Strategy: Parameterization
If available, use structured mechanisms that automatically enforce the separation between data and code. These mechanisms may be able to
provide the relevant quoting, encoding, and validation automatically, instead of relying on the developer to provide this capability at every point
where output is generated.
[3] Strategy: Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks.
[4] Strategy: Output Encoding
If you need to use dynamically-generated query strings or commands in spite of the risk, properly quote arguments and escape any special
characters within those arguments.
[5] Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy: a whitelist of acceptable inputs that strictly conform to
specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on blacklisting malicious or malformed inputs. However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
Here are two possible ways to protect your web application against SQL injection attacks:
[1] Use a stored procedure rather than dynamically built SQL query string. The way parameters are passed to SQL Server stored procedures,
prevents the use of apostrophes and hyphens.
Here is a simple example of how to use stored procedures in ASP.NET:
' Visual Basic example Dim DS As DataSet Dim MyConnection As SqlConnection Dim MyCommand As SqlDataAdapter Dim SelectCommand
As String = "select * from users where username = @username" ... MyCommand.SelectCommand.Parameters.Add(New
SqlParameter("@username", SqlDbType.NVarChar, 20)) MyCommand.SelectCommand.Parameters("@username").Value =
UserNameField.Value // C# example String selectCmd = "select * from Authors where state = @username"; SqlConnection myConnection =
new SqlConnection("server=..."); SqlDataAdapter myCommand = new SqlDataAdapter(selectCmd, myConnection);
myCommand.SelectCommand.Parameters.Add(new SqlParameter("@username", SqlDbType.NVarChar, 20));
myCommand.SelectCommand.Parameters["@username"].Value = UserNameField.Value;
[2] You can add input validation to Web Forms pages by using validation controls. Validation controls provide an easy-to-use mechanism for all
common types of standard validation - for example, testing for valid dates or values within a range - plus ways to provide custom-written
validation. In addition, validation controls allow you to completely customize how error information is displayed to the user. Validation controls
can be used with any controls that are processed in a Web Forms page's class file, including both HTML and Web server controls.
In order to make sure user input contains only valid values, you can use one of the following validation controls:
a. "RangeValidator": checks that a user's entry (value) is between specified lower and upper boundaries. You can check ranges within pairs of
numbers, alphabetic characters, and dates.
b. "RegularExpressionValidator": checks that the entry matches a pattern defined by a regular expression. This type of validation allows you to
check for predictable sequences of characters, such as those in social security numbers, e-mail addresses, telephone numbers, postal codes,
and so on.
Important note: validation controls do not block user input or change the flow of page processing; they only set an error state, and produce error
messages. It is the programmer's responsibility to test the state of the controls in the code before performing further application-specific actions.
There are two ways to check for user input validity:
1. Testing for a general error state:
In your code, test the page's IsValid property. This property rolls up the values of the IsValid properties of all the validation controls on the page
(using a logical AND). If one of the validation controls is set to invalid, the page's property will return false.
2. Testing for the error state of individual controls:
Loop through the page's Validators collection, which contains references to all the validation controls. You can then examine the IsValid property
of each validation control.
** Prepared Statements:
There are 3 possible ways to protect your application against SQL injection, i.e. malicious tampering of SQL parameters. Instead of dynamically
building SQL statements, use:
[1] PreparedStatement, which is precompiled and stored in a pool of PreparedStatement objects. PreparedStatement defines setters to register
input parameters that are compatible with the supported JDBC SQL data types. For example, setString should be used for input parameters of
type VARCHAR or LONGVARCHAR (refer to the Java API for further details). This way of setting input parameters prevents an attacker from
manipulating the SQL statement through injection of bad characters, such as apostrophe.
Example of how to use a PreparedStatement in J2EE:
// J2EE PreparedStatemenet Example // Get a connection to the database Connection myConnection; if (isDataSourceEnabled()) { // using the
DataSource to get a managed connection Context ctx = new InitialContext(); myConnection =
((DataSource)ctx.lookup(datasourceName)).getConnection(dbUserName, dbPassword); } else { try { // using the DriverManager to get a JDBC
connection Class.forName(jdbcDriverClassPath); myConnection = DriverManager.getConnection(jdbcURL, dbUserName, dbPassword); } catch
(ClassNotFoundException e) { ... } } ... try { PreparedStatement myStatement = myConnection.prepareStatement("select * from users where
username = ?"); myStatement.setString(1, userNameField); ResultSet rs = myStatement.executeQuery(); ... rs.close(); } catch (SQLException

10/05/2024 142

sqlException) { ... } finally { myStatement.close(); myConnection.close(); }
[2] CallableStatement, which extends PreparedStatement to execute database SQL stored procedures. This class inherits input setters from
PreparedStatement (see [1] above).
The following example assumes that this database stored procedure has been created:
CREATE PROCEDURE select_user (@username varchar(20))
AS SELECT * FROM USERS WHERE USERNAME = @username;
Example of how to use a CallableStatement in J2EE to execute the above stored procedure:
// J2EE PreparedStatemenet Example // Get a connection to the database Connection myConnection; if (isDataSourceEnabled()) { // using the
DataSource to get a managed connection Context ctx = new InitialContext(); myConnection =
((DataSource)ctx.lookup(datasourceName)).getConnection(dbUserName, dbPassword); } else { try { // using the DriverManager to get a JDBC
connection Class.forName(jdbcDriverClassPath); myConnection = DriverManager.getConnection(jdbcURL, dbUserName, dbPassword); } catch
(ClassNotFoundException e) { ... } } ... try { PreparedStatement myStatement = myConnection.prepareCall("{?= call select_user ?,?}");
myStatement.setString(1, userNameField); myStatement.registerOutParameter(1, Types.VARCHAR); ResultSet rs =
myStatement.executeQuery(); ... rs.close(); } catch (SQLException sqlException) { ... } finally { myStatement.close(); myConnection.close(); }
[3] Entity Bean, which represents an EJB business object in a persistent storage mechanism. There are two types of entity beans: bean-
managed and container-managed. With bean-managed persistence, the developer is responsible of writing the SQL code to access the
database (refer to sections [1] and [2] above). With container-managed persistence, the EJB container automatically generates the SQL code.
As a result, the container is responsible of preventing malicious attempts to tamper with the generated SQL code.
Example of how to use an Entity Bean in J2EE:
// J2EE EJB Example try { // lookup the User home interface UserHome userHome = (UserHome)context.lookup(User.class); // find the User
remote interface User = userHome.findByPrimaryKey(new UserKey(userNameField)); ... } catch (Exception e) { ... }
RECOMMENDED JAVA TOOLS
N/A
REFERENCES
https://docs.oracle.com/javase/7/docs/api/java/sql/PreparedStatement.html
https://docs.oracle.com/javase/7/docs/api/java/sql/CallableStatement.html
** Input Data Validation:
While data validations may be provided as a user convenience on the client-tier, data validation must be performed on the server-tier using
Servlets. Client-side validations are inherently insecure because they can be easily bypassed, e.g. by disabling Javascript.
A good design usually requires the web application framework to provide server-side utility routines to validate the following:
[1] Required field
[2] Field data type (all HTTP request parameters are Strings by default)
[3] Field length
[4] Field range
[5] Field options
[6] Field pattern
[7] Cookie values
[8] HTTP Response
A good practice is to implement the above routine as static methods in a "Validator" utility class. The following sections describe an example
validator class.
[1] Required field
Always check that the field is not null and its length is greater than zero, excluding leading and trailing white spaces.
Example of how to validate required fields:
// Java example to validate required fields public Class Validator { ... public static boolean validateRequired(String value) { boolean isFieldValid =
false; if (value != null && value.trim().length() > 0) { isFieldValid = true; } return isFieldValid; } ... } ... String fieldValue =
request.getParameter("fieldName"); if (Validator.validateRequired(fieldValue)) { // fieldValue is valid, continue processing request ... }
[2] Field data type
In web applications, input parameters are poorly typed. For example, all HTTP request parameters or cookie values are of type String. The
developer is responsible for verifying the input is of the correct data type. Use the Java primitive wrapper classes to check if the field value can
be safely converted to the desired primitive data type.
Example of how to validate a numeric field (type int):
// Java example to validate that a field is an int number public Class Validator { ... public static boolean validateInt(String value) { boolean
isFieldValid = false; try { Integer.parseInt(value); isFieldValid = true; } catch (Exception e) { isFieldValid = false; } return isFieldValid; } ... } ... //
check if the HTTP request parameter is of type int String fieldValue = request.getParameter("fieldName"); if (Validator.validateInt(fieldValue)) { //
fieldValue is valid, continue processing request ... }
A good practice is to convert all HTTP request parameters to their respective data types. For example, the developer should store the
"integerValue" of a request parameter in a request attribute and use it as shown in the following example:
// Example to convert the HTTP request parameter to a primitive wrapper data type // and store this value in a request attribute for further
processing String fieldValue = request.getParameter("fieldName"); if (Validator.validateInt(fieldValue)) { // convert fieldValue to an Integer Integer
integerValue = Integer.getInteger(fieldValue); // store integerValue in a request attribute request.setAttribute("fieldName", integerValue); } ... //
Use the request attribute for further processing Integer integerValue = (Integer)request.getAttribute("fieldName"); ...
The primary Java data types that the application should handle:
- Byte
- Short
- Integer
- Long

10/05/2024 143

https://docs.oracle.com/javase/7/docs/api/java/sql/PreparedStatement.html
https://docs.oracle.com/javase/7/docs/api/java/sql/CallableStatement.html

- Float
- Double
- Date
[3] Field length
Always ensure that the input parameter (whether HTTP request parameter or cookie value) is bounded by a minimum length and/or a maximum
length.
Example to validate that the length of the userName field is between 8 and 20 characters:
// Example to validate the field length public Class Validator { ... public static boolean validateLength(String value, int minLength, int maxLength)
{ String validatedValue = value; if (!validateRequired(value)) { validatedValue = ""; } return (validatedValue.length() >= minLength &&
validatedValue.length() <= maxLength); } ... } ... String userName = request.getParameter("userName"); if
(Validator.validateRequired(userName)) { if (Validator.validateLength(userName, 8, 20)) { // userName is valid, continue further processing ... } }
[4] Field range
Always ensure that the input parameter is within a range as defined by the functional requirements.
Example to validate that the input numberOfChoices is between 10 and 20:
// Example to validate the field range public Class Validator { ... public static boolean validateRange(int value, int min, int max) { return (value >=
min && value <= max); } ... } ... String fieldValue = request.getParameter("numberOfChoices"); if (Validator.validateRequired(fieldValue)) { if
(Validator.validateInt(fieldValue)) { int numberOfChoices = Integer.parseInt(fieldValue); if (Validator.validateRange(numberOfChoices, 10, 20)) {
// numberOfChoices is valid, continue processing request ... } } }
[5] Field options
Often, the web application presents the user with a set of options to choose from, e.g. using the SELECT HTML tag, but fails to perform server-
side validation to ensure that the selected value is one of the allowed options. Remember that a malicious user can easily modify any option
value. Always validate the selected user value against the allowed options as defined by the functional requirements.
Example to validate the user selection against a list of allowed options:
// Example to validate user selection against a list of options public Class Validator { ... public static boolean validateOption(Object[] options,
Object value) { boolean isValidValue = false; try { List list = Arrays.asList(options); if (list != null) { isValidValue = list.contains(value); } } catch
(Exception e) { } return isValidValue; } ... } ... // Allowed options String[] options = {"option1", "option2", "option3"); // Verify that the user selection
is one of the allowed options String userSelection = request.getParameter("userSelection"); if (Validator.validateOption(options, userSelection)) {
// valid user selection, continue processing request ... }
[6] Field pattern
Always check that the user input matches a pattern as defined by the functionality requirements. For example, if the userName field should only
allow alpha-numeric characters, case insensitive, then use the following regular expression:
^[a-zA-Z0-9]*$
Java 1.3 or earlier versions do not include any regular expression packages. Apache Regular Expression Package (see Resources below) is
recommended for use with Java 1.3 to resolve this lack of support. Example to perform regular expression validation:
// Example to validate that a given value matches a specified pattern // using the Apache regular expression package import
org.apache.regexp.RE; import org.apache.regexp.RESyntaxException; public Class Validator { ... public static boolean matchPattern(String
value, String expression) { boolean match = false; if (validateRequired(expression)) { RE r = new RE(expression); match = r.match(value); }
return match; } ... } ... // Verify that the userName request parameter is alpha-numeric String userName = request.getParameter("userName"); if
(Validator.matchPattern(userName, "^[a-zA-Z0-9]*$")) { // userName is valid, continue processing request ... }
Java 1.4 introduced a new regular expression package (java.util.regex). Here is a modified version of Validator.matchPattern using the new Java
1.4 regular expression package:
// Example to validate that a given value matches a specified pattern // using the Java 1.4 regular expression package import
java.util.regex.Pattern; import java.util.regexe.Matcher; public Class Validator { ... public static boolean matchPattern(String value, String
expression) { boolean match = false; if (validateRequired(expression)) { match = Pattern.matches(expression, value); } return match; } ... }
[7] Cookie value
Use the javax.servlet.http.Cookie object to validate the cookie value. The same validation rules (described above) apply to cookie values
depending on the application requirements, e.g. validate a required value, validate length, etc.
Example to validate a required cookie value:
// Example to validate a required cookie value // First retrieve all available cookies submitted in the HTTP request Cookie[] cookies =
request.getCookies(); if (cookies != null) { // find the "user" cookie for (int i=0; i<cookies.length; ++i) { if (cookies[i].getName().equals("user")) { //
validate the cookie value if (Validator.validateRequired(cookies[i].getValue()) { // valid cookie value, continue processing request ... } } } }
[8] HTTP Response
[8-1] Filter user input
To guard the application against cross-site scripting, sanitize HTML by converting sensitive characters to their corresponding character entities.
These are the HTML sensitive characters:
< > " ' % ;) (& +
Example to filter a specified string by converting sensitive characters to their corresponding character entities:
// Example to filter sensitive data to prevent cross-site scripting public Class Validator { ... public static String filter(String value) { if (value == null)
{ return null; } StringBuffer result = new StringBuffer(value.length()); for (int i=0; i<value.length(); ++i) { switch (value.charAt(i)) { case '<':
result.append("<"); break; case '>': result.append(">"); break; case '"': result.append("""); break; case '\'': result.append("'"); break; case '%':
result.append("%"); break; case ';': result.append(";"); break; case '(': result.append("("); break; case ')': result.append(")"); break; case '&':
result.append("&"); break; case '+': result.append("+"); break; default: result.append(value.charAt(i)); break; } return result; } ... } ... // Filter the
HTTP response using Validator.filter PrintWriter out = response.getWriter(); // set output response out.write(Validator.filter(response));
out.close();
The Java Servlet API 2.3 introduced Filters, which supports the interception and transformation of HTTP requests or responses.
Example of using a Servlet Filter to sanitize the response using Validator.filter:

10/05/2024 144

// Example to filter all sensitive characters in the HTTP response using a Java Filter. // This example is for illustration purposes since it will filter
all content in the response, including HTML tags! public class SensitiveCharsFilter implements Filter { ... public void doFilter(ServletRequest
request, ServletResponse response, FilterChain chain) throws IOException, ServletException { PrintWriter out = response.getWriter();
ResponseWrapper wrapper = new ResponseWrapper((HttpServletResponse)response); chain.doFilter(request, wrapper); CharArrayWriter caw
= new CharArrayWriter(); caw.write(Validator.filter(wrapper.toString())); response.setContentType("text/html");
response.setContentLength(caw.toString().length()); out.write(caw.toString()); out.close(); } ... public class CharResponseWrapper extends
HttpServletResponseWrapper { private CharArrayWriter output; public String toString() { return output.toString(); } public
CharResponseWrapper(HttpServletResponse response){ super(response); output = new CharArrayWriter(); } public PrintWriter getWriter(){
return new PrintWriter(output); } } } }
[8-2] Secure the cookie
When storing sensitive data in a cookie, make sure to set the secure flag of the cookie in the HTTP response, using Cookie.setSecure(boolean
flag) to instruct the browser to send the cookie using a secure protocol, such as HTTPS or SSL.
Example to secure the "user" cookie:
// Example to secure a cookie, i.e. instruct the browser to // send the cookie using a secure protocol Cookie cookie = new Cookie("user",
"sensitive"); cookie.setSecure(true); response.addCookie(cookie);
RECOMMENDED JAVA TOOLS
The two main Java frameworks for server-side validation are:
[1] Jakarta Commons Validator (integrated with Struts 1.1)
The Jakarta Commons Validator is a powerful framework that implements all the above data validation requirements. These rules are configured
in an XML file that defines input validation rules for form fields. Struts supports output filtering of dangerous characters in the [8] HTTP
Response by default on all data written using the Struts 'bean:write' tag. This filtering may be disabled by setting the 'filter=false' flag.
Struts defines the following basic input validators, but custom validators may also be defined:
required: succeeds if the field contains any characters other than white space.
mask: succeeds if the value matches the regular expression given by the mask attribute.
range: succeeds if the value is within the values given by the min and max attributes ((value >= min) & (value <= max)).
maxLength: succeeds if the field is length is less than or equal to the max attribute.
minLength: succeeds if the field is length is greater than or equal to the min attribute.
byte, short, integer, long, float, double: succeeds if the value can be converted to the corresponding primitive.
date: succeeds if the value represents a valid date. A date pattern may be provided.
creditCard: succeeds if the value could be a valid credit card number.
e-mail: succeeds if the value could be a valid e-mail address.
Example to validate the userName field of a loginForm using Struts Validator:
<form-validation> <global> ... <validator name="required" classname="org.apache.struts.validator.FieldChecks" method="validateRequired"
msg="errors.required"> </validator> <validator name="mask" classname="org.apache.struts.validator.FieldChecks" method="validateMask"
msg="errors.invalid"> </validator> ... </global> <formset> <form name="loginForm"> <!-- userName is required and is alpha-numeric case
insensitive --> <field property="userName" depends="required,mask"> <!-- message resource key to display if validation fails --> <msg
name="mask" key="login.userName.maskmsg"/> <arg0 key="login.userName.displayname"/> <var> <var-name>mask</var-name> <var-
value>^[a-zA-Z0-9]*$</var-value> </var> </field> ... </form> ... </formset> </form-validation>
[2] JavaServer Faces Technology
JavaServer Faces Technology is a set of Java APIs (JSR 127) to represent UI components, manage their state, handle events and input
validation.
The JavaServer Faces API implements the following basic validators, but custom validators may be defined:
validate_doublerange: registers a DoubleRangeValidator on a component
validate_length: registers a LengthValidator on a component
validate_longrange: registers a LongRangeValidator on a component
validate_required: registers a RequiredValidator on a component
validate_stringrange: registers a StringRangeValidator on a component
validator: registers a custom Validator on a component
The JavaServer Faces API defines the following UIInput and UIOutput Renderers (Tags):
input_date: accepts a java.util.Date formatted with a java.text.Date instance
output_date: displays a java.util.Date formatted with a java.text.Date instance
input_datetime: accepts a java.util.Date formatted with a java.text.DateTime instance
output_datetime: displays a java.util.Date formatted with a java.text.DateTime instance
input_number: displays a numeric data type (java.lang.Number or primitive), formatted with a java.text.NumberFormat
output_number: displays a numeric data type (java.lang.Number or primitive), formatted with a java.text.NumberFormat
input_text: accepts a text string of one line.
output_text: displays a text string of one line.
input_time: accepts a java.util.Date, formatted with a java.text.DateFormat time instance
output_time: displays a java.util.Date, formatted with a java.text.DateFormat time instance
input_hidden: allows a page author to include a hidden variable in a page
input_secret: accepts one line of text with no spaces and displays it as a set of asterisks as it is typed
input_textarea: accepts multiple lines of text
output_errors: displays error messages for an entire page or error messages associated with a specified client identifier
output_label: displays a nested component as a label for a specified input field
output_message: displays a localized message
Example to validate the userName field of a loginForm using JavaServer Faces:

10/05/2024 145

<%@ taglib uri="https://docs.oracle.com/javaee/6/tutorial/doc/glxce.html" prefix="h" %> <%@ taglib uri="http://mrbool.com/how-to-create-a-
login-validation-with-jsf-java-server-faces/27046" prefix="f" %> ... <jsp:useBean id="UserBean" class="myApplication.UserBean"
scope="session" /> <f:use_faces> <h:form formName="loginForm" > <h:input_text id="userName" size="20"
modelReference="UserBean.userName"> <f:validate_required/> <f:validate_length minimum="8" maximum="20"/> </h:input_text> <!-- display
errors if present --> <h:output_errors id="loginErrors" clientId="userName"/> <h:command_button id="submit" label="Submit"
commandName="submit" /><p> </h:form> </f:use_faces>
REFERENCES
Java API 1.3 -
https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
Java API 1.4 -
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
Java Servlet API 2.3 -
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
Java Regular Expression Package -
http://jakarta.apache.org/regexp/
Jakarta Validator -
http://jakarta.apache.org/commons/validator/
JavaServer Faces Technology -
http://www.javaserverfaces.org/
** Error Handling:
Many J2EE web application architectures follow the Model View Controller (MVC) pattern. In this pattern a Servlet acts as a Controller. A Servlet
delegates the application processing to a JavaBean such as an EJB Session Bean (the Model). The Servlet then forwards the request to a JSP
(View) to render the processing results. Servlets should check all input, output, return codes, error codes and known exceptions to ensure that
the expected processing actually occurred.
While data validation protects applications against malicious data tampering, a sound error handling strategy is necessary to prevent the
application from inadvertently disclosing internal error messages such as exception stack traces. A good error handling strategy addresses the
following items:
[1] Defining Errors
[2] Reporting Errors
[3] Rendering Errors
[4] Error Mapping
[1] Defining Errors
Hard-coded error messages in the application layer (e.g. Servlets) should be avoided. Instead, the application should use error keys that map to
known application failures. A good practice is to define error keys that map to validation rules for HTML form fields or other bean properties. For
example, if the "user_name" field is required, is alphanumeric, and must be unique in the database, then the following error keys should be
defined:
(a) ERROR_USERNAME_REQUIRED: this error key is used to display a message notifying the user that the "user_name" field is required;
(b) ERROR_USERNAME_ALPHANUMERIC: this error key is used to display a message notifying the user that the "user_name" field should be
alphanumeric;
(c) ERROR_USERNAME_DUPLICATE: this error key is used to display a message notifying the user that the "user_name" value is a duplicate
in the database;
(d) ERROR_USERNAME_INVALID: this error key is used to display a generic message notifying the user that the "user_name" value is invalid;
A good practice is to define the following framework Java classes which are used to store and report application errors:
- ErrorKeys: defines all error keys
// Example: ErrorKeys defining the following error keys: // - ERROR_USERNAME_REQUIRED // - ERROR_USERNAME_ALPHANUMERIC // -
ERROR_USERNAME_DUPLICATE // - ERROR_USERNAME_INVALID // ... public Class ErrorKeys { public static final String
ERROR_USERNAME_REQUIRED = "error.username.required"; public static final String ERROR_USERNAME_ALPHANUMERIC =
"error.username.alphanumeric"; public static final String ERROR_USERNAME_DUPLICATE = "error.username.duplicate"; public static final
String ERROR_USERNAME_INVALID = "error.username.invalid"; ... }
- Error: encapsulates an individual error
// Example: Error encapsulates an error key. // Error is serializable to support code executing in multiple JVMs. public Class Error implements
Serializable { // Constructor given a specified error key public Error(String key) { this(key, null); } // Constructor given a specified error key and
array of placeholder objects public Error(String key, Object[] values) { this.key = key; this.values = values; } // Returns the error key public String
getKey() { return this.key; } // Returns the placeholder values public Object[] getValues() { return this.values; } private String key = null; private
Object[] values = null; }
- Errors: encapsulates a Collection of errors
// Example: Errors encapsulates the Error objects being reported to the presentation layer. // Errors are stored in a HashMap where the key is
the bean property name and value is an // ArrayList of Error objects. public Class Errors implements Serializable { // Adds an Error object to the
Collection of errors for the specified bean property. public void addError(String property, Error error) { ArrayList propertyErrors =
(ArrayList)errors.get(property); if (propertyErrors == null) { propertyErrors = new ArrayList(); errors.put(property, propertyErrors); }
propertyErrors.put(error); } // Returns true if there are any errors public boolean hasErrors() { return (errors.size > 0); } // Returns the Errors for
the specified property public ArrayList getErrors(String property) { return (ArrayList)errors.get(property); } private HashMap errors = new
HashMap(); }
Using the above framework classes, here is an example to process validation errors of the "user_name" field:
// Example to process validation errors of the "user_name" field. Errors errors = new Errors(); String userName =
request.getParameter("user_name"); // (a) Required validation rule if (!Validator.validateRequired(userName)) { errors.addError("user_name",

10/05/2024 146

https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
http://jakarta.apache.org/regexp/
http://jakarta.apache.org/commons/validator/
http://www.javaserverfaces.org/

new Error(ErrorKeys.ERROR_USERNAME_REQUIRED)); } // (b) Alpha-numeric validation rule else if (!Validator.matchPattern(userName, "^[a-
zA-Z0-9]*$")) { errors.addError("user_name", new Error(ErrorKeys.ERROR_USERNAME_ALPHANUMERIC)); } else { // (c) Duplicate check
validation rule // We assume that there is an existing UserValidationEJB session bean that implements // a checkIfDuplicate() method to verify if
the user already exists in the database. try { ... if (UserValidationEJB.checkIfDuplicate(userName)) { errors.addError("user_name", new
Error(ErrorKeys.ERROR_USERNAME_DUPLICATE)); } } catch (RemoteException e) { // log the error logger.error("Could not validate user for
specified userName: " + userName); errors.addError("user_name", new Error(ErrorKeys.ERROR_USERNAME_DUPLICATE); } } // set the
errors object in a request attribute called "errors" request.setAttribute("errors", errors); ...
[2] Reporting Errors
There are two ways to report web-tier application errors:
(a) Servlet Error Mechanism
(b) JSP Error Mechanism
[2-a] Servlet Error Mechanism
A Servlet may report errors by:
- forwarding to the input JSP (having already stored the errors in a request attribute), OR
- calling response.sendError with an HTTP error code argument, OR
- throwing an exception
It is good practice to process all known application errors (as described in section [1]), store them in a request attribute, and forward to the input
JSP. The input JSP should display the error messages and prompt the user to re-enter the data. The following example illustrates how to
forward to an input JSP (userInput.jsp):
// Example to forward to the userInput.jsp following user validation errors RequestDispatcher rd =
getServletContext().getRequestDispatcher("/user/userInput.jsp"); if (rd != null) { rd.forward(request, response); }
If the Servlet cannot forward to a known JSP page, the second option is to report an error using the response.sendError method with
HttpServletResponse.SC_INTERNAL_SERVER_ERROR (status code 500) as argument. Refer to the javadoc of
javax.servlet.http.HttpServletResponse for more details on the various HTTP status codes. Example to return a HTTP error:
// Example to return a HTTP error code RequestDispatcher rd = getServletContext().getRequestDispatcher("/user/userInput.jsp"); if (rd == null) {
// messages is a resource bundle with all message keys and values
response.sendError(HttpServletResponse.SC_INTERNAL_SERVER_ERROR,
messages.getMessage(ErrorKeys.ERROR_USERNAME_INVALID)); }
As a last resort, Servlets can throw an exception, which must be a subclass of one of the following classes:
- RuntimeException
- ServletException
- IOException
[2-b] JSP Error Mechanism
JSP pages provide a mechanism to handle runtime exceptions by defining an errorPage directive as shown in the following example:
<%@ page errorPage="/errors/userValidation.jsp" %>
Uncaught JSP exceptions are forwarded to the specified errorPage, and the original exception is set in a request parameter called
javax.servlet.jsp.jspException. The error page must include a isErrorPage directive as shown below:
<%@ page isErrorPage="true" %>
The isErrorPage directive causes the "exception" variable to be initialized to the exception object being thrown.
[3] Rendering Errors
The J2SE Internationalization APIs provide utility classes for externalizing application resources and formatting messages including:
(a) Resource Bundles
(b) Message Formatting
[3-a] Resource Bundles
Resource bundles support internationalization by separating localized data from the source code that uses it. Each resource bundle stores a
map of key/value pairs for a specific locale.
It is common to use or extend java.util.PropertyResourceBundle, which stores the content in an external properties file as shown in the following
example:
ErrorMessages.properties
required user name error message error.username.required=User name field is
required # invalid user name format error.username.alphanumeric=User name must be alphanumeric # duplicate user name error message
error.username.duplicate=User name {0} already exists, please choose another one ...
Multiple resources can be defined to support different locales (hence the name resource bundle). For example, ErrorMessages_fr.properties can
be defined to support the French member of the bundle family. If the resource member of the requested locale does not exist, the default
member is used. In the above example, the default resource is ErrorMessages.properties. Depending on the user's locale, the application (JSP
or Servlet) retrieves content from the appropriate resource.
[3-b] Message Formatting
The J2SE standard class java.util.MessageFormat provides a generic way to create messages with replacement placeholders. A
MessageFormat object contains a pattern string with embedded format specifiers as shown below:
// Example to show how to format a message using placeholder parameters String pattern = "User name {0} already exists, please choose
another one"; String userName = request.getParameter("user_name"); Object[] args = new Object[1]; args[0] = userName; String message =
MessageFormat.format(pattern, args);
Here is a more comprehensive example to render error messages using ResourceBundle and MessageFormat:
// Example to render an error message from a localized ErrorMessages resource (properties file) // Utility class to retrieve locale-specific error
messages public Class ErrorMessageResource { // Returns the error message for the specified error key in the environment locale public String
getErrorMessage(String errorKey) { return getErrorMessage(errorKey, defaultLocale); } // Returns the error message for the specified error key

10/05/2024 147

in the specified locale public String getErrorMessage(String errorKey, Locale locale) { return getErrorMessage(errorKey, null, locale); } // Returns
a formatted error message for the specified error key in the specified locale public String getErrorMessage(String errorKey, Object[] args, Locale
locale) { // Get localized ErrorMessageResource ResourceBundle errorMessageResource = ResourceBundle.getBundle("ErrorMessages",
locale); // Get localized error message String errorMessage = errorMessageResource.getString(errorKey); if (args != null) { // Format the
message using the specified placeholders args return MessageFormat.format(errorMessage, args); } else { return errorMessage; } } // default
environment locale private Locale defaultLocale = Locale.getDefaultLocale(); } ... // Get the user's locale Locale userLocale =
request.getLocale(); // Check if there were any validation errors Errors errors = (Errors)request.getAttribute("errors"); if (errors != null &&
errors.hasErrors()) { // iterate through errors and output error messages corresponding to the "user_name" property ArrayList userNameErrors =
errors.getErrors("user_name"); ListIterator iterator = userNameErrors.iterator(); while (iterator.hasNext()) { // Get the next error object Error error
= (Error)iterator.next(); String errorMessage = ErrorMessageResource.getErrorMessage(error.getKey(), userLocale); output.write(errorMessage
+ "\r\n"); } }
It is recommended to define a custom JSP tag, e.g. displayErrors, to iterate through and render error messages as shown in the above example.
[4] Error Mapping
Normally, the Servlet Container will return a default error page corresponding to either the response status code or the exception. A mapping
between the status code or the exception and a web resource may be specified using custom error pages. It is a good practice to develop static
error pages that do not disclose internal error states (by default, most Servlet containers will report internal error messages). This mapping is
configured in the Web Deployment Descriptor (web.xml) as specified in the following example:
<!-- Mapping of HTTP error codes and application exceptions to error pages --> <error-page> <exception-
type>UserValidationException</exception-type> <location>/errors/validationError.html</error-page> </error-page> <error-page> <error-
code>500</exception-type> <location>/errors/internalError.html</error-page> </error-page> <error-page> ... </error-page> ...
RECOMMENDED JAVA TOOLS
The two main Java frameworks for server-side validation are:
[1] Jakarta Commons Validator (integrated with Struts 1.1)
The Jakarta Commons Validator is a Java framework that defines the error handling mechanism as described above. Validation rules are
configured in an XML file that defines input validation rules for form fields and the corresponding validation error keys. Struts provides
internationalization support to build localized applications using resource bundles and message formatting.
Example to validate the userName field of a loginForm using Struts Validator:
<form-validation> <global> ... <validator name="required" classname="org.apache.struts.validator.FieldChecks" method="validateRequired"
msg="errors.required"> </validator> <validator name="mask" classname="org.apache.struts.validator.FieldChecks" method="validateMask"
msg="errors.invalid"> </validator> ... </global> <formset> <form name="loginForm"> <!-- userName is required and is alpha-numeric case
insensitive --> <field property="userName" depends="required,mask"> <!-- message resource key to display if validation fails --> <msg
name="mask" key="login.userName.maskmsg"/> <arg0 key="login.userName.displayname"/> <var> <var-name>mask</var-name> <var-
value>^[a-zA-Z0-9]*$</var-value> </var> </field> ... </form> ... </formset> </form-validation>
The Struts JSP tag library defines the "errors" tag that conditionally displays a set of accumulated error messages as shown in the following
example:
<%@ page language="java" %> <%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %> <%@ taglib uri="/WEB-INF/struts-bean.tld"
prefix="bean" %> <html:html> <head> <body> <html:form action="/logon.do"> <table border="0" width="100%"> <tr> <th align="right">
<html:errors property="username"/> <bean:message key="prompt.username"/> </th> <td align="left"> <html:text property="username"
size="16"/> </td> </tr> <tr> <td align="right"> <html:submit><bean:message key="button.submit"/></html:submit> </td> <td align="right">
<html:reset><bean:message key="button.reset"/></html:reset> </td> </tr> </table> </html:form> </body> </html:html>
[2] JavaServer Faces Technology
JavaServer Faces Technology is a set of Java APIs (JSR 127) to represent UI components, manage their state, handle events, validate input,
and support internationalization.
The JavaServer Faces API defines the "output_errors" UIOutput Renderer, which displays error messages for an entire page or error messages
associated with a specified client identifier.
Example to validate the userName field of a loginForm using JavaServer Faces:
<%@ taglib uri="https://docs.oracle.com/javaee/6/tutorial/doc/glxce.html" prefix="h" %> <%@ taglib uri="http://mrbool.com/how-to-create-a-
login-validation-with-jsf-java-server-faces/27046" prefix="f" %> ... <jsp:useBean id="UserBean" class="myApplication.UserBean"
scope="session" /> <f:use_faces> <h:form formName="loginForm" > <h:input_text id="userName" size="20"
modelReference="UserBean.userName"> <f:validate_required/> <f:validate_length minimum="8" maximum="20"/> </h:input_text> <!-- display
errors if present --> <h:output_errors id="loginErrors" clientId="userName"/> <h:command_button id="submit" label="Submit"
commandName="submit" /><p> </h:form> </f:use_faces>
REFERENCES
Java API 1.3 -
https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
Java API 1.4 -
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
Java Servlet API 2.3 -
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
Java Regular Expression Package -
http://jakarta.apache.org/regexp/
Jakarta Validator -
http://jakarta.apache.org/commons/validator/
JavaServer Faces Technology -
http://www.javaserverfaces.org/
** Filter User Input

10/05/2024 148

https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
http://jakarta.apache.org/regexp/
http://jakarta.apache.org/commons/validator/
http://www.javaserverfaces.org/

Before passing any data to a SQL query, it should always be properly filtered with whitelisting techniques. This cannot be over-emphasized.
Filtering user input will correct many injection flaws before they arrive at the database.
** Quote User Input
Regardless of data type, it is always a good idea to place single quotes around all user data if this is permitted by the database. MySQL allows
this formatting technique.
** Escape the Data Values
If you're using MySQL 4.3.0 or newer, you should escape all strings with mysql_real_escape_string(). If you are using an older version of
MySQL, you should use the mysql_escape_string() function. If you are not using MySQL, you might choose to use the specific escaping function
for your particular database. If you are not aware of an escaping function, you might choose to utilize a more generic escaping function such as
addslashes().
If you're using the PEAR DB database abstraction layer, you can use the DB::quote() method or use a query placeholder like ?, which
automatically escapes the value that replaces the placeholder.
REFERENCES
http://ca3.php.net/mysql_real_escape_string
http://ca.php.net/mysql_escape_string
http://ca.php.net/addslashes
http://pear.php.net/package-info.php?package=DB
** Input Data Validation:
While data validations may be provided as a user convenience on the client-tier, data validation must always be performed on the server-tier.
Client-side validations are inherently insecure because they can be easily bypassed, e.g. by disabling Javascript.
A good design usually requires the web application framework to provide server-side utility routines to validate the following:
[1] Required field
[2] Field data type (all HTTP request parameters are Strings by default)
[3] Field length
[4] Field range
[5] Field options
[6] Field pattern
[7] Cookie values
[8] HTTP Response
A good practice is to implement a function or functions that validates each application parameter. The following sections describe some example
checking.
[1] Required field
Always check that the field is not null and its length is greater than zero, excluding leading and trailing white spaces.
Example of how to validate required fields:
// PHP example to validate required fields function validateRequired($input) { ... $pass = false; if (strlen(trim($input))>0){ $pass = true; } return
$pass; ... } ... if (validateRequired($fieldName)) { // fieldName is valid, continue processing request ... }
[2] Field data type
In web applications, input parameters are poorly typed. For example, all HTTP request parameters or cookie values are of type String. The
developer is responsible for verifying the input is of the correct data type.
[3] Field length
Always ensure that the input parameter (whether HTTP request parameter or cookie value) is bounded by a minimum length and/or a maximum
length.
[4] Field range
Always ensure that the input parameter is within a range as defined by the functional requirements.
[5] Field options
Often, the web application presents the user with a set of options to choose from, e.g. using the SELECT HTML tag, but fails to perform server-
side validation to ensure that the selected value is one of the allowed options. Remember that a malicious user can easily modify any option
value. Always validate the selected user value against the allowed options as defined by the functional requirements.
[6] Field pattern
Always check that user input matches a pattern as defined by the functionality requirements. For example, if the userName field should only
allow alpha-numeric characters, case insensitive, then use the following regular expression:
^[a-zA-Z0-9]+$
[7] Cookie value
The same validation rules (described above) apply to cookie values depending on the application requirements, e.g. validate a required value,
validate length, etc.
[8] HTTP Response
[8-1] Filter user input
To guard the application against cross-site scripting, the developer should sanitize HTML by converting sensitive characters to their
corresponding character entities. These are the HTML sensitive characters:
< > " ' % ;) (& +
PHP includes some automatic sanitization utility functions, such as htmlentities():
$input = htmlentities($input, ENT_QUOTES, 'UTF-8');
In addition, in order to avoid UTF-7 variants of Cross-site Scripting, you should explicitly define the Content-Type header of the response, for
example:
<?php header('Content-Type: text/html; charset=UTF-8'); ?>
[8-2] Secure the cookie

10/05/2024 149

http://ca3.php.net/mysql_real_escape_string
http://ca.php.net/mysql_escape_string
http://ca.php.net/addslashes
http://pear.php.net/package-info.php?package=DB

TOC

When storing sensitive data in a cookie and transporting it over SSL, make sure that you first set the secure flag of the cookie in the HTTP
response. This will instruct the browser to only use that cookie over SSL connections.
You can use the following code example, for securing the cookie:
<$php $value = "some_value"; $time = time()+3600; $path = "/application/"; $domain = ".example.com"; $secure = 1; setcookie("CookieName",
$value, $time, $path, $domain, $secure, TRUE); ?>
In addition, we recommend that you use the HttpOnly flag. When the HttpOnly flag is set to TRUE the cookie will be made accessible only
through the HTTP protocol. This means that the cookie won't be accessible by scripting languages, such as JavaScript. This setting can
effectively help to reduce identity theft through XSS attacks (although it is not supported by all browsers).
The HttpOnly flag was Added in PHP 5.2.0.
REFERENCES
[1] Mitigating Cross-site Scripting With HTTP-only Cookies:
http://msdn2.microsoft.com/en-us/library/ms533046.aspx
[2] PHP Security Consortium:
http://phpsec.org/
[3] PHP & Web Application Security Blog (Chris Shiflett):
http://shiflett.org/

CWE:
209

External References:
"Web Application Disassembly with ODBC Error Messages" (By David Litchfield)

Direct Access to Administration Pages

Cause:
The web server or application server are configured in an insecure way

Risk:
It might be possible to escalate user privileges and gain administrative permissions over the web application
A common user can access certain pages on a site through simple surfing (i.e. following web links). However, there might be pages and
scripts that are not accessible through simple surfing, (i.e. pages and scripts that are not linked).
An attacker may be able to access these pages by guessing their name, e.g. admin.php, admin.asp, admin.cgi, admin.html, etc.
Example request for a script named "admin.php":
http://[SERVER]/admin.php
Access to administration scripts should not be allowed without proper authorization, as it may allow an attacker to gain privileged rights.
Sample Exploit:
http://[SERVER]/admin.php
http://[SERVER]/admin.asp
http://[SERVER]/admin.aspx
http://[SERVER]/admin.html
http://[SERVER]/admin.cfm
http://[SERVER]/admin.cgi

Fix Recommendation:

General

Do not allow access to administration scripts without proper authorization, as it may allow an attacker to gain privileged rights.

CWE:
306

10/05/2024 150

http://msdn2.microsoft.com/en-us/library/ms533046.aspx
http://phpsec.org/
http://shiflett.org/
http://cwe.mitre.org/data/definitions/209.html
http://www.cgisecurity.com/lib/webappdis.doc
http://cwe.mitre.org/data/definitions/306.html

TOC

TOC

Host Header Injection

Cause:
Lack of input validation and sanitization

Risk:
- Dispatch requests to the first virtual host on the list - Cause a redirect to an attacker-controlled domain - Perform web cache poisoning -
Manipulate password reset functionality
A web server commonly hosts several web applications on the same IP address, referring to each application via the virtual host.
In an incoming HTTP request, web servers often dispatch the request to the target virtual host based on the value supplied in the Host or X-
Forwarded-Host header.
Sample Exploit:
GET /login.html HTTP/1.1
Host: evilhost.com

Fix Recommendation:

General

Validate and sanitize the user supplied inputs properly

CWE:
644

External References:
OWASP - WSTG Latest
Practical Host header attacks

Inadequate Account Lockout

Cause:
Insecure web application programming or configuration

Risk:
It might be possible to escalate user privileges and gain administrative permissions over the web application
AppScan Detected that the application does not limit the number of false login attempts.
It did so by sending 10 requests with a bad password, and then successfully logged in using the correct credentials.
Not limiting the number of false login attempts exposes the application to a brute force attack.
A brute force attack is an attempt by a malicious user to gain access to the application by sending a large number of possible passwords
and/or usernames.
Since this technique involves a large amount of login attempts, an application that does not limit the number of false login requests allowed is
vulnerable to these attacks.
It is therefore highly recommended to restrict the number of false login attempts allowed on an account before it is locked.
Sample Exploit:
The following request illustrates a password-guessing request:
http://site/login.asp?username=EXISTING_USERNAME&password=GUESSED_PASSWORD
If the site does not lock the tested account after several false attempts, the attacker may eventually discover the account password and use it
to impersonate the account's legitimate user.

10/05/2024 151

http://cwe.mitre.org/data/definitions/644.html
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/17-Testing_for_Host_Header_Injection
https://www.skeletonscribe.net/2013/05/practical-http-host-header-attacks.html

TOC

Affected Products:
This issue affects several applications

Fix Recommendation:

General

Decide upon the number of login attempts to be allowed (usually from 3 to 5), and make sure that the account will be locked once the permitted
number of attempts is exceeded.
To avoid unnecessary support calls from genuine users who were locked out of their account and require enabling, it is possible to suspend
account activity only temporarily, and enable it after a specific period of time. Locking the account for a period of ten minutes or so is usually
sufficient to block brute force attacks.

CWE:
307

External References:
"Blocking Brute-Force Attacks" by Mark Burnett

Link Injection (facilitates Cross-Site Request Forgery)

Cause:
Sanitation of hazardous characters was not performed correctly on user input

10/05/2024 152

http://cwe.mitre.org/data/definitions/307.html
http://www.codeguru.com/csharp/csharp/cs_webservices/security/article.php/c7907/

Risk:
It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social security
number etc.
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing the
hacker to view or alter user records, and to perform transactions as that user
It is possible to upload, modify or delete web pages, scripts and files on the web server
The software constructs all or part of a command, data structure, or record using externally-influenced input, but fails to neutralize elements
that could modify how it is parsed or interpreted.
Link Injection is the modifying of the content of a site by embedding in it a URL to an external site, or to a script in the vulnerable site. After
embedding the URL in the vulnerable site, an attacker is able to use it as a platform to launch attacks against other sites, as well as against
the vulnerable site itself.
Some of these possible attacks require the user to be logged in to the site during the attack. By launching these attacks from the vulnerable
site itself, the attacker increases the chances of success, because the user is more likely to be logged in.
The Link Injection vulnerability is a result of insufficient user input sanitization, the input being later returned to the user in the site response.
The resulting ability to inject hazardous characters into the response makes it possible for attackers to embed URLs, among other possible
content modifications.
Below is an example for a Link Injection (We will assume that site "www.vulnerable.com" has a parameter called "name", which is used to
greet users).
The following request:
HTTP://www.vulnerable.com/greet.asp?name=John Smith
Will yield the following response:
<HTML> <BODY> Hello, John Smith. </BODY> </HTML>
However, a malicious user may send the following request:
HTTP://www.vulnerable.com/greet.asp?name=
This will return the following response:
<HTML> <BODY> Hello, . </BODY> </HTML>
As this example shows, it is possible to cause a user's browser to issue automatic requests to virtually any site the attacker desires. As a
result, Link Injection vulnerability can be used to launch several types of attack:
[-] Cross-Site Request Forgery
[-] Cross-Site Scripting
[-] Phishing

Affected Products:
This issue may affect different types of products.

10/05/2024 153

Fix Recommendation:

General

There are several mitigation techniques:
[1] Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur, or provides constructs that make it easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's Anti-XSS library, the OWASP
ESAPI Encoding module, and Apache Wicket.
[2] Understand the context in which your data will be used, and the encoding that will be expected. This is especially important when transmitting
data between different components, or when generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the appropriate encoding
on all non-alphanumeric characters.
Parts of the same output document may require different encodings, which will vary depending on whether the output is in the:
[-] HTML body
[-] Element attributes (such as src="XYZ")
[-] URIs
[-] JavaScript sections
[-] Cascading Style Sheets and style property
Note that HTML Entity Encoding is only appropriate for the HTML body.
Consult the XSS Prevention Cheat Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
for more details on the types of encoding and escaping that are needed.
[3] Strategy: Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the
network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
[4] Strategy: Output Encoding
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an encoding is not specified,
the web browser may choose a different encoding by guessing the web page encoding. This can cause the web browser to treat certain
sequences as special, opening up the client to subtle XSS attacks. See CWE-116 for more mitigations related to encoding/escaping.
[5] Strategy: Identify and Reduce Attack Surface
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that support the HttpOnly
feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent the user's session cookie from being
accessible to malicious client-side scripts that use document.cookie. This is not a complete solution, since HttpOnly is not supported by all
browsers. More importantly, XMLHTTPRequest and other powerful browser technologies provide read access to HTTP headers, including the
Set-Cookie header in which the HttpOnly flag is set.
[6] Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy: a whitelist of acceptable inputs that strictly conform to
specifications. Reject input that does not strictly conform to specifications, or transform it into something that does. Do not rely exclusively on a
blacklist of malicious or malformed inputs. However, blacklists can be useful for detecting potential attacks or determining which inputs are so
malformed that they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values,
missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if you are expecting colors such as "red" or
"blue."
When dynamically constructing web pages, use stringent whitelists that limit the character set based on the expected value of the parameter in
the request. All input should be validated and cleansed: not only parameters that the user is supposed to specify, but all data in the request,
including hidden fields, cookies, headers, the URL itself, and so on. A common mistake that leads to continuing XSS vulnerabilities is to validate
only fields that are expected to be redisplayed by the site. It is common to see data from the request that is reflected by the application server or
the application that the development team did not anticipate. Also, a field that is not currently reflected may be used by a future developer.
Therefore, validating ALL parts of the HTTP request is recommended.
Note that proper output encoding, escaping, and quoting is the most effective solution for preventing XSS, although input validation may provide
some defense-in-depth. This is because it effectively limits what will appear in output. Input validation will not always prevent XSS, especially if
you are required to support free-form text fields that could contain arbitrary characters. For example, in a chat application, the heart emoticon ("
<3") would likely pass the validation step, since it is commonly used. However, it cannot be directly inserted into the web page because it
contains the "<" character, which would need to be escaped or otherwise handled. In this case, stripping the "<" might reduce the risk of XSS,
but it would produce incorrect behavior because the emoticon would not be recorded. This might seem to be a minor inconvenience, but it would
be more important in a mathematical forum that wants to represent inequalities.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields), appropriate encoding is still likely to protect you
from injection-based attacks. As long as it is not done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper encoding does not address.
Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the application even if a
component is reused or moved elsewhere.

10/05/2024 154

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

TOC

CWE:
74

External References:
OWASP Article
The Cross-Site Request Forgery FAQ

Missing Secure Attribute in Encrypted Session (SSL) Cookie

Cause:
The web application sends non-secure cookies over SSL

Risk:
It may be possible to steal user and session information (cookies) that was sent during an encrypted session
During the application test, it was detected that the tested web application set a cookie without the "secure" attribute, during an encrypted
session. Since this cookie does not contain the "secure" attribute, it might also be sent to the site during an unencrypted session. Any
information such as cookies, session tokens or user credentials that are sent to the server as clear text, may be stolen and used later for
identity theft or user impersonation.
In addition, several privacy regulations state that sensitive information such as user credentials will always be sent encrypted to the web site

Affected Products:
This issue may affect different types of products

Fix Recommendation:

General

Basically the only required attribute for the cookie is the "name" field. Common optional attributes are: "comment", "domain", "path", etc.
The "secure" attribute must be set accordingly in order to prevent to cookie from being sent unencrypted.
For more information on how to set the secure flag, see OWASP "Secure Attribute" cheatsheet at
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#secure-attribute
RFC 2965 states:
"The Secure attribute (with no value) directs the user agent to use only (unspecified) secure means to contact the origin server whenever it
sends back this cookie, to protect the confidentially and authenticity of the information in the cookie."
For further reference please see the HTTP State Management Mechanism RFC 2965 at:
http://www.ietf.org/rfc/rfc2965.txt
and for "Best current practice" for use of HTTP State Management please see
http://tools.ietf.org/html/rfc2964

CWE:
614

External References:
Financial Privacy: The Gramm-Leach Bliley Act
Health Insurance Portability and Accountability Act (HIPAA)
Sarbanes-Oxley Act
California SB1386

10/05/2024 155

http://cwe.mitre.org/data/definitions/74.html
https://owasp.org/www-community/attacks/csrf
http://www.cgisecurity.com/csrf-faq.html
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#secure-attribute
http://www.ietf.org/rfc/rfc2965.txt
http://tools.ietf.org/html/rfc2964
http://cwe.mitre.org/data/definitions/614.html
http://business.ftc.gov/privacy-and-security/gramm-leach-bliley-act/
http://www.hhs.gov/ocr/hipaa/
http://www.sec.gov/spotlight/sarbanes-oxley.htm
http://www.leginfo.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_20020926_chaptered.html

TOC

TOC

Older TLS Version is Supported

Cause:
The web server or application server are configured in an insecure way

Risk:
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing the
hacker to view or alter user records, and to perform transactions as that user
The server supports TLS cipher suites that either do not offer encryption or use weak encryption algorithms. An attacker may therefore be
able to
decrypt the secure communication between the client and the server, or successfully execute a "man-in-the-middle" attack on the client,
enabling them to view sensitive information and perform actions on behalf of the client.
Current most secure TLS version is 1.3

Affected Products:
This issue may affect different types of products.

Fix Recommendation:

General

Reconfigure the server to avoid the use of weak cipher suites. The configuration changes are server-specific.
For Microsoft Windows XP and Microsoft Windows Server 2003, follow these instructions:
http://support.microsoft.com/kb/245030
For Microsoft Windows Vista, Microsoft Windows 7, and Microsoft Windows Server 2008, remove the cipher suites that were identified as weak
from the Supported Cipher Suite list by following these instructions:
http://msdn.microsoft.com/en-us/library/windows/desktop/bb870930(v=vs.85).aspx
For Apache TomCat server, follow these instructions:
https://www.owasp.org/index.php/Talk:Securing_tomcat#Disabling_weak_ciphers_in_Tomcat
For Apache server, follow these instructions:
https://httpd.apache.org/docs/trunk/ssl/ssl_howto.html

CWE:
327

External References:
Deprecating TLS 1.0 and 1.1
Overview of TLS 1.3

Phishing Through Frames

Cause:
Sanitation of hazardous characters was not performed correctly on user input

10/05/2024 156

http://cwe.mitre.org/data/definitions/327.html
https://www.digicert.com/blog/depreciating-tls-1-0-and-1-1/
https://kinsta.com/blog/tls-1-3/

Risk:
It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social security
number etc.
Phishing is a social engineering technique where an attacker masquerades as a legitimate entity with which the victim might do business in
order to prompt the user to reveal some confidential information (very frequently authentication credentials) that can later be used by an
attacker. Phishing is essentially a form of information gathering or "fishing" for information.
It is possible for an attacker to inject a frame or an iframe tag with malicious content. An incautious user may browse it and not realize that he
is leaving the original site and surfing to a malicious site. The attacker may then lure the user to login again, thus acquiring his login
credentials.
The fact that the fake site is embedded in the original site helps the attacker by giving his phishing attempts a more reliable appearance.

Affected Products:
This issue may affect different types of products.

10/05/2024 157

Fix Recommendation:

General

There are several mitigation techniques:
[1] Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur, or provides constructs that make it easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output include Microsoft's Anti-XSS library, the OWASP
ESAPI Encoding module, and Apache Wicket.
[2] Understand the context in which your data will be used and the encoding that will be expected. This is especially important when transmitting
data between different components, or when generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from external inputs, use the appropriate encoding
on all non-alphanumeric characters.
Parts of the same output document may require different encodings, which will vary depending on whether the output is in the:
[-] HTML body
[-] Element attributes (such as src="XYZ")
[-] URIs
[-] JavaScript sections
[-] Cascading Style Sheets and style property
Note that HTML Entity Encoding is only appropriate for the HTML body.
Consult the XSS Prevention Cheat Sheet
http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet
for more details on the types of encoding and escaping that are needed.
[3] Strategy: Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the
network, environment variables, reverse DNS lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be obtained indirectly through API calls.
[4] Strategy: Output Encoding
For every web page that is generated, use and specify a character encoding such as ISO-8859-1 or UTF-8. When an encoding is not specified,
the web browser may choose a different encoding by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See CWE-116 for more mitigations related to
encoding/escaping.
[5] Strategy: Identify and Reduce Attack Surface
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that support the HttpOnly
feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent the user's session cookie from being
accessible to malicious client-side scripts that use document.cookie. This is not a complete solution, since HttpOnly is not supported by all
browsers. More importantly, XMLHTTPRequest and other powerful browser technologies provide read access to HTTP headers, including the
Set-Cookie header in which the HttpOnly flag is set.
[6] Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy: a whitelist of acceptable inputs that strictly conform to
specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on a blacklist of malicious or malformed inputs. However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values,
missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if you are expecting colors such as "red" or
"blue."
When dynamically constructing web pages, use stringent whitelists that limit the character set based on the expected value of the parameter in
the request. All input should be validated and cleansed, not just parameters that the user is supposed to specify, but all data in the request,
including hidden fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS vulnerabilities is to
validate only fields that are expected to be redisplayed by the site. It is common to see data from the request that is reflected by the application
server or the application that the development team did not anticipate. Also, a field that is not currently reflected may be used by a future
developer. Therefore, validating ALL parts of the HTTP request is recommended.
Note that proper output encoding, escaping, and quoting is the most effective solution for preventing XSS, although input validation may provide
some defense-in-depth. This is because it effectively limits what will appear in output. Input validation will not always prevent XSS, especially if
you are required to support free-form text fields that could contain arbitrary characters. For example, in a chat application, the heart emoticon ("
<3") would likely pass the validation step, since it is commonly used. However, it cannot be directly inserted into the web page because it
contains the "<" character, which would need to be escaped or otherwise handled. In this case, stripping the "<" might reduce the risk of XSS,
but it would produce incorrect behavior because the emoticon would not be recorded. This might seem to be a minor inconvenience, but it would
be more important in a mathematical forum that wants to represent inequalities.
Even if you make a mistake in your validation (such as forgetting one of 100 input fields), appropriate encoding is still likely to protect you from
injection-based attacks. As long as it is not done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper encoding does not address.
Ensure that you perform input validation at well-defined interfaces within the application. This will help protect the application even if a

10/05/2024 158

http://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet

TOC

TOC

component is reused or moved elsewhere.

CWE:
79

External References:
FTC Consumer Alert - "How Not to Get Hooked by a 'Phishing' Scam"

SHA-1 cipher suites were detected

Cause:
The web server or application server are configured in an insecure way

Risk:
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing the
hacker to view or alter user records, and to perform transactions as that user
The server supports SHA-1 ciphersuites.
SHA-1 was officially deprecated by NIST in 2011, but many applications still rely on it.
Up until now (2021), only theoretical attacks have been known agsinst SHA-1, which is why many applications still rely on it.
Recently, a practical attack was introduced by CWI Amsterdam and Google Research teams ([1] and [2]).

Affected Products:
This issue may affect different types of products.

Fix Recommendation:

General

Secure Cipher-Suites best practices:
[1]
Use strong cryptographic hashing algorithms
[2]
Server cipher TLS requirements

CWE:
327

External References:
[1] SHATTERED
[2] The first collision for full SHA-1

Session Identifier Not Updated

Cause:
Insecure web application programming or configuration

10/05/2024 159

http://cwe.mitre.org/data/definitions/79.html
http://www.ftc.gov/bcp/edu/pubs/consumer/alerts/alt127.shtm
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html#use-strong-cryptographic-hashing-algorithms
https://docs.microsoft.com/en-us/power-platform/admin/server-cipher-tls-requirements
http://cwe.mitre.org/data/definitions/327.html
http://shattered.io/
http://shattered.io/static/shattered.pdf

TOC

Risk:
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing the
hacker to view or alter user records, and to perform transactions as that user
Authenticating a user, or otherwise establishing a new user session, without invalidating any existing session identifier, gives an attacker the
opportunity to steal authenticated sessions.
Such a scenario is commonly observed when:
[1] A web application authenticates a user without first invalidating the existing session, thereby continuing to use the session already
associated with the user
[2] An attacker is able to force a known session identifier on a user so that, once the user authenticates, the attacker has access to the
authenticated session
[3] The application or container uses predictable session identifiers.
In the generic exploit of session fixation vulnerabilities, an attacker creates a new session on a web application and records the associated
session identifier. The attacker then causes the victim to associate, and possibly authenticate, against the server using that session identifier,
giving the attacker access to the user's account through the active session.
AppScan has found that the session identifiers before and after the login process were not updated, which means that user impersonation
may be possible. Preliminary knowledge of the session identifier value may enable a remote attacker to pose as a logged-in legitimate user.
The flow of attack:
a) An attacker uses the victim's browser to open the login form of the vulnerable site.
b) Once the form is open, the attacker writes down the session identifier value, and waits.
c) When the victim logs into the vulnerable site, his session identifier is not updated.
d) The attacker can then use the session identifier value to impersonate the victim user, and operate on his behalf.
The session identifier value can be obtained by utilizing a Cross-Site Scripting vulnerability, causing the victim's browser to use a predefined
session identifier when contacting the vulnerable site, or by launching a Session Fixation attack that will cause the site to present a predefined
session identifier to the victim's browser.

Affected Products:
This issue may affect different types of products.

Fix Recommendation:

General

Prevent user ability to manipulate session ID. Do not accept session IDs provided by the user's browser at login; always generate a new session
to which the user will log in if successfully authenticated.
Invalidate any existing session identifiers prior to authorizing a new user session.
For platforms such as ASP that do not generate new values for sessionid cookies, utilize a secondary cookie. In this approach, set a secondary
cookie on the user's browser to a random value and set a session variable to the same value. If the session variable and the cookie value ever
don't match, invalidate the session, and force the user to log on again.

CWE:
304

External References:
"Session Fixation Vulnerability in Web-based Applications", By Mitja Kolsek - Acros Security
PHP Manual, Session Handling Functions, Sessions and security

Autocomplete HTML Attribute Not Disabled for Password Field

Cause:
Insecure web application programming or configuration

10/05/2024 160

http://cwe.mitre.org/data/definitions/304.html
http://www.acrossecurity.com/papers/session_fixation.pdf
http://il2.php.net/session#session.security

TOC

Risk:
It may be possible to bypass the web application's authentication mechanism
The "autocomplete" attribute has been standardized in the HTML5 standard. W3C's site states that the attribute has two states, "on" and "off",
and that omitting it altogether is equivalent to setting it to "on".
This page is vulnerable since it does not set the "autocomplete" attribute to "off" for the "password" field in the "input" element.
This may enable an unauthorized user (with local access to an authorized client) to autofill the username and password fields, and thus log in
to the site.

Affected Products:
N/A

Fix Recommendation:

General

If the "autocomplete" attribute is missing in the "password" field of the "input" element, add it and set it to "off".
If the "autocomplete" attribute is set to "on", change it to "off".
For example:
Vulnerable site:
<form action="AppScan.html" method="get"> Username: <input type="text" name="firstname" />
 Password: <input type="password"
name="lastname" /> <input type="submit" value="Submit" /> <form>
Non-vulnerable site:
<form action="AppScan.html" method="get"> Username: <input type="text" name="firstname" />
 Password: <input type="password"
name="lastname" autocomplete="off"/> <input type="submit" value="Submit" /> <form>

CWE:
522

Body Parameters Accepted in Query

Cause:
Insecure web application programming or configuration

Risk:
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or sensitive file
locations
It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social security
number etc.
GET requests are designed to query the server, while POST requests are for submitting data.
However, aside from the technical purpose, attacking query parameters is easier than body parameters, because sending a link to the original
site, or posting it in a blog or comment, is easier and has better results than the alternative - in order to attack a request with body
parameters, an attacker would need to create a page containing a form that will be submitted when visited by the victim.
It is a lot harder to convince the victim to visit a page that he doesn't know, than letting him visit the original site. It it therefore not
recommended to support body parameters that arrive in the query string.

Affected Products:
This issue may affect different types of products.

10/05/2024 161

http://cwe.mitre.org/data/definitions/522.html

TOC

Fix Recommendation:

General

Re-program the application to disallow handling of POST parameters that were listed in the Query

CWE:
200

External References:
GET
POST

Cacheable SSL Page Found

Cause:
Sensitive information might have been cached by your browser

Risk:
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or sensitive file
locations
Most web browsers are configured by default to cache the user's pages during use. This means that SSL pages are cached as well.
It is not recommended to enable the web browser to save any SSL information, since this information might be compromised when a
vulnerability exists.

Affected Products:
This issue may affect different types of products.

Fix Recommendation:

General

Disable caching on all SSL pages or all pages that contain sensitive data.
This can be achieved by using "Cache-Control: no-store" and either "Pragma: no-cache" or "Cache-Control: no-cache" response directives in
your SSL page headers.
Cache-Control: private - This directive instructs proxies that the page contains private information, and therefore should not be cached by a
shared cache. However, it does not instruct browsers to refrain from caching the pages.
Cache-Control: no-cache - This directive also instructs proxies that the page contains private information, and therefore should not be cached. It
also instructs the browser to revalidate with the server to check if a new version is available. This means that the browser may store sensitive
pages or information to be used in the revalidation. Certain browsers do not necessarily follow the RFC and may treat no-cache as no-store.
Cache-Control: no-store - This is the most secure directive. It instructs both the proxy and the browser not to cache the page or store it in its
cache folders.
Pragma: no-cache - This directive is required for older browsers, that do not support the Cache-Control header.

CWE:
525

10/05/2024 162

http://cwe.mitre.org/data/definitions/200.html
http://tools.ietf.org/html/rfc7231#section-4.3.1
http://tools.ietf.org/html/rfc7231#section-4.3.3
http://cwe.mitre.org/data/definitions/525.html

TOC

TOC

Credit Card Number Pattern Found (Visa)

Cause:
Insecure web application programming or configuration

Risk:
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or sensitive file
locations
AppScan detected a response containing a complete Visa credit card number.
For reasons of security and privacy, credit card numbers should not appear in web pages.

Affected Products:
This issue may affect different types of products.

Fix Recommendation:

General

Refrain from including credit card numbers in your website.

CWE:
200

Encryption Not Enforced

Cause:
The application does not use a secure channel, such as TLS/SSL, to exchange sensitive information.
An attacker with access to the network traffic can eavesdrop on packets over the connection. This attack is not technically difficult, but does
require physical access to some portion of the network over which the sensitive data travels.

Risk:
Any information sent to the server as clear text may be stolen over the network and used later for identity theft or user impersonation.
It may be possible to intercept sensitive data such as user login information (usernames and passwords), credit card numbers, social security
numbers etc. that are sent unencrypted.
It may be possible to perform man in the middle (MitM) attacks, which would give an attacker full control of the communication, including
changing content, stealing data, or impersonating the user to the server.

Fix Recommendation:

General

You should always transmit all data over a TLS/SSL connection only. This includes all external communications, including browsers, backend
connections such as databases, third party APIs, and other services.
In addition, several privacy regulations state that sensitive information such as user credentials will always be sent encrypted to the web site.
Always enforce the use of an encrypted connection (e.g. TLS/SSL), and do not allow any access to sensitive information using unencrypted
HTTP.
Use TLS 1.2 or TLS 1.3 and use strong cryptographic hashing algorithms and cipher suites.

10/05/2024 163

http://cwe.mitre.org/data/definitions/200.html

TOC

CWE:
319

External References:
OWASP - TLS Cipher String Cheat Sheet
OWASP - Transport Layer Protection Cheat Sheet

Missing "Content-Security-Policy" header

Cause:
Insecure web application programming or configuration

Risk:
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or sensitive file
locations
It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social security
number etc.
The absence or improper values of CSP can cause the web application being vulnerable to XSS, clickjacking, etc.
The "Content-Security-Policy" header is designed to modify the way browsers render pages, and thus to protect from various cross-site
injections, including Cross-Site Scripting. It is important to set the header value correctly, in a way that will not prevent proper operation of the
web site. For example, if the header is set to prevent execution of inline JavaScript, the web site must not use inline JavaScript in its pages.
To protect against Cross-Site Scripting, Cross-Frame Scripting and clickjacking, it is important to set the following policies with proper values:
Both of 'default-src' and 'frame-ancestors' policies, *OR* all of 'script-src', 'object-src' and 'frame-ancestors’ policies.
For 'default-src', 'script-src' and 'object-src', insecure values such as '*', 'data:', 'unsafe-inline' or 'unsafe-eval' should be avoided.
For 'frame-ancestors', insecure values such as '*' or 'data:' should be avoided.
Additionally for 'script-src', and 'default-src' (fallback directive for 'script-src') 'self' is considered insecure and should be avoided.
Please refer the following links for more information.
Please note that “Content-Security-Policy” includes four different tests. A general test that verifies if the "Content-Security-Policy" header is
being used and three additional tests that check if "Frame-Ancestors", "Object-Src" and "Script-Src" were configured correctly.

Affected Products:
This issue may affect different types of products

Fix Recommendation:

General

Configure your server to send the "Content-Security-Policy" header.
It is recommended to configure Content-Security-Policy header with secure values for its directives as below:
For 'default-src', and 'script-src' secure values such as 'none', or https://any.example.com.
For 'frame-ancestors', and 'object-src' secure values such as 'self', 'none' or https://any.example.com are expected.
"unsafe-inline" and "unsafe-eval" must not be used in any circumstance. Using nonce / hash would be only considered for short-term
workaround.
For Apache, see:
http://httpd.apache.org/docs/2.2/mod/mod_headers.html
For IIS, see:
https://technet.microsoft.com/pl-pl/library/cc753133%28v=ws.10%29.aspx
For nginx, see:
http://nginx.org/en/docs/http/ngx_http_headers_module.html

CWE:
1032

10/05/2024 164

http://cwe.mitre.org/data/definitions/319.html
https://cheatsheetseries.owasp.org/cheatsheets/TLS_Cipher_String_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Protection_Cheat_Sheet.html
http://cwe.mitre.org/data/definitions/1032.html

TOC

TOC

External References:
List of some secure Headers
An Introduction to Content Security Policy
MDN web docs - Content-Security-Policy

Missing HttpOnly Attribute in Session Cookie

Cause:
The web application sets session cookies without the HttpOnly attribute

Risk:
It may be possible to steal or manipulate customer session and cookies, which might be used to impersonate a legitimate user, allowing the
hacker to view or alter user records, and to perform transactions as that user
During the application test, it was detected that the tested web application set a session cookie without the "HttpOnly" attribute. Since this
session cookie does not contain the "HttpOnly" attribute, it might be accessed by a malicous script injected to the site, and its value can be
stolen. Any information stored in session tokens may be stolen and used later for identity theft or user impersonation.

Affected Products:
This issue may affect different types of products

Fix Recommendation:

General

Basically the only required attribute for the cookie is the "name" field.
Common optional attributes are: "comment", "domain", "path", etc.
The "HttpOnly" attribute must be set accordingly in order to prevent session cookies from being accessed by scripts.

CWE:
653

Missing or insecure "X-Content-Type-Options" header

Cause:
Insecure web application programming or configuration

Risk:
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or sensitive file
locations
It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social security
number etc.
The "X-Content-Type-Options" header (with "nosniff" value) prevents IE and Chrome from ignoring the content-type of a response.
This action may prevent untrusted content (e.g. user uploaded content) from being executed on the user browser (after a malicious naming,
for example).

10/05/2024 165

https://owasp.org/www-project-secure-headers/
http://www.html5rocks.com/en/tutorials/security/content-security-policy/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
http://cwe.mitre.org/data/definitions/653.html

TOC

Affected Products:
This issue may affect different types of products

Fix Recommendation:

General

Configure your server to send the "X-Content-Type-Options" header with value "nosniff" on all outgoing requests.
For Apache, see:
http://httpd.apache.org/docs/2.2/mod/mod_headers.html
For IIS, see:
https://technet.microsoft.com/pl-pl/library/cc753133%28v=ws.10%29.aspx
For nginx, see:
http://nginx.org/en/docs/http/ngx_http_headers_module.html

CWE:
200

External References:
List of useful HTTP headers
Reducing MIME type security risks

Missing or insecure Cross-Frame Scripting Defence

Cause:
Insecure web application programming or configuration

Risk:
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or sensitive file
locations
It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social security
number etc.
Cross-Frame Scripting is an attack technique where an attacker loads a vulnerable application in an iFrame on his malicious site.
The attacker can then launch a Clickjacking attack, which may lead to Phishing, Cross-Site Request Forgery, sensitive information leakage,
and more.
For best protection, it is advised to set the header value to DENY or SAMEORIGIN.
Sample Exploit:
Within a malicious site, it is possible to embed the vulnerable page:
<frame src="http://vulnerable.com/login.html">

Affected Products:
This issue may affect different types of products.

Fix Recommendation:

General

Use the X-Frame-Options to prevent (or limit) pages from being embedded in iFrames. For older browser, include a "frame-breaker" script in
each page that should not be framed.

10/05/2024 166

http://httpd.apache.org/docs/2.2/mod/mod_headers.html
https://technet.microsoft.com/pl-pl/library/cc753133(v=ws.10).aspx
http://nginx.org/en/docs/http/ngx_http_headers_module.html
http://cwe.mitre.org/data/definitions/200.html
https://www.owasp.org/index.php/List_of_useful_HTTP_headers
https://msdn.microsoft.com/en-us/library/gg622941(v=vs.85).aspx

TOC

TOC

CWE:
1021

External References:
Cross-Frame Scripting
Clickjacking

Missing or insecure HTTP Strict-Transport-Security Header

Cause:
Insecure web application programming or configuration

Risk:
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or sensitive file
locations
It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social security
number etc.
HTTP Strict Transport Security (HSTS) is a mechanism which protects secure (HTTPS) websites from being downgraded to non-secure
HTTP. This mechanism enables web servers to instruct their clients (web browsers or other user agents) to use secure HTTPS connections
when interacting with the server, and never use the insecure HTTP protocol.
It is important to set the 'max-age' to a high enough value to prevent falling back to an insecure connection prematurely.
The HTTP Strict Transport Security policy is communicated by the server to its clients using a response header named "Strict-Transport-
Security". The value of this header is a period of time during which the client should access the server in HTTPS only. Other header attributes
include "includeSubDomains" and "preload".

Affected Products:
This issue may affect different types of products.

Fix Recommendation:

General

Implement the The HTTP Strict Transport Security policy by adding the "Strict-Transport-Security" response header to the web application
responses.
For more information please see
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html

CWE:
200

External References:
OWASP "HTTP Strict Transport Security"
HSTS Spec

Query Parameter in SSL Request

10/05/2024 167

http://cwe.mitre.org/data/definitions/1021.html
https://owasp.org/www-community/attacks/Cross_Frame_Scripting
https://owasp.org/www-community/attacks/Clickjacking
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
http://cwe.mitre.org/data/definitions/200.html
https://cheatsheetseries.owasp.org/cheatsheets/HTTP_Strict_Transport_Security_Cheat_Sheet.html
http://tools.ietf.org/html/rfc6797

TOC

Cause:
Query parameters were passed over SSL, and may contain sensitive information

Risk:
It may be possible to steal sensitive data such as credit card numbers, social security numbers etc. that are sent unencrypted
During the application test, it was detected that a request, which was sent over SSL, contained parameters that were transmitted in the Query
part of an HTTP request.
When sending requests, the browser's history can be used to reveal the URLs, which contain the query parameter names and values.
Due to the sensitivity of encrypted requests, it is suggested to use HTTP POST (without parameters in the URL string) when possible, in order
to avoid the disclosure of URLs and parameter values to others.

Affected Products:
This issue may affect different types of products

Fix Recommendation:

General

Make sure that sensitive information such as:
- Username
- Password
- Social Security number
- Credit Card number
- Driver's License number
- e-mail address
- Phone number
- Zip code
is always sent in the body part of an HTTP POST request.

CWE:
598

External References:
Financial Privacy: The Gramm-Leach Bliley Act
Health Insurance Portability and Accountability Act (HIPAA)
Sarbanes-Oxley Act
California SB1386

Unnecessary Http Response Headers found in the Application

Cause:
Insecure web application programming or configuration

10/05/2024 168

http://cwe.mitre.org/data/definitions/598.html
http://business.ftc.gov/privacy-and-security/gramm-leach-bliley-act/
http://www.hhs.gov/ocr/hipaa/
http://www.sec.gov/spotlight/sarbanes-oxley.htm
http://www.leginfo.ca.gov/pub/01-02/bill/sen/sb_1351-1400/sb_1386_bill_20020926_chaptered.html

TOC

Risk:
It is possible to gather sensitive information about the web server type, version, OS and more.
AppScan detected a Http response header that is unnecessary.
For reasons of security and privacy, The Http response headers like "Server", "X-Powered-By", "X-AspNetMvc-Version" and "X-AspNet-
Version" should not appear in web pages.
The "Server" header is a header that is added usually by default whenever a response is sent to the client by the server.
The "X-Powered-By" header is a header that might be added by default whenever a response is sent to the client by the server.
These added header(s) may reveal sensitive information about the internal server software version and type, thus enabling attackers to
fingerprint it and attack it with targeted exploits. Moreover, when a new exploit becomes known to the public, the server will most likely get
attacked with it.

Affected Products:
This issue may affect different types of products.

Fix Recommendation:

General

Configure your server to remove the default "Server" header from being sent to all outgoing requests.
For IIS, see:
https://techcommunity.microsoft.com/t5/iis-support-blog/remove-unwanted-http-response-headers/ba-p/369710
For nginx, see:
https://www.getpagespeed.com/server-setup/nginx/how-to-remove-the-server-header-in-nginx
For Weblogic, see:
https://docs.oracle.com/cd/E13222_01/wls/docs81/adminguide/web_server.html
For Apache, see:
https://techglimpse.com/set-modify-response-headers-http-tip/

CWE:
200

External References:
Fingerprinting
Preventing Information Leakage

Application Error

Cause:
Proper bounds checking were not performed on incoming parameter values
No validation was done in order to make sure that user input matches the data type expected

10/05/2024 169

http://cwe.mitre.org/data/definitions/200.html
http://projects.webappsec.org/w/page/13246925/Fingerprinting
https://www.hacksplaining.com/prevention/information-leakage

Risk:
It is possible to gather sensitive debugging information
If an attacker probes the application by forging a request that contains parameters or parameter values other than the ones expected by the
application (examples are listed below), the application may enter an undefined state that makes it vulnerable to attack. The attacker can gain
useful information from the application's response to this request, which information may be exploited to locate application weaknesses.
For example, if the parameter field should be an apostrophe-quoted string (e.g. in an ASP script or SQL query), the injected apostrophe
symbol will prematurely terminate the string stream, thus changing the normal flow/syntax of the script.
Another cause of vital information being revealed in error messages, is when the scripting engine, web server, or database are misconfigured.
Here are some different variants:
[1] Remove parameter
[2] Remove parameter value
[3] Set parameter value to null
[4] Set parameter value to a numeric overflow (+/- 99999999)
[5] Set parameter value to hazardous characters, such as ' " \' \") ;
[6] Append some string to a numeric parameter value
[7] Append "." (dot) or "[]" (angle brackets) to the parameter name

Affected Products:
This issue may affect different types of products.

10/05/2024 170

Fix Recommendation:

General

[1] Check incoming requests for the presence of all expected parameters and values. When a parameter is missing, issue a proper error
message or use default values.
[2] The application should verify that its input consists of valid characters (after decoding). For example, an input value containing the null byte
(encoded as %00), apostrophe, quotes, etc. should be rejected.
[3] Enforce values in their expected ranges and types. If your application expects a certain parameter to have a value from a certain set, then the
application should ensure that the value it receives indeed belongs to the set. For example, if your application expects a value in the range
10..99, then it should make sure that the value is indeed numeric, and that its value is in 10..99.
[4] Verify that the data belongs to the set offered to the client.
[5] Do not output debugging error messages and exceptions in a production environment.
In order to disable debugging in ASP.NET, edit your web.config file to contain the following:
<compilation
debug="false"
/>
For more information, see "HOW TO: Disable Debugging for ASP.NET Applications" in:
http://support.microsoft.com/default.aspx?scid=kb;en-us;815157
You can add input validation to Web Forms pages by using validation controls. Validation controls provide an easy-to-use mechanism for all
common types of standard validation (for example, testing for valid dates or values within a range), plus ways to provide custom-written
validation. In addition, validation controls allow you to completely customize how error information is displayed to the user. Validation controls
can be used with any controls that are processed in a Web Forms page's class file, including both HTML and Web server controls.
To make sure that all the required parameters exist in a request, use the "RequiredFieldValidator" validation control. This control ensures that
the user does not skip an entry in the web form.
To make sure user input contains only valid values, you can use one of the following validation controls:
[1] "RangeValidator": checks that a user's entry (value) is between specified lower and upper boundaries. You can check ranges within pairs of
numbers, alphabetic characters, and dates.
[2] "RegularExpressionValidator": checks that the entry matches a pattern defined by a regular expression. This type of validation allows you to
check for predictable sequences of characters, such as those in social security numbers, e-mail addresses, telephone numbers, postal codes,
and so on.
Important note: validation controls do not block user input or change the flow of page processing; they only set an error state, and produce error
messages. It is the programmer's responsibility to test the state of the controls in the code before performing further application-specific actions.
There are two ways to check for user input validity:
1. Test for a general error state:
In your code, test the page's IsValid property. This property rolls up the values of the IsValid properties of all the validation controls on the page
(using a logical AND). If one of the validation controls is set to invalid, the page's property will return false.
2. Test for the error state of individual controls:
Loop through the page's Validators collection, which contains references to all the validation controls. You can then examine the IsValid property
of each validation control.
** Input Data Validation:
While data validations may be provided as a user convenience on the client-tier, data validation must be performed on the server-tier using
Servlets. Client-side validations are inherently insecure because they can be easily bypassed, e.g. by disabling Javascript.
A good design usually requires the web application framework to provide server-side utility routines to validate the following:
[1] Required field
[2] Field data type (all HTTP request parameters are Strings by default)
[3] Field length
[4] Field range
[5] Field options
[6] Field pattern
[7] Cookie values
[8] HTTP Response
A good practice is to implement the above routine as static methods in a "Validator" utility class. The following sections describe an example
validator class.
[1] Required field
Always check that the field is not null and its length is greater than zero, excluding leading and trailing white spaces.
Example of how to validate required fields:
// Java example to validate required fields public Class Validator { ... public static boolean validateRequired(String value) { boolean isFieldValid =
false; if (value != null && value.trim().length() > 0) { isFieldValid = true; } return isFieldValid; } ... } ... String fieldValue =
request.getParameter("fieldName"); if (Validator.validateRequired(fieldValue)) { // fieldValue is valid, continue processing request ... }
[2] Field data type
In web applications, input parameters are poorly typed. For example, all HTTP request parameters or cookie values are of type String. The
developer is responsible for verifying the input is of the correct data type. Use the Java primitive wrapper classes to check if the field value can
be safely converted to the desired primitive data type.
Example of how to validate a numeric field (type int):

10/05/2024 171

http://support.microsoft.com/default.aspx?scid=kb;en-us;815157

// Java example to validate that a field is an int number public Class Validator { ... public static boolean validateInt(String value) { boolean
isFieldValid = false; try { Integer.parseInt(value); isFieldValid = true; } catch (Exception e) { isFieldValid = false; } return isFieldValid; } ... } ... //
check if the HTTP request parameter is of type int String fieldValue = request.getParameter("fieldName"); if (Validator.validateInt(fieldValue)) { //
fieldValue is valid, continue processing request ... }
A good practice is to convert all HTTP request parameters to their respective data types. For example, store the "integerValue" of a request
parameter in a request attribute and use it as shown in the following example:
// Example to convert the HTTP request parameter to a primitive wrapper data type // and store this value in a request attribute for further
processing String fieldValue = request.getParameter("fieldName"); if (Validator.validateInt(fieldValue)) { // convert fieldValue to an Integer Integer
integerValue = Integer.getInteger(fieldValue); // store integerValue in a request attribute request.setAttribute("fieldName", integerValue); } ... //
Use the request attribute for further processing Integer integerValue = (Integer)request.getAttribute("fieldName"); ...
The primary Java data types that the application should handle:
- Byte
- Short
- Integer
- Long
- Float
- Double
- Date
[3] Field length
Always ensure that the input parameter (whether HTTP request parameter or cookie value) is bounded by a minimum length and/or a maximum
length.
Example to validate that the length of the userName field is between 8 and 20 characters:
// Example to validate the field length public Class Validator { ... public static boolean validateLength(String value, int minLength, int maxLength)
{ String validatedValue = value; if (!validateRequired(value)) { validatedValue = ""; } return (validatedValue.length() >= minLength &&
validatedValue.length() <= maxLength); } ... } ... String userName = request.getParameter("userName"); if
(Validator.validateRequired(userName)) { if (Validator.validateLength(userName, 8, 20)) { // userName is valid, continue further processing ... } }
[4] Field range
Always ensure that the input parameter is within a range as defined by the functional requirements.
Example to validate that the input numberOfChoices is between 10 and 20:
// Example to validate the field range public Class Validator { ... public static boolean validateRange(int value, int min, int max) { return (value >=
min && value <= max); } ... } ... String fieldValue = request.getParameter("numberOfChoices"); if (Validator.validateRequired(fieldValue)) { if
(Validator.validateInt(fieldValue)) { int numberOfChoices = Integer.parseInt(fieldValue); if (Validator.validateRange(numberOfChoices, 10, 20)) {
// numberOfChoices is valid, continue processing request ... } } }
[5] Field options
Often, the web application presents the user with a set of options to choose from, e.g. using the SELECT HTML tag, but fails to perform server-
side validation to ensure that the selected value is one of the allowed options. Remember that a malicious user can easily modify any option
value. Always validate the selected user value against the allowed options as defined by the functional requirements.
Example to validate the user selection against a list of allowed options:
// Example to validate user selection against a list of options public Class Validator { ... public static boolean validateOption(Object[] options,
Object value) { boolean isValidValue = false; try { List list = Arrays.asList(options); if (list != null) { isValidValue = list.contains(value); } } catch
(Exception e) { } return isValidValue; } ... } ... // Allowed options String[] options = {"option1", "option2", "option3"); // Verify that the user selection
is one of the allowed options String userSelection = request.getParameter("userSelection"); if (Validator.validateOption(options, userSelection)) {
// valid user selection, continue processing request ... }
[6] Field pattern
Always check that the user input matches a pattern as defined by the functionality requirements. For example, if the userName field should only
allow alpha-numeric characters, case insensitive, then use the following regular expression:
^[a-zA-Z0-9]*$
Java 1.3 or earlier versions do not include any regular expression packages. Apache Regular Expression Package (see Resources below) is
recommended for use with Java 1.3 to resolve this lack of support.
Example to perform regular expression validation:
// Example to validate that a given value matches a specified pattern // using the Apache regular expression package import
org.apache.regexp.RE; import org.apache.regexp.RESyntaxException; public Class Validator { ... public static boolean matchPattern(String
value, String expression) { boolean match = false; if (validateRequired(expression)) { RE r = new RE(expression); match = r.match(value); }
return match; } ... } ... // Verify that the userName request parameter is alpha-numeric String userName = request.getParameter("userName"); if
(Validator.matchPattern(userName, "^[a-zA-Z0-9]*$")) { // userName is valid, continue processing request ... }
Java 1.4 introduced a new regular expression package (java.util.regex). Here is a modified version of Validator.matchPattern using the new Java
1.4 regular expression package:
// Example to validate that a given value matches a specified pattern // using the Java 1.4 regular expression package import
java.util.regex.Pattern; import java.util.regexe.Matcher; public Class Validator { ... public static boolean matchPattern(String value, String
expression) { boolean match = false; if (validateRequired(expression)) { match = Pattern.matches(expression, value); } return match; } ... }
[7] Cookie value
Use the javax.servlet.http.Cookie object to validate the cookie value. The same validation rules (described above) apply to cookie values
depending on the application requirements, e.g. validate a required value, validate length, etc.
Example to validate a required cookie value:
// Example to validate a required cookie value // First retrieve all available cookies submitted in the HTTP request Cookie[] cookies =
request.getCookies(); if (cookies != null) { // find the "user" cookie for (int i=0; i<cookies.length; ++i) { if (cookies[i].getName().equals("user")) { //

10/05/2024 172

validate the cookie value if (Validator.validateRequired(cookies[i].getValue()) { // valid cookie value, continue processing request ... } } } }
[8] HTTP Response
[8-1] Filter user input
To guard the application against cross-site scripting, sanitize HTML by converting sensitive characters to their corresponding character entities.
These are the HTML sensitive characters:
< > " ' % ;) (& +
Example to filter a specified string by converting sensitive characters to their corresponding character entities:
// Example to filter sensitive data to prevent cross-site scripting public Class Validator { ... public static String filter(String value) { if (value == null)
{ return null; } StringBuffer result = new StringBuffer(value.length()); for (int i=0; i<value.length(); ++i) { switch (value.charAt(i)) { case '<':
result.append("<"); break; case '>': result.append(">"); break; case '"': result.append("""); break; case '\'': result.append("'"); break; case '%':
result.append("%"); break; case ';': result.append(";"); break; case '(': result.append("("); break; case ')': result.append(")"); break; case '&':
result.append("&"); break; case '+': result.append("+"); break; default: result.append(value.charAt(i)); break; } return result; } ... } ... // Filter the
HTTP response using Validator.filter PrintWriter out = response.getWriter(); // set output response out.write(Validator.filter(response));
out.close();
The Java Servlet API 2.3 introduced Filters, which supports the interception and transformation of HTTP requests or responses.
Example of using a Servlet Filter to sanitize the response using Validator.filter:
// Example to filter all sensitive characters in the HTTP response using a Java Filter. // This example is for illustration purposes since it will filter
all content in the response, including HTML tags! public class SensitiveCharsFilter implements Filter { ... public void doFilter(ServletRequest
request, ServletResponse response, FilterChain chain) throws IOException, ServletException { PrintWriter out = response.getWriter();
ResponseWrapper wrapper = new ResponseWrapper((HttpServletResponse)response); chain.doFilter(request, wrapper); CharArrayWriter caw
= new CharArrayWriter(); caw.write(Validator.filter(wrapper.toString())); response.setContentType("text/html");
response.setContentLength(caw.toString().length()); out.write(caw.toString()); out.close(); } ... public class CharResponseWrapper extends
HttpServletResponseWrapper { private CharArrayWriter output; public String toString() { return output.toString(); } public
CharResponseWrapper(HttpServletResponse response){ super(response); output = new CharArrayWriter(); } public PrintWriter getWriter(){
return new PrintWriter(output); } } } }
[8-2] Secure the cookie
When storing sensitive data in a cookie, make sure to set the secure flag of the cookie in the HTTP response, using Cookie.setSecure(boolean
flag) to instruct the browser to send the cookie using a secure protocol, such as HTTPS or SSL.
Example to secure the "user" cookie:
// Example to secure a cookie, i.e. instruct the browser to // send the cookie using a secure protocol Cookie cookie = new Cookie("user",
"sensitive"); cookie.setSecure(true); response.addCookie(cookie);
RECOMMENDED JAVA TOOLS
The two main Java frameworks for server-side validation are:
[1] Jakarta Commons Validator (integrated with Struts 1.1)
The Jakarta Commons Validator is a powerful framework that implements all the above data validation requirements. These rules are configured
in an XML file that defines input validation rules for form fields. Struts supports output filtering of dangerous characters in the [8] HTTP
Response by default on all data written using the Struts 'bean:write' tag. This filtering may be disabled by setting the 'filter=false' flag.
Struts defines the following basic input validators, but custom validators may also be defined:
required: succeeds if the field contains any characters other than white space.
mask: succeeds if the value matches the regular expression given by the mask attribute.
range: succeeds if the value is within the values given by the min and max attributes ((value >= min) & (value <= max)).
maxLength: succeeds if the field is length is less than or equal to the max attribute.
minLength: succeeds if the field is length is greater than or equal to the min attribute.
byte, short, integer, long, float, double: succeeds if the value can be converted to the corresponding primitive.
date: succeeds if the value represents a valid date. A date pattern may be provided.
creditCard: succeeds if the value could be a valid credit card number.
e-mail: succeeds if the value could be a valid e-mail address.
Example to validate the userName field of a loginForm using Struts Validator:
<form-validation> <global> ... <validator name="required" classname="org.apache.struts.validator.FieldChecks" method="validateRequired"
msg="errors.required"> </validator> <validator name="mask" classname="org.apache.struts.validator.FieldChecks" method="validateMask"
msg="errors.invalid"> </validator> ... </global> <formset> <form name="loginForm"> <!-- userName is required and is alpha-numeric case
insensitive --> <field property="userName" depends="required,mask"> <!-- message resource key to display if validation fails --> <msg
name="mask" key="login.userName.maskmsg"/> <arg0 key="login.userName.displayname"/> <var> <var-name>mask</var-name> <var-
value>^[a-zA-Z0-9]*$</var-value> </var> </field> ... </form> ... </formset> </form-validation>
[2] JavaServer Faces Technology
JavaServer Faces Technology is a set of Java APIs (JSR 127) to represent UI components, manage their state, handle events and input
validation.
The JavaServer Faces API implements the following basic validators, but custom validators may be defined:
validate_doublerange: registers a DoubleRangeValidator on a component
validate_length: registers a LengthValidator on a component
validate_longrange: registers a LongRangeValidator on a component
validate_required: registers a RequiredValidator on a component
validate_stringrange: registers a StringRangeValidator on a component
validator: registers a custom Validator on a component
The JavaServer Faces API defines the following UIInput and UIOutput Renderers (Tags):
input_date: accepts a java.util.Date formatted with a java.text.Date instance

10/05/2024 173

output_date: displays a java.util.Date formatted with a java.text.Date instance
input_datetime: accepts a java.util.Date formatted with a java.text.DateTime instance
output_datetime: displays a java.util.Date formatted with a java.text.DateTime instance
input_number: displays a numeric data type (java.lang.Number or primitive), formatted with a java.text.NumberFormat
output_number: displays a numeric data type (java.lang.Number or primitive), formatted with a java.text.NumberFormat
input_text: accepts a text string of one line.
output_text: displays a text string of one line.
input_time: accepts a java.util.Date, formatted with a java.text.DateFormat time instance
output_time: displays a java.util.Date, formatted with a java.text.DateFormat time instance
input_hidden: allows a page author to include a hidden variable in a page
input_secret: accepts one line of text with no spaces and displays it as a set of asterisks as it is typed
input_textarea: accepts multiple lines of text
output_errors: displays error messages for an entire page or error messages associated with a specified client identifier
output_label: displays a nested component as a label for a specified input field
output_message: displays a localized message
Example to validate the userName field of a loginForm using JavaServer Faces:
<%@ taglib uri="https://docs.oracle.com/javaee/6/tutorial/doc/glxce.html" prefix="h" %> <%@ taglib uri="http://mrbool.com/how-to-create-a-
login-validation-with-jsf-java-server-faces/27046" prefix="f" %> ... <jsp:useBean id="UserBean" class="myApplication.UserBean"
scope="session" /> <f:use_faces> <h:form formName="loginForm" > <h:input_text id="userName" size="20"
modelReference="UserBean.userName"> <f:validate_required/> <f:validate_length minimum="8" maximum="20"/> </h:input_text> <!-- display
errors if present --> <h:output_errors id="loginErrors" clientId="userName"/> <h:command_button id="submit" label="Submit"
commandName="submit" /><p> </h:form> </f:use_faces>
REFERENCES
Java API 1.3 -
https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
Java API 1.4 -
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
Java Servlet API 2.3 -
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
Java Regular Expression Package -
http://jakarta.apache.org/regexp/
Jakarta Validator -
http://jakarta.apache.org/commons/validator/
JavaServer Faces Technology -
http://www.javaserverfaces.org/
** Error Handling:
Many J2EE web application architectures follow the Model View Controller (MVC) pattern. In this pattern a Servlet acts as a Controller. A Servlet
delegates the application processing to a JavaBean such as an EJB Session Bean (the Model). The Servlet then forwards the request to a JSP
(View) to render the processing results. Servlets should check all input, output, return codes, error codes and known exceptions to ensure that
the expected processing actually occurred.
While data validation protects applications against malicious data tampering, a sound error handling strategy is necessary to prevent the
application from inadvertently disclosing internal error messages such as exception stack traces. A good error handling strategy addresses the
following items:
[1] Defining Errors
[2] Reporting Errors
[3] Rendering Errors
[4] Error Mapping
[1] Defining Errors
Hard-coded error messages in the application layer (e.g. Servlets) should be avoided. Instead, the application should use error keys that map to
known application failures. A good practice is to define error keys that map to validation rules for HTML form fields or other bean properties. For
example, if the "user_name" field is required, is alphanumeric, and must be unique in the database, then the following error keys should be
defined:
(a) ERROR_USERNAME_REQUIRED: this error key is used to display a message notifying the user that the "user_name" field is required;
(b) ERROR_USERNAME_ALPHANUMERIC: this error key is used to display a message notifying the user that the "user_name" field should be
alphanumeric;
(c) ERROR_USERNAME_DUPLICATE: this error key is used to display a message notifying the user that the "user_name" value is a duplicate
in the database;
(d) ERROR_USERNAME_INVALID: this error key is used to display a generic message notifying the user that the "user_name" value is invalid;
A good practice is to define the following framework Java classes which are used to store and report application errors:
- ErrorKeys: defines all error keys
// Example: ErrorKeys defining the following error keys: // - ERROR_USERNAME_REQUIRED // - ERROR_USERNAME_ALPHANUMERIC // -
ERROR_USERNAME_DUPLICATE // - ERROR_USERNAME_INVALID // ... public Class ErrorKeys { public static final String
ERROR_USERNAME_REQUIRED = "error.username.required"; public static final String ERROR_USERNAME_ALPHANUMERIC =
"error.username.alphanumeric"; public static final String ERROR_USERNAME_DUPLICATE = "error.username.duplicate"; public static final
String ERROR_USERNAME_INVALID = "error.username.invalid"; ... }
- Error: encapsulates an individual error

10/05/2024 174

https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
http://jakarta.apache.org/regexp/
http://jakarta.apache.org/commons/validator/
http://www.javaserverfaces.org/

// Example: Error encapsulates an error key. // Error is serializable to support code executing in multiple JVMs. public Class Error implements
Serializable { // Constructor given a specified error key public Error(String key) { this(key, null); } // Constructor given a specified error key and
array of placeholder objects public Error(String key, Object[] values) { this.key = key; this.values = values; } // Returns the error key public String
getKey() { return this.key; } // Returns the placeholder values public Object[] getValues() { return this.values; } private String key = null; private
Object[] values = null; }
- Errors: encapsulates a Collection of errors
// Example: Errors encapsulates the Error objects being reported to the presentation layer. // Errors are stored in a HashMap where the key is
the bean property name and value is an // ArrayList of Error objects. public Class Errors implements Serializable { // Adds an Error object to the
Collection of errors for the specified bean property. public void addError(String property, Error error) { ArrayList propertyErrors =
(ArrayList)errors.get(property); if (propertyErrors == null) { propertyErrors = new ArrayList(); errors.put(property, propertyErrors); }
propertyErrors.put(error); } // Returns true if there are any errors public boolean hasErrors() { return (errors.size > 0); } // Returns the Errors for
the specified property public ArrayList getErrors(String property) { return (ArrayList)errors.get(property); } private HashMap errors = new
HashMap(); }
Using the above framework classes, here is an example to process validation errors of the "user_name" field:
// Example to process validation errors of the "user_name" field. Errors errors = new Errors(); String userName =
request.getParameter("user_name"); // (a) Required validation rule if (!Validator.validateRequired(userName)) { errors.addError("user_name",
new Error(ErrorKeys.ERROR_USERNAME_REQUIRED)); } // (b) Alpha-numeric validation rule else if (!Validator.matchPattern(userName, "^[a-
zA-Z0-9]*$")) { errors.addError("user_name", new Error(ErrorKeys.ERROR_USERNAME_ALPHANUMERIC)); } else { // (c) Duplicate check
validation rule // We assume that there is an existing UserValidationEJB session bean that implements // a checkIfDuplicate() method to verify if
the user already exists in the database. try { ... if (UserValidationEJB.checkIfDuplicate(userName)) { errors.addError("user_name", new
Error(ErrorKeys.ERROR_USERNAME_DUPLICATE)); } } catch (RemoteException e) { // log the error logger.error("Could not validate user for
specified userName: " + userName); errors.addError("user_name", new Error(ErrorKeys.ERROR_USERNAME_DUPLICATE); } } // set the
errors object in a request attribute called "errors" request.setAttribute("errors", errors); ...
[2] Reporting Errors
There are two ways to report web-tier application errors:
(a) Servlet Error Mechanism
(b) JSP Error Mechanism
[2-a] Servlet Error Mechanism
A Servlet may report errors by:
- forwarding to the input JSP (having already stored the errors in a request attribute), OR
- calling response.sendError with an HTTP error code argument, OR
- throwing an exception
It is good practice to process all known application errors (as described in section [1]), store them in a request attribute, and forward to the input
JSP. The input JSP should display the error messages and prompt the user to re-enter the data. The following example illustrates how to
forward to an input JSP (userInput.jsp):
// Example to forward to the userInput.jsp following user validation errors RequestDispatcher rd =
getServletContext().getRequestDispatcher("/user/userInput.jsp"); if (rd != null) { rd.forward(request, response); }
If the Servlet cannot forward to a known JSP page, the second option is to report an error using the response.sendError method with
HttpServletResponse.SC_INTERNAL_SERVER_ERROR (status code 500) as argument. Refer to the javadoc of
javax.servlet.http.HttpServletResponse for more details on the various HTTP status codes.
Example to return a HTTP error:
// Example to return a HTTP error code RequestDispatcher rd = getServletContext().getRequestDispatcher("/user/userInput.jsp"); if (rd == null) {
// messages is a resource bundle with all message keys and values
response.sendError(HttpServletResponse.SC_INTERNAL_SERVER_ERROR,
messages.getMessage(ErrorKeys.ERROR_USERNAME_INVALID)); }
As a last resort, Servlets can throw an exception, which must be a subclass of one of the following classes:
- RuntimeException
- ServletException
- IOException
[2-b] JSP Error Mechanism
JSP pages provide a mechanism to handle runtime exceptions by defining an errorPage directive as shown in the following example:
<%@ page errorPage="/errors/userValidation.jsp" %>
Uncaught JSP exceptions are forwarded to the specified errorPage, and the original exception is set in a request parameter called
javax.servlet.jsp.jspException. The error page must include a isErrorPage directive as shown below:
<%@ page isErrorPage="true" %>
The isErrorPage directive causes the "exception" variable to be initialized to the exception object being thrown.
[3] Rendering Errors
The J2SE Internationalization APIs provide utility classes for externalizing application resources and formatting messages including:
(a) Resource Bundles
(b) Message Formatting
[3-a] Resource Bundles
Resource bundles support internationalization by separating localized data from the source code that uses it. Each resource bundle stores a
map of key/value pairs for a specific locale.
It is common to use or extend java.util.PropertyResourceBundle, which stores the content in an external properties file as shown in the following
example:
ErrorMessages.properties

10/05/2024 175

required user name error message error.username.required=User name field is
required # invalid user name format error.username.alphanumeric=User name must be alphanumeric # duplicate user name error message
error.username.duplicate=User name {0} already exists, please choose another one ...
Multiple resources can be defined to support different locales (hence the name resource bundle). For example, ErrorMessages_fr.properties can
be defined to support the French member of the bundle family. If the resource member of the requested locale does not exist, the default
member is used. In the above example, the default resource is ErrorMessages.properties. Depending on the user's locale, the application (JSP
or Servlet) retrieves content from the appropriate resource.
[3-b] Message Formatting
The J2SE standard class java.util.MessageFormat provides a generic way to create messages with replacement placeholders. A
MessageFormat object contains a pattern string with embedded format specifiers as shown below:
// Example to show how to format a message using placeholder parameters String pattern = "User name {0} already exists, please choose
another one"; String userName = request.getParameter("user_name"); Object[] args = new Object[1]; args[0] = userName; String message =
MessageFormat.format(pattern, args);
Here is a more comprehensive example to render error messages using ResourceBundle and MessageFormat:
// Example to render an error message from a localized ErrorMessages resource (properties file) // Utility class to retrieve locale-specific error
messages public Class ErrorMessageResource { // Returns the error message for the specified error key in the environment locale public String
getErrorMessage(String errorKey) { return getErrorMessage(errorKey, defaultLocale); } // Returns the error message for the specified error key
in the specified locale public String getErrorMessage(String errorKey, Locale locale) { return getErrorMessage(errorKey, null, locale); } // Returns
a formatted error message for the specified error key in the specified locale public String getErrorMessage(String errorKey, Object[] args, Locale
locale) { // Get localized ErrorMessageResource ResourceBundle errorMessageResource = ResourceBundle.getBundle("ErrorMessages",
locale); // Get localized error message String errorMessage = errorMessageResource.getString(errorKey); if (args != null) { // Format the
message using the specified placeholders args return MessageFormat.format(errorMessage, args); } else { return errorMessage; } } // default
environment locale private Locale defaultLocale = Locale.getDefaultLocale(); } ... // Get the user's locale Locale userLocale =
request.getLocale(); // Check if there were any validation errors Errors errors = (Errors)request.getAttribute("errors"); if (errors != null &&
errors.hasErrors()) { // iterate through errors and output error messages corresponding to the "user_name" property ArrayList userNameErrors =
errors.getErrors("user_name"); ListIterator iterator = userNameErrors.iterator(); while (iterator.hasNext()) { // Get the next error object Error error
= (Error)iterator.next(); String errorMessage = ErrorMessageResource.getErrorMessage(error.getKey(), userLocale); output.write(errorMessage
+ "\r\n"); } }
It is recommended to define a custom JSP tag, e.g. displayErrors, to iterate through and render error messages as shown in the above example.
[4] Error Mapping
Normally, the Servlet Container will return a default error page corresponding to either the response status code or the exception. A mapping
between the status code or the exception and a web resource may be specified using custom error pages. It is a good practice to develop static
error pages that do not disclose internal error states (by default, most Servlet containers will report internal error messages). This mapping is
configured in the Web Deployment Descriptor (web.xml) as specified in the following example:
<!-- Mapping of HTTP error codes and application exceptions to error pages --> <error-page> <exception-
type>UserValidationException</exception-type> <location>/errors/validationError.html</error-page> </error-page> <error-page> <error-
code>500</exception-type> <location>/errors/internalError.html</error-page> </error-page> <error-page> ... </error-page> ...
RECOMMENDED JAVA TOOLS
The two main Java frameworks for server-side validation are:
[1] Jakarta Commons Validator (integrated with Struts 1.1)
The Jakarta Commons Validator is a Java framework that defines the error handling mechanism as described above. Validation rules are
configured in an XML file that defines input validation rules for form fields and the corresponding validation error keys. Struts provides
internationalization support to build localized applications using resource bundles and message formatting.
Example to validate the userName field of a loginForm using Struts Validator:
<form-validation> <global> ... <validator name="required" classname="org.apache.struts.validator.FieldChecks" method="validateRequired"
msg="errors.required"> </validator> <validator name="mask" classname="org.apache.struts.validator.FieldChecks" method="validateMask"
msg="errors.invalid"> </validator> ... </global> <formset> <form name="loginForm"> <!-- userName is required and is alpha-numeric case
insensitive --> <field property="userName" depends="required,mask"> <!-- message resource key to display if validation fails --> <msg
name="mask" key="login.userName.maskmsg"/> <arg0 key="login.userName.displayname"/> <var> <var-name>mask</var-name> <var-
value>^[a-zA-Z0-9]*$</var-value> </var> </field> ... </form> ... </formset> </form-validation>
The Struts JSP tag library defines the "errors" tag that conditionally displays a set of accumulated error messages as shown in the following
example:
<%@ page language="java" %> <%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %> <%@ taglib uri="/WEB-INF/struts-bean.tld"
prefix="bean" %> <html:html> <head> <body> <html:form action="/logon.do"> <table border="0" width="100%"> <tr> <th align="right">
<html:errors property="username"/> <bean:message key="prompt.username"/> </th> <td align="left"> <html:text property="username"
size="16"/> </td> </tr> <tr> <td align="right"> <html:submit><bean:message key="button.submit"/></html:submit> </td> <td align="right">
<html:reset><bean:message key="button.reset"/></html:reset> </td> </tr> </table> </html:form> </body> </html:html>
[2] JavaServer Faces Technology
JavaServer Faces Technology is a set of Java APIs (JSR 127) to represent UI components, manage their state, handle events, validate input,
and support internationalization.
The JavaServer Faces API defines the "output_errors" UIOutput Renderer, which displays error messages for an entire page or error messages
associated with a specified client identifier.
Example to validate the userName field of a loginForm using JavaServer Faces:
<%@ taglib uri="https://docs.oracle.com/javaee/6/tutorial/doc/glxce.html" prefix="h" %> <%@ taglib uri="http://mrbool.com/how-to-create-a-
login-validation-with-jsf-java-server-faces/27046" prefix="f" %> ... <jsp:useBean id="UserBean" class="myApplication.UserBean"
scope="session" /> <f:use_faces> <h:form formName="loginForm" > <h:input_text id="userName" size="20"

10/05/2024 176

modelReference="UserBean.userName"> <f:validate_required/> <f:validate_length minimum="8" maximum="20"/> </h:input_text> <!-- display
errors if present --> <h:output_errors id="loginErrors" clientId="userName"/> <h:command_button id="submit" label="Submit"
commandName="submit" /><p> </h:form> </f:use_faces>
REFERENCES
Java API 1.3 -
https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
Java API 1.4 -
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
Java Servlet API 2.3 -
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
Java Regular Expression Package -
http://jakarta.apache.org/regexp/
Jakarta Validator -
http://jakarta.apache.org/commons/validator/
JavaServer Faces Technology -
http://www.javaserverfaces.org/
** Input Data Validation:
While data validations may be provided as a user convenience on the client-tier, data validation must always be performed on the server-tier.
Client-side validations are inherently insecure because they can be easily bypassed, e.g. by disabling Javascript.
A good design usually requires the web application framework to provide server-side utility routines to validate the following:
[1] Required field
[2] Field data type (all HTTP request parameters are Strings by default)
[3] Field length
[4] Field range
[5] Field options
[6] Field pattern
[7] Cookie values
[8] HTTP Response
A good practice is to implement a function or functions that validates each application parameter. The following sections describe some example
checking.
[1] Required field
Always check that the field is not null and its length is greater than zero, excluding leading and trailing white spaces.
Example of how to validate required fields:
// PHP example to validate required fields function validateRequired($input) { ... $pass = false; if (strlen(trim($input))>0){ $pass = true; } return
$pass; ... } ... if (validateRequired($fieldName)) { // fieldName is valid, continue processing request ... }
[2] Field data type
In web applications, input parameters are poorly typed. For example, all HTTP request parameters or cookie values are of type String. The
developer is responsible for verifying the input is of the correct data type.
[3] Field length
Always ensure that the input parameter (whether HTTP request parameter or cookie value) is bounded by a minimum length and/or a maximum
length.
[4] Field range
Always ensure that the input parameter is within a range as defined by the functional requirements.
[5] Field options
Often, the web application presents the user with a set of options to choose from, e.g. using the SELECT HTML tag, but fails to perform server-
side validation to ensure that the selected value is one of the allowed options. Remember that a malicious user can easily modify any option
value. Always validate the selected user value against the allowed options as defined by the functional requirements.
[6] Field pattern
Always check that user input matches a pattern as defined by the functionality requirements. For example, if the userName field should only
allow alpha-numeric characters, case insensitive, then use the following regular expression:
^[a-zA-Z0-9]+$
[7] Cookie value
The same validation rules (described above) apply to cookie values depending on the application requirements, e.g. validate a required value,
validate length, etc.
[8] HTTP Response
[8-1] Filter user input
To guard the application against cross-site scripting, the developer should sanitize HTML by converting sensitive characters to their
corresponding character entities. These are the HTML sensitive characters:
< > " ' % ;) (& +
PHP includes some automatic sanitization utility functions, such as htmlentities():
$input = htmlentities($input, ENT_QUOTES, 'UTF-8');
In addition, in order to avoid UTF-7 variants of Cross-site Scripting, you should explicitly define the Content-Type header of the response, for
example:
<?php header('Content-Type: text/html; charset=UTF-8'); ?>
[8-2] Secure the cookie
When storing sensitive data in a cookie and transporting it over SSL, make sure that you first set the secure flag of the cookie in the HTTP

10/05/2024 177

https://www.oracle.com/java/technologies/java-archive-13docs-downloads.html
https://www.oracle.com/java/technologies/java-archive-142docs-downloads.html
https://mvnrepository.com/artifact/javax.servlet/javax.servlet-api
http://jakarta.apache.org/regexp/
http://jakarta.apache.org/commons/validator/
http://www.javaserverfaces.org/

TOC

response. This will instruct the browser to only use that cookie over SSL connections.
You can use the following code example, for securing the cookie:
<$php $value = "some_value"; $time = time()+3600; $path = "/application/"; $domain = ".example.com"; $secure = 1; setcookie("CookieName",
$value, $time, $path, $domain, $secure, TRUE); ?>
In addition, we recommend that you use the HttpOnly flag. When the HttpOnly flag is set to TRUE the cookie will be made accessible only
through the HTTP protocol. This means that the cookie won't be accessible by scripting languages, such as JavaScript. This setting can
effectively help to reduce identity theft through XSS attacks (although it is not supported by all browsers).
The HttpOnly flag was Added in PHP 5.2.0.
REFERENCES
[1] Mitigating Cross-site Scripting With HTTP-only Cookies:
http://msdn2.microsoft.com/en-us/library/ms533046.aspx
[2] PHP Security Consortium:
http://phpsec.org/
[3] PHP & Web Application Security Blog (Chris Shiflett):
http://shiflett.org/

CWE:
550

External References:
An example for using apostrophe to hack a site can be found in "How I hacked PacketStorm (by Rain Forest Puppy), RFP's site"
"Web Application Disassembly with ODBC Error Messages" (By David Litchfield)
CERT Advisory (CA-1997-25): Sanitizing user-supplied data in CGI scripts

Email Address Pattern Found

Cause:
Insecure web application programming or configuration

Risk:
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or sensitive file
locations
Spambots crawl internet sites, set out to find e-mail addresses in order to build mailing lists for sending unsolicited e-mail (spam).
AppScan detected a response containing one or more e-mail addresses, which may be exploited to send spam mail
Furthermore, the e-mail addresses found may be private and thus should not be accessible to the general public.

Affected Products:
This issue may affect different types of products.

Fix Recommendation:

General

Remove any e-mail addresses from the website so that they won't be exploited by malicious users.

CWE:
359

External References:
Definition of Spambot (Wikipedia)

10/05/2024 178

http://msdn2.microsoft.com/en-us/library/ms533046.aspx
http://phpsec.org/
http://shiflett.org/
http://cwe.mitre.org/data/definitions/550.html
https://packetstormsecurity.com/files/10631/rfp2k01.txt.html
http://www.cgisecurity.com/lib/webappdis.doc
http://www.cert.org/advisories/CA-1997-25.html
http://cwe.mitre.org/data/definitions/359.html
http://en.wikipedia.org/wiki/Spambot

TOC

TOC

HTML Comments Sensitive Information Disclosure

Cause:
Many web application programmers use HTML comments to help debug the application when needed. While adding general comments is
very useful, some programmers tend to leave important data in client-side comments, such as filenames related to the web application, links
which were not meant to be browsed by users, old code fragments including passwords, etc.
Comments such as BUG, FIXME, and TODO may be an indication of missing security functionality and checking. Others indicate code
problems that you should fix, such as hard-coded variables, error handling, not using stored procedures, and performance issues. Comments
in HTML and JavaScript are usually easily viewable by end users.

Risk:
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or sensitive file
locations.
An attacker who finds these comments can map the application's structure and files, expose hidden parts of the site, and study the fragments
of code to reverse engineer the application, which may help develop further attacks against the site.

Fix Recommendation:

General

Remove client-side comments that could reveal internal information for development time. Consider processing files before deployment to
automatically remove all comments. This allows comments to be visible to internal developers but not to external users.
Do not leave any sensitive information, such as filenames, file paths, passwords, or SQL queries, in HTML or JavaScript comments.
Remove traces of previous (or future) site links in the production site comments.

CWE:
615

Missing "Referrer policy" Security Header

Cause:
Insecure web application programming or configuration

Risk:
It is possible to gather sensitive information about the web application such as usernames, passwords, machine name and/or sensitive file
locations
It is possible to persuade a naive user to supply sensitive information such as username, password, credit card number, social security
number etc.
The absence or improper values of Referrer Policy can cause URL leak itself, and even sensitive information contained in the URL will be
leaked to the cross-site.
This is a part of ruleset to check if Referrer Policy is present and if so to test its configuration. The "Referer Policy" header defines what data
is made available in the Referer header, and for navigation and iframes in the destination's (document.referrer). This header is designed to
modify the way browsers render pages, and thus to prevent cross-domain Referer leakage. It is important to set the header value correctly, in
a way that will not prevent proper operation of the web site.
Referer header is a request header that indicates the site which the traffic originated from. If there is no adequate prevention in place, the
URL itself, and even sensitive information contained in the URL will be leaked to the cross-site.
"no-referrer-when-downgrade" and "unsafe-url" are the policies which leaks the Full Url for the ThirdParty Sites. The remaining policies
are"no-referrer", "origin", "origin-when-cross-origin","same-origin", "strict-origin", "strict-origin-when-cross-origin.
Please refer the following links for more information.

10/05/2024 179

http://cwe.mitre.org/data/definitions/615.html

TOC

Affected Products:
This issue may affect different types of products

Fix Recommendation:

General

Configure your server to send the "Referrer Policy" header.
It is recommended to configure Referrer Policy header with secure values for its directives as below:
"strict-origin-when-cross-origin" offers more privacy. With this policy, only the origin is sent in the Referer header of cross-origin requests.
For Google Chrome, see:
https://developers.google.com/web/updates/2020/07/referrer-policy-new-chrome-default
For Firefox , see:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy.

CWE:
200

External References:
MDN web docs - Referrer-Policy

Possible Server Path Disclosure Pattern Found

Cause:
Latest patches or hotfixes for 3rd. party products were not installed

Risk:
It is possible to retrieve the absolute path of the web server installation, which might help an attacker to develop further attacks and to gain
information about the file system structure of the web application
AppScan detected a response containing a file's absolute path (e.g. c:\dir\file in Windows, or /dir/file in Unix).
An attacker may be able to exploit this information to access sensitive information on the directory structure of the server machine which
could be used for further attacks against the site.

Affected Products:
This issue may affect different types of products.

Fix Recommendation:

General

There are several mitigation techniques:
[1] In case the vulnerability is in the application itself, fix the server code so it doesn’t include file locations in any output.
[2] Otherwise, if the application is in a 3rd party product, download the relevant security patch depending on the 3rd party product you are using
on your web server or web application.

CWE:
200

10/05/2024 180

https://developers.google.com/web/updates/2020/07/referrer-policy-new-chrome-default
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy.
http://cwe.mitre.org/data/definitions/200.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
http://cwe.mitre.org/data/definitions/200.html

TOC

Application Data

Visited URLs 60

URL

https://demo.testfire.net/
https://demo.testfire.net/login.jsp
https://demo.testfire.net/doLogin
https://demo.testfire.net/bank/main.jsp
https://demo.testfire.net/search.jsp?query=1234
https://demo.testfire.net/index.jsp?content=inside_contact.htm
https://demo.testfire.net/feedback.jsp
https://demo.testfire.net/sendFeedback
https://demo.testfire.net/bank/showAccount?listAccounts=800003
https://demo.testfire.net/index.jsp?content=personal.htm
https://demo.testfire.net/index.jsp?content=inside.htm
https://demo.testfire.net/index.jsp?content=personal_deposit.htm
https://demo.testfire.net/index.jsp?content=personal_checking.htm
https://demo.testfire.net/index.jsp?content=personal_loans.htm
https://demo.testfire.net/index.jsp?content=personal_investments.htm
https://demo.testfire.net/index.jsp?content=personal_other.htm
https://demo.testfire.net/index.jsp?content=business_lending.htm
https://demo.testfire.net/index.jsp?content=business_cards.htm
https://demo.testfire.net/index.jsp?content=business_retirement.htm
https://demo.testfire.net/retirement.htm
https://demo.testfire.net/index.jsp?content=inside_about.htm
https://demo.testfire.net/index.jsp?content=inside_press.htm
https://demo.testfire.net/index.jsp?content=inside_careers.htm
https://demo.testfire.net/subscribe.jsp
https://demo.testfire.net/doSubscribe
https://demo.testfire.net/index.jsp?content=privacy.htm
https://demo.testfire.net/index.jsp?content=security.htm
https://demo.testfire.net/status_check.jsp
https://demo.testfire.net/util/serverStatusCheckService.jsp?HostName=AltoroMutual
https://demo.testfire.net/swagger/index.html
https://demo.testfire.net/swagger/swagger-ui-standalone-preset.js
https://demo.testfire.net/swagger/properties.json
https://demo.testfire.net/swagger/swagger-ui-bundle.js
https://demo.testfire.net/bank/transaction.jsp
https://demo.testfire.net/bank/showTransactions

10/05/2024 181

TOC

https://demo.testfire.net/bank/transfer.jsp
https://demo.testfire.net/bank/queryxpath.jsp
https://demo.testfire.net/bank/queryxpath.jsp?content=queryxpath.jsp&query=Enter+title+(e.g.+Watchfire)
https://demo.testfire.net/bank/customize.jsp
https://demo.testfire.net/bank/customize.jsp?content=customize.jsp&lang=international
https://demo.testfire.net/bank/apply.jsp
https://demo.testfire.net/bank/ccApply
https://demo.testfire.net/survey_questions.jsp
https://demo.testfire.net/survey_questions.jsp?step=a
https://demo.testfire.net/survey_questions.jsp?step=b
https://demo.testfire.net/disclaimer.htm?url=http://www.netscape.com
https://demo.testfire.net/subscribe.swf
https://demo.testfire.net/index.jsp?content=inside_executives.htm
https://demo.testfire.net/index.jsp?content=pr/20061109.htm
https://demo.testfire.net/index.jsp?content=inside_jobs.htm
https://demo.testfire.net/index.jsp?content=inside_benefits.htm
https://demo.testfire.net/index.jsp?content=inside_trainee.htm
https://demo.testfire.net/bank/doTransfer
https://demo.testfire.net/bank/customize.jsp
https://demo.testfire.net/bank/customize.jsp?content=customize.jsp&lang=international
https://demo.testfire.net/logout.jsp
https://demo.testfire.net/index.jsp?content=inside_jobs.htm&job=OperationalRiskManager:RiskManagement
https://demo.testfire.net/survey_questions.jsp?step=done&txtEmail=jsmith@mail.com
https://demo.testfire.net/admin/admin.jsp
https://demo.testfire.net/admin/admin.jsp

Parameters 33

Name Value URL Type

content customize.jsp https://demo.testfire.net/bank/customize.jsp?content=customize.jsp&lang=internati
onal

Simple
Link

content queryxpath.jsp https://demo.testfire.net/bank/queryxpath.jsp?content=queryxpath.jsp&query=Enter
+title+(e.g.+Watchfire)

Hidden

passwd **CONFIDENTIAL 0** https://demo.testfire.net/bank/ccApply Password
step a

b
done

https://demo.testfire.net/survey_questions.jsp?step=a Simple
Link

txtEmail jsmith@mail.com https://demo.testfire.net/survey_questions.jsp?step=done&txtEmail=jsmith@mail.co
m

Simple
Link

uid jsmith https://demo.testfire.net/doLogin Text
passw **CONFIDENTIAL 0** https://demo.testfire.net/doLogin Password
listAccount
s

800003 https://demo.testfire.net/bank/showAccount?listAccounts=800003 Select

url http://www.netscape.com https://demo.testfire.net/disclaimer.htm?url=http://www.netscape.com Simple
Link

btnSubmit Subscribe https://demo.testfire.net/doSubscribe Submit
content inside_contact.htm https://demo.testfire.net/index.jsp?content=inside_contact.htm Simple

10/05/2024 182

TOC

TOC

personal.htm
inside.htm
personal_deposit.htm
personal_checking.htm
...

Link

btnSubmit Login https://demo.testfire.net/doLogin Submit
query Enter title (e.g. Watchfire) https://demo.testfire.net/bank/queryxpath.jsp?content=queryxpath.jsp&query=Enter

+title+(e.g.+Watchfire)
Text

query 1234 https://demo.testfire.net/search.jsp?query=1234 Text
Submit Submit https://demo.testfire.net/bank/ccApply Submit
endDate 2019-01-01 https://demo.testfire.net/bank/showTransactions Text
submit +Submit+ https://demo.testfire.net/sendFeedback Submit
transferAm
ount

1234 https://demo.testfire.net/bank/doTransfer Text

txtEmail test@altoromutual.com https://demo.testfire.net/doSubscribe Text
cfile comments.txt https://demo.testfire.net/sendFeedback Hidden
startDate 2019-01-01 https://demo.testfire.net/bank/showTransactions Text
name John+Smith https://demo.testfire.net/sendFeedback Text
accttypes Savings https://demo.testfire.net/admin/admin.jsp Select
transfer Transfer Money https://demo.testfire.net/bank/doTransfer Submit
HostName AltoroMutual https://demo.testfire.net/util/serverStatusCheckService.jsp?HostName=AltoroMutua

l
Simple
Link

email_addr 753+Main+Street https://demo.testfire.net/sendFeedback Text
toAccount 800003 https://demo.testfire.net/bank/doTransfer Select
comments 1234 https://demo.testfire.net/sendFeedback TextArea
username sspeed https://demo.testfire.net/admin/admin.jsp Select
fromAccou
nt

800003 https://demo.testfire.net/bank/doTransfer Select

subject 1234 https://demo.testfire.net/sendFeedback Body
job OperationalRiskManager:RiskMa

nagement
https://demo.testfire.net/index.jsp?content=inside_jobs.htm&job=OperationalRiskM
anager:RiskManagement

Simple
Link

lang international https://demo.testfire.net/bank/customize.jsp?content=customize.jsp&lang=internati
onal

Simple
Link

Failed Requests 6

URL Reason

https://demo.testfire.net/default.jsp?content=security.htm Response Status '404' - Not Found
https://demo.testfire.net/inside_points_of_interest.htm Response Status '404' - Not Found
https://demo.testfire.net/default.jsp?content=security.htm Response Status '404' - Not Found
https://demo.testfire.net/Privacypolicy.jsp?sec=Careers&template=US Response Status '404' - Not Found
https://demo.testfire.net/default.jsp?content=security.htm Response Status '404' - Not Found
https://demo.testfire.net/default.jsp?content=security.htm Response Status '404' - Not Found

Filtered URLs 242

10/05/2024 183

URL Reason

https://demo.testfire.net/style.css File Extension
https://demo.testfire.net/images/logo.gif File Extension
https://demo.testfire.net/images/header_pic.jpg File Extension
https://demo.testfire.net/images/pf_lock.gif File Extension
https://demo.testfire.net/cgi.exe File Extension
https://demo.testfire.net/images/home1.jpg File Extension
https://demo.testfire.net/images/home2.jpg File Extension
https://demo.testfire.net/images/home3.jpg File Extension
https://github.com/AppSecDev/AltoroJ/ Untested Web Server
http://www-142.ibm.com/software/products/us/en/subcategory/SWI10 Untested Web Server
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd Untested Web Server
https://demo.testfire.net/images/inside6.jpg File Extension
https://demo.testfire.net/images/p_main.jpg File Extension
https://demo.testfire.net/pr/communityannualreport.pdf File Extension
https://demo.testfire.net/images/inside1.jpg File Extension
https://demo.testfire.net/images/p_deposit.jpg File Extension
https://demo.testfire.net/images/p_checking.jpg File Extension
https://demo.testfire.net/images/p_loans.jpg File Extension
https://demo.testfire.net/images/p_investments.jpg File Extension
http://demo-analytics.testfire.net/urchin.js Untested Web Server
https://demo.testfire.net/admin/clients.xls File Extension
https://demo.testfire.net/images/p_other.jpg File Extension
https://demo.testfire.net/images/b_lending.jpg File Extension
https://demo.testfire.net/images/b_cards.jpg File Extension
https://demo.testfire.net/images/b_retirement.jpg File Extension
http://www.newspapersyndications.tv/ Untested Web Server
https://demo.testfire.net/images/inside5.jpg File Extension
https://demo.testfire.net/images/inside7.jpg File Extension
https://demo.testfire.net/images/inside4.jpg File Extension
http://www.cert.org/ Untested Web Server
https://demo.testfire.net/images/icon_top.gif File Extension
https://demo.testfire.net/swagger/swagger-ui.css File Extension
https://demo.testfire.net/swagger/favicon-32x32.png File Extension
https://demo.testfire.net/swagger/favicon-16x16.png File Extension
https://online.swagger.io/validator?url=https://demo.testfire.net/swagger/properties.json Untested Web Server
https://demo.testfire.net/index.jsp?content=personal_savings.htm Similar Body
https://demo.testfire.net/images/ok.gif File Extension
https://demo.testfire.net/images/cancel.gif File Extension
http://www.netscape.com/ Untested Web Server
https://www.aol.com/ Untested Web Server
https://s.yimg.com/aaq/benji/benji-1.0.83.js Untested Web Server
https://s.yimg.com/nn/lib/metro/g/myy/advertisement_0.0.19.js Untested Web Server
https://s.yimg.com/aaq/wf/wf-dl-1.6.2.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/wafer-core.d8a2bbe83acf7922.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/polyfills.e0be59dc1da96626.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/vendor-glide.a8bd1773c27f716d.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/utils.783372195eb15b3c.js Untested Web Server

10/05/2024 184

https://s.yimg.com/aaq/wf/wf-rapid-1.10.7.js Untested Web Server
https://s.yimg.com/aaq/wf/wf-scrollview-2.21.0.js Untested Web Server
https://s.yimg.com/aaq/wf/wf-tabs-1.12.6.js Untested Web Server
https://s.yimg.com/aaq/wf/wf-toggle-1.15.4.js Untested Web Server
https://s.yimg.com/aaq/wf/wf-video-2.22.15.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/video_player_wafer.08e7f13466871cff.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/dispatcher.e1ad6900814fab04.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/gam.ded987fb43ca4cac.js Untested Web Server
https://s.yimg.com/aaq/wf/wf-autocomplete-1.31.7.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/readmo.8c9dae6c4d72bf7e.js Untested Web Server
https://s.yimg.com/aaq/wf/wf-module-2.0.0.js Untested Web Server
https://s.yimg.com/aaq/wf/wf-text-1.2.0.js Untested Web Server
https://s.yimg.com/aaq/wf/wf-beacon-1.3.4.js Untested Web Server
https://s.yimg.com/aaq/wf/wf-fetch-1.19.1.js Untested Web Server
https://s.yimg.com/aaq/wf/wf-bind-1.1.3.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/notification_banner.021ba5ca8466c0b7.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/ad_blocker.66ca66172460f2e8.js Untested Web Server
https://s.yimg.com/aaq/wf/wf-image-1.4.0.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/dl.3f04b2accc977d6a.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/notification_bell.c68f40de3779e9a4.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/weather.35ca22e5bc4d12c5.js Untested Web Server
https://s.yimg.com/ss/rapid3.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/aol_header.da6597b18c191447.js Untested Web Server
https://s.yimg.com/os/yaft/yaft-0.3.29.min.js Untested Web Server
https://s.yimg.com/oa/consent.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/news.ec578b81c96c3c35.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/choose_news.db3547969a1b837c.js Untested Web Server
https://consent.cmp.oath.com/cmp.js Untested Web Server
https://s.aolcdn.com/caas-assets-production/assets/v1/y_finance_markets.c976d9537fe5aaf8.js Untested Web Server
https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2021-12/27ab1e70-68e8-11ec-9f8f-130668cce848&client=76f99bdb8f78cd44cc0b&signatur
e=12d46bf50c61cc738244b48afd58278f22fa2d41

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2021-06/77d38700-d9ed-11eb-be27-f7edbce29062&client=76f99bdb8f78cd44cc0b&signatur
e=f681a4e420fd5eb2c85085401f6fad97b8f5c7d1

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2023-06/1504f900-095d-11ee-af59-036f8ef2680e&client=76f99bdb8f78cd44cc0b&signature
=f96c8983d15c2cd551b47caf27cd710ec77e61ad

Untested Web Server

https://s.yimg.com/cx/vzm/cs.js Untested Web Server
https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2020-12/575bc790-355f-11eb-ad7b-2304a1f8730f&client=76f99bdb8f78cd44cc0b&signature
=9ff3de001884e92d939ae40d08e9b7109e31ec24

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2023-04/761cfe70-deb2-11ed-8fff-6672c0d730ce&client=76f99bdb8f78cd44cc0b&signature
=3e88644a0b664a16743aee5bc603aabc2307f5c2

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2020-11/24ea2060-2fbd-11eb-b6fd-a6e16217c6e6&client=76f99bdb8f78cd44cc0b&signatur
e=2a26e46583bfd12678b081b69fb7cca425c39052

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2022-04/024bb600-bc29-11ec-be3f-c8aa85a55bda&client=76f99bdb8f78cd44cc0b&signatur
e=b9513e72c8af6f42b1e2f462026b9e7c280d5a3a

Untested Web Server

https://s.yimg.com/aaq/pv/perf-vitals_2.1.1.js Untested Web Server

10/05/2024 185

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2023-07/b1f2c370-2fe4-11ee-af3f-3bc97f9dc4f0&client=76f99bdb8f78cd44cc0b&signature=
307667e96789b86d53a0f4bbdb5707cd1bea98a9

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2020-12/515ef980-3432-11eb-b5ef-2a7f8e085664&client=76f99bdb8f78cd44cc0b&signature
=2219f359ed98a4e53a5fcf45b7e15fd870daf112

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2020-12/d50a9120-3411-11eb-97bb-1084c5a79300&client=76f99bdb8f78cd44cc0b&signatu
re=2e380cbe938a1f4b6b57c6cdf936e0516050112f

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2021-09/7bc91ad0-1009-11ec-bfea-2182b7e056ce&client=76f99bdb8f78cd44cc0b&signatur
e=0ce860f1e66ab33504feea849bdc56f9987a9c41

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2022-08/16659720-22f2-11ed-bbf8-7ef4b7911c60&client=76f99bdb8f78cd44cc0b&signature
=38d2911d75273d418cf1c35d0c430a84d5a2ca66

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2021-07/3c019bd0-ee43-11eb-bced-b4b62d80677d&client=76f99bdb8f78cd44cc0b&signatu
re=3aa198e79469e4081181851b7817f9aefe8b4866

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2022-07/b6b52f10-0dc1-11ed-9af1-3e6ae68289be&client=76f99bdb8f78cd44cc0b&signatur
e=a707ab932a73b8a9fb47d3fc3b9ee0c75e5ebc25

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2021-12/64340b00-6982-11ec-a6ee-d01e5d0b5861&client=76f99bdb8f78cd44cc0b&signatu
re=ac1c86f1c864869accf8544da530e03be9b801e8

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2021-11/aacb3290-4bb5-11ec-9dff-c91b8179f931&client=76f99bdb8f78cd44cc0b&signature
=177ac960ba64a8abb0f463dbe9e209b3d20d649d

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2021-12/e8f349d0-6993-11ec-beb7-1653c87f6a88&client=76f99bdb8f78cd44cc0b&signatur
e=7675a6e9b61e2052c273db9b79d7c1cb5cc4496c

Untested Web Server

https://demo.testfire.net/index.jsp?content=personal_savings.htm Similar DOM
https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2021-07/443d5c40-dfec-11eb-bbff-7da4a64d072d&client=76f99bdb8f78cd44cc0b&signature
=2bbcf94c8cff5820cd47b0b2766b30c5416c86c9

Untested Web Server

https://demo.testfire.net/survey_questions.jsp Similar DOM
https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2020-11/a2258160-2b7f-11eb-bbe3-c5a6dfd56406&client=76f99bdb8f78cd44cc0b&signatur
e=ae507cb078909cbed31627771fd05c3f42bd428b

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2021-08/1f7aca00-0ab2-11ec-9ef8-03b4eef83866&client=76f99bdb8f78cd44cc0b&signature
=c2f031ad3ac41d2282251c921aa9e4634e674019

Untested Web Server

https://demo.testfire.net/survey_questions.jsp?step=a Similar DOM
https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2021-09/291fe6d0-1246-11ec-9eb7-5392da65195b&client=76f99bdb8f78cd44cc0b&signatur
e=a55197107cb3e922d2624bc588f9c497bb452282

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2020-11/ee6a7240-244c-11eb-bd1f-e1f6ad08dba9&client=76f99bdb8f78cd44cc0b&signatur
e=c95b1e7a4d9513cf73f9897cf1beea2ef60ef716

Untested Web Server

https://demo.testfire.net/survey_questions.jsp?step=b Similar DOM
https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2021-12/e9cc2d60-6982-11ec-b3df-9bd0426ec2ec&client=76f99bdb8f78cd44cc0b&signatur
e=2e98d8405d99584183fc278e449e64974d353e94

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2023-09/c1ee04e0-4dcd-11ee-97bf-83c5420da580&client=76f99bdb8f78cd44cc0b&signatur
e=914d0608eb4f953292a2fc317324e981b551aa42

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2020-11/ad68a030-2ae3-11eb-b7df-2219b2546d62&client=76f99bdb8f78cd44cc0b&signatur
e=50e22a394a6cf858e64b2613c09da8a9a4cdfc51

Untested Web Server

10/05/2024 186

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2020-12/be863210-34b6-11eb-9fb7-2187cff1c470&client=76f99bdb8f78cd44cc0b&signature
=cd7d9f6e5bc98fb19e3761f13bce648092a434ce

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2022-12/88a54880-7c98-11ed-bf53-d549d04eb5fa&client=76f99bdb8f78cd44cc0b&signatur
e=02b60b757010b68fe7003f78bda5ac1c3a9988fa

Untested Web Server

https://s.aolcdn.com/images/dims?format=jpg&quality=80&thumbnail=32,32&image_uri=https://s.yimg.com/os/cre
atr-uploaded-images/2023-08/5696bdd0-3541-11ee-9d77-e98ff6d47746&client=76f99bdb8f78cd44cc0b&signatur
e=aac44e401f7cb4c4a646ca784a3a43da1693a625

Untested Web Server

https://demo.testfire.net/ Similar DOM
https://demo.testfire.net/index.jsp?content=privacy.htm Similar DOM
https://demo.testfire.net/index.jsp Similar DOM
https://demo.testfire.net/index.jsp?content=business.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_cards.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_deposit.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_insurance.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_other.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_investor.htm Similar DOM
https://demo.testfire.net/search.jsp?query= Similar DOM
https://demo.testfire.net/disclaimer.htm?url=http://www.microsoft.com Similar DOM
https://demo.testfire.net/bank/showAccount?listAccounts=800002 Similar DOM
https://demo.testfire.net/index.jsp?content=pr/20061005.htm Similar DOM
https://demo.testfire.net/index.jsp?content=pr/20060928.htm Similar DOM
https://demo.testfire.net/ Similar DOM
https://demo.testfire.net/bank/customize.jsp?content=customize.jsp&lang=english Similar DOM
https://demo.testfire.net/bank/ccApply Similar DOM
https://demo.testfire.net/images/spacer.gif File Extension
http://www.exampledomainnotinuse.org/mybeacon.gif Untested Web Server
https://demo.testfire.net/index.jsp Similar DOM
https://demo.testfire.net/index.jsp?content=inside_contact.htm Similar DOM
https://demo.testfire.net/feedback.jsp Similar DOM
https://demo.testfire.net/index.jsp?content=personal.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_deposit.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_checking.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_loans.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_cards.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_investments.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_other.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_deposit.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_lending.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_cards.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_insurance.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_retirement.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_other.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_about.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_investor.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_press.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_careers.htm Similar DOM

10/05/2024 187

https://demo.testfire.net/subscribe.jsp Similar DOM
https://demo.testfire.net/index.jsp?content=security.htm Similar DOM
https://demo.testfire.net/status_check.jsp Similar DOM
https://demo.testfire.net/swagger/index.html Similar DOM
https://demo.testfire.net/search.jsp?query=1234 Similar DOM
https://demo.testfire.net/sendFeedback Similar DOM
https://demo.testfire.net/index.jsp?content=inside_community.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_contact.htm Similar DOM
https://demo.testfire.net/index.jsp?content=pr/20060921.htm Similar DOM
https://demo.testfire.net/index.jsp?content=pr/20060817.htm Similar DOM
https://demo.testfire.net/index.jsp?content=pr/20060720.htm Similar DOM
https://demo.testfire.net/index.jsp?content=pr/20060518.htm Similar DOM
https://demo.testfire.net/index.jsp?content=pr/20060413.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_internships.htm Similar DOM
https://demo.testfire.net/survey_questions.jsp?step=c Similar DOM
https://demo.testfire.net/index.jsp?content=inside_jobs.htm&job=ExecutiveAssistant:Administration Similar DOM
https://demo.testfire.net/index.jsp?content=inside_jobs.htm&job=Teller:ConsumaerBanking Similar DOM
https://demo.testfire.net/index.jsp?content=inside_jobs.htm&job=CustomerServiceRepresentative:CustomerServic
e

Similar DOM

https://demo.testfire.net/index.jsp?content=inside_jobs.htm&job=LoyaltyMarketingProgramManager:Marketing Similar DOM
https://demo.testfire.net/index.jsp?content=inside_jobs.htm&job=MortgageLendingAccountExecutive:Sales Similar DOM
https://demo.testfire.net/index.jsp?content= Similar DOM
https://demo.testfire.net/index.jsp Similar DOM
https://demo.testfire.net/index.jsp Similar DOM
https://demo.testfire.net/login.jsp Similar DOM
https://demo.testfire.net/index.jsp?content=inside_contact.htm Similar DOM
https://demo.testfire.net/feedback.jsp Similar DOM
https://demo.testfire.net/index.jsp?content=personal.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_deposit.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_checking.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_loans.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_cards.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_investments.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_other.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_deposit.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_lending.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_cards.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_insurance.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_retirement.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_other.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_about.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_investor.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_press.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_careers.htm Similar DOM
https://demo.testfire.net/subscribe.jsp Similar DOM
https://demo.testfire.net/index.jsp?content=personal_savings.htm Similar DOM
https://demo.testfire.net/index.jsp?content=privacy.htm Similar DOM

10/05/2024 188

TOC

https://demo.testfire.net/survey_questions.jsp Similar DOM
https://demo.testfire.net/index.jsp?content=security.htm Similar DOM
https://demo.testfire.net/status_check.jsp Similar DOM
https://demo.testfire.net/swagger/index.html Similar DOM
https://demo.testfire.net/search.jsp?query=1234 Similar DOM
https://demo.testfire.net/login.jsp Similar DOM
https://demo.testfire.net/index.jsp?content=inside_contact.htm Similar DOM
https://demo.testfire.net/feedback.jsp Similar DOM
https://demo.testfire.net/index.jsp?content=personal.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_deposit.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_checking.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_loans.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_cards.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_investments.htm Similar DOM
https://demo.testfire.net/index.jsp?content=personal_other.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_deposit.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_lending.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_cards.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_insurance.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_retirement.htm Similar DOM
https://demo.testfire.net/index.jsp?content=business_other.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_about.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_investor.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_press.htm Similar DOM
https://demo.testfire.net/index.jsp?content=inside_careers.htm Similar DOM
https://demo.testfire.net/subscribe.jsp Similar DOM
https://demo.testfire.net/index.jsp?content=personal_savings.htm Similar DOM
https://demo.testfire.net/index.jsp?content=privacy.htm Similar DOM
https://demo.testfire.net/survey_questions.jsp Similar DOM
https://demo.testfire.net/index.jsp?content=security.htm Similar DOM
https://demo.testfire.net/status_check.jsp Similar DOM
https://demo.testfire.net/swagger/index.html Similar DOM
https://demo.testfire.net/search.jsp?query=1234 Similar DOM
https://demo.testfire.net/ Similar Body
https://demo.testfire.net/doLogin Similar DOM
https://demo.testfire.net/login.jsp Similar Body
https://demo.testfire.net/bank/main.jsp Similar Body
https://demo.testfire.net/admin/admin.jsp Similar DOM
https://demo.testfire.net/login.jsp Similar DOM
https://demo.testfire.net/doLogin Likely Similar DOM
https://demo.testfire.net/bank/main.jsp Similar DOM

Comments 40

10/05/2024 189

URL Comment

https://demo.testfire.net/login.jsp BEGIN HEADER
https://demo.testfire.net/login.jsp <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
https://demo.testfire.net/login.jsp END HEADER
https://demo.testfire.net/login.jsp TOC BEGIN
https://demo.testfire.net/login.jsp TOC END
https://demo.testfire.net/login.jsp To get the latest admin login, please contact SiteOps at 415-555-6159
https://demo.testfire.net/login.jsp BEGIN FOOTER
https://demo.testfire.net/login.jsp END FOOTER
https://demo.testfire.net/ Keywords:Altoro Mutual, online banking, banking, checking, savings, accounts
https://demo.testfire.net/bank/main.jsp MEMBER TOC BEGIN
https://demo.testfire.net/bank/main.jsp Trade Stocks
https://demo.testfire.net/bank/main.jsp MEMBER TOC END
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, online banking, contact information, subscriptions
https://demo.testfire.net/feedback.jsp - Dave- Hard code this into the final script - Possible security problem.

 Re-generated every Tuesday and old files are saved to .bak format at
L:\backup\website\oldfiles -

https://demo.testfire.net/bank/showAccount To modify account information do not connect to SQL source directly. Make all
changes
 through the admin page.

https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, personal deposit, personal checking, personal loans,
personal cards, personal investments

https://demo.testfire.net/index.jsp Keywords:Altoro Mutual
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, deposit products, personal deposits
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, personal checking, checking platinum, checking gold,

checking silver, checking bronze
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, auto loans, boat loans, lines of credit, home equity,

mortgage loans, student loans
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, brokerage services, retirement, insurance, private banking,

wealth and tax services
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, Altoro Private Bank, Altoro Wealth and Tax
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, real estate loans, small business loands, small business

loands, equipment leasing, credit line
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, credit cards, platinum cards, premium credit
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, press releases, media, news, events, public relations
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, job openings, benefits, student internships, management

trainee programs
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, privacy, information collection, safeguards, data usage
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, security, security, security, we provide security, secure

online banking
https://demo.testfire.net/swagger/index.html HTML for static distribution bundle build
https://demo.testfire.net/swagger/index.html <!DOCTYPE html>
https://demo.testfire.net/bank/transaction.jsp TODO PAGES: <td colspan="4">1 <a

href="javascript:__doPostBack('_ctl0$_ctl0$Content$Main$MyTransactions$_ctl54$_
ctl1','')">2</td>

https://demo.testfire.net/index.jsp Keywords:Altoro Mutual Press Release
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, benefits, child-care, flexible time, health club, company

discounts, paid vacations
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, careers, opportunities, jobs, management
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, management trainess, Careers, advancement
https://demo.testfire.net/index.jsp Keywords:Altoro Mutual, executives, board of directors

10/05/2024 190

TOC

https://demo.testfire.net/admin/admin.jsp Be careful what you change. All changes are made directly to AltoroJ database.
https://demo.testfire.net/admin/admin.jsp action="addAccount"
https://demo.testfire.net/admin/admin.jsp action="changePassword"
https://demo.testfire.net/admin/admin.jsp action="addUser"

JavaScripts 22

URL / Code

https://demo.testfire.net/login.jsp

 function setfocus() {
 if (document.login.uid.value=="") {
 document.login.uid.focus();
 } else {
 document.login.passw.focus();
 }
 }

 function confirminput(myform) {
 if (myform.uid.value.length && myform.passw.value.length) {
 return (true);
 } else if (!(myform.uid.value.length)) {
 myform.reset();
 myform.uid.focus();
 alert ("You must enter a valid username");
 return (false);
 } else {
 myform.passw.focus();
 alert ("You must enter a valid password");
 return (false);
 }
 }
 window.onload = setfocus;

https://demo.testfire.net/login.jsp

return (confirminput(login));

https://demo.testfire.net/index.jsp

window.open('disclaimer.htm?url=http://www.netscape.com', '_blank',
'status=no,location=no,menubar=no,resizable=no,scrollbars=no,toolbar=no,width=450,height=200'); return false;

https://demo.testfire.net/index.jsp

window.open('disclaimer.htm?url=http://www.microsoft.com', '_blank',
'status=no,location=no,menubar=no,resizable=no,scrollbars=no,toolbar=no,width=450,height=200'); return false;

https://demo.testfire.net/index.jsp

10/05/2024 191

 _uacct = "1234abc";
 urchinTracker();

https://demo.testfire.net/subscribe.jsp

 function confirmEmail(sEmail) {
 var msg = null;
 if (sEmail != "") {
 var emailFilter=/^[\w\d\.\%-]+@[\w\d\.\%-]+\.\w{2,4}$/;
 if (!(emailFilter.test(sEmail))) {
 var illegalChars= /[^\w\d\.\%\-@]/;
 if (sEmail.match(illegalChars)) {
 msg = "Your email can only contain alphanumeric\ncharacters and the following: @.%-\n\n";
 } else {
 msg = "Your email address does not appear to be valid. Please try again.\n\n";
 }
 }
 } else {
 msg = "Please enter an email address.\n\n";
 }
 if (msg != null) {
 alert(msg);
 return false;
 } else {
 return true;
 }
 }

https://demo.testfire.net/subscribe.jsp

return confirmEmail(txtEmail.value);

https://demo.testfire.net/status_check.jsp

var xmlHttp = false;

 //http://www.ibm.com/developerworks/web/library/wa-ajaxintro1/index.html
 /* Create a new XMLHttpRequest object to talk to the Web server */
 xmlHttp = false;
 /*@cc_on @*/
 /*@if (@_jscript_version >= 5)
 try {
 xmlHttp = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (e2) {
 xmlHttp = false;
 }
 }
 @end @*/

 if (!xmlHttp && typeof XMLHttpRequest != 'undefined') {
 xmlHttp = new XMLHttpRequest();
 }

var sLastHostName='';
function checkSiteStatus(sHostName)
{
 sLastHostName = sHostName;
 //Make JSON request
 xmlHttp.open("GET","util/serverStatusCheckService.jsp?HostName=" + sHostName);
 xmlHttp.onreadystatechange = StateChangeForJSON;

10/05/2024 192

 xmlHttp.send(null);
}
function StateChangeForJSON()
{
 if(xmlHttp.readyState == 4 && xmlHttp.status == 200)
 {
 var jsonObj = eval('('+ xmlHttp.responseText + ')');
 var jsonFetchHostStatus = jsonObj["HostStatus"];
 var jsonFetchHostName=jsonObj["HostName"];
 //get JSON values and output
 x=document.getElementById('FetchHostName');
 x.innerHTML=jsonFetchHostName;
 x=document.getElementById('FetchHostStatus');
 x.innerHTML=jsonFetchHostStatus;
 }
 else if(xmlHttp.readyState == 4 && xmlHttp.status == 500)
 {
 x=document.getElementById('FetchHostName');
 x.innerHTML=sLastHostName;
 x=document.getElementById('FetchHostStatus');
 x.innerHTML='The service returned an error. Please be patient while our administrators fix the issue.';
 }
 else if(xmlHttp.readyState == 4 && xmlHttp.status == 404)
 {
 x=document.getElementById('FetchHostName');
 x.innerHTML=sLastHostName;
 x=document.getElementById('FetchHostStatus');
 x.innerHTML='The service returned an error. The status service appears to not be available';
 }
 else if(xmlHttp.readyState == 4 && xmlHttp.status == 401)
 {
 x=document.getElementById('FetchHostName');
 x.innerHTML=sLastHostName;
 x=document.getElementById('FetchHostStatus');
 x.innerHTML='The service returned a 401 unauthorized error, indicating it was implemented incorrectly';
 }
 else if(xmlHttp.readyState == 4 && xmlHttp.status == 302)
 {
 x=document.getElementById('FetchHostName');
 x.innerHTML=sLastHostName;
 x=document.getElementById('FetchHostStatus');
 x.innerHTML='The service returned a 302 redirect, indicating it was implemented incorrectly';
 }
}

https://demo.testfire.net/swagger/index.html

 window.onload = function() {

 // Build a system
 const ui = SwaggerUIBundle({
 url: window.location.href.substr(0, window.location.href.lastIndexOf("\/") + 1) + "properties.json",
 dom_id: '#swagger-ui',
 deepLinking: true,
 presets: [
 SwaggerUIBundle.presets.apis,
 SwaggerUIStandalonePreset
],
 plugins: [
 SwaggerUIBundle.plugins.DownloadUrl
],
 layout: "StandaloneLayout"
 })

 window.ui = ui
 }

https://demo.testfire.net/swagger/swagger-ui-standalone-preset.js

!function(t,e){"object"==typeof exports&&"object"==typeof module?module.exports=e():"function"==typeof define&&define.amd?

10/05/2024 193

define([],e):"object"==typeof exports?exports.SwaggerUIStandalonePreset=e():t.SwaggerUIStandalonePreset=e()}(this,function(){return
function(t){var e={};function n(r){if(e[r])return e[r].exports;var i=e[r]={i:r,l:!1,exports:{}};return
t[r].call(i.exports,i,i.exports,n),i.l=!0,i.exports}return n.m=t,n.c=e,n.d=function(t,e,r){n.o(t,e)||Object.defineProperty(t,e,
{configurable:!1,enumerable:!0,get:r})},n.n=function(t){var e=t&&t.__esModule?function(){return t.default}:function(){return t};return
n.d(e,"a",e),e},n.o=function(t,e){return Object.prototype.hasOwnProperty.call(t,e)},n.p="/dist",n(n.s=206)}([function(t,e,n){"use
strict";var r=n(52),i=["kind","resolve","construct","instanceOf","predicate","represent","defaultStyle","styleAliases"],o=
["scalar","sequence","mapping"];t.exports=function(t,e){var n,u;if(e=e||{},Object.keys(e).forEach(function(e){if(-
1===i.indexOf(e))throw new r('Unknown option "'+e+'" is met in definition of "'+t+'" YAML
type.')}),this.tag=t,this.kind=e.kind||null,this.resolve=e.resolve||function(){return!0},this.construct=e.construct||function(t){return
t},this.instanceOf=e.instanceOf||null,this.predicate=e.predicate||null,this.represent=e.represent||null,this.defaultStyle=e.defaultStyl
e||null,this.styleAliases=(n=e.styleAliases||null,u={},null!==n&&Object.keys(n).forEach(function(t){n[t].forEach(function(e)
{u[String(e)]=t})}),u),-1===o.indexOf(this.kind))throw new r('Unknown kind "'+this.kind+'" is specified for "'+t+'" YAML
type.')}},function(t,e,n){var r=n(133)("wks"),i=n(98),o=n(5).Symbol,u="function"==typeof o;(t.exports=function(t){return r[t]||
(r[t]=u&&o[t]||(u?o:i)("Symbol."+t))}).store=r},function(t,e){var n=t.exports={version:"2.5.5"};"number"==typeof __e&&
(__e=n)},function(t,e,n){var r=n(5),i=n(19),o=n(17),u=n(30),a=n(60),s=function(t,e,n){var
c,f,l,p,h=t&s.F,d=t&s.G,v=t&s.S,y=t&s.P,g=t&s.B,m=d?r:v?r[e]||(r[e]={}):(r[e]||{}).prototype,_=d?i:i[e]||(i[e]={}),b=_.prototype||
(_.prototype={});for(c in d&&(n=e),n)l=((f=!h&&m&&void 0!==m[c])?m:n)[c],p=g&&f?a(l,r):y&&"function"==typeof l?
a(Function.call,l):l,m&&u(m,c,l,t&s.U),_[c]!=l&&o(_,c,p),y&&b[c]!=l&&
(b[c]=l)};r.core=i,s.F=1,s.G=2,s.S=4,s.P=8,s.B=16,s.W=32,s.U=64,s.R=128,t.exports=s},function(t,e,n){var
r=n(3),i=n(43),o=n(10),u=/"/g,a=function(t,e,n,r){var i=String(o(t)),a="<"+e;return""!==n&&(a+="
"+n+'="'+String(r).replace(u,""")+'"'),a+">"+i+"</"+e+">"};t.exports=function(t,e){var n={};n[t]=e(a),r(r.P+r.F*i(function(){var
e=""[t]('"');return e!==e.toLowerCase()||e.split('"').length>3}),"String",n)}},function(t,e){var n=t.exports="undefined"!=typeof
window&&window.Math==Math?window:"undefined"!=typeof self&&self.Math==Math?self:Function("return this")();"number"==typeof __g&&
(__g=n)},function(t,e,n){var r=n(93)("wks"),i=n(55),o=n(9).Symbol,u="function"==typeof o;(t.exports=function(t){return r[t]||
(r[t]=u&&o[t]||(u?o:i)("Symbol."+t))}).store=r},function(t,e,n){var r=n(169),i="object"==typeof
self&&self&&self.Object===Object&&self,o=r||i||Function("return this")();t.exports=o},function(t,e){var
n=Array.isArray;t.exports=n},function(t,e){var n=t.exports="undefined"!=typeof window&&window.Math==Math?window:"undefined"!=typeof
self&&self.Math==Math?self:Function("return this")();"number"==typeof __g&&(__g=n)},function(t,e){t.exports=function(t){if(void
0==t)throw TypeError("Can't call method on "+t);return t}},function(t,e){var n;n=function(){return this}();try{n=n||Function("return
this")()||(0,eval)("this")}catch(t){"object"==typeof window&&(n=window)}t.exports=n},function(t,e,n){"use strict";t.exports=function(t)
{if("function"!=typeof t)throw new TypeError(t+" is not a function");return t}},function(t,e,n){var
r=n(9),i=n(2),o=n(126),u=n(26),a=n(16),s=function(t,e,n){var c,f,l,p=t&s.F,h=t&s.G,d=t&s.S,v=t&s.P,y=t&s.B,g=t&s.W,m=h?i:i[e]||(i[e]=
{}),_=m.prototype,b=h?r:d?r[e]:(r[e]||{}).prototype;for(c in h&&(n=e),n)(f=!p&&b&&void 0!==b[c])&&a(m,c)||(l=f?
b[c]:n[c],m[c]=h&&"function"!=typeof b[c]?n[c]:y&&f?o(l,r):g&&b[c]==l?function(t){var e=function(e,n,r){if(this instanceof t)
{switch(arguments.length){case 0:return new t;case 1:return new t(e);case 2:return new t(e,n)}return new t(e,n,r)}return
t.apply(this,arguments)};return e.prototype=t.prototype,e}(l):v&&"function"==typeof l?o(Function.call,l):l,v&&((m.virtual||(m.virtual=
{}))[c]=l,t&s.R&&_&&!_[c]&&u(_,c,l)))};s.F=1,s.G=2,s.S=4,s.P=8,s.B=16,s.W=32,s.U=64,s.R=128,t.exports=s},function(t,e,n){var
r=n(27),i=n(127),o=n(89),u=Object.defineProperty;e.f=n(15)?Object.defineProperty:function(t,e,n){if(r(t),e=o(e,!0),r(n),i)try{return
u(t,e,n)}catch(t){}if("get"in n||"set"in n)throw TypeError("Accessors not supported!");return"value"in n&&
(t[e]=n.value),t}},function(t,e,n){t.exports=!n(29)(function(){return 7!=Object.defineProperty({},"a",{get:function(){return
7}}).a})},function(t,e){var n={}.hasOwnProperty;t.exports=function(t,e){return n.call(t,e)}},function(t,...

https://demo.testfire.net/swagger/swagger-ui-bundle.js

!function(e,t){"object"==typeof exports&&"object"==typeof module?module.exports=t():"function"==typeof define&&define.amd?
define([],t):"object"==typeof exports?exports.SwaggerUIBundle=t():e.SwaggerUIBundle=t()}(this,function(){return function(e){var t=
{};function n(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return
e[r].call(o.exports,o,o.exports,n),o.l=!0,o.exports}return n.m=e,n.c=t,n.d=function(e,t,r){n.o(e,t)||Object.defineProperty(e,t,
{configurable:!1,enumerable:!0,get:r})},n.n=function(e){var t=e&&e.__esModule?function(){return e.default}:function(){return e};return
n.d(t,"a",t),t},n.o=function(e,t){return Object.prototype.hasOwnProperty.call(e,t)},n.p="/dist",n(n.s=446)}([function(e,t,n){"use
strict";e.exports=n(75)},function(e,t,n){e.exports=n(854)()},function(e,t,n){"use strict";t.__esModule=!0,t.default=function(e,t){if(!
(e instanceof t))throw new TypeError("Cannot call a class as a function")}},function(e,t,n){"use strict";t.__esModule=!0;var
r,o=n(262),i=(r=o)&&r.__esModule?r:{default:r};t.default=function(){function e(e,t){for(var n=0;n<t.length;n++){var
r=t[n];r.enumerable=r.enumerable||!1,r.configurable=!0,"value"in r&&(r.writable=!0),(0,i.default)(e,r.key,r)}}return function(t,n,r)
{return n&&e(t.prototype,n),r&&e(t,r),t}}()},function(e,t,n){e.exports={default:n(767),__esModule:!0}},function(e,t,n){"use
strict";t.__esModule=!0;var r,o=n(45),i=(r=o)&&r.__esModule?r:{default:r};t.default=function(e,t){if(!e)throw new ReferenceError("this
hasn't been initialised - super() hasn't been called");return!t||"object"!==(void 0===t?"undefined":(0,i.default)
(t))&&"function"!=typeof t?e:t}},function(e,t,n){"use strict";t.__esModule=!0;var r=a(n(769)),o=a(n(350)),i=a(n(45));function a(e)
{return e&&e.__esModule?e:{default:e}}t.default=function(e,t){if("function"!=typeof t&&null!==t)throw new TypeError("Super expression
must either be null or a function, not "+(void 0===t?"undefined":(0,i.default)(t)));e.prototype=(0,o.default)(t&&t.prototype,
{constructor:{value:e,enumerable:!1,writable:!0,configurable:!0}}),t&&(r.default?(0,r.default)(e,t):e.__proto__=t)}},function(e,t,n)
{var r;r=function(){"use strict";var e=Array.prototype.slice;function t(e,t){t&&
(e.prototype=Object.create(t.prototype)),e.prototype.constructor=e}function n(e){return a(e)?e:J(e)}function r(e){return u(e)?
e:Y(e)}function o(e){return s(e)?e:K(e)}function i(e){return a(e)&&!l(e)?e:G(e)}function a(e){return!(!e||!e[f])}function u(e){return!
(!e||!e[p])}function s(e){return!(!e||!e[d])}function l(e){return u(e)||s(e)}function c(e){return!
(!e||!e[h])}t(r,n),t(o,n),t(i,n),n.isIterable=a,n.isKeyed=u,n.isIndexed=s,n.isAssociative=l,n.isOrdered=c,n.Keyed=r,n.Indexed=o,n.Set=i
;var
f="@@__IMMUTABLE_ITERABLE__@@",p="@@__IMMUTABLE_KEYED__@@",d="@@__IMMUTABLE_INDEXED__@@",h="@@__IMMUTABLE_ORDERED__@@",v=5,m=1<<v,y=m-
1,g={},b={value:!1},_={value:!1};function w(e){return e.value=!1,e}function E(e){e&&(e.value=!0)}function x(){}function S(e,t)
{t=t||0;for(var n=Math.max(0,e.length-t),r=new Array(n),o=0;o<n;o++)r[o]=e[o+t];return r}function C(e){return void 0===e.size&&
(e.size=e.__iterate(A)),e.size}function k(e,t){if("number"!=typeof t){var n=t>>>0;if(""+n!==t||4294967295===n)return NaN;t=n}return
t<0?C(e)+t:t}function A(){return!0}function O(e,t,n){return(0===e||void 0!==n&&e<=-n)&&(void 0===t||void 0!==n&&t>=n)}function P(e,t)
{return M(e,t,0)}function T(e,t){return M(e,t,t)}function M(e,t,n){return void 0===e?n:e<0?Math.max(0,t+e):void 0===t?
e:Math.min(t,e)}var I=0,j=1,N=2,R="function"==typeof Symbol&&Symbol.iterator,D="@@iterator",L=R||D;function U(e){this.next=e}function
q(e,t,n,r){var o=0===e?t:1===e?n:[t,n];return r?r.value=o:r={value:o,done:!1},r}function F(){return{value:void 0,done:!0}}function z(e)
{return!!H(e)}function B(e){return e&&"function"==typeof e.next}function V(e){var t=H(e);return t&&t.call(e)}function H(e){var t=e&&
(R&&e[R]||e[D]);if("function"==typeof t)return t}function W(e){return e&&"number"==typeof e.length}function J(e){return null===e||void
0===e?ie():a(e)?e.toSeq():function(e){var t=se(e)||"object"==typeof e&&new te(e);if(!t)throw new TypeError("Expected Array or iterable
object of values, or keyed object: "+e);return t}(e)}function Y(e){return null===e||void 0===e?ie().toKeyedSeq():a(e)?u(e)?

10/05/2024 194

e.toSeq():e.fromEntrySeq():ae(e)}function K(e){return null===e||void 0===e?ie():a(e)?u(e)?e.entrySeq():e.toIndexedSeq():ue(e)}function
G(e){return(null===e||void 0===e?ie():a(e)?u(e)?e.entrySeq():e:ue(e)).toSetSeq()}U.prototype.toString=function(){return"
[Iterator]"},U.KEYS=I,U.VALUES=j,U.ENTRIES=N,U.prototype.inspect=U.prototype.toSource=function(){return
this.toString()},U.prototype[L]=function(){return this},t(J,n),J.of=function(){return J(arguments)},J.prototype.toSeq=function(){return
this},J.prototype.toString=function(){return this.__toString("Seq {","}")},J.prototype.cacheResult=function()
{return!this._cache&&this.__iterateUncached&&(this._cache=this.entrySeq().toArray(),this.size=this._cache.length),this},J.pro...

https://demo.testfire.net/bank/transaction.jsp

 function confirminput(myform) {

 if (myform.startDate.value != ""){
 var valid = false;
 var splitStrings = myform.startDate.value.split("-");
 if (splitStrings.length == 3) {
 var year = parseInt(splitStrings[0]);
 var month = parseInt((splitStrings[1].charAt(0)==0 && splitStrings[1].length == 2)?
splitStrings[1].charAt(1):splitStrings[1]);
 var day = parseInt((splitStrings[2].charAt(0)==0 && splitStrings[2].length == 2)?
splitStrings[2].charAt(1):splitStrings[2]);

 var validNums = !(isNaN(year) || isNaN(month) || isNaN(day));

 if (validNums)
 valid = validateDate(month, day, year);
 }

 if (!valid){
 alert ("'After' date of " + myform.startDate.value + " is not valid.");
 return false;
 }
 }

 if (myform.endDate.value != ""){
 var valid2 = false;
 var splitStrings2 = myform.endDate.value.split("-");
 if (splitStrings2.length == 3) {
 var year2 = parseInt(splitStrings2[0]);
 var month2 = parseInt((splitStrings2[1].charAt(0)==0 && splitStrings2[1].length == 2)?
splitStrings2[1].charAt(1):splitStrings2[1]);
 var day2 = parseInt((splitStrings2[2].charAt(0)==0 && splitStrings2[2].length == 2)?
splitStrings2[2].charAt(1):splitStrings2[2]);

 var validNums2 = !(isNaN(year2) || isNaN(month2) || isNaN(day2));

 if (validNums2)
 valid2 = validateDate(month2, day2, year2);
 }

 if (!valid2){
 alert ("'Before' date of " + myform.endDate.value + " is not valid.");
 return false;
 }
 }
 return true;
 }

 function validateDate(month, day, year){
 try {
 var thisDate = new Date();
 var wrongMonth = month<1 || month>12;
 var wrongDay = (day<1) || (day>31) || (day>30 && ((month==4)||(month==6)||(month==9)||
(month==11))) || (day>29 && month==2 && (year%4==0) && (year%100!=0 || year%400==0)) || (day>28 && month==2 && ((year%4!=0) ||
(year%100==0 && year%400!=0)));
 var wrongYear = year < 1990 || year > parseInt(thisDate.getFullYear());

 var thisYear = parseInt(thisDate.getFullYear());
 var thisMonth = parseInt(thisDate.getMonth())+1;
 var thisDay = parseInt(thisDate.getDate());
 var wrongDate = year==thisYear && ((thisMonth<month) || (thisMonth==month && thisDay<(day-1)));

 if (wrongMonth ||wrongDay || wrongYear || wrongDate)
 return false;

 } catch (error){
 return false;
 }

10/05/2024 195

 return true;
 }

https://demo.testfire.net/bank/transaction.jsp

return (confirminput(Form1));

https://demo.testfire.net/bank/transfer.jsp

 function confirminput(myform) {
 var dbt=document.getElementById("fromAccount").value;
 var cdt=document.getElementById("toAccount").value;
 var amt=document.getElementById("transferAmount").value;

 if (dbt == cdt) {
 alert("From Account and To Account fields cannot be the same.");
 return false;
 }
 else if (!(amt > 0)){
 alert("Transfer Amount must be a number greater than 0.");
 return false;
 }

 return true;
 }

https://demo.testfire.net/bank/transfer.jsp

return (confirminput(tForm));

https://demo.testfire.net/disclaimer.htm

 function go() {
 var iPos = document.URL.indexOf("url=")+4;
 var sDst = document.URL.substring(iPos,document.URL.length);
 if (window.opener) {
 window.opener.location.href = sDst;
 cl();
 } else {
 window.location.href = sDst;
 }
 }

 function cl() {
 window.close();
 }

 var iPos = document.URL.indexOf("url=")+4;
 var sDst = document.URL.substring(iPos,document.URL.length);
 // if redirection is in the application's domain, don't ask for authorization
 if (sDst.indexOf("http") == 0 && sDst.indexOf(document.location.hostname) != -1) {
 if (window.opener) {
 window.opener.location.href = "http" + sDst.substring(4);
 cl();
 } else {
 window.location.href = "http" + sDst.substring(4);
 }

10/05/2024 196

 }

https://demo.testfire.net/disclaimer.htm

document.write(encodeURI(sDst));

https://demo.testfire.net/disclaimer.htm

go();return false;

https://demo.testfire.net/disclaimer.htm

cl();return false;

https://demo.testfire.net/index.jsp

var jobs = {
 "Administration":{"ExecutiveAssistant":"jobs/20061023.htm"},
 "ConsumaerBanking":{"Teller":"jobs/20061019.htm"},
 "CustomerService":{"CustomerServiceRepresentative":"jobs/20061026.htm"},
 "Marketing":{"LoyaltyMarketingProgramManager":"jobs/20061025.htm"},
 "RiskManagement":{"OperationalRiskManager":"jobs/20061027.htm"},
 "Sales":{"MortgageLendingAccountExecutive":"jobs/20061024.htm"}
};

function loadPage() {
 if (document.location.hash == "#alljobs") {
 document.location.hash = "";
 return;
 }
 /* check if job parameter exists */
 var job = getParameter("job");
 if (job && job.length > 0) {
 var sp = job.split(':');
 if (sp.length == 2 && jobs[sp[1]] && jobs[sp[1]] != "") {
 /* check if job exists */
 if (jobs[sp[1]][sp[0]] && jobs[sp[1]][sp[0]] != "") {
 document.location.href = "index.jsp?content="+jobs[sp[1]][sp[0]];
 } else {
 /* tell the user the job isn't open anymore */
 document.write("<h2 style='color:#ff0000'>We're sorry, but it appears the position for " + sp[0] + " in
group " + sp[1] + " is not open anymore</h2>");
 }
 }
 }
}

function getParameter(name) {
 var searchStr = document.location.search.substring(1);
 var params = searchStr.split('&');
 for (var i=0; i < params.length; i++) {
 nv = params[i].split('=');
 if (nv.length == 2 && nv[0] == name) {
 return nv[1];
 }
 }
 return "";
}

function sethash() {

10/05/2024 197

TOC

 document.location.hash = "alljobs";
}

/* set IE to go back to orig page when pressing the back command in teh next page */
if (navigator.appName == 'Microsoft Internet Explorer') {
 window.onbeforeunload=sethash;
}

window.onload = loadPage;

https://demo.testfire.net/admin/admin.jsp

 function confirmpass(myform)
 {
 if (myform.password1.value.length && (myform.password1.value==myform.password2.value))
 {
 return true;
 }
 else
 {
 myform.password1.value="";
 myform.password2.value="";
 myform.password1.focus();
 alert ("Passwords do not match");
 return false;
 }

 }

https://demo.testfire.net/admin/admin.jsp

return confirmpass(this);

Cookies 2

Name First Set Domain Secure HTTP
Only

Same
Site JS Stack Trace

Value Requested
URL Expires

AltoroAccounts https://demo
.testfire.net/
doLogin

demo.te
stfire.net

False False

ODAwMDAyflNhdmluZ3N+LTEuOTk5NTQzNDA3MDM5MTU
2MjJFMTh8ODAwMDAzfkNoZWNraW5nfjcuMTA2ODA0NjQ0
NzM3ODg1RTIwfDQ1MzkwODIwMzkzOTYyODh+Q3JlZGl0I
ENhcmR+LTEuOTk5NTQzNDAxMjc4NzEyMzJFMTh8

https://demo
.testfire.net/
bank/main.j
sp

JSESSIONID https://demo
.testfire.net/

demo.te
stfire.net

True True

A496F85EFEC2D4852626C21B50001A3A https://demo
.testfire.net/l
ogin.jsp

10/05/2024 198

TOCComponents 0

Name Version URL

10/05/2024 199

