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This paper proposes an accelerating correlation-based image alignment using CPUs for
time-critical applications in automatic optical inspection (AOI). In order to improve com-
putation efficiency, the image pyramid search scheme is combined with the parallel com-
putation. The image pyramid search scheme is employed first to quickly find certain
objects in both monochrome and color images with rotation, translation and scaling.
Sub-pixel accuracy is then used to attain the more accurate results at the sub-pixel level.
In our experimental results, rotation accuracy is smaller than 0.218�, and the speed is
increased between 277 and 20,841 times. According to translation, rotation and scaling
tests, the errors of rotation, translation and scaling are 0.2�, 2.07 pixel and 0.55%, respec-
tively. These results show that the proposed method is suitable for dealing with
correlation-based image alignment for time-critical applications in automatic optical
inspection.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the demands of automatic optical inspection (AOI) have increased significantly as the quality control of man-
ufacturing process had become increasingly important. Template matching is particularly useful for machine vision tasks,
where an object within an image must be aligned with a model of the object. In general, two-dimensional (2D) matching
under rigid transformations, i.e., translation and rotation, is usually applied in applications of AOI in which the model of
the object is generated from an image of the object. In order to account for rotation and multi-object detection, the similarity
measure should be calculated with rotated version of the template. However, this induces a significant increment in com-
putational cost because several similarity calculations considering the multi-object detection with rotated template version
must be done at each position of the detected region.

Based on correlation similarity measurement, the object model is systematically compared to the image using all allow-
able degrees of freedom of transformations in the matching phase. The most popular and robust correlation-based similarity
measurement is the Normalized Cross Correlation (NCC), which is used to evaluate the similarity between the template
image and the compared image. For template matching in AOI, the optimal matching results are indicated by the maximum
d., Taipei
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NCC correlation, and the NCC coefficient is confined in the range between �1 and 1. The NCC coefficient is equal to 1 when
there is perfect matching, and it also means the two compared images are same.

To conduct the NCC, a template in a scene image by sliding the template window on a pixel-by-pixel basis, and the
NCC coefficient is further computed. Therefore, it is a computationally intense problem that aims at finding an object in
a scene image. As is well known, template matching based on a full search correlation metric is exhaustively time-
consuming, so locating the best object in an image efficiently and quickly is always an important problem in matching
process [1].

To solve this problem, numerous approaches have been recently proposed to facilitate this task. Though the several effi-
cient methods are used, the computation burden is still too expensive to calculate the similarity between a template and a
block in search image. To simplify the computation procedure, an elimination strategy based on the upper bounds has been
applied in the full exhaustive search template matching procedure to rapidly skip the dissimilar candidates in monochrome
level images [2] and color images [3]. For the elimination strategy performance, tight bounds are proposed to speed up the
correlation computation in [4]. And the authors further propose a coarse-to-fine scheme and two stage techniques for large
and small templates based on a partial elimination algorithm [5]. Other efficient searches with the multilevel winner update
scheme [6], the branch-and-bound scheme [7] and weak classifiers [8] are also proposed to efficiently accelerate inference by
avoiding unnecessary calculation of the NCC metric.

The other optimal manner considered to achieve parallel computing is single instruction multiple data (SIMD) by parallel
computing CPUs. In the correlation-based similarity algorithm, SIMD executes repetitive arithmetic operations based on the
multiplication and accumulation computations. In previous studies [9,10], the SSE and SIMD instructions are used to quickly
calculate the multiplication and accumulation computations of NCC metric. Although efficient correlation computation
based on parallel computing methods is proposed, the computation burden dramatically increases when the objects contain
rotation and scaling of an image.

Although optimal methods based on the elimination strategy or other efficient search algorithms are proposed, these
approaches are unable to satisfy AOI applications if the objects have rotation and scaling. The NCC methods with rotated
angle are introduced to solve this problem [11,12]. In [11], the pre-computed score set from rotated templates to the original
template are used to recognize the target object by skipping unnecessary computation in the first step and then estimating
rotation angle of the target object in the refinement step. In the refinement step, piecewise linear models are used to eval-
uate the rotation angle by straight lines. However, its alignment accuracy depends on the rotation step angle in the pre-
computed score set. Furthermore, bi-cubic interpolation in the matching scores is used to obtain the sub-pixel level location
and rotation angle in both steps [12], and accuracy of rotation depends on the interval of the interpolation, so, it cannot guar-
antee the optimal results after the two step interpolations. In [13], a two stage method is proposed to locate the certain
object and estimate the rotation angle of the certain object. In the first stage, the rotation invariant method, ring-
projection transform, is used to recognize the possible locations of a template in the scene image. In the second stage, the
least second moment is employed to estimate the rotation angle. However, the computation burden is still high in matching
process by using ring-projection transform.

In contrast to there correlation-based methods, the gradient based NCC metric for detection of texture-less objects has
been proposed [14–16]. Here, the efficient template matching method only considers the image gradients to detect objects,
and further use a binary representation of the gradients. Then SIMD units are also applied to save the computations of gra-
dient based NCC metric. The iterative closest point (ICP) is further employed to optimize the pose estimation in [17], but the
ICP is impractical for the real-time application.

As mentioned above, many studies have proposed optimizing the template matching method, but these
methods cannot provide a precise result when the object involves rotation, translation and scaling in time-critical
applications.

In AOI applications, the geometric relationship between template image T and inspected image I is constricted, as shown
in Fig. 1. There usually exists an indicated inspection pattern (such as the diamond patterns shown in Fig. 1) in the images to
alleviate the computational burden for performing real-time template matching. Although the scaling variation between T
and I is small because the working distance between the lens and the inspected target is fixed in AOI applications, the scaling
still affects the accuracy of alignment results. Hence, the template matching problem for AOI can be formulated as finding

the optimal 2-D rigid transformation between T and I, constrained by translation vector T
*

, the rotation angle, and the scaling
factor.

This study is motivated by developing a real time correlation-based image alignment for monochrome and color
images by which the target objects can be detected under rigid transformations and scaling. The method presented
here not only can obtain the location of the template image within the inspection image but also can provide precise
information on rotation and scaling. In addition, the proposed methods become not only very accurate, but also effi-
ciently real-time oriented by a image pyramid search technique, Streaming SIMD Extensions 2 and sub-pixel accuracy
estimation.

The remaining sections of this paper are organized as follows: Section 2 reviews the normalized cross correlation method.
Section 3 presents the architecture of this proposed method. Section 4 presents the key processes in detail. Section 5 presents
the sub-pixel alignment. Various experimental results are then discussed in Section 6. Finally, the conclusions of this paper
are given in Section 7.
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Fig. 1. Geometric relationship between template image T and inspection image I.
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2. Review of Normalized Cross Correlation (NCC)

The correlation-based similarity measurement is applied to evaluate the degree of similarity between two compared
images. The NCC metric is generally applied for both monochrome and color images, and the definitions of NCC for both
monochrome and color images are first carried out [18]. In monochrome images, the NCC similarity coefficient can be used
for image alignment between the template image Tði; jÞ and the inspection image Iðx; yÞ, is defined as:
dgðx; yÞ ¼
Pm=2

i¼�m=2

Pn=2
j¼�n=2½Iðxþ i; yþ jÞ � Tði; jÞ� �m � n � lI � lTffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rI � rT
p ð1Þ
where the size of the template image ism� n; uT and uI are the gray level averages of the template image and the windowed
search image, respectively, i.e.,
lT ¼ 1
m � n

Xm=2

i¼�m=2

Xn=2
j¼�n=2

Tði; jÞ:Tði; jÞ

lI ¼
1

m � n
Xm=2

i¼�m=2

Xn=2
j¼�n=2

Iðxþ i; yþ jÞ

rI ¼
Xm=2

i¼�m=2

Xn=2
j¼�n=2

I2ðxþ i; yþ jÞ �m � n � l2
I

rT ¼
Xm=2

i¼�m=2

Xn=2
j¼�n=2

T2ði; jÞ �m � n � l2
T

dgðx; yÞ is the degree of similarity between template image and the compared window image at coordinates ðx; yÞ for gray
level images.

On the other hand, color images are typically represented with RGB vectors that correspond to the red (R), green (G), and
blue (B) channels. The extension of NCC similarity coefficient from gray level images to color images is defined by:
dcðx; yÞ ¼
Pm=2

i¼�m=2

Pn=2
j¼�n=2½Icðxþ i; yþ jÞ � Tcði; jÞ� � 3 �m � n � lIc � lTcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffirIc � rTc

p ð2Þ
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where
Tcði; jÞ ¼ ðTRði; jÞ; TGði; jÞ; TBði; jÞÞ
Icðxþ i; yþ jÞ ¼ ðIRðxþ i; yþ jÞ; IGðxþ i; yþ jÞ; IBðxþ i; yþ jÞÞ

lTc ¼
1

3 �m � n
Xm=2

i¼�m=2

Xn=2
j¼�n=2

½TRði; jÞ þ TGði; jÞ þ TBði; jÞ�

lIc ¼
1

3 �m � n
Xm=2

i¼�m=2

Xn=2
j¼�n=2

½IRðxþ i; xþ jÞ þ IGðxþ i; xþ jÞ þ IBðxþ i; xþ jÞ�

rIc ¼
Xm=2

i¼�m=2

Xn=2
j¼�n=2

kIcðxþ i; yþ jÞk2 � 3 �m � n � l2
Ic

rTc ¼
Xm=2

i¼�m=2

Xn=2
j¼�n=2

kTcði; jÞk2 � 3 �m � n � l2
Tc
The number of computations required to calculate the NCC similarity coefficient for a color image is three times that for a
gray-level image.

In NCC similarity measurement, the dot product term yielding the numerator of Eqs. (1) and (2) represents the cross cor-
relation between the template and the compared window image, and its computation turns out to be the bottleneck in sim-
ilarity measurement. In order to support both computation of speed and accuracy, the image pyramid search strategy, SIMD
units and refinement adjustment are developed.
3. Architecture of the proposed method

Fig. 2 shows an overview of the architecture, which consists of offline model generation and online matching process.
There are three input parameters defined by the user: the threshold of similarity Thmin; the detected range of rotation angle,
Rmin and Rmax; the detected range of scaling, Smin and Smax.

In offline model generation, the model is generated from the template image of the object to be matched in the online
matching process. Here Tl is the multi-resolution images; l is an index of image pyramid levels, L is the maximum index
of image pyramid levels; and ul;T ; rl;T and ul;Tc ; rl;Tc are the mean and the standard deviation of monochrome and color tem-
plate images, respectively, on image pyramid level l.

In the online matching process, the multi-resolution image of an inspection image, Il, is built by a fixed image pyramid
level L from the offline model generation. Then the NCC similarity measurement with the image pyramid search strategy
user defined parameters, the pre-calculated mean and standard deviation, of template to quickly find the objects. Mean-
while, the locations of objects with a similarity score exceeding the threshold of similarity Thmin are registered and stored

in object list. The translation estimation is performed by using vector T
*

between the centers of the target detected in T
and I. Essentially, the image pyramid search strategy begins with an exhaustive search on the highest level and to extract
a fixed number of objects from the best matches. Each object is then tracked down to the lowest level of the image pyramids,
and the objects with the scores that exceed the threshold of similarity Thmin are reported as the final match. The multi-
resolution NCC metrics based on this image pyramid search strategy are further described in Section 4.2. The sub-pixel align-
ment is done by fitting a second order polynomial to the similarity scores in a 3� 3� 3 neighborhood around the position
which has maximum score.
Fig. 2. Architecture of the proposed method.
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4. Object selection

The proposed object selection is coarse-to-fine image alignment method. In the coarse level, rotation, translation and
scaling of objects are detected by the image pyramid search strategy on a search image.
4.1. NCC similarity of rigid transformation

To consider the objects with the rigid transformation involved in NCC similarity coefficient calculation as shown in Fig. 2,
the transformed models are generated by rotating and scaling the compared window image. The similarity coefficient for
monochrome and color NCC metric are re-defined from Eq. (1) to be further used to estimate the pose parameters of each
candidate as:
dgðx; y; hÞ ¼
Pm=2

i¼�m=2

Pn=2
j¼�n=2½Iðxþ î; yþ ĵÞ � Tði; jÞ� �m � n � ll;I � ll;2

i¼�m=2

Pn=2
j¼�n=2I

2ðxþ î; yþ ĵÞ �m � n � l2
l;I

� �
� Pm=2

i¼�m=2

Pn=2
j¼�n=2T

2ði; jÞ �m � n � l2
l;T

� �r ð3Þ
where î
ĵ

� �
¼ S� cosðhÞ S�� sinðhÞ

S� sinðhÞ S� cosðhÞ
� �

i
j

� �
, h is rotation angle, S is scaling ratio, î and ĵ are the shift position in coordinate (x,

y) after rotation and scaling.
The gray level averages of the compared window image ll;I is modified by
ll;I ¼
1

m � n
Xm=2

i¼�m=2

Xn=2
j¼�n=2

Iðxþ î; yþ ĵÞ ð4Þ
Subsequently, extension of the NCC coefficient from monochrome images to color images is re-defined by
dcðx; y; hÞ ¼
Pm=2

i¼�m=2

Pn=2
j¼�n=2½Icðxþ î; yþ ĵÞ � Tcði; jÞ� � 3 �m � n � ll;Ic � ll;2

i¼�m=2

Pn=2
j¼�n=2kIcðxþ î; yþ ĵÞk2 � 3 �m � n � l2

l;Ic

� �
� Pm=2

i¼�m=2

Pn=2
j¼�n=2kTcði; jÞk2 � 3 �m � n � l2

l;Tc

� �r ð5Þ
where î and ĵ are the shift position in coordinate (x,y) after rotation u and scaling S; and the color average of the compared
window image ll;Ic is modified by
ll;Ic ¼
1

3 �m � n
Xm=2

i¼�m=2

Xn=2
j¼�n=2

½IRðxþ î; xþ ĵÞ þ IGðxþ î; xþ ĵÞ þ IBðxþ î; xþ ĵÞ� ð6Þ
Therefore, the objects with rotation, translation and scaling are first selected and located by the NCC metric, either Eq. (3) or
Eq. (5). Unfortunately, the computation burden dramatically increases when the objects contain rotation, translation and
scaling in an image. Hence, the image pyramid technique [19], the SIMD unit and the image pyramid search strategy are
applied to reduce the computational burden in the objects selection process, and the other basic idea of these techniques
quickly find the object and rapidly eliminate the dissimilarity object on each image pyramid level.
Fig. 3. Image pyramid search strategy.
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4.2. Image pyramid search strategy

The image pyramid search framework allows such a target search. The image pyramid hierarchically splits the objects
involving information of different image pyramid levels into disjoint subsets. By this strategy, large numbers of the objects
can be discarded early during the search process by noticing that their similarity coefficient are lower than the pre-defined
threshold of similarity Thmin. Here, the similarity coefficient between the template and the compared window image is com-
puted by Eq. (3) in monochrome image or Eq. (5) in color image.

Fig. 3 shows a case with three image pyramid levels study of search process. The search process starts at the objects on
the highest pyramid level. The object with the rotation h and scaling S at location (x,y), on the highest pyramid level is
searched by computing the similarity coefficient between the template and the compared window image. The object,
obj2;1 ¼ fh21; S21; ðx21; y21Þg, on level 2, which is indicated by a green circle, is searched in Fig. 3. Any object with similarity
score that exceeds the threshold of similarity Thmin is stored in the object list, and the Thmin should be set to the minimum
expected object visibility. On the next lower pyramid levels, the search process is based on the objects that have been found
on the previous pyramid level, such as the objects obj1;f1;2;3;4g that are denoted by a yellow circle are inherited from their par-
ent object obj2;1 with a 2� 2 search area on image pyramid level 1 and the search rotation angle and scaling ratio are also
inherited from obj2;1 ¼ fh21; S21; ðx21; y21Þg with small range of rotation and scaling. Only one candidate,
obj1;2 ¼ fh12; S12; ðx12; y12Þg, denoted by a red square, with similarity score exceeds the threshold of similarity Thmin. This pro-
cess is repeated until all match candidates have been tracked down to the lowest pyramid level. The final match result, obj0;6,
is denoted by a red solid square on the lowest level, as shown in Fig. 3. According to this search strategy, the Thmin is set to
skip unnecessary computations. This search strategy, it not only provides efficient matching for a single object, but also is
easily extended to multi-object matching.

4.2.1. SIMD units
The correlation-based image alignment method, NCC, executes repetitive operations based on summation, multiplication

and multiplication and accumulation (MAC) involved in the calculation of NCC metric. In particular, the calculation bottle-
neck of the NCC metric is the computation of the summations, multiplications and dot product terms. But the speed can be
significantly increased with the SSE2 (Streaming SIMD Extensions 2) instructions that parallel the computation of the NCC
metric by performing several multiplications and summations through a single SSE2 instruction. With the advantages of
SSE2, the SSE2 instructions are utilized to optimize evaluation of the NCC coefficient when an object has rotation, translation
and scaling. The SSE2 is an SIMD extension on the Intel SIMD processor supplementary instruction sets, where SIMD means
that the one instruction is applied to multiple data. SSE2 contains 8 registers, called XMM0 to XMM7, each with a width of
16 bytes. That implies that those registers contain 2, 4, 8 or 16 variables with a corresponding width of 8, 4, 2, or 1 byte.
Therefore, it can perform the operation on several variables in parallel. Next, Fig. 4 illustrates an example for computation
of the arithmetic operation of summation, multiplication and MAC. Here, __m128i is a data type for integer arithmetical
operations. In Fig. 4(a), _T and _I are variables of __m128i that operate in XMM registers, and they represent the data
involved in unpacked in word data type loaded from the two different data sets. The summation of _T and _I in SSE2 instruc-
tion is expressed as:
sum ¼ mm add epi16ð T; IÞ ð7Þ

After executing the eight summations between corresponding items, the summation result is stored into the destination reg-
ister _sum. In Fig. 4(b), _T and _I also represent the data involved in unpacked in word data type as loaded the two different
data sets. The multiplication of _T and _I in SSE2 instruction is expressed as:
mul ¼ mm mullo epi16ð T; IÞ ð8Þ

After executing the eight multiplication between corresponding items, the result is stored into the destination register _mul.
In Fig. 4(c), _T and _I also represent the data involved in unpacked word data type as loaded from the two different data sets.
The dot product of _T and _I in SSE2 instruction is expressed as:
madd ¼ mm madd epi16ð T; IÞ ð9Þ

After executing the eight multiplications and four summations between corresponding items, the MAC result is stored in the
destination register _madd.

This example shows that the summation and the MAC values of eight values are only executed as a single SSE2 instruc-
tion, and it can be computed very quickly by using SSE2 instructions.

4.2.2. Accelerating NCC calculation
As mentioned above, the calculation bottleneck of the NCC metric is the computation of the summations and dot product

terms. In NCCmetrics for monochrome and color images, Eqs. (3) and (5), the numerator and the denominator effectively use
the summation, multiplication and MAC arithmetical operations, such as mean values, and square values and the dot-
product terms. For instance, the size of template and compared windows images are 8� 8 pixel, the computation burden
of the summation, multiplication and MAC requires only 26, 58 and 58 instruction cycles by using Eqs. (7)–(9), respectively.



(a)

(b)

(c)
Fig. 4. Arithmetic operations of summation, multiplication and accumulation (MAC) in parallel instruction. (a) Arithmetic operation of summation. (b)
Arithmetic operation of multiplication. (c) Arithmetic operation of multiplication and accumulation (MAC).
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On the other hand, it requires 64, 640 and 703 instruction cycles without SSE2 instruction. Then for the similarity calculation
in this example, the computation instruction cycles are 469 and 3736, with or without SSE2. This shows the computation
advantage is about 8 times and also means the NCC metric can be computed very quickly using SSE2 instructions.
5. Sub-pixel alignment

In order to obtain higher accuracy with rotation h and translation T
!
estimation, higher accuracy can be achieved by the

idea of parabolic surface fitting. For this the initial transformed parameters are estimated in the final match on image pyra-
mid level 0. To refine the position and rotation, the facet model principle is applied to fit the second order polynomial to the
NCC similarity coefficient dðx; y; hÞ in a 3� 3� 3 neighborhood around the initial parameters. The neighborhood parameter
of the translation and rotation are �1 and �Da. Here, the dðx; y; hÞ represents the NCC similarity coefficient dgðx; y; hÞ if the
template image is monochrome; similarly, the dðx; y; hÞ represents the NCC similarity coefficient dcðx; y; hÞ if the template
image is in color. The model of the surface that fits the set of the data points is considered as the following general equation:
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dðx; y; hÞ ¼ k0x2 þ k1y2 þ k2h
2 þ k3xyþ k4xhþ k5yhþ k6xþ k7yþ k8hþ k9 ð10Þ
The solution for the coefficients k0; . . . ; k9 can be determined by solving the equation
Az ¼ s;
where
A¼

xdmax �1ð Þ2 ydmax
�1

� �2
hdmax �Dað Þ2 ðxdmax �1Þ�ðydmax

�1Þ ðxdmax �1Þ�ðhdmax �DaÞ ðydmax
�1Þ�ðhdmax �DaÞ ðxdmax �1Þ ðydmax

�1Þ ðhdmax �DaÞ 1

xdmaxð Þ2 ydmax
�1

� �2
hdmax �Dað Þ2 ðxdmax Þ�ðydmax

�1Þ ðxdmax Þ�ðhdmax �DaÞ ðydmax
�1Þ�ðhdmax �DaÞ ðxdmax Þ ðydmax

�1Þ ðhdmax �DaÞ 1

xdmax þ1ð Þ2 ydmax
�1

� �2
hdmax �Dað Þ2 ðxdmax þ1Þ�ðydmax

�1Þ ðxdmax þ1Þ�ðhdmax �DaÞ ðydmax
�1Þ�ðhdmax �DaÞ ðxdmax þ1Þ ðydmax

�1Þ ðhdmax �DaÞ 1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

xdmax þ1ð Þ2 ydmax
þ1

� �2
hdmax þDað Þ2 ðxdmax þ1Þ�ðydmax

þ1Þ ðxdmax þ1Þ�ðhdmax þDaÞ ðydmax
þ1Þ�ðhdmax þDaÞ ðxdmax þ1Þ ðydmax

þ1Þ ðhdmax þDaÞ 1

2
6666666664

3
7777777775

z¼ k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 1½ �T
and
s ¼

sðxdmax � 1; ydmax
� 1; hdmax � DaÞ

sðxdmax ; ydmax
� 1; hdmax � DaÞ

sðxdmax þ 1; ydmax
� 1; hdmax � DaÞ
..
.

sðxdmax þ 1; ydmax
þ 1; hdmax þ DaÞ

2
66666664

3
77777775
where xdmax ; ydmax
and hdmax are obtained from the final match on image pyramid level 0, respectively, as described in Sec-

tion 4.2. There are 10 unknown values in the coefficient matrix z, and 27 correlation data points are supplied by the 27 neigh-
bors surrounding the initial parameters ðxdmax ; ydmax

; hdmax Þ, as given in s. Since A is a rectangular matrix, a least-squares
regression must be used to solve z, and it can be re-written as:
ATAz ¼ ATs ð11Þ

Since ATA is a square matrix, the following equation yields the ten unknown parameters as:
z ¼ ATA
� ��1

ATs ð12Þ
The refinement can finally be obtained by analytically computing the maximum of Eq. (10). For calculating, Eq. (10) can be
re-written as:
dðx; y; hÞ ¼ x y h½ �
k0 1

2 k3
1
2 k4

1
2 k3 k1 1

2 k5
1
2 k4

1
2 k5 k2

2
64

3
75

x

y

h

2
64

3
75þ x y h½ �

k6
k7
k8

2
64

3
75þ k9 ð13Þ
Finally, the sub-pixel precise position and rotation is obtained by solving Eq. (14). The values for ðx; y; hÞ can be solved
rdðx; y; hÞ ¼
2k0 k3 k4
k3 2k1 k5
k4 k5 2k2

2
64

3
75

x

y

h

2
64

3
75þ

k6
k7
k8

2
64

3
75 ¼ 0 ð14Þ
Finally, the sub-pixel precise position and rotation of the maximum is obtained by solving Eq. (14) with respect to ðx; y; hÞ.
The values for ðx; y; hÞ can be solved by a 3� 3 linear equation system:
x�

y�

h�

2
64

3
75 ¼

2k0 k3 k4
k3 2k1 k5
k4 k5 2k2

2
64

3
75

�1 �k6
�k7
�k8

2
64

3
75 ð15Þ
The solution of Eq. (15), noted as ðx�; y�; h�Þ, are the results of ðx; y; hÞ with sub-pixel accuracy in the estimation. It should
be noted that since this is a closed form solution for the maximum value, the computation is deterministic. The accuracy of
this refinement will be further discussed in the following section.

6. Performance

In this section, a series of experimental results show the performance of the proposed method. Various images are used to
verify our algorithm in different experiments. As mentioned in Section 3, several parameters are designed for our proposed
method. The similarity threshold Thmin is a critical value, since it impacts the performance directly. There are two real world
AOI cases are shown in Fig. 11. Here, the certain objects should be recognized and the corresponding poses of the objects are
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further estimated. In those cases, the 1000 real captured images are obtained for setting the best Thmin. As a thumb of rule,
we set the Thmin as 0.75 to guarantee a recognition rate higher than 99.9%. In this case, the recognition rates are 99.9% and
100% for Fig. 11(a) and (b), respectively. Only one of the 36 objects in a specified capture image is failed to be recognized in
Fig. 11(a). The setting of other matching parameters, the rotation range, Rmax and Rmin, the scaling range, Smin and Smax are
dependent on the requirement of applications. In our experiment, the setting of all parameters is defined before the test.
The results are shown and discussed in the following subsections. To verify the proposed method, the results are compared
with Ref. [13] and the basic NCC template matching with rotation, called NCC_R. All of the experiments were performed in
Visual Studio 2008 on a personal computer (PC) with an Intel Core i7 3.4 GHz CPU and 8 GB of memory.
6.1. Rotation estimation

Fig. 5 shows the rotation test images, which are used for evaluating the rotation accuracy of the proposed rotation esti-
mation technique. For rotation accuracy estimation, the synthetic 72 rotated images are generated by rotating the original
image with rotation angles from 0

�
to 359

�
by 5

�
step increments, and the parameters of user defined, Thmin = 0.75,

Rmin ¼ �180; Rmax ¼ 180, Smin ¼ 1, Smax ¼ 1. The proposed method outperforms the others two methods in terms of rotation
accuracy under various rotation images. Detailed comparison results are shown in Table 1. To provide an overall accuracy
evaluation, two performance indices, the mean and the standard deviation, are used to quantitatively show the performance
that computed by 72 synthetic rotated images.

As seen in Table 1, the errors of mean, standard deviation in all test cases that are conducted by our proposed technique
are less than 0.218� and 0.307�. Even though the error of standard deviation of NCC_R in Fig. 5(b) and the errors of mean and
standard deviation of Ref. [13] in Fig. 5(c) are close to our proposed method. In other cases, our method is superior to other
competing methods. This indicates that proposed method is robust and can provide more reliable and accurate results, with-
out being restricted to any special cases.
6.2. Translation, rotation and scaling (TRS)

In this experiment, the test images involved translation, rotation and scaling used to verify the proposed method. Here,
only the proposed method was implemented. The test images are shown in Fig. 6 and the test parameters of this experiment
are listed in Table 2. In the TRS test, the rotation angle of test parameters are 30� and 45�, the scaling range of test parameters
is from 80% to 120%, increasing by steps of 10%. Those 20 test images are used to evaluate the performance. To evaluate the
performance for translation, the Euclidean distance between the original translation and the estimated translation is
employed to evaluate the result in translation, and the overall errors of the proposed method are shown in Table 5. And
the user-defined parameters are Thmin = 0.75, Rmin ¼ �180; Rmax ¼ 180, Smin ¼ 0:7; Smax ¼ 1:3. Detailed results are shown
in Tables 3 and 4.
(a) (b)

(c) (d)

Fig. 5. Images for rotation test. Sizes of (a–d) are 148� 68; 258� 196, 262� 224, 80� 90.



Table 1
Errors of rotation accuracy produced by the proposed method and the others comparative methods.

Proposed method Ref. [13] NCC_R

Fig. 5(a) Mean (�) 0.169 0.267 0.387
Std. dev. (�) 0.156 0.251 0.408

Fig. 5(b) Mean (�) 0.218 1.228 0.221
Std. dev. (�) 0.307 1.323 0.077

Fig. 5(c) Mean (�) 0.168 0.168 0.392
Std. dev. (�) 0.267 0.267 0.127

Fig. 5(d) Mean (�) 0.167 0.717 0.226
Std. dev. (�) 0.273 1.105 0.152

(a) Color case. Left: test image. Right: 
target image. 

(b) Monochrome case. Left: test image. 
Right: target image. 

Fig. 6. Test images for TRS test. The sizes of the TRS test color and monochrome images are 270� 270 and 519� 507. The sizes of the TRS test target image
are 148� 68 and 262� 224 corresponding to color and monochrome image. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 2
Parameters of TRS test.

Color case Monochrome case

Translation (132,137) (249,244)
Rotation 30� and 45� 30� and 45�
Scaling 80–120% 80–120%

Table 3
Matching results of Fig. 6(a) in TRS test.

Original scaling (%) Estimated

Rotation angle (�) Scaling (%) Translation (pixel, pixel)

80 30.004 82.1 (133.16,136.67)
44.904 79.8 (133.57,137.07)

90 30.045 89.9 (133.29,136.7)
44.95 89.9 (134.56,134.08)

100 30.263 100 (133.63,138.13)
44.624 100 (134.62,136.08)

110 30.054 109.5 (132.64,137.96)
44.444 108.3 (133.59,134.38)

120 30.036 119.6 (132.04,137.71)
44.444 119.6 (133.46,134.28)
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It can be seen in Table 5 that the mean rotation errors of color and monochrome cases are 0.2� and 0.11�, and the mean
scaling errors of color and monochrome cases are 0.55% and 0.37%, and then the errors of mean translation in each cases are
2.07 pixel and 1.93 pixel, respectively. For these results, the proposed method can provide precisely matching results when
the object simultaneously involved rotation, translation and scaling.



Table 4
Matching results of Fig. 6(b) in TRS test.

Original scaling (%) Estimated

Rotation angle (�) Scaling (%) Translation (pixel, pixel)

80 29.688 82 (251.26,246.87)
45.073 80.1 (250.49,246.03)

90 30.236 88.3 (251.93,244.57)
45.11 89.5 (250.1,244.15)

100 30.036 100 (248.89,243.47)
45.09 99.6 (249.19,243.21)

110 30.036 109.8 (248.78,242.93)
45.13 107.8 (249.44,241.82)

120 30.036 119.5 (248.44,242.73)
45.11 119.5 (249.12,241)

Table 5
Errors of the proposed method in TRS test.

Error type Fig. 6(a) Fig. 6(b)

Rotation (�) Mean (�) 0.2 0.11
Std. dev. (�) 0.2 0.08

Translation (pixel) Mean (pixel) 2.07 1.93
Std. dev. (pixel) 1 1.06

Scaling (%) Mean (%) 0.55 0.37
Std. dev. (%) 0.7 0.64

Case 2 

Case1 (a) (b) (c) (d) 

(a) (b) (c) (d) 

Fig. 7. Case 1 and Case 2 of real captured color test images. The sizes of real captured color images (b–d) are 800� 600, and the sizes of corresponding
pattern image (a) are 138� 85 and 209� 185. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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6.3. Efficiency in real captured images

The images are captured when an object with arbitrary moving and rotating for further experiments. To compare the
computational burden of the proposed method and the other comparative methods, Ref. [13] and NCC_R, the execution time
is used as a performance index. There are six kinds of captured images, color images and monochrome images that are
employed to evaluate the computation burden, and these are shown in Figs. 7–11 and corresponding case 1 to case 6. In this
experiment, the user-defined parameters are Thmin = 0.75, Rmin ¼ �180, Rmax ¼ 180, Smin ¼ 1; Smax ¼ 1. The computation
results are shown in Table 6.



Case3 

(a) (b) (c) (d) 

Fig. 8. Case 3 of real captured color test images. The sizes of real captured color images (b–d) are 1360� 1024, and the sizes of corresponding pattern image
(a) is 70� 70. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Case 4 

(a) (b) (c) (d) 

Case 5 

(a) (b) (c) (d) 

Fig. 9. Case 4 and Case 5 of real captured monochrome test images. The sizes of real captured monochrome images are 800� 600, and the sizes of
corresponding pattern image are 80� 101 and 141� 93.

Case 6 

(a) (b) (c) (d) 

Fig. 10. Case 6 of real captured monochrome test images. The sizes of real captured monochrome images (b–d) are 1360� 1024, and the sizes of
corresponding pattern image (a) is 70� 70.
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(a) LED color image. Left: test image.   
Right: pattern image.  

(b) Resistor monochrome image. Left:   
test image. Right: pattern image. 

Fig. 11. Multi-object test images. The sizes of real captured images are 800� 600, and the sizes of corresponding pattern image are 95� 55 and 55� 100.

Table 6
The efficiency compare with proposed method, Ref. [13] and NCC_R.

Execute time (ms)

Color Monochrome

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Proposed method 57.15 21.43 182.84 37.93 50.65 94.81
NCC_R 15848.92 446624.2 195262.2 34553.69 79072.63 74354.19
Ref. [13] 57063.82 129747.2 189988.5 15176.34 27818.6 32241.23

Table 7
The efficiency of multi-object detection.

Similarity ranking Execute time (ms)

1 5 10 15

LED image 74.29 74.35 74.2 74.25
Resistor Image 66.86 66.6 66.9 66.75
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From Table 6 it can be noted that proposed method is notably more efficiency than other compared methods. The com-
putation advantage range comparing to Ref. [13] and NCC_R is between 277 and 20,841 times. In median size of template
cases, Case 1, Case 2, Case 4 and Case 5, the computation advantages comparing to NCC_R are 227, 20,841, 910 and 1561
times. On the other hand, the computational advantages are 998, 6054, 400 and 549 times in monochrome cases, respec-
tively. For further comparison with small template cases, Case 3 and Case 6, with color and monochrome images, are used
to evaluate the performance. In small cases, the speed-up range is between 340 and 1067 times. Moreover, the proposed
method is always faster than the Ref. [13] and the NCC_R least over 340 times despite on small template size.

6.4. Multi-object detection

This experiment is used to verify the proposed method is still efficient whenmore objects are located in test image. Fig. 11
shows the multi-object test images. There are totally 36 and 18 objects located in Fig. 11(a) and (b), respectively. Here, the
parameters of user defined are Thmin = 0.75, Rmin = �180, Rmax = 180, Smin = 0.9 and Smax = 1.1. In this experiment, the top 1, 5,
10 and 15 similarity ranking of targets in Fig. 11(a) and (b) are selected for evaluation by the efficient process in multi-object
detection. The results of multi-object detection are shown in Table 7.

As shown in Table 7, it can be seen that the computational burden is not increased when detection number of object is
increased. In order to achieve multi-object detection, the all of possible candidates are tracked down to lowest image pyra-
mid and the possible candidates are sorted in each image pyramid levels. By using the proposed search strategy, the results
show that our method is efficient for multi-object detection.

After the analysis of various experiments, the proposed method is verified for use in the real word AOI applications
because of the convincing results.

7. Conclusion

This paper demonstrates the concept of an accelerating correlation-based image recognition and pose estimations on par-
allel computing CPUs. The image pyramid search scheme deploys a sufficient condition based on a predefined threshold to
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rapidly skip unsatisfactory candidates. The SIMD is also demonstrated how to take advantage of the modern CPUs to calcu-
late similarity measure. They can dramatically reduce the computation burden of the similarity measure in color and mono-
chrome images. Experimental results that the rotation accuracy is smaller than 0.2 degree and the computation advantage is
over 227 times show the proposed method is very accurate and efficient when dealing with the correlation-based template
matching in real-time automatic optical inspection.
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