

ANDROID
SECURITY

ATTACKS	AND	DEFENSES

ABHISHEK	DUBEY	|	ANMOL	MISRA

CRC	Press
Taylor	&	Francis	Group
6000	Broken	Sound	Parkway	NW,	Suite	300
Boca	Raton,	FL	33487-2742

©	2013	by	Taylor	&	Francis	Group,	LLC
CRC	Press	is	an	imprint	of	Taylor	&	Francis	Group,	an	Informa	business	No	claim	to	original	U.S.
Government	works
Version	Date:	20130403

International	Standard	Book	Number-13:	978-1-48220986-0	(eBook	-	ePub)

This	book	contains	information	obtained	from	authentic	and	highly	regarded	sources.	Reasonable
efforts	have	been	made	 to	publish	 reliable	data	and	 information,	but	 the	author	and	publisher
cannot	 assume	 responsibility	 for	 the	 validity	 of	 all	materials	 or	 the	 consequences	 of	 their	 use.
The	 authors	 and	 publishers	 have	 attempted	 to	 trace	 the	 copyright	 holders	 of	 all	 material
reproduced	in	this	publication	and	apologize	to	copyright	holders	if	permission	to	publish	in	this
form	has	not	been	obtained.	If	any	copyright	material	has	not	been	acknowledged	please	write
and	let	us	know	so	we	may	rectify	in	any	future	reprint.

Except	 as	 permitted	 under	 U.S.	 Copyright	 Law,	 no	 part	 of	 this	 book	 may	 be	 reprinted,
reproduced,	transmitted,	or	utilized	in	any	form	by	any	electronic,	mechanical,	or	other	means,
now	 known	 or	 hereafter	 invented,	 including	 photocopying,	microfilming,	 and	 recording,	 or	 in
any	information	storage	or	retrieval	system,	without	written	permission	from	the	publishers.

For	 permission	 to	 photocopy	 or	 use	 material	 electronically	 from	 this	 work,	 please	 access
www.copyright.com	 (http://www.copyright.com/)	 or	 contact	 the	 Copyright	 Clearance	 Center,
Inc.	 (CCC),	 222	 Rosewood	 Drive,	 Danvers,	 MA	 01923,	 978-750-8400.	 CCC	 is	 a	 not-for-profit
organization	that	provides	licenses	and	registration	for	a	variety	of	users.	For	organizations	that
have	 been	 granted	 a	 photocopy	 license	 by	 the	 CCC,	 a	 separate	 system	 of	 payment	 has	 been
arranged.

Trademark	Notice:	 Product	 or	 corporate	 names	may	be	 trademarks	 or	 registered	 trademarks,
and	are	used	only	for	identification	and	explanation	without	intent	to	infringe.

Visit	the	Taylor	&	Francis	Web	site	at
http://www.taylorandfrancis.com

http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com

and	the	CRC	Press	Web	site	at
http://www.crcpress.com

http://www.crcpress.com

Dedication

To	Mom,	Dad,	Sekhar,	and	Anupam
-	Anmol

To	Maa,	Papa,	and	Anubha
-	Abhishek

Contents

Dedication

Foreword

Preface

About	the	Authors

Acknowledgments

Chapter	1	Introduction
1.1			Why	Android
1.2			Evolution	of	Mobile	Threats
1.3			Android	Overview
1.4			Android	Marketplaces
1.5			Summary

Chapter	2	Android	Architecture
2.1			Android	Architecture	Overview

2.1.1			Linux	Kernel
2.1.2			Libraries
2.1.3			Android	Runtime
2.1.4			Application	Framework
2.1.5			Applications

2.2			Android	Start	Up	and	Zygote
2.3			Android	SDK	and	Tools

2.3.1			Downloading	and	Installing	the	Android	SDK	29

2.3.2			Developing	with	Eclipse	and	ADT
2.3.3			Android	Tools
2.3.4			DDMS
2.3.5			ADB
2.3.6			ProGuard

2.4			Anatomy	of	the	“Hello	World”	Application
2.4.1			Understanding	Hello	World

2.5			Summary

Chapter	3	Android	Application	Architecture
3.1			Application	Components

3.1.1			Activities
3.1.2			Intents
3.1.3			Broadcast	Receivers
3.1.4			Services
3.1.5			Content	Providers

3.2			Activity	Lifecycles
3.3			Summary

Chapter	4	Android	(in)Security
4.1			Android	Security	Model
4.2			Permission	Enforcement—Linux
4.3			Android’s	Manifest	Permissions

4.3.1			Requesting	Permissions
4.3.2			Putting	It	All	Together

4.4			Mobile	Security	Issues
4.4.1			Device
4.4.2			Patching
4.4.3			External	Storage
4.4.4			Keyboards

4.4.5			Data	Privacy
4.4.6			Application	Security
4.4.7			Legacy	Code

4.5			Recent	Android	Attacks—A	Walkthrough
4.5.1			Analysis	of	DroidDream	Variant
4.5.2			Analysis	of	Zsone
4.5.3			Analysis	of	Zitmo	Trojan

4.6			Summary

Chapter	5	Pen	Testing	Android
5.1			Penetration	Testing	Methodology

5.1.1			External	Penetration	Test
5.1.2			Internal	Penetration	Test
5.1.3			Penetration	Test	Methodologies
5.1.4			Static	Analysis
5.1.5			Steps	to	Pen	Test	Android	OS	and	Devices	100

5.2			Tools	for	Penetration	Testing	Android
5.2.1			Nmap
5.2.2			BusyBox
5.2.3			Wireshark
5.2.4			Vulnerabilities	in	the	Android	OS

5.3			Penetration	Testing—Android	Applications
5.3.1			Android	Applications
5.3.2			Application	Security

5.4			Miscellaneous	Issues
5.5			Summary

Chapter	6	Reverse	Engineering	Android	Applications
6.1			Introduction
6.2			What	is	Malware?

6.3			Identifying	Android	Malware
6.4			Reverse	Engineering	Methodology	for	Android	Applications
6.5			Summary

Chapter	7	Modifying	the	Behavior	of	Android	Applications	without
Source	Code

7.1			Introduction
7.1.1			To	Add	Malicious	Behavior
7.1.2			To	Eliminate	Malicious	Behavior
7.1.3			To	Bypass	Intended	Functionality

7.2			DEX	File	Format
7.3			Case	Study:	Modifying	the	Behavior	of	an	Application
7.4			Real	World	Example	1—Google	Wallet	Vulnerability	161
7.5			Real	World	Example	2—Skype	Vulnerability	(CVE-2011-1717)
7.6			Defensive	Strategies

7.6.1			Perform	Code	Obfuscation
7.6.2			Perform	Server	Side	Processing
7.6.3			Perform	Iterative	Hashing	and	Use	Salt
7.6.4			Choose	the	Right	Location	for	Sensitive	Information
7.6.5			Cryptography
7.6.6			Conclusion

7.7			Summary

Chapter	8	Hacking	Android
8.1			Introduction
8.2			Android	File	System

8.2.1			Mount	Points
8.2.2			File	Systems
8.2.3			Directory	Structure

8.3			Android	Application	Data
8.3.1			Storage	Options

8.3.2			datadata
8.4			Rooting	Android	Devices
8.5			Imaging	Android
8.6			Accessing	Application	Databases
8.7			Extracting	Data	from	Android	Devices
8.8			Summary

Chapter	9	Securing	Android	for	the	Enterprise	Environment
9.1			Android	in	Enterprise

9.1.1			Security	Concerns	for	Android	in	Enterprise
9.1.2			End-User	Awareness
9.1.3			Compliance/Audit	Considerations
9.1.4			Recommended	Security	Practices	for	Mobile	Devices

9.2			Hardening	Android
9.2.1			Deploying	Android	Securely
9.2.2			Device	Administration

9.3			Summary

Chapter	10	Browser	Security	and	Future	Threat	Landscape
10.1			Mobile	HTML	Security

10.1.1			Cross-Site	Scripting
10.1.2			SQL	Injection
10.1.3			Cross-Site	Request	Forgery
10.1.4			Phishing

10.2			Mobile	Browser	Security
10.3			10.2.1	Browser	Vulnerabilities
10.4			The	Future	Landscape

10.3.1			The	Phone	as	a	Spying/Tracking	Device
10.3.2	 	 	 Controlling	 Corporate	 Networks	 and	 Other	 Devices

through	Mobile	Devices
10.3.3			Mobile	Wallets	and	NFC

10.4			Summary

Appendix	A

Appendix	B
B.1	Views
B.2	Code	Views
B.3	Keyboard	Shortcuts
B.4	Options

Appendix	C

Glossary

Index

Foreword

Ever-present	 cyber	 threats	have	been	 increasing	against	mobile	devices
in	recent	years.	As	Android	emerges	as	the	leading	platform	for	mobile
devices,	 security	 issues	associated	with	 the	Android	platform	become	a
growing	concern	for	personal	and	enterprise	customers.	Android	Security:
Attacks	and	Defenses	provides	the	reader	with	a	sense	of	preparedness	by
breaking	down	the	history	of	Android	and	its	features	and	addressing	the
methods	 of	 attack,	 ultimately	 giving	 professionals,	 from	 mobile
application	 developers	 to	 security	 architects,	 an	 understanding	 of	 the
necessary	groundwork	for	a	good	defense.
In	 the	 context	 and	 broad	 realm	 of	mobility,	 Dubey	 and	Misra	 bring

into	focus	the	rise	of	Android	to	the	scene	and	the	security	challenges	of
this	particular	platform.	They	go	beyond	the	basic	security	concepts	that
are	already	readily	available	to	application	developers	to	tackle	essential
and	advanced	topics	such	as	attack	countermeasures,	 the	integration	of
Android	 within	 the	 enterprise,	 and	 the	 associated	 regulatory	 and
compliance	risks	to	an	enterprise.	By	reading	this	book,	anyone	with	an
interest	in	mobile	security	will	be	able	to	get	up	to	speed	on	the	Android
platform	and	will	gain	a	strategic	perspective	on	how	to	protect	personal
and	enterprise	customers	from	the	growing	threats	to	mobile	devices.	It
is	 a	 must-have	 for	 security	 architects	 and	 consultants	 as	 well	 as
enterprise	security	managers	who	are	working	with	mobile	devices	and
applications.

Dr.	Dena	Haritos	Tsamitis
Director,	Information	Networking	Institute	(INI)

Director	of	Education,	Training,	and	Outreach,	CyLab
Carnegie	Mellon	University

Dr.	 Dena	 Haritos	 Tsamitis	 heads	 the	 Information	 Networking	 Institute
(INI),	 a	 global,	 interdisciplinary	 department	 within	 Carnegie	 Mellon
University’s	 College	 of	 Engineering.	 She	 oversees	 the	 INI’s	 graduate

programs	 in	 information	 networking,	 information	 security	 technology
and	management,	and	information	technology.	Under	her	leadership,	the
INI	 expanded	 its	 programs	 to	 global	 locations	 and	 led	 the	 design	 of
bicoastal	 programs	 in	 information	 security,	 mobility,	 and	 software
management	 in	 collaboration	 with	 Carnegie	 Mellon’s	 Silicon	 Valley
campus.	Dena	also	directs	education,	training	and	outreach	for	Carnegie
Mellon	 CyLab.	 She	 serves	 as	 the	 principal	 investigator	 on	 two
educational	programs	in	information	assurance	funded	by	the	NSF—the
CyberCorps	 Scholarship	 for	 Service	 and	 the	 Information	 Assurance
Capacity	Building	Program—and	she	is	also	the	principal	investigator	on
the	 DOD-funded	 Information	 Assurance	 Scholarship	 Program.	 She
received	 the	 2012	 Barbara	 Lazarus	 Award	 for	 Graduate	 Student	 and
Junior	Faculty	Mentoring	from	Carnegie	Mellon	and	the	2008	Women	of
Influence	 Award,	 presented	 by	 Alta	 Associates	 and	 CSO	Magazine,	 for
her	achievements	in	information	security	and	education.

Preface

The	launch	of	the	Apple	iPhone	in	2007	started	a	new	era	in	the	world
of	 mobile	 devices	 and	 applications.	 Google’s	 Android	 platform	 has
emerged	as	a	serious	player	in	the	mobile	devices	market,	and	by	2012,
more	 Android	 devices	 were	 being	 sold	 than	 iPhones.	 With	 mobile
devices	 becoming	 mainstream,	 we	 have	 seen	 the	 evolution	 of	 threats
against	 them.	 Android’s	 popularity	 has	 brought	 it	 attention	 from	 the
“bad	guys,”	and	we	have	seen	attacks	against	the	platform	on	the	uptick.

About	the	Book
In	 this	 book,	we	 analyze	 the	Android	platform	and	 applications	 in	 the
context	of	 security	concerns	and	 threats.	This	book	 is	 targeted	 towards
anyone	 who	 is	 interested	 in	 learning	 about	 Android	 security	 or	 the
strengths	 and	weaknesses	 of	 this	 platform	 from	 a	 security	 perspective.
We	 describe	 the	 Android	 OS	 and	 application	 architecture	 and	 then
proceed	 to	 review	security	 features	provided	by	 the	platform.	We	 then
describe	 methodology	 for	 analyzing	 and	 security	 testing	 the	 platform
and	 applications.	 Towards	 the	 end,	 we	 cover	 implications	 of	 Android
devices	in	the	enterprise	environment	as	well	as	steps	to	harden	devices
and	applications.	Even	though	the	book	focuses	on	the	Android	platform,
many	 of	 these	 issues	 and	 principles	 can	 be	 applied	 to	 other	 leading
platforms	as	well.

Assumptions
This	book	assumes	that	the	reader	is	familiar	with	operating	systems	and
security	 concepts.	 Knowledge	 of	 penetration	 testing,	 threat	 modeling,
and	 common	 Web	 application	 and	 browser	 vulnerabilities	 is
recommended	but	not	required.

Audience

Our	 book	 is	 targeted	 at	 security	 architects,	 system	 administrators,
enterprise	 SDLC	 managers,	 developers,	 white-hat	 hackers,	 penetration
testers,	 IT	 architects,	 CIOs,	 students,	 and	 regular	 users.	 If	 you	want	 to
learn	 about	 Android	 security	 features,	 possible	 attacks	 and	 means	 to
prevent	 them,	 you	 will	 find	 various	 chapters	 in	 this	 book	 as	 a	 useful
starting	point.	Our	goal	is	to	provide	readers	with	enough	information	so
that	 they	 can	 quickly	 get	 up	 and	 running	 on	 Android,	 with	 all	 of	 the
basics	 of	 the	 Android	 platform	 and	 related	 security	 issues	 under	 their
belts.	 If	 you	 are	 an	 Android	 hacker,	 or	 if	 you	 are	 very	well	 versed	 in
security	concerns	of	the	platform,	this	book	is	not	for	you.

Support
Errata	and	support	for	this	book	are	available	on	the	CRC	Press	website
and	 on	 our	 site:	 www.androidinsecurity.com.	 Our	 site	 will	 also	 have
downloads	 for	 applications	 and	 tools	 created	 by	 the	 user.	 Sample
applications	created	by	 the	authors	are	available	on	our	website	under
the	 Resource	 section.	 Readers	 should	 download	 apk	 files	 from	 our
website	and	use	them	in	conjunction	with	the	text,	wherever	needed.
Username:	android
Password:	ISBN-10	number	of	the	book—1439896461

Structure
Our	book	is	divided	into	10	chapters.	Chapter	1	provides	an	introduction
to	 the	mobile	 landscape.	Chapters	2	and	3	 introduce	 the	 reader	 to	 the
Android	OS	and	application	architecture,	respectively.	Chapter	4	delves
into	 Android	 security	 features.	 Chapters	 5	 through	 9	 cover	 various
aspects	 of	 security	 for	 the	Android	 platform	 and	 applications.	 The	 last
chapter	 looks	 at	 the	 future	 landscape	 of	 threats.	 Appendixes	 A	 and	 B
(found	 towards	 the	 end	of	 the	book)	 talk	 about	 the	 severity	 ratings	 of
Android	permissions	and	the	JEB	Decompiler,	respectively.	Appendix	C
shows	 how	 to	 crack	 SecureApp.apk	 from	 Chapter	 7	 and	 is	 available
online	on	the	book’s	website	(www.androidinsecurity.com).

http://www.androidinsecurity.com
http://www.androidinsecurity.com

About	the	Authors

Anmol	Misra
Anmol	is	a	contributing	author	of	the	book	Defending	the	Cloud:	Waging
War	 in	 Cyberspace	 (Infinity	 Publishing,	 December	 2011).	 His	 expertise
includes	 mobile	 and	 application	 security,	 vulnerability	 management,
application	 and	 infrastructure	 security	 assessments,	 and	 security	 code
reviews.
He	 is	 currently	 Program	 Manager	 of	 the	 Critical	 Business	 Security

External	(CBSE)	team	at	Cisco.	The	CBSE	team	is	part	of	the	Information
Security	 Team	 (InfoSec)	 at	 Cisco	 and	 is	 responsible	 for	 the	 security	 of
Cisco’s	Cloud	Hosted	Services.	Prior	to	joining	Cisco,	Anmol	was	a	Senior
Consultant	with	Ernst	&	Young	LLP.	In	his	role,	he	advised	Fortune	500
clients	 on	 defining	 and	 improving	 Information	 Security	 programs	 and
practices.	 He	 helped	 large	 corporations	 to	 reduce	 IT	 security	 risk	 and
achieve	regulatory	compliance	by	improving	their	security	posture.
Anmol	 holds	 a	 master’s	 degree	 in	 Information	 Networking	 from

Carnegie	 Mellon	 University.	 He	 also	 holds	 a	 Bachelor	 of	 Engineering
degree	in	Computer	Engineering.	He	served	as	Vice	President	of	Alumni
Relations	 for	 the	 Bay	 Area	 chapter	 of	 the	 Carnegie	 Mellon	 Alumni
Association.
In	 his	 free	 time,	 Anmol	 enjoys	 long	 walks	 on	 the	 beaches	 of	 San

Francisco.	 He	 is	 a	 voracious	 reader	 of	 nonfiction	 books—especially,
history	and	economics—and	is	an	aspiring	photographer.

Abhishek	Dubey
Abhishek	 has	 a	 wide	 variety	 of	 experience	 in	 information	 security,
including	 reverse	 engineering,	 malware	 analysis,	 and	 vulnerability
detection.	 He	 is	 currently	 working	 as	 a	 Lead/Senior	 Engineer	 of	 the
Security	 Services	 and	Cloud	Operations	 team	at	Cisco.	 Prior	 to	 joining

Cisco,	Abhishek	was	Senior	Researcher	in	the	Advanced	Threat	Research
Group	at	Webroot	Software.
Abhishek	 holds	 a	 master’s	 degree	 in	 Information	 Security	 and
Technology	 Management	 from	 Carnegie	 Mellon	 University	 and	 also
holds	 a	 B.Tech	 degree	 in	 Computer	 Science	 and	 Engineering.	 He	 is
currently	pursuing	 studies	 in	Strategic	Decisions	and	Risk	Management
at	 Stanford	 University.	 He	 has	 served	 as	 Vice	 President	 of	 Operations
and	Alliances	 for	 the	Bay	Area	chapter	of	 the	Carnegie	Mellon	Alumni
Association.	This	alumni	chapter	is	5,000	students	strong.
In	 his	 free	 time,	 Abhishek	 is	 an	 avid	 distance	 runner	 and
photographer.	He	also	enjoys	rock	climbing	and	being	a	foodie.

Acknowledgments

Writing	a	book	 is	never	a	solo	project	and	 is	not	possible	without	help
from	 many	 people.	 First,	 we	 would	 like	 to	 thank	 our	 Editor,	 John
Wyzalek	at	CRC	Press,	for	his	patience	and	constant	commitment	to	the
project.	We	would	also	 like	 to	 thank	the	production	team	at	Derryfield
Publishing—Theron	 Shreve	 and	 Marje	 Pollack.	 Theron	 has	 guided	 us
from	start	 to	 finish	during	the	production	of	 this	book.	Marje	has	been
patient	 through	 our	many	 revisions	 and	 has	 helped	 us	 to	 convert	 our
“write-ups”	into	the	exciting	book	you	have	in	your	hands.
We	 would	 like	 to	 thank	 Dena	 Tsamtis	 (Director,	 Information

Networking	 Institute,	 Director	 of	 Education,	 Training,	 and	 Outreach,
CyLab,	 Carnegie	 Mellon	 University),	 James	 Ransome	 (Senior	 Director,
Product	Security,	McAfee	 Inc),	 and	Gary	Bahadur	 (CEO	at	Razient)	 for
their	 help	 and	 guidance	 over	 the	 years.	 We	 would	 also	 like	 to	 thank
Nicolas	Falliere	(Founder,	JEB	Decompiler)	for	giving	us	early	access	to
the	JEB	Decompiler.	Many	others	have	helped	us	along	the	way,	as	well,
but	it	is	not	possible	to	list	all	of	their	names	here.

-	Anmol	&	Abhishek

I	would	like	to	take	this	opportunity	to	express	my	profound	gratitude	to
my	mentors	David	Veach	(Senior	Manager	at	Cisco)	and	Mukund	Gadgil
(Vice	 President	 of	 Engineering-Upheels.com)	 for	 their	 continued	 and
exemplary	guidance.	I	have	learned	so	much	from	both	of	you	over	the
years.	I	couldn’t	be	more	thankful	to	my	friends	Anuj,	Varang,	Erica,	and
Smita	 who	 have	 constantly	 pushed	 me	 over	 the	 years	 to	 achieve	 my
goals	and	who	have	been	there	with	me	through	thick	and	thin.	You	all
are	“Legendary	Awesome”!	Lastly,	I	would	like	thank	Maa,	Papa,	and	my
sister,	Anubha,	for	your	unquestioned	support	in	everything	I	have	done.
All	my	achievements	in	life	are	because	of	you.

-	Abhishek

http://Engineering-Upheels.com

I	would	like	to	thank	Bill	Vourthis	(Senior	Manager	at	Ernst	&	Young),
David	 Ho	 (Manager	 at	 Cisco),	 and	 Vinod	 (Jay)	 Jayaprakash	 (Senior
Manager	at	Ernst	&	Young)	for	their	guidance	and	encouragement	over
the	 years.	 I	would	 also	 like	 to	 give	my	 heartfelt	 thanks	 to	my	mentor
Nitesh	Dhanjani	(Executive	Director	at	Ernst	&	Young)	for	his	guidance
and	encouragement.	 I	would	 like	 to	 thank	my	 family—Mom,	Dad,	 and
my	 brothers,	 Sekhar	 and	 Anupam—for	 supporting	 me	 in	 all	 my
endeavors	and	for	just	being	there.	Mom,	Dad	–	You	are	the	backbone	of
our	family	and	all	I	have	achieved	is	because	of	you.	It	has	not	been	easy
to	put	up	with	my	intense	schedule.	Now	that	I	have	finished	this	book,	I
promise	I	will	be	timely	in	replying	to	calls	and	e-mails.

-	Anmol

Chapter	1

Introduction

In	this	chapter,	we	introduce	the	reader	to	the	mobile	devices	landscape
and	 demonstrate	 why	 Android	 security	 matters.	 We	 analyze	 the
evolution	of	mobile	security	threats,	 from	basic	phones	to	smartphones
(including	ones	running	the	Android	platform).	We	move	on	to	introduce
Android	history,	releases,	and	marketplaces	for	Android	applications.

1.1	Why	Android
The	 number	 of	mobile	 and	 Internet	 users	 on	mobile	 devices	 has	 been
skyrocketing.	 If	 statistics	 are	 any	 indication,	 the	 adoption	 of	 mobile
devices	 in	 emerging	 and	 advanced	 economies	 has	 just	 started	 and	 is
slated	for	huge	growth	in	the	next	decade	(see	Figure	1.1).
According	 to	 data	 available	 through	Wikipedia	 (see	 Figures	 1.2	 and

1.3),	 the	Android	 platform	 runs	 on	 64%	of	 smartphones	 and	 on	 about
23.5%	 of	 all	 phones
(http://en.wikipedia.org/wiki/Mobile_operating_system).	 Approximately
37%	of	all	phones	today	are	smartphones,	leaving	a	whopping	60%+	of
phones	 open	 to	 future	 adoption.	 Given	 that	 Android’s	 share	 of	 the
smartphone	 market	 has	 been	 rising	 steadily,	 the	 Android	 platform	 is
slated	 for	 similar	 growth	 in	 the	 near	 future.	 Emerging	 markets	 and
advanced	economies	alike	are	slated	for	increased	smartphone	adoption,
with	 Android	 at	 the	 heart	 of	 it.	 Even	 during	 the	 recent	 economic
downturn,	 the	 number	 of	 smartphone	 users	 continued	 to	 increase
steadily.	 Mobile	 devices	 will	 form	 the	 majority	 of	 Internet-accessing
devices	 (dwarfing	 servers	 and	 personal	 computers	 [PCs])	 in	 the	 near
future.

http://en.wikipedia.org/wiki/Mobile_operating_system

Figure	1.1	Basic	vs.	Smartphone	Ownership	in	the	United	States

Figure	1.2	Global	Smartphone	Adoption	(Source:
http://en.wikipedia.org/wiki/Mobile_operating_system)

Until	 recently,	 smartphones	 were	 not	 “must-have”	 items	 and	 were
considered	 only	 for	 tech-savvy	 or	 gadget	 geeks.	 The	 first	 Windows
handheld	devices	(Windows	CE)	were	introduced	in	1996.	The	first	true
mobile	 smartphone	 arrived	 in	 the	 year	 2000,	when	 the	 Ericsson	 R380
was	 released,	 and	 it	 featured	 Nokia’s	 Symbian	 operating	 system.	 For
awhile,	 there	 were	 cell	 phones	 and	 PDAs—separate	 devices	 (anyone
remember	iPaq?).
In	2002,	both	Microsoft	and	RIM	released	smartphones	(Windows	CE
and	Blackberry),	respectively.	While	corporate	adoption	picked	up	after
the	release	of	the	Blackberry,	the	end-user	market	really	started	picking
up	after	the	introduction	of	Apple’s	iPhone,	in	2007.	By	then,	RIM	had	a
majority	 share	of	 the	corporate	market.	Around	 the	 same	 time,	Google
decided	to	 jump	into	the	mobile	device	market.	 If	mobile	devices	were
going	 to	 represent	most	user	activity	 in	 the	 future,	 it	meant	 that	users
would	be	using	them	for	searching	the	Internet—a	core	Google	service.
Advertising	 dollars	 would	 also	 be	 increasingly	 focused	 on	 mobile

http://en.wikipedia.org/wiki/Mobile_operating_system

devices,	as	mobile	devices	allow	for	much	more	targeted	ads.	Searching
“pizza”	 on	 a	 desktop/laptop	 can	 provide	 information	 about	 a	 user’s
location	 through	 the	 IP	 address,	 among	 other	 information.	 However,
with	 a	 cell	 phone,	 the	 user’s	 GPS	 location	 can	 be	 used	 to	 display
“relevant	ads”	of	places	nearby.
The	 Open	 Handset	 Alliance	 (OHA)	 made	 its	 debut	 in	 2007,	 and	 in

2008,	Android	was	released.
The	computational	power	of	mobile	devices	has	grown	exponentially

(see	Figure	1.4).	The	HTC	EVO	4G	phone	has	the	Qualcomm	8650	1	Ghz
processor,	1	GB	ROM	(used	for	system	software),	and	512	MB	of	RAM.
In	addition,	 it	has	802.11b/g,	Bluetooth	capability,	an	8.0	MP	camera,
GPS,	and	HDMI	output.	The	phone	specifications	are	powerful	enough	to
beat	a	desktop	configuration	 for	a	 typical	user	a	 few	years	ago.	Again,
this	trend	is	likely	to	continue.

Figure	1.3	Global	Smartphone	Sales	Q1	(Source:

http://en.wikipedia.org/wiki/Mobile_operating_system)

Figure	1.4	Comparison	of	Apple	iPhone,	DroidX,	and	an	Old	PC

Android’s	share	of	mobile	devices	has	been	increasing	at	a	steady	rate
(see	 Figure	 1.5).	 Android	 devices	 surpassed	 iPhone	 sales	 by	 2011.	 By
mid-2011,	 there	 were	 about	 half	 a	 million	 Android	 device	 activations
per	day	(see	Figure	1.6).	Figure	1.7	shows	the	number	of	carriers	as	well
as	manufacturers	that	have	turned	to	Android.
After	the	launch	of	the	iPad,	many	manufacturers	turned	to	Android	as
the	 platform	 for	 their	 offerings.	 The	 Samsung	 Galaxy	 Tab	 is	 a	 perfect
example	 of	 this.	 Other	 manufacturers	 (e.g.,	 Dell,	 Toshiba)	 have	 also
started	offering	tablets	with	Android	as	their	platform	(see	Figure	1.8).	A
trend	 is	 likely	 to	 continue	 wherein	 the	 tablet	 market	 uses	 two	 major
platforms—IOS	and	Android.

1.2	Evolution	of	Mobile	Threats
As	mobile	 devices	 have	 evolved	 from	 basic	 to	 smartphones,	 threats	 to
mobile	 devices	 have	 evolved	 in	 parallel.	 Smartphones	 have	 a	 larger
attack	 surface	 compared	 to	 basic	 phones	 in	 the	 past.	 In	 addition,	 the
usage	patterns	of	mobile	devices	have	also	evolved.	Basic	phones	were
primarily	used	 for	 text	messaging	and	phone	 calls.	Today	 smartphones
are	 used	 for	 everything	 one	 can	 imagine	 using	 a	 computer	 for—

http://en.wikipedia.org/wiki/Mobile_operating_system

performing	 routine	 banking	 transactions,	 logging	 onto	 Facebook,
directions,	maintaining	health	and	exercise	records,	and	so	forth.

Figure	1.5	Mobile	OS	Market	Share

Figure	1.6	Number	of	Android	Activations	per	Day	(Jan.	11–Dec.	11)

Figure	1.7	Android	Phones	for	Major	Carriers

For	 a	 long	 time,	 Nokia’s	 Symbian	 OS	 was	 the	 primary	 target	 of
attackers	 due	 to	 its	 penetration	 in	 the	 mobile	 market.	 As	 the	 market
share	 of	 Symbian	 continues	 to	 decline	 and	 there	 is	 a	 corresponding
increase	 in	 the	 share	 of	 Android	 devices	 and	 iPhones,	 attackers	 are
targeting	these	platforms	today.
Symbian	 is	 still	 the	 leading	 platform	 for	 phones	 outside	 the	 United
States	 and	 will	 be	 a	 target	 of	 attackers	 in	 the	 foreseeable	 future.
However,	 Android	 and	 iPhone	 attacks	 are	 increasing	 in	 number	 and
sophistication.	This	 reflects	 the	 fact	 that	 bad	guys	will	 always	 go	 after
the	most	popular	platform.	As	Android	continues	to	gain	 in	popularity,
threats	against	it	will	continue	to	rise.

Figure	1.8	Android	Devices	from	Major	Manufacturers

Looking	 at	 the	 threat	 landscape	 for	 Android	 devices,	 it	 is	 clear	 that
attacks	against	Android	users	and	applications	have	increased	quite	a	bit
over	the	last	couple	of	years.	As	Android	adoption	picks	up,	so	does	the
focus	of	attackers	to	target	the	platform	and	its	users.	Android	malware
has	seen	an	upward	trend,	as	well.
This	 trend	 does	 not	 only	 apply	 to	 Android	 devices.	 Mobile	 phones
have	increased	in	their	functionality	as	well	as	attack	surfaces.	The	type
of	data	we	have	on	a	typical	smartphone	and	the	things	we	do	with	our
phone	today	are	vastly	different	from	just	a	few	years	ago.
Attacks	on	basic	phones	targeted	Short	Message	Service	(SMS),	phone
numbers,	 and	 limited	 data	 available	 to	 those	 devices.	 An	 example	 of
such	an	attack	is	the	targeting	of	premium	SMS	services.	Attackers	send
text	messages	to	premium	rate	numbers	or	make	calls	to	these	numbers.
An	 attack	 on	 an	 Android	 or	 smartphone	 is	 different	 and	 more
sophisticated—for	 example,	 a	 malicious	 application	 accessing	 a	 user’s
sensitive	information	(personal	data,	banking	information,	chat	logs)	and
sending	 it	 to	 potential	 attackers.	 Smartphones	 are	 susceptible	 to	 a
plethora	of	application-based	attacks	targeting	sensitive	information.
The	following	is	a	sample	data	set	on	a	typical	smartphone:

1.	Corporate	and	personal	e-mails
2.	Contacts	(along	with	their	e-mail	and	personal	addresses)
3.	Banking	information
4.	Instant	Messaging	logs
5.	Pictures
6.	Videos
7.	Credit	card	Information
8.	Location	and	GPS	data
9.	Health	information
10.	Calendar	and	schedule	information

Attacks	on	a	smartphone	running	on	the	Android	platform	could	result
in	 leakage	 of	 the	 above	 data	 set.	 Some	 possible	 attacks	 that	 are	more
devastating	include	social	engineering,	phishing,	spoofing,	spyware,	and

malware—for	 example,	 a	 mobile	 application	 subscribing	 a	 user	 to	 a
premium	service.	The	user	would	then	incur	data	and	usage	charges,	in
addition	 to	 subscription	 fees.	 Smartphone	 browsers	 are	 miniature
compared	 to	 their	 desktop	 counterparts.	 Therefore,	 encryption
functionality	on	a	smartphone	OS	as	well	as	browser	can	be	limited	and
can	 take	 more	 time	 to	 respond	 compared	 to	 on	 a	 PC—for	 example,
revoking	certificates	from	mobile	browsers.
Until	now,	we	have	focused	on	attacks	on	applications	and	protocols

used	for	communication	on	the	Web.	Another	class	of	attacks	is	on	the
cellular	 technology	 itself.	 GSM	 and	 CDMA	 are	 the	 most	 widely	 used
communication	 standards.	 Carriers	 use	 one	 or	 the	 other	 standard	 for
providing	 cellular	 service	 (i.e.,	 calls,	 SMS).	As	 the	 adoption	 of	 cellular
devices	 increase,	 these	 standards	 have	 come	 under	 increasing	 scrutiny
from	researchers	and	attacks	from	malicious	users.
GSM	 is	 used	 on	 a	 majority	 of	 cellular	 phones	 in	 the	 world	 (200+

countries,	4	billion+	users).	GSM	uses	A5/1	encryption	to	provide	over-
the-air	 communication	 privacy	 (i.e.,	 to	 encrypt	 SMS	 and	 telephone
conversations).	 Although	 it	was	 initially	 kept	 a	 secret,	 it	was	 reversed
engineered,	and	some	details	became	public	knowledge	through	leaks.	In
the	 early	 1990s,	 A5/1	 was	 shown	 to	 be	 broken	 in	 research
papers/academia.	 By	 2009,	 researcher	 Karsten	 Nohl	 demonstrated	 an
attack	 that	 could	allow	someone	 to	determine	 the	encryption	key	used
for	protecting	SMS	and	 telephone	conversations.	Even	more	 interesting
was	the	fact	that	this	could	be	accomplished	with	relatively	inexpensive
equipment.	A5/1	uses	a	64-bit	key	and	can	be	attacked	using	hardware
available	 today.	 Given	 two	 encrypted,	 known	 plaintext	 messages,	 the
secret	key	can	be	found	in	a	precomputed	table.	Given	the	increasing	use
of	cellular	devices	for	Radio	Frequency	Identification	(RFID)/Near	Field
Communication	 (NFC),	 this	 can	 result	 in	 the	 compromise	 of	 not	 only
SMS	 and	 voice	 communications	 but	 also	 of	 data	 (e.g.,	 credit	 card
payments).
Many	 users	 are	 not	 aware	 of	 the	 risks	 and	 threats	 to	 their	 mobile

devices,	which	 are	 similar	 to	 those	 on	 a	 PC.	 Although	 the	majority	 of
users	 use	 some	 kind	 of	 protection	 on	 their	 desktops	 or	 laptops	 (e.g.,
antivirus	software),	they	are	oblivious	to	the	need	to	protect	their	mobile
devices.	 The	 majority	 of	 users	 are	 not	 technically	 savvy	 enough	 to

understand	 the	 implications	 of	 performing	 certain	 actions	 on	 their
cellular	 devices.	 Jail-breaking	 or	 rooting	 is	 an	 example.	Users	 are	 also
placing	 their	 trust	 in	 applications	 they	 install	 from	 an	 application
repository,	whether	it	be	the	App	Store	(iPhone)	or	the	Android	Market.
Malware	 applications	 were	 found	 on	 the	 Android	Market	 disguised	 as
popular	applications.	For	a	typical	user,	a	$0.99	application	download	is
becoming	routine	practice,	and	if	a	user	regularly	downloads	and	installs
an	 application,	 the	 security	 or	 behavior	 of	 an	 application	 might	 go
unnoticed.
Increasingly,	 workers	 are	 bringing	 their	 own	 devices	 to	 work	 and

shunning	their	company-sponsored	devices.	The	use	of	Android	devices
and	 iPhones	 continues	 to	 rise	 in	 the	 business	 environment.	 However,
corporate	 policies	 have	 not	 kept	 up	 with	 users	 as	 they	 still	 focus	 on
securing	 “full-fledged”	 PC	 devices	 more	 than	 mobile	 devices.	 This
exposes	 their	 environment	 to	 attacks	 that	 leverage	mobile	 devices	 and
users.	In	fact,	it	might	be	easier	to	compromise	mobile	devices	in	many
cases	 than	 their	 desktop	 counterparts,	where	 corporate	dollars	 are	 still
being	 spent.	 Threats	 yet	 to	materialize	 but	 not	 considered	 as	 such	 by
researchers/business	 enterprises	 are	 those	 coming	 from	 state-sponsored
entities,	 such	 as	 government	 intelligence	 agencies.	 One	 can	 imagine
attacks	 possible	 in	 cyber-warfare,	 such	 as	 the	 spreading	 of	 mobile
malware,	which	could	clog	the	communication	medium.

1.3	Android	Overview
Android	is	more	than	just	an	operating	system.	It	is	a	complete	software
stack.	 Android	 is	 based	 on	 the	 Linux	 kernel	 and	 builds	 on	 a	 solid
foundation	provided	by	Linux.	It	is	developed	by	the	OHA,	which	is	led
by	 Google.	 In	 this	 section,	 we	 briefly	 cover	 the	 history	 of	 Android,
releases,	and	features	on	a	typical	Android	device.
Android	did	not	start	at	Google.	Google	acquired	Android	Inc.	in	2005.

As	mentioned	earlier,	Google	was	 instrumental	 in	creating	the	OHA,	 in
2007.	Initially,	a	total	of	eighty-six	companies	came	together	to	form	the
OHA.	 Android	 code	 was	 open	 sourced	 by	 Google	 under	 the	 Apache
license.	 The	 Android	 Open	 Source	 Project	 (AOSP)	 was	 tasked	 with
maintaining	 and	 further	 development	 of	 Android.	 Major
telecommunication	 companies,	 such	 as	 HTC,	 LG,	 Motorola,	 and

Qualcomm,	 are	members	 of	 the	 OHA.	 This	 group	 is	 committed	 to	 the
development	 of	 open	 standards	 for	 mobile	 devices.	 The	 AOSP,	 led	 by
Google,	develops	and	maintains	the	Android	platform.
Android	 is	 open	 source	 and	 business	 friendly.	 Its	 source	 code	 is

available	 under	 the	 Apache	 License	 version	 2.0.	 Linux	 Kernel	 changes
are	available	under	GNU	v2.0.	All	 applications	on	Android	are	created
equal.	 For	 example,	 although	 there	 is	 a	 built-in	 browser,	 a	 user	 can
download	another	browser	 (e.g.,	Firefox,	Opera),	and	 it	will	be	 treated
the	same	as	a	built-in	browser.	The	user	can	choose	 to	 replace	built-in
applications	with	 applications	 of	 their	 choice.	 Licensing	 considerations
were	one	of	 the	reasons	Android	developed	 the	Dalvik	virtual	machine
instead	of	using	the	Java	virtual	machine.
Many	versions	of	Android	have	been	released	since	its	original	release,

each	 adding	 new	 features	 and	 capabilities	 and	 fixing	 bugs	 in	 the
previous	releases.	Each	is	name	after	a	dessert	(in	alphabetical	order).
Figure	 1.9	 presents	 a	 summary	 of	 Android	 releases	 and	 the	 main

features	 corresponding	 to	 each	 release,	 and	 Figure	 1.10	 shows	 the
distribution	of	Android	releases	on	devices	currently	in	use.
The	 Android	 software	 stack	 provides	 many	 features	 for	 users	 and

developers,	as	well	as	 for	manufacturers.	A	summary	of	major	Android
features	is	outlined	in	Figure	1.11.

Figure	1.9	Android	Releases

Figure	1.10	Distribution	of	Android	Versions	on	Devices

1.4	Android	Marketplaces

Android	 applications	 can	 be	 downloaded	 and	 installed	 from	 multiple
Android	 Markets.	 Although	 the	 Android	 Market	 from	 Google	 is	 the
largest	 repository,	 there	 are	 other	 places	 where	 users	 can	 download
applications	(e.g.,	Amazon).	This	 is	very	different	 from	the	 iPhone	App
Store.	 There	 is	 no	 rigorous	 verification	 of	 an	 application	 (or	 security
review	 of	 an	 application)	when	 it	 is	 uploaded	 to	 the	market.	One	 can
easily	develop	a	malicious	application	(e.g.,	a	free	version	of	a	popular
software)	 and	 upload	 it	 to	 the	 Google	 Android	Market.	Most	 likely,	 it
will	 be	 discovered	 and	 removed.	 However,	 since	 there	 are	 multiple
marketplaces,	 one	 will	 still	 be	 able	 to	 target	 Android	 users	 from
secondary	sources	(see	Figure	1.12).	Android	leaves	it	up	to	the	user	to
accept	the	risk	if	they	choose	to	install	software	from	untrusted	sources.
This	is	less	than	ideal	and	should	be	compared	to	the	Apple	App	Store,
where	 every	 application	 goes	 through	 a	 security	 review	 before	 it	 is
approved	for	public	distribution.	Problems	regarding	the	Android	Market
model	are	summarized	below:

Figure	1.11	Major	Android	Features

1.	There	is	no	rigorous	scrutiny	of	an	application,	even	on	the	primary
Android	Market.

2.	The	user	has	the	responsibility	for	verifying	(and	accepting)	the	risk
of	an	application	available	from	secondary	markets.

3.	Android	applications	with	explicit	content	(e.g.,	adult	content)	can

be	downloaded	and	installed	without	verification	(e.g.,	by	a	minor
with	a	cell	phone	device).

Table	1.1	shows	a	selected	list	of	Android	application	markets.

Figure	1.12	Installing	Applications	from	Unknown	Sources

Table	1.1	–	Android	Application	Markets

Market	Name URL

Google	Android
Market

https://play.google.com/store*

Amazon
Appstore

http://www.amazon.com/b?node=2350149011*

SlideMe http://slideme.org/*

GetJar http://www.getjar.com/*

Soc.io http://soc.io/*

1	Mobile http://www.1mobile.com/*

Appbrain http://www.appbrain.com/*

https://play.google.com/store
http://www.amazon.com/b?node=2350149011
http://slideme.org/
http://www.getjar.com/
http://soc.io/
http://www.1mobile.com/
http://www.appbrain.com/

AppsLib http://appslib.com/*

Handango http://www.handango.com*

Motorola
http://www.motorola.com/Consumers/US-
EN/Consumer-Product-and-Services/APPS/App-Picks*

GoApk http://bbs.anzhi.com/*

Androidblip http://www.androidblip.com/*

AndroidPit http://www.androidpit.com/*

Appoke http://appoke.com/*

AppstoreHQ http://www.appstorehq.com/*

BlapkMarket http://blapkmarket.com/en/login/*

Camangi http://www.camangimarket.com/index.html*

Indiroid https://indiroid.com/*

Insyde	Market http://www.insydemarket.com/*

Appstoreconnect http://appstoreconnect.com/publish/*

Mobihand http://www.mobihand.com/*

Applanet http://applanet.net/*

Handster http://www.handster.com/*

Phoload http://www.phoload.com/*

1.5	Summary
In	 this	 chapter,	 we	 reviewed	 the	 mobile	 devices	 landscape	 and	 the
explosion	in	the	adoption	of	mobile	devices.	Android	has	emerged	as	the
leading	platform	of	choice	 for	smart	phones	and	tablets	 (an	alternative
to	 the	 iPad).	 We	 reviewed	 statistics	 on	 Android	 adoption	 and	 market
share.	We	then	covered	the	evolution	of	threats	against	mobile	devices—

http://appslib.com/
http://www.handango.com
http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/APPS/App-Picks
http://bbs.anzhi.com/
http://www.androidblip.com/
http://www.androidpit.com/
http://appoke.com/
http://www.appstorehq.com/
http://blapkmarket.com/en/login/
http://www.camangimarket.com/index.html
https://indiroid.com/
http://www.insydemarket.com/
http://appstoreconnect.com/publish/
http://www.mobihand.com/
http://applanet.net/
http://www.handster.com/
http://www.phoload.com/

both	against	 the	applications	as	well	as	against	 the	cellular	 technology
itself.	 We	 concluded	 the	 chapter	 with	 an	 overview	 of	 Android
marketplaces	 and	 their	 possible	 impact	 on	 Android	 security.	 Taken
together,	 we	 can	 conclude	 that	 Android	 security	 is	 becoming	 an
important	 issue	 to	 users,	 corporations,	 developers,	 and	 security
professionals.	Starting	with	Chapter	2,	we	will	cover	the	underpinnings
of	 the	Android	platform	and	 then	move	on	 to	discuss	Android	 security
issues.

Chapter	2

Android	Architecture

In	 this	 chapter,	 we	 introduce	 the	 reader	 to	 Android	 architecture.	 We
cover	various	layers	in	the	Android	software	stack,	from	the	Linux	kernel
to	 applications,	 as	 well	 as	 the	 extent	 to	 which	 they	 have	 security
implications.	 We	 then	 walk	 the	 reader	 through	 the	 Android	 startup
process	 and	 setup	 of	 the	 Android	 environment,	 and	 we	 present	 the
various	tools	available	to	us	through	the	Android	Software	Development
Kit	 (SDK).	We	 also	 provide	 hands-on	 instruction	 for	 downloading	 and
installing	the	Android	SDK	and	interacting	with	shell	commands.

2.1	Android	Architecture	Overview
Android	 can	 be	 thought	 of	 as	 a	 software	 stack	 comprising	 different
layers,	 each	 layer	 manifesting	 well-defined	 behavior	 and	 providing
specific	 services	 to	 the	 layer	 above	 it.	 Android	 uses	 the	 Linux	 kernel,
which	 is	at	 the	bottom	of	 the	stack.	Above	 the	Linux	kernel	are	native
libraries	 and	 Android	 runtime	 (the	 Dalvik	 Virtual	 Machine	 [VM]	 and
Core	Libraries).	Built	on	top	of	this	is	the	Application	framework,	which
enables	 Android	 to	 interact	 with	 the	 native	 libraries	 and	 kernel.	 The
topmost	 layer	 comprises	 the	 Android	 applications.	 The	 following	 is	 a
detailed	 discussion	 of	 each	 of	 these	 layers.	 Figure	 2.1	 depicts	 the
conceptual	 layers	 in	 the	 Android	 Stack,	 and	 Figure	 2.2	 describes	 the
various	components	found	within	each	of	these	layers.

Figure	2.1	Conceptual	Layers	in	the	Android	Stack

2.1.1	Linux	Kernel
The	Linux	kernel	 is	 found	at	 the	bottom	of	 the	Android	stack.	 It	 is	not
the	traditional	Linux	system	that	 is	usually	seen	(e.g.,	Ubuntu).	Rather,
Android	has	 taken	 the	 Linux	 kernel	 code	 and	modified	 it	 to	 run	 in	 an
embedded	 environment.	 Thus,	 it	 does	 not	 have	 all	 the	 features	 of	 a
traditional	 Linux	 distribution.	 Specifically,	 there	 is	 no	 X	 windowing
system	in	the	Android	Linux	kernel.	Nor	are	there	all	 the	GNU	utilities
generally	found	in	bin	in	a	traditional	Linux	environment	(e.g.,	sed,	etc.).	In
addition,	many	of	the	configuration	files	are	missing,	that	is,	the	etc/shadow
file	 for	 storing	 password	 hashes.	 Table	 2.1	 shows	 the	 Android	 version
and	 the	 corresponding	 Linux	 kernel	 version	 that	 it	 is	 based	 on.	 The
Android	 team	 forked	 the	 Linux	 kernel	 to	 use	 within	 an	 embedded
environment.	 The	 Android	 team	 maintains	 this	 fork.	 Changes	 in	 the
Linux	 kernel	 are	 incorporated	 in	 the	 fork	 for	 use	 in	 future	 Android
releases.	 This	 is	 important	 because	 many	 security	 changes	 and
enhancements	are	made	to	the	Linux	kernel	on	an	ongoing	basis,	and	by
actively	accommodating	 these	 in	 the	Android	 fork	of	 the	Linux	kernel,
the	users	get	the	best	of	what	Linux	has	to	offer.
The	Android	Kernel	fork	has	made	many	enhancements	to	the	original
Linux	kernel,	and	recently	a	decision	was	made	by	the	Linux	Community
to	include	these	enhancements	in	the	next	Linux	kernel	release	(3.3).
Linux	provides	Android	with	a	solid	foundation	to	build	upon.	Among
the	 features	 that	 Android	 relies	 on	 are	 the	 hardware	 abstraction	 and
drivers,	 security,	 and	process	 and	memory	management.	By	 relying	on
Linux	 for	 hardware	 abstraction,	 Android	 can	 be	 ported	 to	 variety	 of
devices.	 The	 Linux	 kernel	 also	 has	 a	 robust	 device	 driver	 model	 for
manufacturers	 to	 use.	 Of	 utmost	 importance	 (except	 for	 security),	 the
Linux	kernel	provides	a	hardware	abstraction	layer	in	the	Android	stack.
Linux	has	a	well-understood	and	tested	driver	model.	Hardware	drivers
for	 many	 common	 devices	 are	 built	 into	 the	 kernel	 and	 are	 freely
available.	There	is	an	active	development	community	that	writes	drivers
for	the	Linux	kernel.	This	is	an	important	consideration	on	two	fronts:	It
enables	 Android	 to	 support	 a	 vast	 array	 of	 devices,	 especially	 from	 a
tablet	viewpoint,	and	it	makes	it	easy	for	manufacturers	and	developers

to	write	 drivers	 in	 a	well-understood	way.	Android	 relies	 on	 Linux	 for
basic	OS	 functionality,	 that	 is,	 I/O,	memory,	and	process	management.
Figure	 2.3	 shows	 the	 Linux	 kernel	 version	 (cat/proc/version)	 for
Android	2.3.3.

Figure	2.2	Different	Components	within	Layers	of	the	Android	Stack	(Source:
http://en.wikipedia.org/wiki/Android_[operating_system])

Table	2.1	–	Linux	Kernel	Versions	for	Android	Releases

Android	Version Linux	Kernel	Version

Android	Cupcake	1.5 Linux	Kernel	2.6.27

http://en.wikipedia.org/wiki/Android_operating_system

Android	Donut	1.6 Linux	Kernel	2.6.29

Android	Éclair	2.0/2.1 Linux	Kernel	2.6.29

Android	Froyo	2.2 Linux	Kernel	2.6.32

Android	Gingerbread	2.3.× Linux	Kernel	2.6.35

Android	Honeycomb	3.× Linux	Kernel	2.6.36

Android	Icecream	Sandwich	4.× Linux	Kernel	3.0.1

From	a	security	standpoint,	Linux	provides	a	 simple	but	 secure	user-
and	permissions-based	model	 for	Android	 to	 build	 on.	 In	 addition,	 the
Linux	kernel	provides	Android	with	process	 isolation	and	a	secure	 IPC.
Android	 has	 also	 trimmed	 down	 the	 Linux	 kernel,	 thus	 reducing	 the
attack	 surface.	 At	 the	 core,	 the	 Linux	 kernel	 allows	 an	 Android
application	to	run	as	a	separate	user	(and	process).	The	Linux	user-based
permissions	 model	 prevents	 one	 application	 from	 reading	 another
application’s	 information	 or	 from	 interfering	 with	 its	 execution	 (e.g.,
memory,	CPU,	devices).	Android	has	also	made	certain	enhancements	to
the	Linux	kernel	for	security	purposes—for	example,	restricting	access	to
networking	 and	 Bluetooth	 features,	 depending	 on	 the	 group	 ID	 of	 the
calling	 process.	 This	 is	 accomplished	 through	 the
ANDROID_PARANOID_NETWORK	 kernel	 build	 option.	 Only	 certain
group	IDs,	 for	example,	have	special	access	to	networking	or	Bluetooth
features).	 These	 are	 defined	 in	 includelinux/android_aids.h	 (in-kernel
source	 tree).	 In	 Code	 Snippet	 1,	 the	 kernel	 group	AID_INET	 is	 defined
with	group	ID	3003.	A	calling	process	will	need	to	be	a	member	of	this
group	to	create/open	IPv4	and	IPv6	sockets.

Figure	2.3	Linux	Kernel	Version

Code	Snippet	1	–	include/linux/android_aid.h

Once	 these	kernel	groups	are	defined	 in	 include/linux/android_aid.h,
they	 are	 then	 mapped	 to	 the	 logical	 group	 “inet”	 in	 the
systemcoreincludeprivate/android_filesystem_config.h	 file.	 Code	 Snippet
2,	 below,	 is	 from	 the	 android_filesystem_config.h	 file.	 Note	 that	 the
logical	name	“inet”	 is	mapped	to	“AID_INET”.	AID_INET	and	has	group
ID	3003.

Code	Snippet	2	–	android_filesystem_config.h

When	 an	 Android	 application	 requests	 permission	 to	 access	 the
Internet,	 it	 is	essentially	 seeking	permission	 to	open	 the	 IPv4	and	 IPv6
sockets.	 Application	 permissions	 are	 then	mapped	 to	 the	 “inet”	 group
name	 through	 the	 systemetc/permissions/platform.xml	 file.	 The
following	snippet	of	xml	maps	the	application’s	permission	to	AID_INET:

Figure	2.4	shows	an	application	that	has	permissions	to	access	the
Internet.

In	addition	 to	mapping	 the	Kernel	 group	 IDs	 to	 logical	names,	 there
are	other	 important	 components	of	 the	android_filesystem_config.h	 file,
from	 a	 security	 standpoint.	 This	 file	 also	 defines	 ownership	 rules	 for
various	 directories	 and	 files	 in	 the	 Android	 file	 system.	 For	 example,
dataapp	 directory	 is	 owned	 by	 the	 AID_SYSTEM	 user	 and	 group	 (see
Figure	2.5).	This	mapping	is	defined	here	through	the	following	line:	{
00771,	AID	SYSTEM,	AID	SYSTEM,	“data/app”	}.	The	 first	 string	defines
permission	(771),	the	second	and	third	strings	are	user	and	group	IDs	of
the	owner,	and	the	last	string	is	the	directory	itself.

Figure	2.4	Application	Accessing	Internet	Permission	Belongs	to	Group	ID	3003	(AID_INET)

Figure	2.5	User	System	Owns	/data	directory	as	Defined	in	android_filesystem_config.h

Code	Snippet	3	–	Directory	and	File	Permissions

The	 Android	 kernel	 also	 makes	 certain	 enhancements	 to	 the	 Linux
kernel,	 including	 Binder	 IPC	mechanisms,	 Power	Management,	 Alarm,
Low	 Memory	 Killer,	 and	 Logger.	 The	 logger	 provides	 a	 systemwide
logging	 facility	 that	 can	 be	 read	 using	 the	 logcat	 command.	We	 cover
logcat	in	detail	in	our	Android	Tools	section	later	in	this	chapter.

2.1.2	Libraries
Android	 includes	 a	 set	 of	 C	 and	 C++	 libraries	 used	 by	 different
components	of	the	Android	system	(see	Table	2.2).	Developers	use	these
libraries	through	the	Android	application	framework.	At	times,	this	layer
is	referred	to	as	the	“native	layer”	as	the	code	here	is	written	in	C	and
C++	 and	 optimized	 for	 the	 hardware,	 as	 opposed	 to	 the	 Android
applications	 and	 framework,	 where	 it	 is	 written	 in	 Java.	 Android
applications	can	access	native	capabilities	through	Java	Native	Interface
(JNI)	 calls.	 Most	 of	 the	 libraries	 are	 used	 without	 much	 modification
(SSL,	SQLite,	etc.).	One	exception	is	the	bionic	or	System	C	library.	This
library	 is	not	a	 typical	 libc	but	a	 trimmed	down	version	of	 it	based	on
the	BSD	license	and	optimized	for	an	embedded	platform.

Table	2.2	–	Android	Native	Layer	Libraries

Library Description

Media
Libraries

Enables	playback	and	recording	of	audio	and	video	formats.
Based	on	OpenCore	from	PacketVideo

SQLite
Provides	relational	databases	that	can	be	used	by
applications	and	systems

SSL Provides	support	for	typical	cryptographic	functions

Bionic System	C	library

WebKit Browser-rendering	engine	used	by	Android	browsers

Surface

Manager Provides	support	for	the	display	system

SGL Graphics	engine	used	by	Android	for	2D

Figure	2.6	Compilation	Process	for	Java	Virtual	Machine	(JVM)	and	Dalvik	Virtual	Machine
(DVM)

2.1.3	Android	Runtime
Android	 Runtime	 can	 be	 thought	 of	 as	 comprising	 two	 different
components:	the	Dalvik	VM	and	Core	Libraries.
Android	applications	are	written	in	Java.	These	applications	are	then

compiled	into	Java	class	files.	However,	Android	does	not	run	these	class
files	as	they	are.	Java	class	files	are	recompiled	into	dex	format,	which
adds	 one	 more	 step	 to	 the	 process	 before	 the	 applications	 can	 be
executed	on	the	Android	platform.	The	Dex	format	is	then	executed	in	a
custom	 Java	 Virtual	 Machine	 (JVM)-like	 implementation—the	 Dalvik
VM.	Figure	2.6	shows	the	distinction	between	the	compilation	steps	for	a
typical	 JVM	versus	 the	Dalvik	VM.	The	Dalvik	VM	 relies	 on	 the	Linux
kernel	 for	 providing	 lower	 level	 functionality	 (e.g.,	 memory
management).
Android	 includes	 a	 set	 of	 Core	 Libraries	 that	 provides	 most	 of	 the

functionality	 available	 in	 Java	 application	 programming	 interfaces
(APIs).	However,	available	APIs_are	a	trimmed-down	version	of	what	one
would	expect	to	see	in	a	J2SE.	For	example,	although	there	is	no	support
for	Swing	or	AWT,	Core	Libraries	include	Android-specific	libraries	(e.g.,
SQLlite,	OpenGL).	Whereas	using	 J2SE	would	 result	 in	 overhead	 in	 an
embedded	environment,	using	J2ME	would	have	 licensing	and	security

implications.	Using	J2ME	would	require	paying	licensing	fees	to	Oracle
for	each	device.	For	 security	 reasons,	each	Android	application	 runs	 in
its	 own	 VM.	 For	 J2ME	 implementation,	 all	 applications	 would	 be
running	inside	on	a	VM,	thus	creating	a	weaker	security	sandbox.

2.1.4	Application	Framework
The	 Android	 application	 framework	 provides	 a	 rich	 set	 of	 classes
provided	 (for	 developers)	 through	 Java	 APIs	 for	 applications.	 This	 is
done	through	various	Application	Manager	services.	The	most	important
components	within	 this	 layer	are	Activity	Manager,	Resource	Manager,
Location	Manager,	and	Notification	Manager.	Table	2.3	summarizes	the
main	services	provided	through	this	layer.

Table	2.3	–	Android	Application	Framework	Layer	Services

Service Description

Activity
Manager

Manages	the	activity	lifecycle	of	applications	and	various
application	components.	When	an	application	requests	to
start	an	activity,	e.g.,	through	startActivity(),	Activity
Manager	provides	this	service.

Resource
Manager

Provides	access	to	resources	such	as	strings,	graphics,	and
layout	files.

Location
Manager

Provides	support	for	location	updates	(e.g.,	GPS)

Notification
Manager

Applications	interested	in	getting	notified	about	certain
events	are	provided	this	service	through	notification
manager,	e.g.,	if	an	application	is	interested	in	knowing
when	a	new	e-mail	has	been	received,	it	will	use	the
Notification	Manager	service.

The	Package	Manager	service,	along	with	installd	(package

Package
Manager

management	daemon),	is	responsible	for	installing
applications	on	the	system	and	maintaining	information
about	installed	applications	and	their	components.

Content
Providers

Enables	applications	to	access	data	from	other	applications
or	share	its	own	data	with	them

Views
Provides	a	rich	set	of	views	that	an	application	can	use	to
display	information

2.1.5	Applications
By	 default,	 Android	 comes	with	 rich	 set	 of	 applications,	 including	 the
browser,	the	SMS	program,	the	calendar,	the	e-mail	client,	maps,	Contact
Manager,	an	audio	player,	and	so	forth.	These	applications	are	written	in
the	 Java	 programming	 language.	 Google	 Play	 (the	 marketplace	 for
Android)	 provides	 alternatives	 to	 these	 applications,	 if	 the	 user	 so
desires.	Android	does	not	differentiate	between	applications	written	by
users	 or	 provided	 by	 the	OS—for	 example,	 the	 browser	 application.	 A
user	can	download	Firefox,	Opera,	or	other	browsers,	and	Android	will
treat	 them	 the	 same	 as	 the	 built-in	 browser.	Users	 can	 replace	 default
applications	 with	 their	 own	 chosen	 applications.	 We	 cover	 Android
application	architecture	in	detail	in	Chapter	3.

2.2	Android	Start	Up	and	Zygote
As	we	have	 discussed,	Android	 is	 not	 Linux	 but	 is	 based	 on	 the	 Linux
kernel,	 and	 there	 are	 some	 similarities	 but	 also	 significant	 differences
between	them.	All	Android	applications	at	the	core	are	low-level	Linux
processes.	 Each	 application	 runs	 as	 a	 separate	 process	 (with	 some
exceptions),	and,	by	default,	 there	 is	one	thread	per	process.	Like	most
Linux-based	systems,	boot	loader	at	the	startup	time	loads	the	kernel	(a
modified	Linux	kernel	 tailored	 for	Android)	and	 starts	 the	 init	process.
All	other	processes	are	 spawned	 from	the	 init	process.	The	 init	process
spawns	daemons	(e.g.,	adb	daemon,	USB,	and	other	hardware	daemons).
Once	 it	 has	 finished	 launching	 these	 daemons,	 init	 then	 launches	 a

process	 called	 “zygote.”	This	 zygote	process,	 in	 turn,	 launches	 the	 first
DVM	 and	 preloads	 all	 core	 classes	 used	 by	 the	 applications.	 It	 then
listens	on	a	socket	interface	for	future	requests	to	spawn	off	new	DVMs.
When	a	new	application	is	launched,	the	zygote	receives	a	request	to

launch	 a	 new	Dalvik	 VM.	 The	 zygote	 then	 forks	 itself	 and	 launches	 a
new	process	that	inherits	the	previously	initialized	VM.	The	launching	of
a	separate	VM	does	not	result	in	a	slowdown,	as	shared	libraries	are	not
copied	 unless	 the	 application	 makes	 any	 changes	 and	 modifies	 them.
After	 the	 zygote	 is	 started	 by	 init,	 it	 forks	 itself	 and	 starts	 a	 process
called	 system	 server.	 The	 system	 server	 then	 starts	 all	 core	 Android
services,	 such	 as	 Activity	 Manager.	 Once	 all	 of	 the	 core	 services	 are
launched,	the	platform	is	ready	to	launch	applications	as	desired	by	the
user.	Each	application	launch	results	in	the	forking	of	the	zygote	and	the
creation	of	a	new	Dalvik	VM.

2.3	Android	SDK	and	Tools
In	 this	 section,	we	 set	 up	 an	 environment	 for	 developing	 and	 running
Android	 applications.	 Although	 developers	 are	 the	 primary	 target	 for
many	of	these	tools,	it	is	important	for	us	(the	users)	to	be	familiar	with
them	and	to	use	them	when	performing	a	security	review	of	an	Android
application.	By	the	end	of	this	section,	you	should	be	able	to	set	up	an
Android	 environment	 on	 your	 system	 and	 develop,	 compile,	 run,	 and
debug	an	application.
The	major	components	of	the	Android	environment	are	as	follows:

1.	Android	SDK
2.	Eclipse	IDE	and	ADT
3.	Tools	(including	DDMS,	logcat)

2.3.1	Downloading	and	Installing	the	Android	SDK
The	Android	SDK	is	what	we	need	to	develop	and	run	applications.	The
SDK	includes	the	Android	libraries,	tools,	and	sample	applications	to	get
us	 started.	The	SDK	 is	 available	 for	 free	 from	 the	Android	website.	To
use	the	SDK,	you	will	need	to	install	the	Java	SDK.	Below	are	steps	for
setting	up	the	Android	SDK	on	your	system:

1.	Download	 the	SDK	appropriate	 for	your	platform	(Windows,	Mac,
Linux).	 If	you	are	using	the	64-bit	version	of	Windows,	you	might
need	to	tweak	a	few	things,	but	set	up	is	pretty	straightforward.	On
the	Mac	and	Linux,	 just	unzip	 the	 file	 to	 the	desired	 location	and
you	will	have	access	to	the	Android	tools.	Figure	2.7	shows	utilities
in	the	tools	directory	after	unzipping	the	downloaded	SDK	package.

2.	Update	your	PATH	variable	 so	 that	you	can	access	 tools	 from	 the
command	line	even	outside	the	SDK	directory.	PATH	should	be	set
to	<path	to	SDK>/tools	and	<path	to	SDK>platform-tools.

Figure	2.7	Utilities	Available	under	/tools

Figure	2.8	Android	SDK	Manager

3.	 Start	 the	 SDK	 manager	 by	 typing	 “android.”	 Select	 the	 Android
version	 of	 interest	 to	 you	 and	 download	 the	 corresponding
packages.	Figure	2.8	shows	the	Android	SDK	Manager.

To	get	started	with	Android,	create	an	Android	Virtual	Device	(AVD)
through	 the	 SDK	Manager	 (Figure	 2.9).	 Once	 you	 create	 an	 AVD,	 you
can	launch	it	from	the	AVD	Manager	(accessible	from	the	SDK	Manager)
or	 from	 the	 command	 line	 through	 the	 “emulator”	 command.	 The
Android	emulator	is	a	full	implementation	of	the	Android	stack	provided
to	 us	 through	 the	 SDK	 to	 test	 and	 debug	 applications.	 This	 comes	 in
handy	when	we	do	not	have	access	to	the	actual	device.

2.3.2	Developing	with	Eclipse	and	ADT
Eclipse	 is	 an	 open-source	 Integrated	 Development	 Environment	 (IDE)
with	many	 tools	 to	 aid	 in	 application	development.	 It	 is	 quite	 popular
among	 Java	 developers.	 Eclipse	 plugins	 are	 also	 available	 for	 other
languages	 (C,	 C++,	 PHP,	 and	 so	 forth).	 For	Android,	we	 recommend
Eclipse	 Classic	 IDE.	 You	 can	 download	 Eclipse	 from
http://www.eclipse.org/downloads/.
To	use	Eclipse	to	develop/review	Android	applications,	you	will	need
to	download	the	Android	Development	Tools	(ADT)	plugin.	Steps	to	set
up	ADT	on	Eclipse	are	as	follows:

1.	Open	Eclipse	and	then	select	“Help->	Install	New	Software.”
2.	Add	 the	 following	URL:	https://dl-ssl.google.com/android/eclipse/
(see	Figure	2.10).

3.	 Select	 “Developer	 Tools”	 and	 click	 next.	 Accept	 terms	 and	 click
“Finish.”

4.	 Select	 “Eclipse”	 ->	 Preferences	 ->	 Android,	 point	 to	 the	 SDK
folder,	and	click	OK.

2.3.3	Android	Tools
The	 Android	 SDK	 provides	 us	 with	 useful	 tools	 for	 the	 development,
testing,	 and	 analysis	 of	 applications.	 Table	2.4	 presents	 the	main	 tools
and	 their	 descriptions.	 A	 detailed	 discussion	 of	 all	 of	 these	 tools	 is
outside	scope	of	this	book.	However,	we	will	examine	three	of	the	tools
—Dalvik	 Debug	 Monitoring	 Service	 (DDMS),	 Android	 Debug	 Bridge
(ADB),	 and	 ProGuard—in	 some	 detail	 here.	 Table	 2.4	 summarizes	 the
tools	 available	 through	 the	 SDK	 and	 their	 purpose.	 The	 Eclipse	 ADT
plugin	provides	access	 to	 these	 tools	 through	Eclipse	 IDE.	Especially	of
interest	to	us	is	DDMS	perspective,	which	provides	us	with	information
on	Dalvik	VMs	running	our	applications.	For	more	information	regarding
these	 tools,	 please	 refer	 to	 the	 following	 URL:
http://developer.android.com/guide/developing/tools/index.html

http://www.eclipse.org/downloads/
https://dl-ssl.google.com/android/eclipse/
http://developer.android.com/guide/developing/tools/index.html

Figure	2.9	Creating	a	New	Android	Virtual	Device	(AVD)

Figure	2.10	Developer	Tools	Available	Through	ADT	for	Eclipse

Table	2.4	–	Android	Tools	Available	through	SDK

Tool Usage

android
To	run	SDK	manager	from	the	command	line.	This	lets
the	user	manage	AVDs	and	installed	components	of
SDK.

emulator
Enables	us	to	run	the	mobile	device	emulator	on	a
computer.	This	is	especially	useful	if	you	don’t	have
access	to	a	mobile	device.

Enables	debugging	of	applications.	It	provides	the

ddms

following	information:	port-forwarding	services,
screen	capture	on	the	device,	thread	and	heap
information	on	the	device,	logcat,	process,	and	radio
state	information,	incoming	call	and	SMS	spoofing,
location	data	spoofing,	and	so	forth.

hierarchyviewer Allows	us	to	debug	the	user	interface.

hprof-conv
Allows	us	to	convert	the	HPROF	file	output	from
Android	to	a	standard	format	that	can	be	viewed	with
profiling	tools.

sqlite
Allows	us	to	review	sqlite3	databases	created/used	by
Android	applications

adb

Allows	us	to	communicate	to	emulator	instances	or
mobile	devices	through	the	command	line.	It	is	a
client-server	application	that	enables	us	to	interact
with	the	running	emulator	(or	device	instances).	One
can,	for	example,	install	an	apk	through	the	adb	shell,
view	running	processes,	and	so	forth.

proguard Built-in	code	obfuscation	tool	provided	by	Android

traceview
A	graphical	analysis	tool	for	viewing	logs	from
applications

dx
Converts	.class	byte	code	to	.dex	byte	code	used	by
Dalvik

mksdcard
Used	for	creating	SD	card	disk	images	used	by	the
emulator

2.3.4	DDMS

The	emulator	(or	cell	phone	screen)	enables	us	to	view	an	application’s
behavior	at	a	UI	level.	However,	to	understand	what	is	going	on	under
the	surface,	we	need	the	DDMS.	The	DDMS	is	a	powerful	tool	that	allows
us	to	obtain	detailed	information	on	running	processes,	review	stack	and
heap	 information,	 explore	 the	 file	 system	 of	 the	 emulator/connected
device,	and	more.	The	Eclipse	ADT	plugin	also	provides	us	with	access	to
logs	generated	by	logcat.
Figure	2.11	shows	the	DDMS	tool	launched	by	typing	ddms	into	your

development	 system.	 It	 can	 also	 be	 launched	 from	 Eclipse	 ADT	 by
accessing	DDMS	perspective	 (Figure	2.12).	As	 can	be	 seen	 from	Figure
2.11,	DDMS	provides	us	with	quite	a	bit	of	information	about	processes
running	on	the	device	or	emulator.	Toward	the	top	left	corner,	there	is	a
list	of	running	processes.	Clicking	on	any	of	these	processes	provides	us
with	 additional	 information	 that	we	 can	 examine.	 For	 example,	 it	 lists
the	 process	 ID—the	 application	 name
(com.Adam.CutePuppiesWallpaper),	 in	 our	 case.	 We	 can	 also	 examine
stack	and	heap	information,	threads	associated	with	the	process,	and	so
forth,	by	choosing	various	tabs	toward	the	upper	right	hand	corner.	The
bottom	half	of	the	DDMS	provides	us	with	detailed	event	information	for
the	 emulator.	 In	 our	 example,	 by	 launching	 the	wallpaper	 application,
you	 can	 see	 that	 the	 MCS_BOT_Service	 is	 launched.	 After	 this,	 the
application	 throws	 “Unknown	 Host	 Exception”	 for	 “k2homeunix.com”
and	exits.

2.3.5	ADB
ADB	 is	 a	 client-server	 application	 that	 provides	 us	 with	 a	 way	 to
communicate	 with	 an	 emulator/device.	 It	 is	 composed	 of	 three
components:	 ADB	 daemon	 (/sbin/adbd),	 which	 runs	 on	 the
device/emulator;	 service,	 which	 runs	 on	 the	 development	 system,	 and
client	applications	(e.g.,	adb	or	ddms),	which	are	used	to	communicate
to	the	daemon	through	the	service.	ADB	allows	us	to	execute	interactive
commands	on	the	emulator	or	the	device,	such	as	installing	apk	files	or
pulling/pushing	 files	 and	 shell	 commands	 (through	 the	adb	 shell).	The
ADB	 shell	 on	an	 emulator	provides	us	with	a	 root	 shell	with	 access	 to
almost	everything.	However,	on	a	device,	we	will	 log	in	as	a	shell	user
and	thus	will	be	limited	in	our	ability	to	perform	sensitive	operations.

http://k2homeunix.com

Table	2.5	presents	important	commands	that	we	can	execute	through
ADB.	 For	 a	 full	 list	 of	 commands,	 please	 refer	 to	 the	 documentation
provided	 through	 the	 following	 URL:
http://developer.android.com/guide/developing/tools/adb.html.

2.3.6	ProGuard
ProGuard	 is	 a	 code-obfuscation	 tool	 that	 is	 part	 of	 the	 Android	 SDK.
Since	Java	classes	can	be	easily	decompiled,	it	is	a	good	idea	to	perform
code-obfuscation	 as	 part	 of	 the	 development	 and	 building	 of	 an
application.	The	ProGuard	 tool	 shrinks,	optimizes,	and	obfuscates	 code
by	 removing	 unused	 codes	 as	 well	 as	 renaming	 classes,	 fields,	 and
methods.	 This	 can	 increase	 the	 time	 required	 to	 reverse	 engineer	 an
application	by	someone	else.	The	steps	to	enable	ProGuard	are	outlined
below:

http://developer.android.com/guide/developing/tools/adb.html

Figure	2.11	DDMS	Tool	Provided	through	the	Android	SDK

Figure	2.12	DDMS	Perspective	through	Eclipse	ADT

Table	2.5	–	ADB	Commands

Purpose ADB	Command

Issuing	ADB
Commands

adb	[-d]	[-e]	[-s	<Serial	Number>]	command	This
command	will	invoke	the	adb	client.	If	there	are
multiple	targets/instances	of	devices/emulator
running,	-d	option	will	specify	which	instance
command	should	be	directed	to.	–e	option	will	direct

the	command	to	the	running	emulator	instance.

List	of	devices
connected	to
the	adb	server

adb	devicesThe	output	will	print	the	serial	number	of
each	device	attached	as	well	as	its	state	(offline,
device).

Installing	an
application
(apk)

adb	–s	emulator-5556	install	helloworld.apkThis
command	will	install	the	helloworld.apk	application
on	the	emulator	instance	with	serial	number	5556

Copying	files
to/from
device/emulator

adb	pull	<remote>	<local>adb	push	<local>
<remote>adb	pull	will	copy	file	reference	by
<remote>path	to	one	referenced	by	<local>adb
push	will	copy	file	referenced	by	<local>path	to	one
referenced	by	<remote>

View	log
information

adb	logcatThis	will	print	log	data	to	screen

Interactive	shell
commands

adb	shell	<command>This	will	execute	shell
commands—e.g.,	adb	shell	ps	will	provide	process
listing	running	on	the	emulator	or	the	device

Examining
SQLite
databases

adb	shell	sqlite3This	will	drop	us	to	sqlite3	command
line	utility	through	which	we	can	analyze	SQLite
databases	on	the	system

1.	Download	and	install	the	latest	SDK.	Setting	up	your	project	using
older	 versions	 of	 SDK	may	 cause	 errors.	 If	 you	 have	 set	 up	 your
project	using	the	latest	version	of	SDK,	skip	to	Step	4.

2.	If	you	created	your	project	using	an	older	version	of	SDK,	you	will
need	to	update	the	project.	Execute	the	command	below	to	display
a	 list	 of	Android	API	 versions	 and	 choose	 the	 version	 appropriate
for	your	SDK:

D:\eclipse\workspace>android.bat	list	targets\

3.	Update	your	project,	if	necessary,	with	the	target	API	version:
D:\eclipse\workspace>android	update	project	–name	Hello	World	–

target	3	–path	D:\eclipse\workspace\HelloWorld\

4.	Run	the	ant	command	from	your	project	directory:
D:\eclipse\workspace\HelloWorld\ant

5.	Edit	the	local.properties	file	and	add	the	following	line:
proguard.config=proguard.cfg

6.	Build	the	project	in	release	mode:
ant	release

2.4	Anatomy	of	the	“Hello	World”	Application
It	 is	 important	 to	 analyze	 the	 anatomy	 of	 the	 simple	 “Hello	 World”
application	to	become	familiar	with	various	files	and	components	within
the	project	and	application.	Create	a	Hello	World	application	by	opening
Eclipse,	setting	build	target	(i.e.,	Android	release	version	on	which	code
will	be	executed)	to	your	desired	API,	and	selecting	the	application	and
package	name.	Once	you	finish,	your	project	directory	should	contain	a
listing	 similar	 to	 the	 one	 shown	 in	 Table	 2.6.	 Two	 files	 are	 of	 special
significance	to	security:	AndroidManifest.	xml	and	strings.xml	under	the
/res	directory.

2.4.1	Understanding	Hello	World
Next,	we	will	analyze	the	source	code	of	the	Hello	World	application	to
get	 an	 overview	 of	 how	 it	 works.	 At	 the	 heart	 of	 every	 Android
application	is	activity.

Table	2.6	–	Anatomy	of	an	Android	Application	Folder

Folder Comments

src
The	code	for	the	application	resides	in	this	folder.
In	our	case,	the	HelloActivity.java	file	will	be
located	here

gen The	code	generated	for	resources	defined	in	the
/res	folder	is	located	here

Android	2.3.3
This	contains	the	android.jar	file	for	the	targeted
version	of	Android

assets
Files	that	you	would	like	to	be	bundled	with	your
application	reside	in	this	folder

bin
For	compiling	and	running	the	application,	this
folder	will	contain	the	Android	application	(apk)
as	well	as	classes.dex	files

res

This	is	where	resources	for	your	application	will
be	stored.	These	resources	include	layout,	values
(including	strings),	and	drawables.	Layouts,
strings,	and	other	resources	are	defined	in	XML
files.	R	class	enables	us	to	access	these	resources
and	their	values	in	Java	code.	Once	resources	are
defined	in	XML	files	(e.g.,	layout.xml,	string.xml
and	so	forth),	one	can	reference	them	in	the
application	code	by	referring	their	resource	ID.
The	strings.xml	file	is	of	special	interest	to
security	professionals.	String	values	used	by	the
application	can	be	defined	here.	Many
applications	choose	to	store	sensitive	information
here,	but	it	is	not	a	good	place	because	simple
reverse-engineering	techniques	can	divulge	them

Defines	Android	application	components
(activities,	services,	Broadcast	Receivers),	package

AndroidManifest.xml
information,	permissions	required	by	applications
to	interact	with	other	applications	as	well	as	to
access	protected	API	calls,	and	permissions	for
other	applications	to	interact	with	application
components

proguard-project.txt Configuration	file	for	ProGuard

An	activity	 is	 a	 single	 screen	 that	 a	 user	 interacts	with	 on	 screen—for
example,	 the	screen	where	the	user	enters	his	user	 ID	and	password	to
log	onto	the	Twitter	application.
A	 useful	 application	 comprises	 multiple	 activities	 (one	 activity	 per

screen	 that	 the	 user	 will	 encounter).	 However,	 for	 our	 simple
application,	we	only	have	one	activity	(a	single	screen),	which	displays
“Hello	 World,	 HellloWorldActivity.”	 This	 screen/activity	 is	 displayed
when	the	application	is	launched	and	writes	“Hello	Logcat”	to	log.
Figure	 2.13	 shows	 the	 screen	 launched	 by	HelloWorldActivity.	 Code

Snippet	3	shows	the	source	code	for	our	application.	After	defining	the
package	 name	 (com.androidsecurity.helloworld),	 we	 import	 a	 few
classes	 that	 we	 need	 to	 write	 a	 fully	 functional	 application.	 Some	 of
these	 are	 mandatory	 (e.g.,	 android.	 app.Activity),	 whereas	 others	 are
application	dependent	(e.g.,	android.util.Log).	If	we	do	not	need	logging
functionality	 in	 the	 application,	 we	 can	 skip	 importing	 this	 class.
Activity	 is	 a	 base	 class	 that	 is	 needed	 if	 an	 application	 requires	 visual
components/UI/screens.	 The	 application	 activity	 class
(HelloWorldActivity)	 will	 need	 to	 extend	 the	 base	 activity	 class	 and
override	 the	 OnCreate()	 method	 to	 add	 custom	 functionality.	 In	 the
application,	we	override	OnCreate()	to	set	how	the	screen/UI	will	look,
as	 well	 as	 to	 write	 a	 line	 to	 logcat.	 We	 set	 the	 layout	 of	 the	 screen
through	setContentView(R.layout.main).	If	we	have	multiple	screens,	we
could	 choose	 a	 different	 layout	 for	 each	 screen	 by	 setContentView(R.
layout.secondlayout).	 secondlayout	 will	 correspond	 to	 the
secondlayout.xml	 file.	 R	 class	 provides	 us	with	 a	way	 to	 reference	 the
layout	 and	 variables	 defined	 in	 XML	 files	 in	 Java	 code.	 This	 is	 a	 glue
between	views/xml	files	and	Java.	Finally,	we	log	“Hello	LogCat!”	to	the

log	 file	 by	 Log.v(“Hello	World”,	 “Hello	 LogCat!”).	 Log.v	 indicates	 that
we	want	verbose	log	(as	opposed	to	other	logging	levels,	such	as	debug,
warning,	and	so	forth).	“Hello	World”	in	the	above	line	tags	the	event	to
be	logged,	and	“Hello	LogCat!”	sets	the	value	of	the	line	itself.

Figure	2.13	HelloWorldActivity

Code	Snippet	3	–	HelloWorldActivity	Source	Code

The	 layout	 or	 structure	 of	 a	 screen/visual	 component	 is	 defined	 in
XML	 files.	 Since	 our	 application	 has	 only	 one	 activity,	we	 define	 only
one	 layout	 (reslayouts/main.xml).	 Code	 Snippet	 4	 describes	 the
main.xml	layout	code.	We	basically	create	a	linear	layout	and	write	text
onto	the	screen	through	TextView.	The	text	to	be	written	is	determined
by	@string/hello.	 This	 line	 basically	 tells	 the	 application	 to	 display	 a
string	value	stored	in	the	variable	named	“hello.”	The	value	of	“hello”	is
defined	in	resvalues/strings.xml	 (Code	Snippet	5).	There	are	 two	 string
values	 in	 this	 file	“hello”	 set	 to	“Hello	World,	HelloWorldActivity”	and
“app_name”	 set	 to	 “Hello	World.”	 The	 string	 “app_name”	 is	 referenced
by	the	Manifest.xml	file.

Code	Snippet	4	–	main.xml	file

Code	Snippet	5	–	strings.xml	file

As	 seen	 from	 the	 Console	 window	within	 Eclipse’s	 Java	 perspective
(Figure	2.14),	after	launching	the	Android	emulator,	the	application	apk
(HellloWorld.	 apk)	 is	 installed.	 Activity

(com.androidsecrity.helloworld.HellloWorldActivity)	is	then	begun.	Note
that	 activity	 is	 referenced	 through	 the	 package	 name	 (com.
androidsecurity.helloworld).
Figure	2.15	shows	the	logcat	entry	written	by	our	application.

2.5	Summary
In	this	chapter,	we	reviewed	the	Android	Software	Stack	as	well	as	the
various	layers	within	it.	We	examined	in	detail	the	Linux	kernel	and	its
security-related	 mechanisms,	 which	 Android	 relies	 on.	 We	 discussed
Zygote	 and	 Android	 start	 up	 and	 then	 moved	 onto	 setting	 up	 the
Android	 environment	 for	 development	 and	 testing	 purposes.	 We
reviewed	 various	 tools	 available	 to	 us	 through	 the	 Android	 SDK.	 We
concluded	 the	chapter	by	examining	 the	 structure	of	a	 typical	Android
project	 and	 application.	 The	 reader	 should	 now	 be	 familiar	 with
different	terms	used	across	the	stack.

Figure	2.14	Console	Messages	while	Running	the	HelloWorld	Application

Figure	2.15	Logcat	Entry	Written	by	the	HelloWorld	Application

Chapter	3

Android	Architecture

In	 this	 chapter,	 we	 introduce	 the	 reader	 to	 Android	 Application
Architecture.	We	present	various	components	that	make	up	an	Android
application,	and	we	demonstrate	how	these	components	work	when	an
application	 is	 running,	 through	 the	 use	 of	 logcat.	 We	 then	 cover	 the
application	 lifecycle	 phases	 of	 an	 Android	 application.	 By	 end	 of	 the
chapter,	the	reader	will	be	able	to	describe	the	typical	components	of	an
Android	 application,	 determine	 when	 to	 use	 these	 components,	 and
understand	application	lifecycle	phases.

3.1	Application	Components
A	 typical	 Android	 application	 is	 usually	 rich	 in	 functionality—for
example,	 the	 built-in	 clock	 application.	 This	 application	 has	 the
following	basic	functions:	displaying	time	(in	time	zones),	setting	alarms,
and	 setting	 a	 stopwatch.	 Basically,	 these	 are	 three	 different	 screens	 of
the	 same	application.	Besides	 its	obvious	 functionality,	 this	application
needs	to	communicate	with	back-end	servers	for	time	updates,	execute	a
component	 in	 the	 background	 (service)	 for	 alarms,	 synchronize	with	 a
built-in	 processor	 clock,	 and	 so	 forth.	 Thus,	 even	 a	 simple	 Android
application	 has	 multiple	 building	 blocks.	 There	 are	 four	 main
components	 of	 an	 Android	 application:	 activities,	 BroadcastReceivers,
ContentProviders,	 and	 services.	 These	 components	 interact	 with	 each
other

Figure	3.1	Components	of	an	Android	Application

(or	with	 components	 of	 other	 applications)	 through	messages	 called
Intents.	 Figure	 3.1	 depicts	 the	 main	 components	 of	 an	 Android
application.

3.1.1	Activities
Activities	 are	 basically	 screens	 that	 the	 user	 sees	 or	 interacts	 with
visually.	They	can	be	thought	of	as	visual	user	interface	(UI)	components
of	an	application.	Most	applications	will	have	multiple	activities	(one	for
each	screen	that	the	user	sees/interacts	with).	The	user	will	switch	back
and	 forth	 among	 activities	 (in	 no	 particular	 order,	 at	 times).	 For
seamless	 end-user	 experience,	 the	 user	 is	 able	 to	 launch	 different
activities	for	the	same	application	in	any	order	(with	some	exceptions).
The	 user	 can	 also	 launch	 the	 activity	 of	 another	 application	 (through
Intents,	 covered	 later	 in	 the	 chapter),	 as	 shown	 in	 Figure	 3.2.	 Every
Android	application	has	an	activity	that	is	launched	when	an	application
starts.	 From	 this	 activity,	 the	 user	 can	 then	 navigate	 to	 different
activities	or	components	within	the	application.	There	 is	usually	a	way
for	 the	user	 to	 revert	 to	 a	previous	 activity.	 In	 a	nutshell,	 through	 the
activity	UI	screen,	the	user	interacts	with	the	application	and	accesses	its
functionality.	Examples	of	activities	are:

Figure	3.2	Activity	Interaction	between	Android	Applications

-	Log-in	screen	of	an	application
-	Composing	an	e-mail
-	Sending	a	photo	through	an	e-mail

An	application	consists	of	multiple	activities	tied	together	for	end-user
experience.	 Usually,	 when	 an	 application	 starts,	 there	 is	 a	 “main”
activity	that	is	launched	and	a	UI	screen	is	presented	to	the	user.
The	 activity	 class	 creates	 screens,	 and	 developers	 can	 create	 UI
components	using	setContentView(View).	One	has	to	create	a	subclass	of
the	 “activity”	 class	 to	 create	 an	 activity.	 In	 this	 class,	 one	 has	 to
implement	(override)	relevant	callback	methods	that	will	be	called	when
an	 activity	 is	 created,	 transitioned	 (paused,	 stopped,	 sent	 into	 the
background),	 or	 destroyed.	 There	 are	 quite	 a	 few	 callback	 methods.
However,	the	most	important	ones	(frequently	used)	are	OnCreate()	and
OnPause().

-	 OnCreate(Bundle):	 This	 is	 where	 activity	 is	 initialized,	 and	 every
activity	class	implements	this	method.	Usually,	setContentView(Int)
is	 called	 within	 OnCreate()	 and	 defines	 the	 UI	 of	 the
screen/activity.	 findViewById(Int)	 is	 used	 to	 find	 resources	 and
interact	with	them	programmatically.

-	 onPause():	 If	 a	 user	 decides	 to	 leave	 an	 activity,	 the	 saving	 of	 the
state	or	important	operations	are	performed	by	this	method.

Other	important	methods	for	an	activity	class	are	as	follows:	onStart(),
onRestart(),	onResume(),	onStop(),	 and	onDestroy().	We	cover	 these	 in
our	discussion	on	Activity	Lifecycles	later	in	the	chapter.
Code	Snippet	1	shows	the	definition	of	a	typical	activity	class	(Activity
A,	 in	 this	 case).	 The	 Activity	 A	 class	 extends	 the	 base	 class	 (activity),
defines	 the	 variables,	 and	 then	 overrides	 and	 implements	 callbacks—
specifically	 OnCreate().	 Inside	 OnCreate(),	 activity	 defines	 the	 UI	 by
calling	setConventView()	and	findViewById().

Code	Snippet	1	–	Activity	A	OnCreate()	Method

Every	 activity	 in	 an	 application	 needs	 to	 be	 declared	 inside	 the
Manifest	 file.	 Any	 activity	 that	 is	 not	 declared	 in	 Manifest	 won’t	 be
registered	in	the	system	and	thus	won’t	be	allowed	to	execute.
Code	Snippet	2	shows	the	Manifest	file	with	declarations	for	activities.

Activity	declaration	is	done	through	<activity>	tag	and	is	a	child	of	the
<application>	element	in	the	file.	Inside	the	<activity>	tag,	we	define
attributes	for	that	activity.	android:name	provides	the	class	name	for	the
activity.	 <activity>	 tag	 contains	 the	 Intent	 filters	 as	 well	 as	 the
metadata	for	an	activity.
The	 Manifest	 file	 needs	 to	 have	 an	 entry	 for	 each	 activity	 in	 an

application.	 In	 the	 snippet	 here,	 the	 application	 is	 composed	 of	 three
different	 activities—A,	 B,	 and	 C.	 As	 is	 evident	 from	 the	Manifest	 file,
Activity	 A	 is	 the	 main	 activity	 and	 is	 launched	 when	 the	 application
starts.	Also	note	 that	Activity	A	has	 Intent	defined.	For	 this	 Intent,	 the
action	is	MAIN	and	the	category	is	set	to	LAUNCHER,	thus	enabling	the
activity	to	be	available	in	the	application	launcher	and	enabling	the	user
to	start	the	application.
For	 detailed	 information	 on	 other	 attributes,	 please	 refer	 to	 the

following	 URL:

http://developer.android.com/guide/topics/manifest/activity-
element.html

Code	Snippet	2	–	Activities	in	Manifest	File

Since	an	application	can	start	activities	within	other	applications,	we
need	 to	 limit	 the	 ability	 of	 other	 applications	 to	 start	 a	 particular
activity.	This	is	enforced	using	permissions	in	the	Android	Manifest	file.
Other	 applications	 will	 need	 to	 request	 access	 to	 these	 permissions
through	 uses-permission.	 Activity	 permissions	 (applied	 under
<activity>	 tag	 through	 android:permission)	 enable	 us	 to	 restrict	who
can	 start	 that	 activity.	 The	 permission	 is	 checked	 when
Context.startActivity()	 or	 Activity.startActivityForResult()	 are	 called.	 If
the	 caller	 does	 not	 have	 permission,	 the	 request	 to	 start	 an	 activity	 is
denied.

3.1.2	Intents
Intents	 are	 messages	 through	 which	 other	 application	 components
(activities,	services,	and	Broadcast	Receivers)	are	activated.	They	can	be
thought	 of	 as	 messages	 stating	 which	 operations/actions	 need	 to	 be
performed.	Through	Intents,	the	Android	provides	a	mechanism	for	late
run-time	 binding	 between	 application	 components	 (within	 the	 same
application	 or	 among	 different	 applications).	 Intents	 themselves	 are
objects	containing	information	on	operations	to	be	performed	or,	in	the
case	of	Broadcast	Receivers,	on	details	of	an	event	that	occurred.
Consider	 an	application	 like	 the	N.Y.	Times.	Within	 this	 application,

http://developer.android.com/guide/topics/manifest/activity-element.html

there	 are	different	 activities—an	activity	 that	 presents	 a	 list	 of	 articles
available,	 an	 activity	 that	 displays	 an	 article,	 a	 dialog	 activity	 that
allows	us	to	mark	it	as	favorite,	and	so	forth.	This	application	also	allows
us	to	share	articles	with	others	by	sending	links	in	e-mails.	As	shown	in
Figure	 3.3,	 these	 interactions	 are	 achieved	 by	 switching	 between
different	activities	through	Intents.
Intents	 are	 delivered	 by	 various	methods	 to	 application	 components

depending	 on	 whether	 the	 component	 is	 a	 service,	 activity,	 or	 a
Broadcast	Receiver,	as	presented	in	Table	3.1.
Intent	 is	 a	 data	 structure	 designed	 to	 hold	 information	 on	 events	 or

operations	 to	 be	 performed.	 Intents	 contain	 two	 primary	 pieces	 of
information:

-	Action	to	be	performed
-	 Data	 on	 which	 action	 will	 be	 performed,	 expressed	 as	 Uniform
Resource	Identifier	(URI)

Shown	below	are	a	few	examples	of	action/data	pairs:

-	ACTION_DIAL	content://contacts/people/1
This	will	display	the	number	of	the	person	in	the	phone	dialer.

-	ACTION_DIAL	tel:123
This	will	display	the	number	123	in	the	phone	dialer.

Figure	3.3	Use	of	Intents

Table	3.1	–	Methods	Delivering	Intents	to	Components

Application
Components

Methods

Activity Context.startActivity()Activity.startActivtyForResult()Activity.setResult()

Service Context.startService()Context.bindService()

Broadcast
Receivers

Context.sendBroadcast()Context.sendOrderedBroadcast()Context.sendStickyBroadcast()

There	 are	 other	 pieces	 of	 information	 that	 can	 be	 provided	 in	 an
Intent:

-	Category	–	provides	information	on	the	category	of	action.	If	it	is	set
to	 CATEGORY_LAUNCHER,	 this	 activity	 will	 appear	 in	 the
application	launcher.

-	Type	–	provides	explicit	type	of	Intent	data	(thus	bypassing	built-in
evaluation).

-	Component	–	provides	name	of	the	component	that	will	handle	the
Intent.	This	is	not	a	required	field.	If	it	is	empty,	other	information
provided	 in	 the	 bundle	 will	 be	 used	 to	 identify	 the	 appropriate
target.

-	Extras	–	any	additional	information	that	needs	to	be	provided.	These
extra	pieces	of	information	are	provided	through	android.os.Bundle.

Through	 attributes,	 Intents	 allow	 the	 expression	 of	 operations	 and
events.	 For	 example,	 an	 activity	 can	 pass	 on	 an	 Intent	 to	 the	 e-mail
application	to	compose	an	application	with	an	e-mail	ID.	Intents	can	be
classified	into	two	different	types:	explicit	and	implicit.
Explicit	 Intents	provide	 the	 component	name	 (class	name)	 that	must
be	 invoked	 through	 the	 Intent.	 This	 is	 usually	 for	 inter-application
components,	 since	 other	 applications	 would	 not	 typically	 know
component	names.	Here	is	a	typical	invocation	of	explicit	Intent:

Intent	i	=	new	Intent(this,<activity_name>.class);

Implicit	Intents,	on	the	other	hand,	are	used	to	invoke	components	of
different	applications	(e.g.,	photo	application	sending	an	e-mail	Intent	to
e-mail	 application	 to	 send	 a	 photo	 through	 an	 e-mail).	 They	 do	 not
provide	 the	 specific	 component	 name	 to	 be	 invoked	 but	 rely	 on	 the
system	to	find	the	best	available	component	to	be	invoked.	For	this	to	be
possible,	 each	 component	 can	 provide	 Intent-filters—structures	 that
provide	 information	 on	 which	 Intents	 can	 be	 handled	 by	 particular

components.	The	 system	 then	compares	 filters	 to	 the	 Intent	object	 and
selects	the	best	available	component	for	it.	Intent-filters	provide	a	way	to
specify	which	Intents	a	component	is	willing	to	handle	and	can	help	de-
limit	 the	 invoking	 of	 a	 component	 through	 implicit	 Intent.	 If	 a
component	 does	 not	 have	 Intent-filters,	 it	 can	 only	 receive	 explicit
Intents.	Note	that	Intent-filters	cannot	be	relied	on	for	security	because
one	can	always	 send	an	explicit	 Intent	 to	 it,	 thus	bypassing	 the	 filters.
Component	specific	permissions	should	always	be	defined	to	restrict	who
can	access	a	particular	component	through	Intents.	 In	addition,	 limited
data	can	be	passed	through	Intents.	However,	any	sensitive	information,
such	as	passwords,	should	never	be	sent	through	Intents,	as	these	can	be
received	by	malicious	components.
A	typical	invocation	of	implicit	Intent	is	as	follows:

Intent	I	=	new	Intent(Intent.ACTION_VIEW,	Uri.parse
(http://www.google.com));

When	an	 Intent	object	 is	 compared	 to	a	 filter	by	 the	 system,	 the	 three
fields	 (elucidated	 in	 Table	 3.2)	 are	 tested/compared,	 and	 thus	 a
component	servicing	 the	 Intent	needs	 to	provide	 this	 information	 in	 its
filter.
The	 Manifest.XML	 files	 for	 Phone	 and	 Browser	 applications	 are
presented	in	Figures	3.4	and	3.5.	Both	of	these	applications	are	installed
by	default	on	Android	devices,	and,	thus,	other	applications	can	leverage
them	 for	 making	 calls	 and	 browsing	 the	 web.	 The	 Phone	 application
provides	many	 Intent	 filters,	 including	 android.intent.action_CALL	with
data	type	of	“tel.”	If	an	application	tries	to	make	a	phone	call,	an	Intent
will	 be	 sent	 to	 the	Phone	 application	with	data	 type	 (number	 to	 call).
The	 Browser	 application	 provides	 Intent	 filters	 for
android.intent.action_VIEW,	 among	 others.	 This	 enables	 other
applications	to	pass	the	URL	to	the	Browser	application.

Table	3.2	–	Intent	Fields	and	Their	Descriptions

Intent
Field

Purpose

http://www.google.com

Action

A	string	with	the	name	of	the	action	being	performed	or
event	that	has	taken	place	(in	the	case	of	Broadcast
Receivers).	Examples:	ACTION_CALL,
ACTIION_TIMEZONE_CHANGED

Data
URI	and	MIME	type	of	data	to	be	acted	upon.	Example:
ACTION_VIEW	will	have	URL	associated	with	it	while
ACTION_CALL	will	have	tel:	data	type

Category

Provides	additional	information	on	the	kind	of	component
that	should	handle/service	the	Intent.	Categories	can	be	set
to	CATEGORY_HOME,	CATEGORY_LAUNCHER,
CATEGORY_BROWSABLE,	and	so	forth

Figure	3.4	Manifest.XML	File	for	Phone	Application

Figure	3.5	Manifest.XML	File	for	Browser	Application

3.1.3	Broadcast	Receivers
Broadcast	 Receivers	 deal	 with	 Intents.	 They	 are	 a	 means	 whereby
Android	 applications	 and	 system	 components	 can	 communicate	 with
each	 other	 by	 subscribing	 to	 certain	 Intents.	 The	 receiver	 is	 dormant
until	it	receives	an	activating	Intent;	it	is	then	activated	and	performs	a
certain	 action.	 The	 system	 (and	 applications)	 can	 broadcast	 Intents	 to
anyone	 who	 is	 interested	 in	 receiving	 them	 (although	 this	 can	 be

restricted	through	security	permissions).	After	an	Intent	 is	broadcasted,
interested	receivers	having	required	permissions	can	be	activated	by	the
system.
The	Android	 system	 itself	 broadcasts	 Intents	 for	 interested	 receivers.

The	following	is	a	list	of	Android	System	Broadcast	Intents:

•			ACTION_TIME_TICK
•			ACTION_TIME_CHANGED
•			ACTION_TIMEZONE_CHANGED
•			ACTION_BOOT_COMPLETED
•			ACTION_PACKAGE_ADDED
•			ACTION_PACKAGE_CHANGED
•			ACTION_PACKAGE_REMOVED
•			ACTION_PACKAGE_RESTARTED
•			ACTION_PACKAGE_DATA_CLEARED
•			ACTION_UID_REMOVED
•			ACTION_BATTERY_CHANGED
•			ACTION_POWER_CONNECTED
•			ACTION_POWER_DISCONNECTED
•			ACTION_SHUTDOWN

An	 alarm	 application	might	 be	 interested	 in	 receiving	 the	 following
two	 broadcasts	 from	 the	 system:	 ACTION_TIME_CHANGED	 and
ACTION_TIMEZONE_CHANGED.	Broadcast	Receivers	 themselves	 do	not
have	a	UI	component.	Rather,	the	application	(through	the	activity)	will
define	 the	 onReceive()	method	 to	 receive	 and	 act	 on	 a	 broadcast.	 The
activity	will	need	to	extend	the	android.content.BroadcastReceiver	class
and	implement	onReceive().
An	application	can	send	broadcasts	to	itself	or	to	other	applications	as

well.	Broadcast	Receivers	need	to	be	registered	in	the	Manifest.xml	file.
This	enables	the	system	to	register	your	application	to	receive	particular
broadcast.	 Let’s	 take	 the	 example	 of	 our	 time	 application.	 To	 receive
ACTION_TIME_CHANGED	 and	 ACTION_TIMEZONE_CHANGED

broadcasts,	 the	application	needs	 to	declare	 the	 register	method	 in	 the
Manifest.xml	 file	 with	 events	we	 are	 interested	 in	 receiving.	 By	 doing
this,	we	register	our	BroadcastReceivers	with	the	system	which	activates
our	 receiver	 when	 the	 event	 happens.	 Code	 Snippet	 3	 shows	 the
Manifest.xml	file	with	a	declaration	for	TimeReceiver.	The	TimeReceiver
will	override	the	callback	onReceive().
We	need	to	request	permissions	required	to	receive	Intents	to	receive

certain	broadcasts.

Code	Snippet	3	–	Registering	Broadcast	Receivers

To	 receive	 certain	 broadcasts,	 one	 will	 need	 to	 have	 requisite
permissions	(e.g.,	to	receive	BOOT_COMPLETED	broadcast,	one	needs	to
hold	 RECEIVE_BOOT_COMPLETED	 permission).	 In	 addition,
BroadcastReceiver	 permissions	 restrict	who	 can	 send	 broadcasts	 to	 the
associated	 receiver.	 When	 the	 system	 tries	 to	 deliver	 broadcasts	 to
receivers,	 it	checks	the	permissions	of	 the	receiver.	 If	 the	receiver	does
not	have	the	required	permissions,	it	will	not	deliver	the	Intent.

3.1.4	Services
A	 service	 is	 an	 application	 component	 that	 can	 perform	 long-running
operations	 in	 the	background	 for	an	application.	 It	does	not	have	a	UI
component	to	 it,	but	 it	executes	tasks	 in	the	background—for	example,
an	alarm	or	music	player.	Other	applications	can	be	running	in	the	front
while	 services	 will	 be	 active	 behind	 the	 curtain	 even	 after	 the	 user
switches	to	a	different	application	component	or	application.	In	addition,
an	 application	 component	 may	 “bound”	 itself	 to	 a	 service	 and	 thus
interact	with	 it	 in	 background;	 for	 example,	 an	 application	 component
can	bind	itself	to	a	music	player	service	and	interact	with	it	as	needed.
Thus,	service	can	be	in	two	states:

-	Started
-	Bound

When	 an	 application	 component	 launches	 a	 service,	 it	 is	 “started.”
This	is	done	through	the	startService()	callback	method.	Once	the	service
is	 started,	 it	 can	 continue	 to	 run	 in	 the	 background	 after	 the	 starting
component	(or	its	application)	is	no	longer	executing.
An	 application	 component	 can	 bind	 itself	 to	 a	 service	 by	 calling
bindService().	A	bound	service	can	be	used	as	a	client-server	mechanism,
and	a	component	can	interact	with	the	service.	The	service	will	run	only
as	long	as	the	component	is	bound	to	it.	Once	it	unbinds,	the	service	is
destroyed.	Any	application	component	 (or	other	applications)	 can	 start
or	 bind	 to	 a	 service	 once	 it	 receives	 the	 requisite	 permissions.	 This	 is
achieved	through	Intents.
To	 create	 a	 service,	 one	 must	 create	 a	 subclass	 of	 service	 and
implement	 callback	 methods.	 Most	 important	 callback	 methods	 for
service	are	onStartcommand(),	onBind(),	onCreate(),	and	onDestroy().

onStartCommand()

This	callback	method	 is	called	by	the	system	when	another	application
component	 requests	 a	 particular	 service	 to	 be	 started	 by	 calling
startService().	This	service	then	will	run	until	it	encounters	stopSelf()	or
stopService().

onBind()

This	callback	method	is	called	when	another	component	would	like	to	be
bound	to	the	service	by	calling	bindService().

onCreate()

When	the	service	is	first	created,	this	method	will	perform	initial	setup
before	calling	onStartCommand()	or	onBind().

onDestroy()

This	callback	method	is	called	when	the	service	is	no	longer	needed	or
being	used.

Note	 that	 an	Android	will	 stop	 a	 service	 in	 case	 it	 needs	 to	 recover
system	resources	(e.g.,	it	is	low	on	memory).	As	with	other	components,
one	 needs	 to	 declare	 services	 in	 the	 Manifest.xml	 file.	 Services	 are
declared	under	the	<service>	tag	as	a	child	of	the	<application>	tag.
Code	Snippet	4	depicts	 a	 typical	 declaration	of	 service	 in	 the	Manifest
file.	The	android:name	attribute	specifies	a	class	name	for	the	service.	A
service	 can	 be	 invoked	 by	 other	 applications	 if	 it	 has	 defined	 Intent-
filters.

Code	Snippet	4	–	Services	in	the	Manifest	File

As	 with	 other	 application	 components,	 one	 can	 restrict	 which
applications	can	start	or	bind	to	a	service.	These	permissions	are	defined
within	 the	 <services>	 tag	 and	 are	 checked	 by	 the	 system	 when
Context.startService(),	 Context.stopService(),	 or	 Content.bindService()
are	called.	If	the	caller	does	not	have	required	permissions,	the	request
to	start	or	bound	to	a	service	is	denied.

3.1.5	Content	Providers
Content	providers	provide	applications	with	a	means	to	share	persistent
data.	A	content	provider	can	be	thought	of	as	a	repository	of	data,	and
different	 applications	 can	 define	 content	 providers	 to	 access	 it.
Applications	can	share	data	through	Intents.	However,	this	is	not	suited
for	 sharing	 sensitive	or	persistent	data.	Content	providers	 aim	 to	 solve
this	problem.	Providers	and	provider	clients	enable	a	standard	interface
to	 share	 data	 in	 a	 secure	 and	 efficient	 manner—for	 example,	 the
Android’s	Contacts	Provider.	The	Android	has	a	default	application	that

accesses	this	provider.	However,	one	can	write	an	application	that	has	a
different	UI	accessing	and	presenting	the	same	underlying	data	provided
by	the	Contacts	Provider.	Thus,	if	any	application	makes	changes	to	the
contacts,	that	data	will	be	available	for	other	applications	accessing	the
Contacts	Provider.	When	an	application	wants	to	access	data	in	a	content
provider,	it	does	so	through	ContentResolver().
The	 content	 provider	 needs	 to	 be	 declared	 like	 other	 application
components	in	the	Manifest.xml	file.	One	can	control	who	can	access	the
content	 provider	 by	 defining	 permissions	 inside	 the	 <provider>	 tag.
One	 can	 set	 android:readPermission	 and	 android.writePermission	 to
control	the	type	of	operations	other	application	components	can	perform
on	 content	 providers.	 The	 system	 will	 perform	 a	 check	 for	 requisite
permissions	 when	 Content.Resolver.	 query(),	 Content.Resolver.insert(),
Content.Resolver.update(),	 and	 Content.	 Resolver.delete()	 methods	 are
called.	 If	 the	 caller	does	not	have	 requisite	permissions,	 the	 request	 to
access	the	content	provider	is	denied.

3.2	Activity	Lifecycles
In	 this	 chapter,	 we	 have	 introduced	 activities	 and	 discussed	 callback
methods	 that	 activities	 implement,	 such	 as	 onCreate(),	 onPause(),
onStart(),	 onRestart(),	 onResume(),	 onStop(),	 and	onDestroy().	We	will
now	cover	activity	lifecycles	in	a	bit	more	detail.
As	we	have	seen,	activities	are	UI	screens	for	users	to	interact	with.	A
typical	application	consists	of	multiple	activities,	and	the	user	seamlessly
switches	 back	 and	 forth	 between	 them.	 The	 user	 can	 also	 launch	 the
activity	of	another	application	(done	through	Intents).	It	is	important	to
understand	 activity	 lifecycles,	 especially	 for	 developers,	 because	 when
activities	are	 switched	or	 terminated,	certain	callback	methods	need	 to
be	 implemented.	 If	 an	 activity	 does	 not	 implement	 required	 callbacks,
this	can	lead	to	performance	and/or	reliability	issues.
Activities	are	managed	as	an	activity	 stack.	When	 the	user	navigates
an	application,	activities	go	through	different	states	in	their	lifecycle.	For
example,	when	a	new	activity	is	started,	it	is	put	on	top	of	the	stack	(and
have	 user	 focus)	 and	 becomes	 the	 running	 activity,	 with	 previously
running	 activity	 pushed	 below	 it	 on	 the	 stack.	 The	 system	 will	 call

different	 lifecycle	methods	 for	 different	 states	 of	 activities.	 It	 will	 call
either	onCreate(),	onRestart(),	onStart(),	or	onResume()	when	an	activity
gains	focus	or	comes	to	the	foreground.	The	system	will	call	a	different
set	of	callbacks	(e.g.,	onPause())	when	an	activity	loses	focus.

-	Active/Running:	Activity	is	in	this	state	if	it	is	in	the	foreground	and
has	user	focus.

-	Paused:	Activity	is	in	this	state	if	it	has	lost	focus	but	is	still	visible,
as	non–full-size	activity	has	 taken	 focus.	Activity	 still	 retains	 state
information	and	can	be	killed	in	case	the	system	is	low	in	resources.

-	 Stopped:	 If	 an	 activity	 loses	 focus	 to	 a	 full-screen	 activity,	 then	 its
state	changes	to	Stopped.	The	activity	still	retains	state	information
and	can	be	killed	in	case	the	system	is	low	in	resources.

-	Inactive/Killed:	A	system	can	kill	activity	if	it	is	in	paused	or	stopped
state.	When	re-launched,	activity	will	have	to	initialize	its	state	and
member	information	again.

Figure	 3.6	 shows	 important	 paths	 in	 lifecycle	 activity.	 Rectangles
represent	different	callback	methods	that	can	be	implemented	when	an
activity	moves	between	states.	Ovals	represent	different	states	an	activity
can	be	in.
By	 the	 time	 an	 activity	 is	 destroyed,	 it	 might	 have	 gone	 through
multiple	 iterations	of	becoming	active	or	 inactive(paused).	During	each
transition,	callback	methods	are	executed	to	transition	between	states.	It
is	useful	to	look	at	an	activity	timeline	from	three	different	views:

Figure	3.6	Activity	Lifecycle	and	Callback	Methods

-	Entire	 lifetime:	The	 timeline	of	an	activity	between	 the	 first	call	 to
onCreate()	 and	 the	 call	 to	 onDestroy()	 is	 its	 entire	 lifetime.	 This
includes	 all	 iterations	 that	 an	 activity	 will	 go	 through	 until	 it	 is
destroyed.	 onCreate()	 sets	 up	 the	 state	 for	 an	 activity	 (including
resources),	while	 onDestroy()	 frees	 up	 resources	 consumed	by	 the
activity.

-	 Visible	 lifetime:	 This	 lifetime	 corresponds	 to	 the	 time	 a	 user	 sees
activity	on	screen.	This	happens	between	one	cycle	of	onStart()	and
onStop().	 Although	 activity	 might	 be	 visible,	 the	 user	 might	 not
necessarily	be	able	to	interact	with	it.

-	Foreground	lifetime:	This	lifetime	corresponds	to	the	time	that	a	user
can	 actually	 interact	 with	 the	 activity.	 This	 happens	 between	 the
call	to	onResume()	and	the	call	to	onPause().

Table	3.3	–	Activity	Lifecycle	Callback	Description

Method Description

onCreate()
Called	when	an	activity	is	first	launched.	Performs	initial
setup	for	an	activity

onRestart()
Called	when	an	activity	was	stopped	early	and	needs	to	be
restarted

onStart()
Called	when	an	activity	comes	to	foreground	and	becomes
available	to	the	user	for	interaction

onResume()
Called	when	an	activity	comes	to	the	foreground	and
starts	interacting	with	the	user

onPause()
Called	when	the	system	would	like	to	resume	previously
paused	activity.	Changes	that	need	to	be	saved	are	usually
made	in	this	method	before	an	activity	pauses	itself

onStop() Called	when	an	activity	is	no	longer	visible	to	the	user

onDestroy() Called	when	the	system	wants	to	free	up	resources

Callback	 methods	 and	 their	 descriptions	 relevant	 to	 activity	 lifecycles
are	described	in	Table	3.3.
We	will	review	an	activity	lifecycle	by	walking	through	an	application

(available	from	developer.android.com).	We	have	modified	 the	code	 to
output	 information	 to	 logcat.	 The	 application	 is	 composed	 of	 three
different	 activities	 (UI	 screens)—Activity	A,	 B,	 and	C	 (see	 Figure	 3.7).
The	 user	 can	 switch	 between	 these	 activities	 by	 clicking	 a	 button
provided	on	 the	activity.	Switching	between	activities	 launches	various
callback	methods,	 and	 previously	 running	 activity	 is	 put	 on	 the	 stack.
The	 user	 can	 also	 return	 to	 previously	 running	 activity	 using	 the
application.	 Let’s	 walk	 through	 the	 following	 sequence	 of	 activity
switching:	 launching	 Activity	 A,	 Activity	 B,	 and	 Activity	 C	 and	 then
coming	 back	 to	 Activity	 B	 and	 Activity	 A.	We	 will	 review	 the	 output

http://developer.android.com

from	logcat	to	see	the	lifecycle	methods	being	called.

Activity	Lifecycle	Demonstration

1.	 Launch	Activity	A	by	 starting	 the	application	 (as	 this	 is	 our	main
activity).	Reviewing	output	from	logcat	(see	Figure	3.8)	shows	that
the	following	methods	are	called	in	order:	onCreate(),	onStart()	and
onResume()	 after	 the	 Activity	 Manager	 starts	 the	 main	 activity
(Activity	A,	in	our	case).

2.	Launch	Activity	B	by	clicking	the	“Start	B”	button.	Upon	reviewing
the	 output	 in	 logcat	 (see	 Figure	 3.9),	 we	 see	 that	 onPause()	 was
called	in	Activity	A,	thus	putting	it	on	the	stack.	Activity	B	then	was
started	by	the	Activity	Manager,	and	methods	onCreate(),	onStart(),
and	 onResume()	 were	 called.	 Once	 Activity	 B	 came	 to	 the
foreground,	 onStop()	 was	 called	 from	 Activity	 A.	We	 observe	 the
same	 sequence	of	 callback	methods	when	we	 switch	 to	Activity	C
from	 Activity	 B	 (see	 Figure	 3.10).	 3.	 Now	 click	 the	 “Finish	 C”
button	in	Activity	C	and	observe	the	sequence	of	callback	methods
(see	Figure	3.11).	We	see	that	onPause()	 is	called	from	Activity	C;
then,	 the	 next	 activity	 on	 the	 stack	 (Activity	 B)	 is	 started.	 Once
Activity	B	is	in	the	foreground,	onStop()	and	onDestroy()	are	called
for	Activity	C,	thus	freeing	up	resources	for	the	system.	We	observe
a	 similar	 sequence	 of	 callback	 methods	 when	 we	 “Start	 A”	 from
Activity	B	(Figure	3.12).

Figure	3.7	Screenshot	of	Activity	Lifecycle	Application

Figure	3.8	Activity	Lifecycle:	Activity	A	Launched

Figure	3.9	Activity	Lifecycle:	Activity	B	Launched

Figure	3.10	Activity	Lifecycle:	Activity	C	Launched

Figure	3.11	Activity	Lifecycle:	Activity	C	Completed

Figure	3.12	Activity	Lifecycle:	Activity	A	Is	Launched

3.3	Summary
In	this	chapter,	we	discussed	Android	application	components	(activities,

Broadcast	Receivers,	Content	Providers,	and	services)	in	detail.	We	also
discussed	 Intents—messages	 sent	 between	 application	 components	 or
within	 applications.	We	 then	 discussed	 activity	 lifecycles	 and	 different
callback	 methods	 that	 are	 implemented	 by	 the	 activities.	 The	 reader
should	 now	 be	 able	 to	 describe	 the	 major	 components	 of	 Android
applications,	 the	 interactions	 between	 them,	 and	 the	 activity	 lifecycle
methods.

Chapter	4

Android	(in)Security

In	 this	 chapter,	 we	 turn	 our	 focus	 to	 Android’s	 built-in	 security
mechanisms	at	 the	platform	 level	 as	well	 as	 its	 application	 layers.	The
reader	should	be	familiar	with	Android	architecture	(covered	in	Chapter
2)	 and	 Android	 application	 basics	 (building	 blocks,	 frameworks)
(covered	in	Chapter	3).	This	chapter	builds	on	an	understanding	of	 the
platform	 and	 application	 layers	 to	 demonstrate	 the	 security	 features
provided	by	Android.	This	chapter	also	introduces	the	reader	to	different
Interprocess	 Communication	 (IPC)	 mechanisms	 used	 by	 Android
application	components.

DETOUR

Different	 applications	 and	 processes	 need	 to	 communicate	 with	 each	 other	 and	 share
data/information.	This	communication	occurs	through	the	IPC	mechanism—for	example,	in	Linux,
signals	can	be	used	as	a	form	of	IPC.

4.1	Android	Security	Model
Android	developers	have	included	security	in	the	design	of	the	platform
itself.	 This	 is	 visible	 in	 the	 two-tiered	 security	model	 used	 by	Android
applications	and	enforced	by	Android.	Android,	at	its	core,	relies	on	one
of	 the	 security	 features	 provided	 by	 Linux	 kernel—running	 each
application	as	a	separate	process	with	its	own	set	of	data	structures	and
preventing	other	processes	from	interfering	with	its	execution.
At	 the	 application	 layer,	 Android	 uses	 finer-grained	 permissions	 to

allow	 (or	 disallow)	 applications	 or	 components	 to	 interact	 with	 other
applications/components	or	critical	resources.	User	approval	is	required
before	an	application	can	get	access	to	critical	operations	(e.g.,	making
calls,	 sending	 SMS	 messages).	 Applications	 explicitly	 request	 the

permissions	 they	 need	 in	 order	 to	 execute	 successfully.	 By	 default,	 no
application	 has	 permission	 to	 perform	 any	 operations	 that	 might
adversely	 impact	 other	 applications,	 the	 user’s	 data,	 or	 the	 system.
Examples	 of	 such	 operations	 include	 sending	 SMS	 messages,	 reading
contact	 information,	 and	 accessing	 the	 Web.	 Playing	 music	 files	 or
viewing	 pictures	 do	 not	 fall	 under	 such	 operations,	 and,	 thus,	 an
application	 does	 not	 need	 to	 explicitly	 request	 permissions	 for	 these.
Application-level	permissions	provide	a	means	to	get	access	to	restricted
content	and	APIs.
Each	 Android	 application	 (or	 component)	 runs	 in	 a	 separate	 Dalvik
Virtual	 Machine	 (VM)—a	 sandbox.	 However,	 the	 reader	 should	 not
assume	that	this	sandbox	enforces	security.	The	Dalvik	VM	is	optimized
for	running	on	embedded	devices	efficiently,	with	a	small	footprint.	It	is
possible	to	break	out	of	this	sandbox	VM,	and,	thus,	it	cannot	be	relied
on	to	enforce	security.	Android	permission	checks	are	not	implemented
inside	 the	 Dalvik	 VM	 but,	 rather,	 inside	 the	 Linux	 kernel	 code	 and
enforced	at	runtime.
Access	to	low-level	Linux	facilities	is	provided	through	user	and	group
ID	 enforcement,	 whereas	 additional	 fine-grained	 security	 features	 are
provided	through	Manifest	permissions.

4.2	Permission	Enforcement—Linux
When	a	new	application	 is	 installed	on	 the	Android	platform,	Android
assigns	 it	 a	 unique	 user	 id	 (UID)	 and	 a	 group	 id	 (GID).	 Each	 installed
application	has	a	set	of	data	structures	and	files	that	are	associated	with
its	 UID	 and	 GID.	 Permissions	 to	 access	 these	 structures	 and	 files	 are
allowed	only	to	the	application	itself	(through	its	ID)	or	to	the	superuser
(root).	 However,	 other	 applications	 do	 not	 have	 elevated	 superuser
privileges	 (nor	 can	 they	 get	 them)	 and,	 thus,	 cannot	 access	 other
applications’	 files.	 If	 an	 application	 needs	 to	 share	 information	 with
other	 application(s)	 or	 component(s),	 the	 MAC	 security	 model	 is
enforced	at	the	application	layer	(discussed	in	the	next	section).
It	is	possible	for	two	applications	to	share	the	same	UID	or	run	in	the
same	process.	This	can	be	the	case	if	two	applications	have	been	signed
by	 the	 same	 key	 (see	 application	 signing	 in	 Chapter	 3).	 This	 should

underscore	the	importance	of	signing	keys	safely	for	developers.	Android
applications	run	in	separate	processes	that	are	owned	by	their	respective
UID	and	 thus	 sandboxed	 from	each	other.	 This	 enables	 applications	 to
use	 native	 code	 (and	 native	 libraries)	without	worrying	 about	 security
implications.	Android	takes	care	of	it.

Figure	4.1	id	Command	on	the	Emulator

Note	that	Linux	is	a	multi-user	multitasking	OS.	In	contrast,	Android	is
meant	 to	 deliver	 single-user	 experience.	 It	 leverages	 a	 security	 model
meant	 for	multiple	 users	 in	 Linux	 and	 applies	 to	 applications	 through
Linux	permissions.
Figure	4.1	is	a	screenshot	showing	the	UID	of	the	user	when	connected
to	 the	 Android	 emulator.	 In	 this	 case,	 UID	 (and	 GID)	 =	 0.	 This	 has
special	 significance	 in	 the	*NIX	environment,	as	 this	denotes	 superuser
(equivalent	 to	Administrator	 in	a	 traditional	Windows	environment).	A
superuser	can	perform	pretty	much	all	operations	and	access	all	files.
Note:	Obtaining	the	shell	through	the	emulator	will	give	you	root	user
access.	 However,	 if	 you	 perform	 this	 test	 on	 the	 phone,	 you	 will	 be
assigned	 a	 “system”	or	 “shell”	UID,	 unless,	 of	 course,	 you	have	 rooted
your	phone.
Each	 application	 installed	 on	 Android	 has	 an	 entry	 in	 datadata
directory.	Figure	4.2	is	a	screenshot	showing	the	ls	–l	command	on	this
directory.	 The	 output	 lists	 permissions	 for	 each	 directory	 along	 with
owner	(UID),	group	(GID),	and	other	details.	As	the	reader	can	see,	any
two-application	directories	are	owned	by	respective	UIDs.
In	 the	 screenshot	 presented	 in	 Figure	 4.2,	 app_1	 (htmlviewer)	 owns
the	com.android.htmlviewer	directory,	and,	thus,	it	cannot	access	files	in
the	com.android.music	directory,	which	is	owned	by	app_5.
If	Android	applications	create	new	files	using	getSharedPreferences(),
openFileOutput(),	 or	 openOrCreateDatabase()	 function	 calls,	 the
application	 can	 use	 MODE_WORLD_READABLE	 and/or

http://com.android.htmlviewer

MODE_WORLD_WRITEABLE	 flags.	 If	 these	 flags	 are	 not	 set	 carefully,
other	 applications	 can	 read/write	 to	 files	 created	 by	 your	 application
(even	if	the	files	are	owned	by	your	application).
The	 UID	 of	 an	 application	 is	 the	 owner	 of	 the	 process	 when	 the

application	runs.	This	enables	it	to	access	files	(owned	by	the	UID),	but
any	 other	 process	 cannot	 directly	 access	 these	 files.	 They	will	 have	 to
communicate	 through	 allowed	 IPC	 mechanisms.	 Each	 process	 has	 its
own	address	space	during	execution,	including	stack,	heap,	and	so	forth.
Figure	 4.3	 is	 a	 screenshot	 demonstrating	 the	 output	 of	 the	 “ps”

command.	 The	 ps	 command	 provides	 a	 list	 of	 processes	 running	 and
corresponding	state	information.	As	can	be	seen	in	this	screenshot,	each
process	(application)	belongs	to	the	corresponding	UID.

Figure	4.2	ls	Command	Executed	on	datadata	Shows	Directory	Ownership

The	com.mj.iCalender	process	is	owned	by	app_36	(UID	36),	which	the
iCalender	 application	 was	 assigned	 during	 the	 install	 process.	 Many
processes	 are	 owned	 by	 the	 root	 or	 system	 user.	 The	 root	 user	 owns
daemons	 (e.g.,	 init)	and	 the	 system	user	owns	 service	managers.	These

are	special	processes	that	manage	and	provide	Android	functionality	and
thus	are	not	controlled	by	the	user.

Figure	4.3	ps	Command	Shows	Process	Ownership

An	 application	 can	 request	 to	 share	 a	 UID	 by	 using
“android:shareUserId”	in	the	Manifest	file	(discussed	later).	Android	will
grant	 the	 request	 if	 the	 application	 has	 been	 signed	 by	 the	 same
certificate.	An	entry	 in	 the	Manifest	 file	 to	 request	 the	same	UID	 looks
like	this:

4.3	Android’s	Manifest	Permissions
The	 Linux	 kernel	 sandboxes	 different	 applications	 and	 prevents	 them
from	 accessing	 other	 applications’	 data	 or	 user	 information,	 or	 from
performing	 operations	 such	 as	 accessing	 the	 Internet,	 making	 phone
calls,	or	receiving	SMS	messages.	If	an	application	needs	to	perform	the
aforementioned	 operations	 (e.g.,	 Internet	 access),	 read	 the	 user’s
information	 (e.g.,	 contacts),	 or	 talk	 to	 other	 applications	 (e.g.,
communicate	 with	 the	 e-mail	 application),	 the	 application	 needs	 to
specifically	request	these	permissions	(MAC	model).	Applications	declare
these	 permissions	 in	 their	 configuration	 file	 (Manifest.xml).	 When	 an
application	 is	 installed,	 Android	 prompts	 the	 user	 to	 either	 allow	 or
reject	 requested	 permissions	 (see	 Figure	 4.4).	 A	 user	 cannot	 select

certain	permissions—that	is,	allow	access	to	the	Internet	and	reject	SMS
access.	The	application	requests	a	set	of	permissions,	and	the	users	either
approve	 or	 deny	 all	 of	 them.	 Once	 the	 user	 has	 approved	 these
permissions,	Android	(through	the	Linux	kernel)	will	grant	access	to	the
requested	 operations	 or	 allow	 interaction	 with	 different
applications/components.	 Please	 note	 that	 once	 the	 user	 has	 approved
permissions,	 he	 cannot	 revoke	 them.	 The	 only	 way	 to	 remove	 the
permissions	is	to	uninstall	the	application.	This	is	because	Android	does
not	have	the	means	to	grant	permissions	at	runtime,	as	it	will	lead	to	less
user-friendly	applications.
Android	 permissions	 are	 also	 displayed	 to	 the	 end-user	 when

downloading	applications	from	the	“official”	Android	market	(see	Figure
4.5).	However,	 this	might	not	 always	be	 the	 case,	 as	 there	 are	quite	 a
few	 sources	 for	 Android	 applications.	 If	 the	 user	 just	 downloads	 .apk
files,	a	warning	about	security	implications	will	only	be	displaced	during
runtime.

Figure	4.4	Android	Requesting	User	Consent	during	Install	Process

4.3.1	Requesting	Permissions

Since	an	Android	application	cannot	perform	any	operations	that	would
adversely	impact	the	user’s	experience	or	access	any	data	on	the	device
by	default,	it	needs	to	request	these	“protected”	features	explicitly.	These
are	 requested	 in	 the	 AndroidManifest.xml	 file	 and	 are	 usually	 called
Manifest	 permissions	 (compared	 to	 the	 Linux	 permissions	 discussed
earlier).	 Requested	 permissions	 are	 contained	 within	 <uses-
permission>	tags	within	the	file.	Below	is	an	example	of	an	application
that	is	requesting	Internet	access	and	reads	MMS	and	SMS	messages:

Figure	4.5	YouTube	Application	Permissions	Listing	(Android	Marketplace)	(Google	and	the
Google	logo	are	registered	trademarks	of	Google	Inc.,	used	with	permission.)

If	 an	 application	 tries	 to	 perform	 an	 operation	 for	 which	 it	 has	 no
permission	 (e.g.,	 read	 SMS),	 Android	 will	 typically	 throw	 a
SecurityException	back	to	the	application.	The	Android	system	provides
default	permission	definitions	(Manifest	Permissions).	These	cover	lot	of
application	 functionality	 (reading	 SMS,	 sending	 MMS,	 accessing	 the
Internet,	mounting	file	systems).	However,	an	application	can	define	its
own	permissions.	This	would	be	needed	if	the	application	would	like	to
expose	its	functionality	(through	activities	or	other	components)	for	use
with	 other	 applications	 or	 if	 the	 application	wants	 to	 enforce	 its	 own
permissions	(not	known	to	other	applications).

If	 an	 application	 wants	 to	 control	 which	 applications	 (or	 their
components)	can	start/access	its	activities,	it	can	enforce	using	this	type
of	permission	in	the	Manifest	permission	file:

In	 the	 above	 snippet,	 android:name	 describes	 the	 name	 of	 a	 newly
created	 permission,	 which	 can	 be	 used	 by	 applications	 (including	 this
one)	 through	 the	 <uses-permission>	 tag	 in	 the	 Manifest	 file.	 The
android:label	 provides	 a	 short	 name	 for	 the	 permission	 (which	 is
displayed	to	 the	user)	while	android:description	provides	 the	user	with
information	 on	 the	meaning	 of	 the	 permission.	 For	 example,	 the	 label
can	 be	 EXPENSIVE	 FEATURE,	while	 the	 description	 can	 be	 something
like,	 “This	 feature	 will	 allow	 the	 application	 to	 send	 premium	 SMS
messages	 and	 receive	 MMS.	 This	 can	 add	 to	 your	 costs	 as	 it	 will	 be
charged	 to	 your	 airtime.”	 The	 android:protectionLevel	 defines	 the	 risk
the	 user	 will	 be	 taking	 by	 allowing	 the	 application	 to	 use	 this
permission.	There	are	 four	different	 levels	of	protection	categories	 (see
Table	4.1):

You	can	obtain	a	list	of	all	permissions	by	group	through	the	following
command	(Figure	4.6)

Table	4.1	–	Android	User	Protection	Levels

Protection
Level

Description

This	is	the	default	value.	It	allows	an	application	to	get

Normal
access	to	isolated	features	that	pose	minimal	risk	to	other
applications,	the	user,	or	the	system.	It	is	granted
automatically	by	the	system,	but	the	user	can	still	review	it
during	the	install	time.

Dangerous

Allows	the	application	to	perform	certain	operations	that
can	cost	the	user	money	or	use	data	in	a	way	that	can
impact	the	user	in	a	negative	manner.	The	user	needs	to
explicitly	approve	these	permissions.

Signature
Granted	only	if	the	application	signed	with	the	same
certificate	as	the	application	that	declared	the	permission.

Signature
or	system

Granted	only	to	applications	that	are	in	the	Android	system
image	or	that	are	signed	with	the	same	certificates	as	those
in	the	system	image

A	 detailed	 description	 of	 permissions	 defined	 in	 the	 system	 can	 be
obtained	through	(Figure	4.7)
To	 obtain	 descriptions	 of	 all	 permissions	 defined	 on	 the	 device	 you

can	use	(Figure	4.8)

4.3.2	Putting	It	All	Together
To	 sum	 up,	 the	 Linux	 kernel	 sandboxes	 applications	 and	 provides
security	by	enforcing	UID/GID	permissions.	An	application	can	 request
additional	permissions	that,	if	approved	by	the	end-user,	will	be	allowed
through	Android	runtime.	All	applications	(Java,	native,	and	hybrid)	are
sandboxed	in	the	same	manner.

Figure	4.6	Android	Permissions	on	System	(by	group)

To	 allow	 certain	 low-level	 permissions,	 Android	 needs	 to	 map	 the
permission	 string	 to	 the	 group	 that	 can	 access	 the	 functionality.	 For
example,	 if	 an	 application	 requests	 access	 to	 the	 Internet
(android.permission.INTERNET),	Android	(after	approval	from	the	user)
will	add	the	application	to	the	inet	group.	An	application	needs	to	be	a
member	 of	 this	 group	 to	 access	 the	 Internet.	 This	 mapping	 is	 defined
through	 the	 platform.xml	 file	 (found	 under	 systemetc/platform-xml)/).
High-level	 permissions	 are	 restricted	 by	 Android	 runtime.	 This	 is
essential,	 as	 an	 application	 can	 be	 requesting	 more	 permissions	 than
were	authorized	by	the	end-user.
systemetc/platform-xml	 defines	mapping	 between	 lower	 level	 system

user	 IDs	 and	 group	 IDs	 (uid/gid)	 and	 certain	 permissions	 (see	 Figure
4.9).
For	 example,	 an	application	Foobar	needs	 to	access	 the	 Internet	 and

read	SMS	and	MMS	messages.	Its	permission	request	entries	would	look
like	Figure	4.10.

Figure	4.7	adb	shell	pm	list	permissions	–f	output

Figure	4.8	adb	shell	pm	list	permissions	–s	output

Figure	4.9	Mapping	of	android:permission.INTERNET	to	inet	GID	in	systemetc/platform.xml

When	 this	application	 is	 installed,	Android	will	 ask	 the	user	 if	he	or
she	consents	to	the	application	using	the	above	permissions.	If	the	user
consents,	 Android	 will	 look	 up	 the	 “android:permission.INTERNET”
entry	 in	 the	 platform.xml	 files.	 To	 access	 the	 Internet,	 an	 application
needs	 to	 be	 added	 to	 the	 inet	 group.	 When
android.permission.INTERNET	permission	is	approved,	Android	looks	up
the	 corresponding	 GID	 in	 the	 file.	 The	 application	 then	 runs	 with	 the
inet	GID	attached	to	its	process	and	is,	thus,	able	to	access	the	Internet.
For	 android.permission.READ_SMS	 and	 android.permission.READ_MMS,
the	 Android	 runtime	 permission	 manager	 will	 determine	 if	 an
application	has	access	to	perform	these	operations.
On	the	device	itself,	there	is	no	Manifest	XML	file	for	an	application.	A

Manifest	 XML	 file	 is	 used	 by	 developers	 to	 create	 an	 apk	 file.	 To
determine	the	permissions	that	a	particular	installed	package	has	on	the
system,	we	 need	 to	 review	 datasystem/packages.xml	 as	 show	 in	 Figure
4.11.
There	are	multiple	instances	in	which	permissions	can	be	enforced:

Figure	4.10	Permissions	for	the	Application	Foobar

Figure	4.11	Permissions	for	an	Installed	Application	(datasystem/packages.xml)

–	When	an	application	is	executing
–	 When	 an	 application	 executes	 certain	 functions	 that	 it	 is	 not
authorized	to

–	When	an	application	starts	an	activity	which	it	is	not	authorized	to
–	When	an	application	sends	or	receives	broadcasts
–	When	accessing/updating	Content	Providers

–	When	an	application	starts	a	service

4.4	Mobile	Security	Issues
The	Android	 platform	 suffers	 from	 “traditional”	 security	 concerns,	 just
like	any	other	mobile	OS.	The	issues	discussed	below	are	common	to	all
mobile	 platforms,	 not	 just	 the	 Android.	 Some	 of	 these	 issues	 are	 also
found	 on	 traditional	 devices	 (laptops),	 whereas	 some	 are	 specific	 to
mobile	devices.

4.4.1	Device
Many	of	us	have,	at	some	point,	lost	a	cellular	device.	Before	the	advent
of	smartphones,	 it	meant	losing	one’s	contact	information.	On	a	typical
(Android)	smartphone	today,	however,	the	following	is	true	for	most	of
us:

–	E-mails	saved	on	the	mobile	device
–	Auto	sign-in	to	Facebook,	Twitter,	YouTube,	Flickr,	and	more
–	Bank	account	information
–	Location	and	GPS	data
–	Health	data

Unless	 the	 device	 is	 encrypted,	 the	 loss	 of	 a	 cell	 phone	 implies	 a
potential	data	disclosure	risk,	as	well.	Plug	in	a	cellphone	to	a	computer,
and	various	tools	(including	forensic	tools)	will	do	the	rest.

4.4.2	Patching
Android’s	 latest	version	 is	3.2.	However,	most	devices	 in	use	 today	are
running	 anything	 from	 Android	 1.5	 to	 Android	 2.3,	 with	 2.2	 and	 2.3
being	 the	 most	 popular	 releases.	 Furthermore,	 these	 devices	 are
updated/modified	by	the	respective	manufacturers.	Thus,	it	is	difficult	to
apply	patches	in	a	timely	manner	given	the	lack	of	uniformity	of	the	OS
used.	Compare	this	 to	 the	 iPhone,	where	IOS	3	and	IOS	4	are	the	only
versions	available	today.

4.4.3	External	Storage
Removable	 external	 storage	 compounds	 the	 data	 security	 issue.	 It	 is
much	 easier	 to	 lose	 SD	 cards	 than	 to	 lose	 a	 cell	 phone.	 In	most	 cases,
data	is	not	encrypted,	thus	giving	very	easy	access	to	the	user’s	data.	SD
cards	 also	 travel	 through	multiple	 devices,	 thus	 increasing	 the	 risk	 of
malicious	software	ending	up	on	the	device.	Finally,	removable	storage
is	often	more	fragile,	which	can	lead	to	data	loss/corruption.

4.4.4	Keyboards
Although	a	very	popular	feature,	touch	screen	keyboards	can	give	goose
bumps	to	a	security	professional.	They	provide	a	perfect	opportunity	for
shoulder	 surfing,	 if	 you	 are	 accessing	 sensitive	 data	 in	 a	 train	 or	 in	 a
coffee	shop.	Tablets	are	even	worse	culprits,	with	full-size	soft	keyboards
and	letters	being	reflected	back	to	the	user	in	plaintext	for	few	seconds.
Smudges	on	the	screen	may	also	aid	an	attacker.

4.4.5	Data	Privacy
One	of	the	most	popular	applications	on	Android	is	Google	Maps.	Many
other	 applications	 are	 also	 interactive	 and	 can	 use	 the	 user’s	 location
information.	 They	 can	 store	 this	 information	 in	 its	 cache,	 display	 ads
based	on	this	data,	or	show	us	the	nearest	coffee	shot.	Bottom	line:	This
data	is	available	for	any	application	that	has	the	right	permissions.	Over
a	period	of	time,	this	data	can	reveal	sensitive	information	about	a	user’s
habits,	essentially	acting	as	a	GPS	tracking	in	the	background.

4.4.6	Application	Security
Mobile	 applications	 are	 still	 vulnerable	 to	 the	 same	 attacks	 as
traditional,	 full-fledged	 information	 technology	 (IT)	 applications.	 SQL
Inject	(SQLi),	Cross-Site	Request	Forgery	(XSRF),	and	Cross-Site	Scripting
(XSS)	are	not	only	possible	on	mobile	platforms	and	applications	but	can
lead	 to	 more	 serious	 attacks,	 given	 the	 nature	 of	 data	 available	 on	 a
mobile	device.	Weak	Secure	Sockets	Layer	 (SSL)	or	 lack	of	 encryption,
phishing,	authentication	bypass,	and	session	fixation	are	all	issues	likely
to	be	present	in	mobile	applications.

4.4.7	Legacy	Code
Much	 of	 the	 underlying	 code	 used	 by	 cell	 phones	 for	 GSM	 or	 CDMA
communication	 has	 not	 changed	 much	 over	 the	 years.	 These	 device
drivers	 were	 written	 without	 security	 practices	 in	 mind	 and	 thus	 are
vulnerable	 to	 old-school	 attacks	 (e.g.,	 buffer	 overflows).	 New	 devices
continue	to	rely	on	this	code.	In	fact,	new	code	is	being	added	on	the	top
of	existing	code.

4.5	Recent	Android	Attacks—A	Walkthrough
In	 the	 first	 week	 of	 March	 2011,	 a	 malware—DroidDream—hit	 the
Android	platform.	Android	 is	a	much	more	open	platform	compared	to
iOS	and,	thus,	has	a	lenient	marketplace	policy.	Google	does	not	tightly
control	applications	that	show	up	in	the	market.	In	fact,	Google	does	not
even	control	all	channels	of	distribution,	unlike	Apple.	Various	ways	to
get	applications	on	Android	are	as	follows:

–	Official	Android	market	(Google)
–	Secondary	Android	markets	(e.g.,	Amazon)
–	Regional	Android	markets	and	app	stores	(e.g.,	China,	Korea)
–	Sites	providing	apk	files	to	users

Similar	to	other	Android	malware,	such	as	Geinimi	and	HongTouTou,
DroidDream	 was	 “hidden”	 or	 “obfuscated”	 inside	 a	 legitimate-looking
application.	 Regular	 users	 having	 no	 reasons	 to	 distrust	 the	 Android
market	 downloaded	 the	 application	 and	 ended	 up	 having	 an	 infected
device.
After	the	outbreak	of	this	malware,	Google	took	an	extraordinary	step

—the	 remote	 wiping	 of	 devices	 that	 were	 infected	 (approximately	 50
applications	 were	 considered	 to	 be	 malicious).	 DroidDream	 and	 its
variants	gained	access	to	sensitive	user	and	device	information	and	even
obtained	root	access.	For	a	complete	list	of	malicious	applications	on	the
list,	perform	a	search	on	Google	for	“MYOURNET.”

4.5.1	Analysis	of	DroidDream	Variant

The	authors	analyzed	this	malware	to	determine	the	permissions	used	by
it	 and	 potential	 implications.	 After	 installing	 the	 malware	 on	 an
emulator,	we	reviewed	the	permissions	requested	by	the	application	(see
Figure	4.12).

Figure	4.12	Permissions	for	the	Malware	DroidDream	(datasystem/packages.xml)

There	 are	 three	 permissions	 requested	 by	 the	 application—

READ_PHONE_STATE,	SET_WALLPAPER,	and	INTERNET.

From	 the	 permissions	 requested,	 it	 appears	 to	 be	 a	 wallpaper
application.	 However,	 it	 wants	 to	 access	 the	 phone	 state,	 as	 well.	 An
application	 having	 access	 to	 this	 permission	 can	 access	 the	 following
information

–	IMEI	number	(a.k.a.	Device	ID)
–	Phone	Number
–	Sim	Serial	Number
–	Subscriber	ID	(IMSI)

Below	 is	 the	 snippet	 of	 code	 that	 would	 enable	 an	 application	 to
obtain	sensitive	phone	information:

After	 the	malware	has	obtained	 the	above	device	 information,	 it	can
potentially	 send	 it	 to	 a	 remote	 server.	 This	 will	 be	 permitted,	 as	 the
malware	 has	 requested	 another	 important	 permission:
android.permission.INTERNET

DETOUR

The	International	Mobile	Equipment	Identity	(IMEI)	number	is	a	15–17	digit	number	that	is	used
to	 uniquely	 identify	 a	mobile	 device	 on	 a	 network.	Mobile	 operators	 use	 this	 number	 to	 disable
devices	that	are	stolen	or	lost.

4.5.2	Analysis	of	Zsone

We	will	now	analyze	a	Trojan	named	zsone,	which	was	distributed	under
different	 names	 (iCalendar,	 iMatch,	 and	 others).	 It	 hit	 the	 Android
platform	 during	 the	 summer	 of	 2011	 and	 tried	 to	 send	 SMS	messages
without	the	user’s	permissions.	Just	like	DroidDream,	it	was	pulled	off	of
the	Android	market.
Upon	 analysis	 of	 the	 permissions	 requested	 by	 this	 calendar

application,	we	found	that	it	had	access	to	the	following:

None	of	the	permissions	(see	Figure	4.13)	requested	by	the	application
relate	to	its	functionality—that	is,	a	calendar	application.	Essentially,	the
ability	 to	 send	and	 receive	SMS,	provide	 location	based	on	CELL-ID	or
Wi-FI,	 and	 read	 the	 phone	 state	 all	 point	 to	 a	 malicious	 application.
Below	is	a	snippet	of	code	that	demonstrates	the	application	sending	an
SMS	message	without	user	intervention:

4.5.3	Analysis	of	Zitmo	Trojan
Most	 of	 the	 leading	 banks	 today	 offer	 mobile	 banking	 applications.
Initially,	 banks	 used	 simple	 one-factor	 authentication	 (username	 and
password)	 to	 allow	users	 to	 log	 on	 to	 the	 bank’s	mobile	 site	 and	 view
financial	 information.	 Since	 it	 is	 easier	 to	 defeat	 this	 form	 of
authentication	 (cracking	 passwords,	 MITM,	 social	 engineering),	 banks
have	 started	 to	 rely	 on	 two-factor	 authentication.	 In	 addition	 to	 the
passwords,	 they	 will	 usually	 send	 an	 SMS	 message	 (a	 five-to-six	 digit
one-time	PIN)	to	the	user’s	cell	phone	device	and	require	this	as	part	of
the	overall	authentication	process.
The	 Zitmo	 Trojan	 on	 Android	 aims	 to	 defeat	 this	 mechanism	 by

intercepting	SMS	messages	that	are	sent	by	banks	to	its	customers.	This
worm	 was	 first	 discovered	 for	 Symbian	 (Nokia)	 devices	 in	 September
2010.	Now,	 it	 is	 available	 for	Android,	 as	well.	 Trojan	 essentially	 aids
the	Zeus	crime	kit.	The	Zeus	kit	 is	 installed	when	an	unsuspecting	user
visits	 a	malicious	 site.	 Installation	 of	 the	 Zeus	 kit	 enables	 attackers	 to
steal	 credentials—one	 part	 of	 the	 two-factor	 authentication.	 Installing
Zitmo	provides	them	with	the	second—TAN	messages	from	the	bank.

Figure	4.13	Permissions	for	the	Malware	zsone	(datasystem/packages.xml)

Figure	4.14	Zitmo	Malware	Application	on	Android

The	malware	 application	 itself	 disguises	 itself	 as	 “Trusteer	 Rapport”
(see	 Figure	 4.14.	 It	 gets	 installed	 as	 a	 “com.systemsecurity6.gms”
application—a	name	that	makes	it	difficult	to	identify	it	as	malware	for
a	normal	user.
Figure	 4.15	 shows	 the	 output	 from	 the	 ps	 command.	 The	 Zitmo

malware	runs	as	“com.systemsecurity6.gms.”
Zitmo	requests	the	following	permissions	(see	Figure	4.16):

READ_PHONE_STATE	 gives	 it	 access	 to	 the	 IMEI	 number,	 SIM	 card
number.	 and	 other	 unique	 phone	 data.	 RECEIVE_SMS	 allows	 it	 to
intercept	TAN	numbers	 sent	by	bank	websites.	Once	 it	 has	 intercepted
TAN	numbers,	 it	sends	this	 to	the	Command	and	Control	(C&C)	Center
because	it	also	has	INTERNET	permission.

4.6	Summary
In	 this	 chapter,	 we	 covered	 the	 kernel	 and	 application	 layers	 of	 the
Android	Security	Model.	The	reader	should	now	have	an	understanding
of	 how	Android	 uses	 the	 Linux	 kernel	 to	 enforce	 the	 permission-based
security	 model.	 We	 walked	 through	 Manifest	 permissions	 and
demonstrated	why	these	are	important	for	an	application	from	a	security
perspective.	 We	 reviewed	 the	 security	 landscape	 for	 mobile	 devices,

including	those	running	the	Android	OS.	Finally,	we	analyzed	malicious
applications	and	demonstrated	how	one	can	start	analyzing	them	based
on	permissions	requested.

Figure	4.15	ps	Command	Output	(with	Zitmo	running)

Figure	4.16	Zitmo	Permissions

Chapter	5

Pen	Testing	Android

In	 this	 chapter,	 we	 focus	 on	 pen	 testing	 the	 Android	 platform	 and
applications.	We	start	by	covering	penetration	methodology,	discussing
how	to	obtain	details	on	the	Android	operating	system.	We	then	turn	to
pen	 testing	 Android	 applications	 and	 discuss	 security	 for	 Android
applications.	 Towards	 the	 end,	 we	 talk	 about	 relatively	 newer	 issues
(including	storage	on	clouds)	and	patching.	Finally,	we	showcase	recent
security	issues	for	Android	applications.
The	reader	should	now	be	familiar	with	Android	architecture	(covered

in	Chapter	2),	Android	application	basics	(building	blocks,	 frameworks;
covered	 in	 Chapter	 3),	 and	 Android	 permissions	 and	 security	 models
(covered	in	Chapter	4).

5.1	Penetration	Testing	Methodology
A	penetration	test	(also	pen	test)	is	a	method	of	evaluating	the	security
of	systems	by	simulating	an	attack	from	malicious	insiders	or	outsiders.
The	 goal	 is	 to	 discover	 issues	 before	 they	 are	 discovered	 by	 attackers
with	malicious	intents	and	to	fix	them.	Testing	often	happens	just	before
a	product	is	released,	to	ensure	security,	or	after	it	has	been	out,	and	to
ensure	that	no	vulnerabilities	have	been	introduced.	Source	code	review
or	static	analysis	compliments	a	pen	test.	A	static	analysis	ideally	should
be	 performed	 before	 a	 pen	 test	 and	 should	 be	 a	 component	 of	 the
Software	 Development	 Life	 Cycle	 (SDLC)	 cycle.	 If	 a	 static	 analysis	 is
performed	before	 the	pen	 test	 and	 findings	 from	 it	 are	 remediedbefore
product	 development	 is	 complete,	 a	 pen	 test	 will	 result	 in	 relatively
fewer	 findings.	This	 allows	 for	 a	 relatively	 cleaner	pen	 test	 report	 that
can	be	 shared	with	 customers,	 if	 needed,	 thereby	providing	 them	with
an	assurance	of	security	for	the	product.

Pen	tests	can	be	classified	into	two	categories—internal	and	external—
depending	 on	 the	 vantage	 point	 of	 the	 simulated	 tests.	 Below	 are
overviews	 of	 internal	 and	 external	 pen	 tests,	 guidelines	 for	 conducting
pen	tests,	a	static	analysis,	and	steps	to	follow	in	pen	testing	an	Android
OS	and	devices.

5.1.1	External	Penetration	Test
External	 pen	 tests	 are	 performed	 by	 security	 professionals	 outside	 the
network	 who	 are	 only	 provided	 with	 limited	 information.	 Enterprise
networks	are	protected	by	a	multitude	of	 firewalls	with	Access	Control
Lists	(ACL)	that	block	off	most	of	the	ports	that	can	be	accessed	from	the
outside.	 In	 an	 external	 pen	 test,	 the	 only	 information	 security
professionals	 are	 given	 are	 URLs	 or	 IP	 addresses.	 Many	 of	 the
tools/techniques	used	by	security	professionals	for	external	pen	tests	will
encounter	 firewalls,	and	 these	 firewalls	will	usually	prevent	 them	from
probing	 the	 internal	 networks.	 This	 prevents	 them	 from	 identifying
vulnerabilities	that	exist	but	are	protected	by	firewalls	or	other	defenses.
For	example,	a	rooted	Android	device	is	running	a	service	on	port	850.
Firewalls	 are	 usually	 configured	 so	 as	 not	 to	 allow	probes	 to	 this	 port
(and	thus	protects	services	running	on	this	port).	Thus,	a	pen	test	from
the	outside	will	not	detect	a	service	running	on	this	port.	However,	if	a
rooted	Android	device	is	an	running	httpd	server	on	port	80,	it	is	more
likely	to	be	discovered	by	an	external	pen	test,	since	port	80	is	usually
accessible	through	a	firewall.

5.1.2	Internal	Penetration	Test
Internal	pen	test	are	not	hindered	by	firewalls	(although	they	might	be,
if	 there	 is	 tiered	 architecture),	 and	 it	 is,	 therefore,	 easier	 to	 obtain
information	on	internal	systems	(systems	that	have	private	IPs,	etc.).
Continuing	our	example	of	a	rooted	Android	device	running	service	on
port	850,	in	an	internal	pen	test,	security	professionals	are	more	likely	to
discover	 this	 port	 (and	 service),	 as	 it	 probably	won’t	 be	 blocked	 by	 a
firewall.	 If	 a	 service	 is	 communicating	 with	 other	 devices,	 it	 can	 be
probed.
The	 rule	 of	 thumb	 is	 that	 an	 internal	 penetration	 test	will	 highlight

more	 issues	 compared	 to	 an	 external	 penetration	 test.	 External
penetration	 tests	 rely	 on	 the	 fact	 that	 attackers	 can’t	 access	 devices	 in
the	network.	However,	it	does	not	mean	that	issues	in	internal	pen	tests
are	 of	 less	 severity.	 Insiders	 can	 still	 exploit	 these	 issues.	 In	 addition,
attackers	from	the	outside	might	be	able	to	exploit	these	issues	as	part	of
larger	attacks,	where	they	can,	in	fact,	get	inside	the	network.

5.1.3	Penetration	Test	Methodologies
Peer-reviewed	methodologies	for	performing	pen	tests	step	by	step	exist.
NIST	800-115	and	OSSTMM	are	two	such	guidelines.	The	idea	is	not	to
follow	 them	 every	 step	 of	 the	way,	 but	 to	 use	 them	 as	 guidelines	 and
modify	them	as	needed	in	conducting	a	pen	test.
A	 typical	 pen	 test	 can	 be	 broadly	 divided	 into	 the	 following	 four
stages:

1.	Planning:	 Identify	 goals	 for	 the	 exercise	 and	 obtain	 approvals	 and
logistics.

2.	Discovery:	Obtain	information	on	target(s).	 Information	includes	IP
addresses,	 contact	 information,	 system	 information	 (OS	 versions),
applications,	and	databases,	etc.

3.	Attacks:	 Based	 on	 information	 discovered	 in	 Stage	 2,	 identify	 any
systems,	 applications,	 and	 databases	 that	 are	 vulnerable	 and
validate	 these	 vulnerabilities.	 If	 necessary,	 loop	 back	 into	 the
discovery	phase.

4.	Reporting:	Based	on	this	assessment,	categorize	issues	by	severity—
critical,	 high,	 medium,	 and	 low—and	 provide	 this	 analysis	 to
management,	along	with	recommendations.

5.1.4	Static	Analysis
Although	not	part	of	penetration	testing,	static	analysis	is	an	important
tool	for	security	professionals.	It	helps	to	identify	software	code–related
issues	 early	 in	 the	 development	 cycle	 (or	 if	 the	 product	 has	 been
released,	 later	 during	 security	 assessments).	 A	 static	 analysis	 tool	 is
executed	 against	 a	 code	 base.	 Tools	 use	 algorithms	 to	 analyze	 various
code	paths	and	flow	and	provide	a	list	of	potential	security	issues.	There

is	 often	 some	 percentage	 of	 false	 positives.	 The	 beauty	 of	 the	 static
analysis	 is	 that	 developers	 can	 use	 it	 without	 any	 outside	 help	 and
understand/improve	their	coding	practices	to	prevent	such	issues	in	the
future.
As	 far	 as	 Android	 is	 concerned,	 we	 can	 analyze	 security	 at	 two

different	 layers	 (skipping	 the	 hardware	 layers,	 which	 is	 the	 focus	 of
another	book):	operating	systems	(OS)	and	applications.

5.1.5	Steps	to	Pen	Test	Android	OS	and	Devices
For	most	Android	devices	running	in	an	environment,	one	of	the	major
issues	can	arise	 if	 it	 is	 rooted.	Rooted	devices	are	more	at	 risk,	 since	a
user	 would	 be	 running	 with	 elevated	 privileges,	 and	 attackers	 can
leverage	 this	 to	 compromise	 the	 device.	 In	 addition,	 it	 is	 useful	 to
analyze	issues	in	the	OS	stack	itself	(although	this	requires	access	to	the
source	code	of	the	kernel,	libraries,	etc.).	A	mix	of	black	box	and	white
box	 testing	 is	usually	 the	best	approach,	wherein	security	professionals
have	access	to	devices	on	the	network	and	they	can	probe	further	if	they
sense	suspicious	activities	on	the	device.

1.	Obtain	the	IP	address	of	the	Android	device(s).
2.	 Run	 an	NMAP	 scan	 to	 see	 the	 services	 that	 are	 running	 on	 those
devices.

3.	 For	 suspicious	 devices	 (e.g.,	 rooted	 devices),	 capture	 and	 analyze
packets	through	Wireshark.

4.	 If	 device	 is	 deemed	 compromised,	 use	 utilities	 like	 busybox	 to
explore	device	internals	(which	processes	are	running,	etc.)	and	for
forensics.

5.	Perform	a	static	analysis	of	the	source	code	of	the	libraries	and	OS.
Specifically	 look	 for	 codes	 contributed	 by	 vendors	 such	 as	 HTC.
Code	should	be	reviewed	for	the	following	type	of	issues:	resource
leaks,	null	pointer	references,	illegal	access	operations,	and	control
flow	issues,	which	can	potentially	bypass	security	checks.

6.	 Review	 configuration	 files	 and	 code	 for	 plain	 text	 passwords	 and
other	 sensitive	 data	 that	 is	 being	 stored	 without	 appropriate
security	considerations.

5.2	Tools	for	Penetration	Testing	Android
Android	 comes	 with	 limited	 shell,	 and	 there	 might	 be	 times	 when
security	professionals	need	access	to	more	information	than	provided	by
the	 Android	 OS	 (by	 design).	 There	 are	 different	 tools	 that	 can	 be
leveraged	 for	 this	 purpose.	 Nmap—network	 scanner;	 Wireshark—
network	sniffer;	and	BusyBox—a	collection	of	command	line	tools	(e.g.,
ifconfig)	are	among	some	of	the	most	useful	tools.

5.2.1	Nmap
Assuming	you	don’t	have	access	to	the	device	itself,	but	are	looking	on
the	network	for	Android	devices,	Nmap	scans	can	help.	The	Nmap	scan
launches	 a	 SYN	 (synchronize)	 scan	 against	 the	 IP	 and	 looks	 for	 OS
fingerprinting	 and	 version	 detection	 (see	 Figure	 5.1).	 Our	 scan	 results
showed	no	open	ports

Figure	5.1	Nmap	SYN	Scan	against	an	Android	Device

(services)	 and,	 therefore,	 did	 not	 provide	 very	 useful	 information
regarding	 the	Android	device.	 If	any	of	 the	ports	were	open,	we	might
have	wanted	to	explore	it	a	bit	further.

5.2.2	BusyBox

Android	 comes	 with	 limited	 shell	 utilities.	 The	 BusyBox	 package
provides	many	 commonly	 found	UNIX	 utilities	 for	 Android.	 These	 can
become	handy	during	learning,	exploring,	pen	testing,	and	forensics	on
an	Android	device.	Since	it	runs	on	Android,	utilities	might	not	support
all	options,	such	as	the	ones	on	desktop	versions.
Below	 are	 instructions	 for	 installing	 and	 running	 BusyBox	 on	 an

emulator	(see	Figure	5.2).	For	an	Android	device,	you	will	need	to	root	it
to	be	able	to	install	this	package	and	make	it	run	successfully.
From	 the	 terminal	 inside	 the	 Linux	 system,	 launch	 adb	 shell	 and

perform	the	following	(assuming	you	have	binary	handy):

Figure	5.2	ifconfig	Command	After	Installing	BusyBox

At	 this	 point,	 utilities	 should	 be	 found	 in	 the	 databusybox	 directory.
Change	that	directory	(or	update	the	PATH	variable),	and	you	can	start
using	common	UNIX	commands.

Figure	5.3	netstat	Command	After	Installing	BusyBox

Figure	5.4	Open	Ports	through	pscan

As	is	visible	from	the	output	of	the	ifconfig	command	(Figure	5.2),	the
emulator’s	IP	address	is	10.0.2.15—a	special	IP	address	reserved	for	the
emulator.	If	your	device	was	on	a	network,	you	might	see	something	like
192.168.0.104	 IP.	 10.0.2.2	 IP	 is	 the	 alias	 for	 the	 127.0.0.1	 loop	 back
address	 on	 the	 development	 system	 (i.e.,	 the	 system	 running	 the
emulator).	10.0.2.1	is	the	router/gateway,	and	10.0.2.3	is	the	first	DNS
server.
As	can	be	seen	from	the	screenshots	(Figures	5.3	and	5.4),	port	80	is

open	 (httpd	was	 running	 on	 the	 device).	On	 a	 typical	Android	 device,
this	would	require	further	exploration.

5.2.3	Wireshark

If	 you	 would	 like	 to	 analyze	 traffic	 from	 an	 Android	 device,	 you	 will
probably	need	to	root	the	device	(to	use	something	like	Wireshark	on	the
device)	or	you	will	need	access	to	a	router.	In	our	case,	we	are	running
tcpdump	 (installed	 on	 a	 Linux	 system)	 and	 capturing	 traffic	 in	 an
emulator.	We	 can	 then	open	 the	 file	 in	Wireshark,	 as	 shown	 in	Figure
5.5.
To	 launch	 tcpdump	 and	 capture	 traffic	 from	 the	 emulator	 on	 a
development	machine,	you	can	use:	emulator	–tcpdump	<output	file>	-
avd	<avd	device	name>
The	 traffic	 shown	 in	Figure	 5.5	was	 captured	 during	 a	web	 browser
request	 to	 open	www.google.com.	 As	 can	 be	 seen	 from	 the	Wireshark
listing,	 the	DNS	 server	 is	 10.0.2.3	 and	 the	 router/gateway	 is	 10.0.2.2.
The	 source	 10.0.2.15	 (emulator)	 sends	 a	 HTTP	 GET	 request	 to
www.google.com	(see	Figure	5.6).

5.2.4	Vulnerabilities	in	the	Android	OS
The	Android	OS	is	based	on	the	Linux	OS,	which	is	at	its	core.	It	is	open
source,	and,	thus,	people	are	free	to	develop	and	contribute/re-use	code.
Google	has	 an	official	Android	 team	 that	 is	 responsible	 for	 the	Vanilla
Android	OS.	However,	since	it	is	open	source	and	free,	everyone	is	free
to	 check	 out	 code,	modify,	 and	 ship	 the	 software.	 Different	 vendors—
HTC,	Samsung,	 etc.—seem	 to	modify	 the	OS	per	 their	needs,	 although
the	device	is	still	said	to	run	“Android.”

http://www.google.com
http://www.google.com

Figure	5.5	tcpdump	Output	in	Wireshark

Figure	5.6	HTTP	GET	Request	in	Wireshark

Before	we	explore	the	types	of	issues	that	can	be	found	in	the	Android
OS,	it	might	be	worthwhile	to	wonder	who	is	ultimately	responsible	for
these	 issues?	 Is	 it	Google	 (since	 they	 are	 ones	who	have	 ownership	 of
Android	official	releases)	or	is	it	the	vendors,	such	as	HTC,	who	take	the
Vanilla	OS	and	make	modifications?
We	can	even	go	beyond	this.	Android	OS	leverages	drivers	contributed

to	 Linux.	 These	 drivers	 might	 be	 used	 without	 any	 consideration	 for
their	 security	 implications.	 In	 addition,	 many	 drivers	 might	 have	 old
code,	with	new	code	being	added	on	top	of	it.	Security	issues	at	any	of

the	lower	layers	lacks	clear	accountability.
Typical	 issues	 found	 in	 C/C++	 code	 and	 potentially	 found	 in	 the

Android	OS	would	be	in	resource	leaks,	memory	corruption,	control	flow
issues,	 dataaccess	 violations,	 and	 pointer	 references.	 Often,	 dead	 code
(code	written	but	not	used	by	any	code	flow	path)	will	be	encountered,
and	it	should	be	pointed	out	to	the	users.

5.3	Penetration	Testing—Android	Applications
Most	of	the	pen	testing	efforts	described	on	Android	will	be	focused	on
applications—both	 built	 in	 (e.g.,	 browser,	 maps)	 and	 third-party
applications	(found	on	the	Android	Market).

5.3.1	Android	Applications
Penetration	 testing	 for	 an	Android	 application	 is	 like	 testing	 any	other
software	on	a	platform.	Things	to	consider	while	pen	testing	an	Android
application	 include	 attack	 surface,	 interactions	with	 other	 components
(internally	and	externally),	communications,	and	storage.
Attack	Surface:	Every	pen	test	focuses	at	the	core	on	the	functionality

of	an	application.	Depending	on	the	functions	and	features	provided	by
an	application,	the	efforts	of	the	pen	tester	are	on	items	that	are	relevant
and	critical	(e.g.,	authentication,	data,	etc.),	and	tests	are	performed	on
relevant	underlying	components.	Local	components	not	handling	critical
data	should	be	tested	differently	(and	less	time	should	be	spent	on	them,
compared	to	components	interacting	with	outside	applications/systems).
Interactions	with	Other	Components:	An	application	interacts	with	other

Android	 applications	 and	 outside	 servers	 through	 various	 Interprocess
Communication	 (IPC)	 mechanisms.	 These	 include	 socket-based
communications,	 Remote	 Procedure	 Calls	 (RPC),	 passing/receiving
broadcasts,	Intents,	and	other	Android-specific	IPC	interactions.	Many	of
these	communications	are	possible	through	permissions,	and,	 thus,	 it	 is
paramount	to	look	at	the	following:

–	Permissions	and	application	requests
–	 Functionality	 that	 an	 application	 exposes	 to	 other	 Android
applications

The	 reader	 should	 be	 familiar	with	Android	 permissions	 (covered	 in
Chapter	4).	Permissions	are	defined	in	the	Manifest.xml	file.	A	tester	will
need	to	decompile	the	APK	file	to	access	this	file	and	review	it.	Steps	for
decompiling	the	APK	file	and	obtaining	the	Manifest.XML	file	are	shown
Figures	5.7	and	5.8.
APK	 files	 are	 bundles	 of	 various	 files.	 These	 include	META-INF,	 res,

AndroidManifes.XML,	 classes.dex,	 and	 resources.arsc	 files/directories.
Apktool	 can	 be	 used	 to	 extract	 the	 AndroidManifest.XML	 from	 an	 apk
file.	Usage:	apktool	decode	<apkname>	<directory>
For	 Android-specific	 components	 (Intents,	 Broadcast	 Receivers),	 the

tester	needs	to	at	least	ensure	the	following:

1.	Sensitive	data	is	not	being	passed	for	IPC	communications	(e.g.,	in
Intents,	broadcasts,	etc.).

2.	 Intent	 filters	 are	 not	 being	 used	 for	 security	 purposes.	 Although
Intent	 filters	 can	 control	 which	 Intents	 are	 processed	 by	 an
application,	this	only	applies	to	implicit	Intents.	An	application	can
always	 force	 the	 processing	 of	 an	 Intent	 by	 creating	 an	 explicit
Intent.

3.	 Sticky	 broadcasts	 are	 not	 being	 used	 when	 sensitive	 data	 is
transmitted,	since	the	application	cannot	control	who	receives	these
broadcasts.

Figure	5.7	Extracting	Manifest	Permissions	Files	through	apktool

Figure	5.8	Example	of	a	Manifest	Permission	File	Extracted	from	apk

4.	Permissions	 requested	by	 the	applications	are	not	more	 than	ones
needed	 for	application	 functionality—that	 is,	 the	principle	of	 least
privilege	is	being	applied.

Communications:	 It	 is	 important	 to	 determine	 if	 communications	 of	 the
application	 with	 outside	 systems/servers	 is	 over	 a	 secure	 channel.
Connections	 should	 be	 encrypted.	 It	 is	 also	 important	 to	 review	 how
servers/systems	are	chosen	for	communication.

Data:	At	the	core	of	every	application	assessment	is	the	data	handled	by
that	application.	Typical	applications	can	read/write	data	in	the	form	of
files	or	databases.	Both	of	these	can	be	made	readable	by	the	application

only	or	by	the	outside	world.	When	sensitive	data	is	being	handled	by	an
application,	 it	 is	prudent	 to	 review	 its	 file	 and	database	operations	 for
permissions.	A	tester	should	also	review	the	application	logs	and	shared
preferences	 to	see	 if	 there	 is	data	being	 inadvertently	exposed.	Most	of
the	 applications	 communicate	 with	 the	 external	 environment	 (or	 the
Web),	and	a	lot	of	data	is	stored	on	remote	servers/databases.	The	tester
should	 review	 data	 being	 transmitted	 and	 stored	 on	 offsite
servers/applications.	 Another	 thing	 to	 review	 is	 how	 sensitive
parameters	are	being	passed/stored	(e.g.,	credentials).

Proper	 Use	 of	 Cryptography:	 The	 tester	 should	 look	 at	 the	 standard
cryptographic	practices	of	an	application.	For	example,	is	the	application
checking	preapproved	public	keys	during	 the	certificate	check	process?
How	does	 the	application	validate	certificates?	Does	 the	application	do
strict	certificate	checks?

Passing	 Information	 (including	 parameters)	 to	Browsers:	The	 tester	 should
see	if	the	application	is	opening	a	browser	application,	and,	if	so,	how	it
is	passing	the	necessary	parameters	(i.e.,	through	GET	or	POST	requests).

Miscellaneous:	Applications	 can	be	 reviewed	 for	 services	 running	 in	 the
background	to	see	their	impact	on	resources.	There	are	a	few	additional
steps	that	are	needed	as	part	of	pen	testing	an	Android	application.	Since
Android	 applications	 are	 coded	 in	 Java,	 it	 is	 essential	 to	 review	 Java
code	for	typical	vulnerabilities.	If	an	application	is	relying	on	underlying
native	code	or	libraries,	it	would	be	prudent	to	validate	vulnerabilities	in
the	 native	 code,	 as	 well.	 Finally,	 it	 is	 important	 to	 review	 how	 an
application	is	handling	storage	(covered	later).

To	review	an	application’s	communication	with	the	outside	world,	you
will	need	 to	set	up	a	proxy	 to	 intercept	 traffic	between	the	application
and	the	Web.	This	can	be	done	as	follows:

Figure	5.9	Setting	up	a	Proxy	on	an	Android	Device

Intercepting	traffic	for	browser	(HTTP)	applications:

1.	 Download	 and	 install	 proxy	 (e.g.,	 Burp	 Suite)	 on	 the
host/development	system.	Turn	on	the	“intercept”	option.

2.	Set	up	a	proxy	from	the	Android	phone/emulator	(see	Figure	5.9).
In	our	 example,	we	are	using	 an	 emulator.	Thus,	we	will	 need	 to
use	a	“10.0.2.2”	IP	address	as	the	proxy.

3.	Open	the	browser	on	Android	and	type	a	URL.
4.	 Review	 captured	 traffic	 through	 the	 Burp	 Suite	 (see	 Figures	 5.10
and	5.11).

Intercepting	traffic	for	other	applications:

1.	Start	the	application	(in	our	case,	we	chose	the	Internet	Relay	Chat
(IRC)	application	Yaaic)	(see	Figure	5.12).

Figure	5.10	Intercept	of	Android	Browser	Communication	through	Burp

Figure	5.11	Credentials	in	Plain	Text	(URL)	Captured	through	Burp

Figure	5.12	Yaaic	Application	on	Android

2.	 Capture	 traffic	 through	 Wireshark	 and	 filter	 by	 the	 phone’s	 IP
address	(in	our	case,	192.168.0.107).

3.	Review	captured	 traffic	 through	various	options	 in	Wireshark	 (see
Figures	5.13	(a)M	and	(b).

5.3.2	Application	Security
We	covered	pen-testing	steps	 for	Android-specific	 issues.	 In	addition	 to
these,	 any	 Android	 application	 needs	 to	 be	 analyzed	 (and	 code
reviewed)	 for	 usual	 security	 flaws	 in	 the	 code	 and	 the	 design.	 These
issues	can	be	broadly	classified,	as	shown	in	Table	5.1:
Issues	need	to	be	mapped	by	severity	(critical,	high,	medium,	and	low)
and	level	of	difficulty	in	exploiting	them	(high,	medium,	and	low).	The
following	is	a	summary	of	some	of	the	classification	categories	outlined
in	Table	5.1:

1.	Authentication	 Issues:	 Validates	 that	 user	 credentials	 are	 not	 being
transmitted	 over	 unencrypted	 channel	 and	 if	 authentication
mechanisms	are	in	alignment	with	standard	practices.

Figure	5.13	(a)	Packet	Capture	of	Yaaic	Communication	through	Wireshark;	(b)	Analysis	of
Packets	Captured	through	Wireshark

2.	Access	Controls:	Validates	 that	 authenticated	users	 can	 only	 access
resources	 and	 functionality	 in	 line	with	 their	 credentials	 and	 that
they	are	not	able	to	bypass	access	controls.

3.	Logs:	Validates	 that	 logs	do	not	contain	sensitive	 information,	and
that	 logs	 are	 not	 accessible	 by	 unnecessary	 applications	 and	 that
they	have	appropriate	permissions.

4.	Cryptography:	 Validates	 that	 sensitive	 communications	 occur	 only
over	 secure	 channels	 and	 that	 strong	 ciphers	 are	 used	 for	 this
communication.	Validate	that	there	are	no	propriety	cryptographic
protocols	being	used	in	the	application.

5.	 Data	 Leakage:	 Validates	 that	 the	 application	 is	 not	 accidently
exposing	 data	 that	 otherwise	 should	 not	 be	 available	 to	 other
applications	through	logs,	IPC	calls,	URL	calls,	files,	and	so	forth.

6.	Data	Validation:	 Validates	 that	 the	 application	 does	 not	 use	 input
from	untrusted	sources	directly	into	SQL	queries	and	other	sensitive
operations.

Figure	5.13(b)

Table	5.1	–	Application	Security	Issues

Security	Issue Description

Authentication Issues	related	to	user	identification

Access	Control Issues	related	to	user	rights	after	authentication

Auditing	and
Logging

Issues	related	to	logs	and	auditing

Issues	related	to	encryption	and	securing

Cryptography communications

Credential
Handling

Issues	related	to	the	handling	of	user	passwords	and
other	credentials

Data	Handling
Issues	related	to	the	handling	of	data	vis-à-vis	its
sensitivity

Data	Leakage
Issues	related	to	accidental	or	unintended	leakage	of
information

Error	Checking
Issues	related	to	reporting	errors	without	providing
too	much	data

Input	Validation Issues	related	to	validating	untrusted	user	input

Session
Management

Issues	related	to	best	practices	for	user	session
management

Resource
Handling

Issues	related	to	the	handling	of	resources,	including
memory

Patching Issues	related	to	timely	patching/upgrade	of	software

7.	Error	Reporting:	Validates	that	when	an	application	throws	an	error,
it	 does	 not	 log	 and	 report	 the	 entire	 stack	 track	 and	 does	 not
contain	sensitive	information.

8.	 Session	 Management:	 Validates	 that	 the	 application	 follows	 best
practices	 for	 session	 management,	 including	 time	 out,	 session
identifiers,	token	use,	and	so	forth.

9.	URL	Parameters:	Ensures	that	the	application	does	not	pass	sensitive
parameters	to	URLs	in	plain	text.

10.	 Predictable	 Resources:	 Validates	 that	 an	 application	 is	 not
generating	tokens/identifiers	that	can	be	easily	guessed.

Pen	Testing	 should	provide	an	application	benchmark	against	 the
following	best	practices:

1.	 Timely	 patching	 libraries	 and	 applications	 as	 vulnerabilities	 are
identified.

2.	 Sensitive	 information	 (e.g.,	 SSN)	 is	 not	 passed	 as	 a	 parameter
through	a	URL.	Information	in	a	URL	is	accessed	through	the	GET
request,	and	this	can	be	logged	at	multiple	places.	A	POST	request
solves	 this	 problem.	 However,	 although	 information	 through	 a
POST	request	is	not	visible	in	a	URL,	a	POST	request	can	still	reveal
this	 information	 in	 the	 request-header.	 For	 truly	 sensitive
information,	one	should	always	use	an	HTTPS	connection.

3.	 Brute	 force	 attacks	 are	 not	 possible	 due	 to	 a	 limited	 number	 of
attempts	to	authenticate.

4.	 A	 Secure	 Sockets	 Layer	 (SSL)	 is	 used	 pervasively	 to	 request
resources.

5.	Session	identifiers	are	not	sent	in	URLs.
6.	Tokens	are	not	easily	guessable.
7.	Password	complexity	is	enforced.
8.	 Log	 files	 do	 not	 contain	 sensitive	 information	 and	 are	 protected
appropriately.

9.	Files	are	encrypted	on	local	and	external	storage.
10.	 Proper	 data	 validation	 is	 performed	 to	 prevent	 XSS,	 SQLi,
command	injection,	etc.

Code	 review	of	 an	Android	 application	 can	 identify	 the	 following
issues:

1.	 Command	 Injection:	 Attacker	 can	 influence	 which	 command	 is
executed	or	the	environment	in	which	it	is	executed,	thus	bypassing
security	controls.	Typical	examples	include	user	input	being	used	in
SQL	query	constructed	to	query	SQLite	DBs.

2.	Resource	Leaks:	Application	does	not	relinquish	resources	after	being
used	(e.g.,	file	handling,	etc.).	This	can	result	in	performance	issues
but	can	also	be	available	for	malicious	users/applications.

3.	 Error	 Handling:	 An	 application	 does	 not	 take	 in	 to	 account
structure/flow	on	a	particular	error	and	 thus	does	not	perform	all

housekeeping/access	 control	 checks	 needed	 if	 a	 particular	 code
path	is	executed.

4.	Unsafe	Java	Native	Interface	(JNI)	Calls:	Since	Android	applications
can	 call	 native	 code	 written	 in	 C	 through	 JNI,	 this	 exposes
applications	to	underlying	issues	in	the	native	code.

5.4	Miscellaneous	Issues

5.4.1	Data	Storage	on	Internal,	External,	and	Cloud
There	 are	 various	 locations	 available	 for	 Android	 application	 data
storage,	 including	 files,	databases,	preferences,	 and	cache.	Data	 can	be
stored	in	the	internal	memory	or	on	an	external	card.	If	data	is	stored	in
plain	text	and	the	device	is	compromised	or	stolen,	data	will	be	exposed.
It	 is	 usually	 a	 best	 practice	 to	 encrypt	 data	 that	 is	 being	 stored.	 The
application	needs	to	ensure	that	a	strong	encryption	algorithm	is	being
used	to	do	this.	In-house	encryption	is	usually	is	the	weakest	compared
to	publicly	available	encryption	tools.
A	pen	tester	needs	to	review	the	following	locations	for	data	storage—

local:	files,	SQLite	DBs,	cache,	and	preferences;	and	external:	files,	cloud.
Code	 review	can	help	 identify	places	where	 file/data	 storage	occurs.

Typical	 operations	 that	 need	 to	 be	 reviewed	 include	 the
opening/creating	 of	 files,	 accessing	 the	 directory	 and	 its	 contents,
accessing	cache/preferences,	opening/creating	a	database,	and	so	forth.

5.5	Summary
This	 chapter	 introduced	 the	 reader	 to	 penetration	 testing	 on	 Android.
We	 covered	 how	 to	 pen	 test	 the	 Android	 OS.	 We	 also	 discussed
application	 security,	 pen	 testing	 Android	 applications,	 and	 static
analysis.	We	analyzed	recent	security	issues	with	Android	applications.
We	suggest	 that	 the	reader	download	a	 few	open-source	applications

for	Android	 or	write	 one	 and	 then	 try	 out	 the	 techniques	 described	 in
this	chapter.	The	authors	also	have	an	application	on	their	website	that
the	user	can	experiment	with.

Chapter	6

Reverse	Engineering	Android	Applications

In	this	chapter,	we	will	cover	malware	basics—how	to	identify	malware,
malware	behavior,	and	malware	features.	We	will	then	discuss	a	custom
Android	BOT	application	created	by	the	authors	and	demonstrate	to	the
reader	how	potential	malware	can	bypass	Android	built-in	checks.
The	Android	BOT	walkthrough	will	 include	 stealing	a	user’s	browser

history	 and	 Short	 Message	 Service	 (SMS)	 as	 well	 as	 call	 logs,	 and	 it
attempts	 to	 drain	 the	 phone’s	 battery.	 We	 will	 also	 present	 a	 sample
application	 to	 show	 the	 readers	 how	 to	 reverse	 engineer	 or	 analyze
malicious	applications.	After	completing	this	chapter,	the	reader	will	be
able	to	write	Android	BOT	in	Java.	The	reader	will	also	become	familiar
with	 reverse	 engineering	 tools	 and	 will	 be	 able	 to	 decompile	 any
Android	application.

6.1	Introduction
Reverse	 engineering	 is	 the	 process	 of	 discovering	 the	 technological
principles	of	a	device,	object,	or	system	through	analysis	of	its	structure,
function,	 and	 operation
(http://en.wikipedia.org/wiki/Reverse_engineering).	 It	 often	 involves
taking	 something	 (e.g.,	 a	 mechanical	 device,	 electronic	 component,
software	program,	or	biological,	chemical,	or	organic	matter)	apart	and
analyzing	its	workings	in	detail	to	be	used	in	maintenance,	or	to	try	to
make	a	new	device	or	program	that	does	the	same	thing	without	using
or	simply	duplicating	(without	understanding)	the	original.
The	 typical	 user	 today	 downloads	 or	 buys	 software	 and	 installs	 it

without	thinking	much	about	its	functionality.	A	few	lines	of	description
and	some	reviews	might	be	enough	to	persuade	the	user	to	try	it.	Except
for	 well-known	 software	 (written	 by	 software	 companies	 such	 as

http://en.wikipedia.org/wiki/Reverse_engineering

Microsoft	 or	 Apple)	 or	 through	 the	 open-source	 community,	 it	 can	 be
difficult	to	verify	the	authenticity	of	available	software	or	vouch	for	its
functionality.	 Shareware/trial-ware/free	 software	 is	 available	 for
personal	 computers	 (PCs)	 and	 is	 now	 available	 for	 mobile	 devices,	 as
well,	 and	 only	 requires	 one	 click	 to	 install	 it.	 Hundreds	 of	 software
applications	 pop	 up	 everyday	 in	 the	 marketplace	 from	 seasoned	 to
newbie	developers.
The	 problem	 is	 compounded	 for	mobile	 devices,	 especially	 Android.
With	 no	 rigorous	 security	 review	 (or	 gate)	 on	 multiple	 Android
marketplaces,	there	are	many	opportunities	for	malicious	software	to	be
installed	 on	 a	 device.	 The	 only	 gate	 seems	 to	 be	 during	 the	 install
process,	when	the	user	is	asked	to	approve	requested	permissions.	After
that,	the	user’s	trust	in	an	application	is	complete.	Users,	therefore,	don’t
understand	 the	 full	 implications	 of	 the	 utilities	 and	 software	 that	 they
install	on	 their	devices.	Given	the	complexity	and	 interdependencies	of
software	 installed,	 it	 can	 become	 confusing	 even	 for	 seasoned
professionals	to	figure	out	if	a	software	package	is	trustworthy.	At	these
times,	the	need	for	reverse	engineering	becomes	crucial.
Reverse	 engineering	 comprises	 a	 set	 of	 techniques	 that	 can	 identify
how	 software	 is	 going	 to	 behave.	Often	 this	 process	 can	 be	 completed
without	access	to	the	source	code.
Reverse	engineering	is	useful	for	the	security	analysis	of	software	for
the	following	purposes:

1.	 Identifying	malicious	 software/code:	 Security	 companies	 use	 reverse
engineering	 techniques	 to	 identify	 how	 a	 particular	 piece	 of
malware	 (virus,	 worm,	 etc.)	 behaves	 and	 develop	 a	 solution	 to
counter	it.	Reverse	engineering	can	also	aid	in	the	development	of
heuristics	 that	 can	 identify	 future	 malicious	 software	 behavior
before	it	can	impact	users.

2.	Discovering	 flaws/security	 issues:	 Reverse	 engineering	 is	 one	 of	 the
last	 techniques	 used	 by	 security	 professionals	 to	 validate	 that
software	 does	 not	 have	 flaws/issues	 that	 can	 be	 exploited.	 For
example,	 reverse	engineering	can	help	 identify	 if	an	application	 is
providing	 a	 lot	 of	 useful	 information	 to	 an	 attacker	 or	 has
predictable	data	in	the	stack/heap.

3.	 Identifying	 unintended	 functionality	 in	 software:	 Reverse	 engineering
might	 be	 used	 by	 developers	 of	 particular	 software	 to	 identify	 if
there	are	potentially	unintended	consequences	of	 its	 functionality,
and	if	so,	they	can	take	appropriate	measures	to	mitigate	them.

Reverse	 engineering	 has	 been	 around	 for	 a	 long	 time—competitors
trying	 to	 reverse	 engineer	 popular	 products,	 the	 government	 trying	 to
reverse	 engineer	 defense	 technologies	 of	 their	 opponents,
mathematicians	trying	to	reverse	engineer	ciphers.	However,	we	would
like	 to	note	 that	 this	 chapter	 is	not	 about	 reverse	 engineering	Android
applications	for	any	purpose.
It	 is	 illegal	 to	 reverse	 engineer	 software	 applications.	 It	 infringes	 on
the	 copyrights	 of	 developers	 and	 companies.	 It	 is	 punishable	 by	 law,
including	 copyright	 laws	 and	 digital	 rights	 acts.	 Our	 sole	 purpose	 in
demonstrating	 techniques	 in	 this	 chapter	 is	 to	 decipher	 and	 analyze
malicious	software.	We	provide	guidelines	on	how	potentially	malicious
software	 can	 be	 reviewed	 and	 differentiated	 from	 legitimate
software/downloads.
Android	has	some	useful	tools	that	are	available	for	aiding	the	reverse
engineering	 process.	 We	 have	 covered	 some	 of	 them	 in	 previous
chapters,	and	we	will	cover	 some	of	 them	here.	We	will	now	walk	 the
reader	 through	 the	 process	 of	 analyzing	 an	 application	 (using	 reverse
engineering	 techniques)	 for	 malicious	 behavior.	 The	 application	 used
here	has	been	developed	for	demonstration	purposes	only	by	the	authors
of	this	book.

6.2	What	is	Malware?
Malware	 (or	 malicious	 software)	 is	 software	 code	 designed	 to	 disrupt
regular	operations	and	collect	sensitive	and/or	unauthorized	information
from	 a	 system/user.	 Malware	 can	 include	 viruses,	 worms,	 Trojans,
spyware,	key	loggers,	adware,	rootkits,	and	other	malicious	code.
The	following	behavior	can	typically	be	classified	as	malware:

1.	 Disrupting	 regular	 operations:	 This	 type	 of	 software	 is	 typically
designed	 to	prevent	 systems	 from	being	used	as	desired.	Behavior
can	 include	 gobbling	 up	 all	 system	 resources	 (e.g.,	 disk	 space,

memory,	 CPU	 cycles),	 placing	 large	 amounts	 of	 traffic	 on	 the
network	to	consume	the	bandwidth,	and	so	forth.

2.	Collecting	sensitive	information	without	consent:	This	type	of	malicious
code	 tries	 to	 steal	 valuable	 (sensitive)	 information—for	 example,
key	loggers.	A	key	logger	tracks	the	user’s	keys	and	provides	them
to	 the	 attacker.	When	 the	 user	 inputs	 sensitive	 information	 (e.g.,
SSN,	credit	card	numbers,	and	passwords),	these	can	all	potentially
be	logged	and	sent	to	an	attacker.

3.	Performing	 operations	 on	 the	 system	 without	 the	 user’s	 consent:	 This
type	of	software	performs	operations	on	systems/other	applications,
which	 it	 is	 not	 intended	 to	 do—for	 example,	 a	 wallpaper
application	trying	to	read	sensitive	files	from	a	banking	application
or	modifying	files	so	that	other	applications	are	impacted.

6.3	Identifying	Android	Malware
Our	focus	here	is	to	identify	behavior	that	can	be	classified	as	malware
on	 Android	 devices.	 As	 we	 have	 seen,	 this	 can	 be	 at	 the	 OS	 level
(Android/Linux	kernel)	or	at	the	application	level.	The	question	here	is,
how	do	we	detect	suspicious	applications	on	Android	and	analyze	them?
The	 methodology	 we	 propose	 will	 help	 security	 professionals	 identify
suspicious	 behavior	 and	 evaluate	 applications.	 Below	 is	 our
methodology,	 followed	 by	 a	 case	 study	 using	 a	 malicious	 application
written	by	the	authors:

1.	Source/Functionality
This	 is	 the	 first	 step	 in	 identifying	 a	 potentially	 suspicious
application.	 If	 it	 is	 available	 on	 a	 non-standard	 source	 (e.g.,	 a
website	instead	of	the	Android	Market),	it	is	prudent	to	analyze	the
functionality	of	the	application.	In	many	cases,	it	might	be	too	late
if	the	user	already	installed	it	on	a	mobile	device.	In	any	case,	it	is
important	 to	 note	 the	 supposed	 functionality	 of	 an	 application,
which	can	be	analyzed	through	Steps	2	to	4.

2.	Permissions
Now	 that	 you	 have	 analyzed	 and	 you	 understand	 the	 expected
behavior	 of	 the	 application,	 it	 is	 time	 to	 review	 the	 permissions
requested	 by	 the	 application.	 They	 should	 align	 with	 the

permissions	 needed	 to	 perform	 expected	 operations.	 If	 an
application	 is	 asking	 for	 more	 permissions	 than	 it	 should	 for
providing	functionality,	it	is	a	candidate	for	further	evaluation.

3.	Data
Based	on	the	permissions	requested,	it	is	possible	to	draw	a	matrix
of	data	elements	 that	 it	can	have	access	 to.	Does	 it	align	with	 the
expected	behavior?	Would	 the	application	have	access	 to	data	not
needed	for	its	operations?

4.	Connectivity
The	final	step	in	our	methodology	is	to	analyze	the	application	code
itself	 (covered	 later).	 The	 reviewer	 needs	 to	 determine	 if	 the
application	 is	 opening	 sockets	 (and	 to	 which	 servers),	 ascertain
what	type	of	data	is	being	transmitted	(and	if	securely),	and	see	if	it
is	using	any	advertising	libraries,	and	so	forth.

6.4	Reverse	Engineering	Methodology	for	Android
Applications

In	 the	 previous	 section,	 we	 described	 the	 methodology	 for	 assessing
suspicious	 Android	 applications.	 In	 this	 section,	 we	 apply	 this
methodology	 to	 analyze	 a	 wallpaper	 application	 developed	 by	 the
authors.

Step	1:	Review	source	and	functionality	of	the	application

The	 application	 is	 available	 for	 download	 from	 the	 authors’	 website
(www.androidinsecurity.com)	 or	 from	 the	 Android	 Market.	 If	 this
application	 was	 available	 only	 from	 a	 non-standard	 source	 (e.g.,
webpage),	then	it	would	definitely	merit	further	review.	Upon	installing
the	application	on	an	emulator,	 it	seems	like	an	off-the-shelf	wallpaper
application	(see	Figures	6.1	and	6.2).

Step	2:	Review	permissions	used	by	the	application

We	 covered	 Android	 permissions	 in	 Chapter	 4	 and	 how	 to	 access	 the
Manifest.xml	file	(which	has	the	permissions	listing)	in	Chapter	5.	Using
the	apktool	on	the	Cute	Puppies	Wallpaper	application	developed	by	the

http://www.androidinsecurity.com

authors,	 we	 can	 access	 the	 list	 of	 permissions	 requested	 by	 this
application	(see	Figures	6.3	and	6.4).
As	is	evident	from	Figure	6.4,	the	application	seems	to	be	requesting

too	many	permissions.	Table	6.1	summarizes	the	permissions	requested,
their	uses	on	the	Android	device,	and	if	they	are	required	for	a	wallpaper
application.	The	application	is	requesting	far	too	many	permissions	than
are	needed.

Figure	6.1	Installing	the	Wallpaper	Application	through	the	Command	Line

Figure	6.2	Application	Screenshots

Step	3:	Review	Interprocess	Communication	(IPC)	mechanisms	used
by	the	application
Next	we	analyze	the	IPC	mechanisms	used	by	the	application	(see	Figure
6.5).	We	 look	 for	 Intents	and	 Intent	 filters	 in	 the	AndroidManifest	 file.
We	also	analyze	components	associated	with	these	Intents	(e.g.,	service,
receiver,	activity,	etc.).	Table	6.2	shows	the	IPC	mechanisms	defined	by
the	application	and	our	analysis	of	them.

Figure	6.3	Extracting	AndroidManifest.XML	through	apktool

Figure	6.4	Permissions	Listed	in	AndroidManifest	for	Wallpaper	Application

Step	 4:	 Analyze	 code	 to	 review	 open	 ports,	 data
shared/transmitted,	socket	connections,	and	so	forth

Decompiling	APK	to	obtain	Java	code

Finally,	we	decompile	the	application	code	into	readable	Java	code.	We
then	review	the	code	to	gain	insight	into	the	application’s	behavior.	The
Android	 Package	 files	 (APK)	 is	 a	 compressed	 file	 that	 contains	 the
classes.dex	 file,	 among	 other	 things.	 APK	 files	 can	 be	 easily
decompressed,	 and	 classes.dex	 file	 can	 be	 extracted.	 DEX	 is	 Java	 Byte

Code	 for	 Dalvik	 Virtual	Machine.	 It	 is	 optimized	 for	 running	 on	 small
devices.	 The	 dex2jar	 utility	 (available	 from
http://code.google.com/p/dex2jar/downloads/list)	allows	us	 to	convert
classes.dex	files	into	jar	files	(see	Figure	6.6).	The	resulting	jar	files	can
be	viewed	in	a	Java	decompiler	(e.g.,	JD)	(see	Figure	6.7).

Analyze	 code	 for	 open	 ports,	 data	 shared/transmitted,	 and	 open
sockets

We	now	analyze	jar	files	in	a	Java	decompiler.	As	shown	in	Figure	6.7,
opening	 the	 classes.jar	 file	 in	 JD-GUI,	 we	 see	 the	 following	 class	 files
that	comprise	the	Java	archive	(jar	file):

1.	BotBroadcastHander
2.	BotClient
3.	BotLocationHandler
4.	BotSMSHandler
5.	BotService
6.	BotWorker
7.	CutePuppiesWallpaper
8.	R

Table	6.1	–	Permissions	Listed	in	the	AndroidManifest	for	the
Wallpaper	Application

Permission Purpose Required?

RECEIVE_BOOT_COMPLETED

Allows	an	application	to
receive	the
ACTION_BOOT_COMPLETED
that	is	broadcast	after	the
system	finishes	booting

Maybe.	The
application
might	need
this	to	set
the
wallpaper,
depending

http://code.google.com/p/dex2jar/downloads/list

on	the
functionality

INTERNET
Allows	an	application	to
open	network	sockets

Maybe.
Application
might	need
this	to
communicate
with	the
external
server	to
access	new
wallpapers

ACCESS_COARSE_LOCATION
Allows	an	application	to
access	coarse	(e.g.,	Cell-ID,
WiFi)	location

No.
Application
does	not
need	location
data

ACCESS_FINE_LOCATION
Allows	an	application	to
access	fine	(e.g.,	GPS)
location

No.
Application
does	not
need	location
data

READ_PHONE_STATE
Allows	read-only	access	to
phone	state

No.
Application
does	not
need	to	read

phone	state

SET_WALLPAPER
Allows	an	application	to	set
the	wallpaper

Yes.	This	is
in	line	with
the
application’s
functionality

WRITE_CONTACTS
Allows	an	application	to
write	(but	not	read)	the
user’s	contacts	data

No.
Application
does	not
need	to
access
contact	data

READ_CONTACTS
Allows	an	application	to
read	the	user’s	contacts	data

No.
Application
does	not
need	to
access
contact	data

RECEIVE_SMS
Allows	an	application	to
read	SMS	messages

No.
Application
does	not
need	to
access	SMS

Maybe.
Looks
suspicious.

READ_OWNER_DATA Custom	permission The
application
does	note
need	to	read
owner	data.

READ_HISTORY_BOOKMARKS

Allows	an	application	to
read	(but	not	write)	the
user’s	browsing	history	and
bookmarks

No.
Application
does	not
need	to
access
history	data

WRITE_HISTORY_BOOKMARKS

Allows	an	application	to
write	(but	not	read)	the
user’s	browsing	history	and
bookmarks

No.
Application
does	not
need	to
access
history	data

Figure	6.5	IPC	Mechanisms	Used	by	the	Cute	Puppies	Wallpaper	Application

Table	6.2	–	IPC	Mechanisms	Used	by	the	Cute	Puppies	Wallpaper
Application

IPC	Component Intent	Filter Analysis

Receive
broadcast

RECEIVER
com.adam.CutePuppiesWallpaper.
BotBroadcastHandler

android.intent.action.
BOOT_COMPLETED

once	phone
boot	is
completed.
Not
required

RECEIVER
com.adam.CutePuppiesWallpaper.
BotSMSHandler

android.provider.
Telephony.SMS_RECEIVED

Receive
broadcast
when	SMS
is	received.
Not
required

SERVICE
com.adam.CutePuppiesWallpaper.
BotService

com.adam.CutePuppiesWallpaper.
BotService

Background
service.
May	be
needed

ACTIVITYCutePuppiesWallpaper android.intent.action.MAIN

Main
activity
when	the
application
is	launched

It	seems	that	CutePuppiesWallpaper	is	the	file	in	which	the	main	activity
might	be	defined.	We	look	next	at	 the	contents	of	 this	 file	 through	JD-
GUI.

Analysis	of	CutePuppiesWallpaper.class	file:
As	seen	from	the	screenshot	depicted	in	Figure	6.8,	this	class	file	defines
the	 integer	 array	 that	 points	 to	 wallpaper	 (defined	 in	 the	 resources	 R
file).	 It	 then	 starts	 BotService	 in	 the	 background.	We	 now	 look	 at	 the

BotService.class	file.

Analysis	of	BotService.class	file

As	seen	from	the	screenshot	depicted	in	Figure	6.9,	when	bot	service	is
started	it	initializes	BotClient.	The	constructor	to	the	BotClient	includes
an	external	URL	(“k2.homeunix.com”)	and	socket	port	1500.	It	then	calls
the	BotClient.	Run()	method.	We	now	analyze	the	BotClient.class	file	to
analyze	the	functionality	defined	there.

Figure	6.6	Using	dex2jar	to	Convert	classes.dex	File	to	Jar	Format

http://k2.homeunix.com

Figure	6.7	Using	Java	Decompiler	to	View	Java	Code	from	Decompiled	Jar	File

Figure	6.8	CutePuppiesWallpaper	Class

Figure	6.9	BotService.class

Analysis	of	BotClient.class	file

When	 the	 BotClient.Run()	 method	 is	 called,	 it,	 in	 turn,	 calls
ConnectToServer()	 and	 then	 MasterCommandProcessor().
ConnectToServer	establishes	the	socket	connection	to	the	this.hostUri	on
port	 this.port.	 It	 also	 creates	 input	 and	 output	 streams	 that	 read/write
from	 this	 channel	 (see	 Figure	 6.10).	 It	 then	 starts	 the

MasterCommandProcessor()	thread.	Inside	Run(),	the	command	from	the
server	 is	 read	 into	 localObject1,	 as	 shown	 in	Figure	6.11.	 The	 value	 is
then	checked	against	integer	values	101	through	106.	Depending	on	the
value,	the	corresponding	BotWorker	class	method	is	called	to	return	the
requested	information	to	the	remote	server.	For	example,	if	the	value	of
localObject1	is	101,	bwr.

Figure	6.10	BotClient.class	–	ConnectToServer()

Figure	6.11	BotCIient.cIass	–	MasterCommandProcessor()

Figure	6.12	BotClient.class	–	MasterCommandProcessor()

GetContactInfo	 is	 called	 and	 contact	 information	 is	 sent	 to	 the	 remote
server	(see	Figure	6.12).	SendDataToMaster()	writes	to	the	output	socket
stream,	thus	sending	data	to	the	remote	server.

Analysis	of	BotWorker.class	file

As	 shown	 in	 Figures	 6.12	 and	 6.13,	 depending	 on	 the	 value	 of
localObject1,	 BotClient	 calls	 various	 methods	 in	 BotWorker	 class.	 For
example,	if	the	value	of	localObject1	is	101,	BotWorker.GetContactInfo()
is	called	by	BotClient.	The	actual	function	of	getting	contact	information
from	the	device	is	defined	in	the	BotWorker	class.	This	class	also	defines
similar	methods	to	obtain	browser	history,	device	information,	package
information,	 and	 SMS	 data	 (see	 Figure	 6.14).	 Table	 6.3	 lists	 various
methods	defined	in	BotWorker	class.

Figure	6.13	GetContactInfo()	called	by	BotClient	when	localObject1	=	101

Figure	6.14	Methods	Defined	in	BotWorker	Class

Table	6.3	–	Various	Methods	Defined	in	BotWorker	Class

Method	Name Description

BotWorker	(ContentResolver
paramContentResolver,	Context
paramContext)

Constructor	method	for
BotWorker	class	(Figure	6.15)

GetBrowserHistory()
Provides	browser	history
(Figure	6.16)

GetContactInfo()
Provides	contacts	information
(Figure	6.17)

GetCurrentLocation()
Provides	location	data	(Figure
6.18)

GetDeviceID()
Provides	device	information
(Figure	6.19)

Provides	listing	of	packages

GetPackagesInstalled() installed	on	device	(Figure
6.20)

GetReceivedSMS()
Obtains	SMS	messages	received
on	the	device	(Figure	6.21)

ReadContacts()
Reads	contact	data	(Figure
6.22)

Figure	6.15	BotWorker	Constructor

Figure	6.16	GetBrowserHistory()	in	BotWorker

Analysis	of	BotLocationHandler.class	file

BotClient	calls	bwr.GetCurrentLocation()	to	obtain	location	data.	This,	in
turn,	 calls	 BotLocationHandler().GetLastLocation()	 defined	 in	 the
BotLocationHanlder.class.	 It	 obtains	 the	 current	 location	 of	 the	 BOT
client	(Figure	6.23).

Analysis	of	BotSMSHandler.class	file

BotClient	 calls	 bwr.GetReceivedSMS()	 to	 obtain	 SMS	 data.
GetReceivedSMS()	 in	 BotWorker	 calls	 GetMessages()	 defined	 in

BotSMSHandler	class.	onReceive()	in	the	class	listens	for	incoming	SMS
messages	 and	 buffers	 them	 to	 send	 them	 to	 the	 remote	 server	 (Figure
6.24).

Putting	it	all	together—CutePuppiesWallpaper	Application	Analysis
Based	 on	 our	 analysis	 so	 far,	 we	 can	 conclude	 that	 the
CutePuppiesWallpaper	 application	 is	 malicious.	 As	 soon	 as	 the
application	 is	 launched,	 it	 starts	a	background	 service.	The	application
contains	 a	 proof-of-concept	 BOT,	 which	 connects	 to	 the	 master
Command	 and	 Control	 Center	 (CnC)	 using	 socket	 connections.	 It	 then
waits	 for	 commands	 from	 the	 CnC.	 The	 center	 can	 send	 different
commands	to	BOT	on	the	device.

Figure	6.17	GetContactInfo()	in	BotWorker

Figure	6.18	GetCurrentLocation()	in	BotWorker

Although	 it	 is	 supposed	 to	 be	 a	 wallpaper	 application,	 it	 requests
permission,	 such	 as	 RECEIVE_SMS,	 and	 defines	 Intent	 filters	 for	 SMS
receivers.	By	performing	a	code	analysis,	we	conclude	 that	 it	 creates	a
backdoor	 to	 a	 remote	 server.	 Based	 on	 commands	 sent	 by	 the	 remote
server,	 it	 can	 transfer	 any	 of	 the	 following	 information	 to	 the	 BOT
server:	 contact	 information,	 browser	 history,	 SMS	 messages,	 location
(including	 GPS	 co-ordinates),	 packages	 installed	 on	 the	 device,	 IMEI
number	of	the	device,	and	so	forth.
From	 Figure	 6.12,	 we	 can	 construct	 Table	 6.4,	 illustrating	 different

commands	sent	by	the	BOT	Master.
From	our	analysis,	we	can	conclude	the	workflow	of	the	CutePuppies

Wallpaper	application	(see	Figure	6.25).
A	user	downloads	 the	application	 from	either	 the	Android	Market	or

through	 another	 source	 and	 installs	 it	 on	 the	 device.	 When	 the	 user
launches	 the	application	on	 the	device,	 the	BOT	service	gets	 started	 in
the	 background	 and	 the	 BOT	 client	 contacts	 the	 CnC.	 The	 BOT	 server
establishes	 a	 connection	 with	 the	 client	 and	 sends	 a	 command	 to	 the
BOT	 client.	 The	BOT	 client	 processes	 the	 command	 from	 the	CnC	 and
sends	data	back	to	the	server.

Figure	6.19	GetDeviceID()	in	BotWorker

Figure	6.20	GetPackagesInstaIIed()	in	BotWorker

Figure	6.21	GetReceivedSMS()	in	BotWorker

Figure	6.22	ReadContacts()	in	BotWorker

Figure	6.23	GetLastLocation()	Defined	in	BotLocationHandIer.cIass

Figure	6.24	GetMessages()	Defined	in	BotSMSHanIder.cIass

Table	6.4	–	Commands	Sent	by	CnC	to	BOT	Client

Command Purpose

MCS_CONTACTS_INFO Get	contact	information

MCS_BROWSER_HISTORY Get	browser	history

MCS_SMS Get	incoming	messages

MCS_LOCATION Get	GPS	information	from	device

MCS_PACKAGES Get	list	of	applications	installed

MCS_DEVICE_INFO Get	device	information

6.5	Summary
In	 this	 chapter,	 we	 discussed	 malware	 and	 behavior	 that	 constitutes
malware.	 We	 then	 discussed	 malicious	 behavior	 in	 the	 context	 of
Android	 applications	 and	walked	 the	 reader	 through	 the	methodology
available	 to	 analyze	 Android	 applications	 for	 malicious	 behavior.	 We
then	covered	a	case	study	where	we	demonstrated	a	step-by-step	analysis
of	a	malware	application	to	determine	its	behavior	and	functionality.

Figure	6.25	Workflow

Chapter	7

Modifying	the	Behavior	of	Android	Applications	without
Source	Code

This	chapter	builds	on	Chapter	6.	We	begin	by	discussing	potential	use
cases	for	recompiling/modifying	the	behavior	of	applications.	We	show
how	 to	 analyze	 and	debug	Android	 application	 binaries.	We	 cover	 the
.dex	 file	 format	 and	 show	 how	 to	 decompile	 and	 recompile	 Android
applications	 without	 having	 access	 to	 source	 code,	 thus	 changing	 the
application’s	behavior.	We	demonstrate	how	an	attacker	can	change	an
application’s	 behavior	 by	 decompiling	 the	 application,	 changing	 the
smali	code,	and	recompiling	it.

7.1	Introduction
The	 techniques	 covered	 in	 this	 chapter	 are	 not	 generally	 used	 by	 a
typical	user	or	developer.	A	person	using	the	techniques	covered	here	is
probably	 attempting	 one	 of	 the	 following	 (which	 is	 unethical	 if	 not
illegal):

1.	To	add	malicious	behavior
2.	To	eliminate	malicious	behavior
3.	To	bypass	intended	functionality

7.1.1	To	Add	Malicious	Behavior
It	 should	 be	 noted	 that	 doing	 this	 is	 illegal.	 Malicious	 users	 can
potentially	 download	 an	 Android	 application	 (apk),	 decompile	 it,	 add
malicious	behavior	 to	 it,	 repackage	 the	application,	and	put	 it	back	on
the	Web	on	secondary	Android	markets.	Since	Android	applications	are
available	 from	multiple	 markets,	 some	 users	 might	 be	 lured	 to	 install

these	modified	malicious	applications	and	thus	be	victimized.

7.1.2	To	Eliminate	Malicious	Behavior
The	 techniques	 listed	 here	 can	 be	 used	 to	 analyze	 suspicious
applications,	 and,	 if	 illegal/malicious	 behavior	 is	 detected,	 to	 modify
them	 and	 remove	 the	 illegal/malicious	 behavior.	 Analyzing	 an
application	for	malicious	behavior	is	fine	and	necessary	for	security	and
forensics	purposes.	However,	 if	 there	 is	 indeed	such	behavior	detected,
users	 should	 just	 remove	 the	application	and	do	a	 clean	 install	 from	a
reliable	source.

7.1.3	To	Bypass	Intended	Functionality
A	third	potential	use	of	the	techniques	listed	here	could	be	to	bypass	the
intended	 functionality	 of	 an	 application.	 Many	 applications	 require	 a
registration	 code	 or	 serial	 key	 before	 being	 used	 or	 they	 can	 only	 be
used	for	a	specified	trial	period	or	show	ads	when	being	used.	A	user	of
these	techniques	could	edit	smali	code	and	bypass	these	mechanisms.

7.2	DEX	File	Format
We	covered	 the	Dalvik	Virtual	Machine	(VM)	 in	Chapter	2.	The	Dalvik
VM	 is	 a	 register-based	 virtual	 machine	 designed	 to	 run	 Android
applications.	 The	 Dalvik	 VM	 enables	 applications	 to	 run	 efficiently	 on
devices	 in	 which	 battery	 life	 and	 processing	 power	 are	 of	 paramount
important.	Android	applications	written	in	Java	are	compiled	into	Java
byte	 code	 using	 a	 Java	 compiler.	 For	 a	 Java	 application	 to	 run	 on
Android,	 there	 is	one	extra	step	that	 is	added,	 that	 is,	converting	 .class
files	 (Java	 byte	 code)	 to	 .dex	 files	 (Dex	 file	 or	Dalvik	 byte	 code).	Dex
code	 is	 executed	 by	 the	 Dalvik	 virtual	 machine.	 Whereas	 there	 are
multiple	.class	files,	there	is	only	one	.dex	file,	in	which	all	relevant	class
files	are	compiled	by	 the	Dalvik	dx	compiler.	Figure	7.1	shows	 the	 file
structure	of	.dex	files.

Figure	7.1	Anatomy	of	a	.DEX	File

The	Android	SDK	comes	with	a	dexdump	tool	that	can	be	used	to	get	a
dump	 of	 dex	 file	 content.	 However,	 it	 is	 not	 very	 informative	 for	 a
novice	reading	it.
Figure	 7.3	 shows	 dex	 file	 header	 information	 (through	 dexdump	 –f)
for	 a	 classes.dex	 file	 obtained	 by	 compiling	 HelloActivity.java	 (see
Figure	 7.2).	 As	 seen	 in	 Figure	 7.3,	 the	 Classes.dex	 file	 contains
information	on	 the	dex	 file	 itself,	 including	checksum,	 file	 size,	header
size,	 and	 size	 and	 offsets	 to	 various	 sections	 of	 the	 .dex	 file.	 .dex	 file
contains	the	following	sections:	header,	string,	type,	field,	method,	class,
and	 data.	 There	 is	 an	 entry	 for	 each	 class	 in	 the	 program.	 Figure	 7.4
shows	 an	 entry	 for	 the	 HelloActivity	 class.	 This	 entry	 also	 displays
methods	(init,	OnCreate).	Figure	7.5	displays	an	entry	for	the	R	class.

Figure	7.2	Simple	“Hello	World”	Program	for	Android

Figure	7.3	Header	Information	in	classes.dex	for	HelloActivity

As	can	be	seen	in	Figures	7.4	and	7.5,	the	output	from	dexdump	does
not	 provide	 intuitive	 information.	 Although	 it	 is	 helpful	 for
understanding	 bits	 and	 pieces	 of	 the	 application’s	 behavior,	 it	 is	 not
quite	 readable.	 Therefore,	 we	 will	 use	 smali/baksmali
assembler/disassembler	 to	 analyze	 and	 modify	 the	 .dex	 format	 file
instead,	as	the	smali	file	is	easy	to	understand.	Smali	takes	.dex	files	and
produces	 smali	 files,	 which	 are	 more	 readable	 and	 have	 debugging,
annotations,	 line	 information,	 and	 so	 forth.	 Baksmali	 enables	 the
assembling	of	smali	 files	back	to	 the	 .dex	 format.	The	ApkTool	enables
us	to	repackage	the	modified	.dex	file	into	an	apk	file.

7.3	Case	Study:	Modifying	the	Behavior	of	an	Application
We	will	now	demonstrate	how	application	behavior	can	be	modified	by
decompiling	it	into	smali	code,	recompiling	it,	and	then	packaging	it	into
an	apk	file.	The	authors	have	created	a	simple	application	that	requires
the	user	 to	enter	 the	correct	passcode	before	using	the	application.	We
will	 demonstrate	 how	 a	 malicious	 user	 can	 potentially	 bypass	 this
intended	functionality.	See	App	Screenshots	in	Figures	7.6	and	7.7.

Figure	7.4	HelloActivity	Class	Information	in	classes.dex

Figure	7.5	R	Class	Information	in	classes.dex

Figure	7.6	Secure	App	on	Android	Emulator

The	first	step	in	analyzing	or	to	reverse	engineering	an	application	is
to	understand	its	behavior.	Typically,	this	entails	installing	and	using	the
application	 and	 reviewing	 its	 various	 functions.	 In	 our	 case,	 we	 can
install	 the	application	on	an	emulator	and	 try	 to	use	 it.	As	depicted	 in
Figure	7.8,	launching	the	application	presents	the	user	with	a	password
screen.	At	this	point,	we	don’t	know	the	length	of	the	password	required
or	if	passwords	are	numeric	(PIN)	or	actual	passwords.	We	learn	(by	trial
and	error)	that	the	application	only	accepts	digits	as	a	password.	We	also
note	 that	 the	maximum	 number	 of	 digits	 the	 application	 allows	 us	 to
enter	is	4.	Thus,	we	can	conclude	that	the	password	is	all	numeric	and	is
4	digits	in	length.

Step	1:	Decompile	the	application

We	can	decompile	the	application	file	(apk)	by	using	apktool.	Figure	7.9
shows	 SecureApp.apk	 decompiled	 into	 a	 secure_app	 folder.	 Browsing
through	 the	 folder	 (Figure	 7.10),	we	 note	 that	 there	 is	 a	 smali	 folder.

Smali	files	are	found	in	the	test	directory.	Note	that	there	are	smali	files
(Figure	 7.11)	 beginning	 with	 both	 KeyPad	 and	 R	 prefixes.	 We	 can
conclude	from	this	that	the	application	had	two	Java	files—KeyPad.java
and	R.java.

Figure	7.7	Successful	Login	on	Secure	App

Step	2:	Make	changes	to	the	application

Reading	 through	 the	 smali	 code	 for	 the	 KeyPad$1.smali	 file	 (Figure
7.12),	 we	 conclude	 that	 SHA-256	 is	 being	 used	 for	 hashing	 password
user	 inputs	 from	 the	 login	 screen	 of	 the	 application.	 This	 password	 is
then	compared	against	the	stored	password	and	if	they	match,	the	user	is
logged	into	the	application.
The	hash	is	loaded	into	v8	and	compared	with	v10	(line	51	in	Figure
7.13).	If	these	values	are	the	same,	the	user	is	logged	in.	We	can	create	a
SHA-256	hash	value	and	create	an	entry	to	input	into	v8,	thus	modifying
the	 password	 to	 our	 choice	 and	 bypassing	 authentication.	 Figure	 7.13

shows	the	original	smali	file	created	by	apktool,	and	Figure	7.14	shows
the	 modified	 smali	 file	 with	 the	 following	 entry	 (SHA-256	 hash	 of
“1234”	with	a	salt):	const-string	v8,

“2DD225ED6888BA62465CF4C54DB21FC17700925D0BD0774EE60B600B0172E916”

Note	 that	 there	 is	 usually	 a	 “salt”	 passed	 onto	 the	 hash	 algorithm.
Finding	 out	 the	 value	 of	 the	 salt	 (and	 that	 of	 the	 hash	 of	 the	 original
password)	is	left	to	the	reader	as	an	exercise.	Once	the	reader	is	able	to
obtain	the	hash	and	the	salt,	he	or	she	can	brute	force	it	by	computing
the	 hashes	 of	 generated	 passwords	 and	 comparing	 it	 with	 the	 stored
hash	in	the	file.	The	answers	are	provided	toward	the	end	of	the	book.

Step	3:	Recompile	the	application

Modified	smali	code	can	be	reassembled	and	packaged	 into	an	apk	file
through	the	following	command:	apktool	b	(Figure	7.15).	New	Apk	file
will	be	placed	in	dist	directory	(Figure	7.16).

Figure	7.8	Analyzing	an	Application’s	Behavior

Figure	7.9	Decompiling	SecureApp.apk	Using	apktool

Figure	7.10	Smali	files	Created	by	apktool

Figure	7.11	KeyPad.smali	File

Figure	7.12	SHA-256	String	in	KeyPad$1.smali

Figure	7.13	if-eqz	v10	Compares	Computed	Hash	Value	with	the	Hash	Value	in	v8.

Figure	7.14	Entering	Hash	Value	of	Our	Choice	in	v8

A	new	apk	needs	to	be	signed	before	it	can	be	installed	on	the	device
or	 emulator.	 The	 Signapk	 tool	 (Figure	 7.17)	 is	 freely	 available	 on	 the
Web	for	download.	After	installing	the	modified	apk,	the	reader	can	use
“1234”	as	the	password	string	to	use	the	application.

Figure	7.15	Additional	Directories	Created	by	apktool	b	Command

The	methodology	listed	above	can	be	used	to	analyze,	decompile,	and
recompile	 an	 existing	 application.	 We	 provided	 an	 example	 of	 an
application	 created	 by	 the	 authors	 and	 vulnerability	 that	 could	 have
been	 exploited	 to	 bypass	 authentication	 and	 get	 access	 to	 application
data	 or	 functionality.	 The	 vulnerability	 described	 here	 was	 not
theoretical.	 There	 have	 been	 cases	 where	 a	 similar	 issue	 could	 have
resulted	in	compromised	user	data.

7.4	Real	World	Example	1—Google	Wallet	Vulnerability
Google	 Wallet	 is	 mobile	 payment	 software	 developed	 by	 Google.	 It
allows	users	 to	 store	 (securely)	 credit	 card	numbers,	 gift	 cards,	 and	 so
forth,	on	 their	cell	phones.	 It	uses	Near	Field	Communication	(NFC)	 to
make	 secure	 payments	 on	 PayPass-enabled	 terminals	 at	 checkout
counters	 (e.g.,	MasterCard’s	PayPass).	The	 idea	 is	 to	use	cell	phones	 to
make	purchases	instead	of	using	physical	credit/debit/gift	cards.

Figure	7.16	New	apk	Will	Be	Placed	in	dist	Directory

Figure	7.17	Signing	New	APK	File

Note:	 NFC	 is	 a	 set	 of	 standards	 that	 allows	 mobile	 devices	 to
communicate	through	radio	frequencies	with	devices	nearby.	This	can	be
leveraged	for	transactions	and	data	exchange.

NFC	 uses	 RFID	 to	 communicate	 wirelessly.	 Security	 was	 provided
through	 a	 device—Secure	 Element	 (SE),	 which	 was	 used	 to	 encrypt
sensitive	 data	 (e.g.,	 a	 credit	 card	 number).	 To	 access	 this	 information,
the	user	needed	to	provide	a	4-digit	PIN.	After	five	invalid	attempts,	data
would	be	wiped	out.
It	turned	out	that	the	PIN	was	stored	in	the	sqlite	database	in	binary
format.	Data	was	compiled	using	Google’s	“protocol	buffers”—a	library
for	serializing	data	for	message	passing	between	systems.	Contents	of	the
PIN	could	be	obtained	 from	 this	binary	 string.	 It	 included	a	 salt	and	a
SHA	256	hash	string.	One	can	easily	brute	force	this	PIN	knowing	that
the	PIN	could	only	be	four	digits.	One	would	need	to	root	the	device	to
obtain	this	data,	and	this	is	something	that	can	be	accomplished	without
much	effort,	as	there	are	many	tools	available	to	root	Android	devices.
For	further	details	refer	to	the	following	URL:
https://zvelo.com/blog/entry/google-wallet-security-pin-exposure-
vulnerability

7.5	Real	World	Example	2—Skype	Vulnerability	(CVE-
2011-1717)

In	2011,	it	was	discovered	that	Skype	for	Android	was	storing	sensitive
user	 information	 (e.g.,	 user	 IDs,	 contact	 information,	 phone	 numbers,
date	 of	 birth,	 instant	 messaging	 logs,	 and	 other	 data)	 in	 a	 sqlite3
database.	 However,	 the	 application	 did	 not	 secure	 this	 database	 with
proper	 permissions	 (world	 readable),	 and	 thus	 any	 application	 or	 user

https://zvelo.com/blog/entry/google-wallet-security-pin-exposure-vulnerability

could	access	it.	Also,	data	was	being	stored	unencrypted	(in	plain	text)	in
the	 sqlite3	 database	 Android	 Police	 discovered	 the	 vulnerability,	 and
they	 also	 had	 a	 proof-of-concept	 application	 that	 exploited	 the	 issue,
thus	obtaining	data	from	the	Skype	application.

7.6	Defensive	Strategies
In	 this	 section,	 we	 cover	 five	 main	 strategies	 to	 prevent	 reverse
engineering	of	an	application	or	to	minimize	information	leakage	during
the	reverse	engineering	process.

7.6.1	Perform	Code	Obfuscation
Code	Obfuscation	is	the	deliberate	act	of	making	source	code	or	machine
code	 difficult	 to	 read/understand	 by	 humans	 and	 thus	making	 it	 a	 bit
more	 difficult	 to	 debug	 and/or	 reverse	 engineer	 only	 from	 executable
files.	 Companies	 use	 this	 technique	 to	 make	 it	 harder	 for	 someone	 to
steal	their	IP	or	to	prevent	tampering.
Most	Android	 applications	 are	written	 in	 Java.	 Since	 Java	 code	 gets
compiled	 into	 byte	 code	 (running	 on	 a	 VM)	 in	 a	 class	 file,	 it	 is
comparatively	 easier	 to	 reverse	 engineer	 it	 or	 to	 decompile	 it	 than
binary	executable	files	from	C/C++.	Consequently,	we	cannot	rely	only
on	code	obfuscation	for	protecting	intellectual	property	or	users’	privacy.
We	need	to	assume	that	it	is	possible	for	someone	to	decompile	the	apk
and	 more	 or	 less	 get	 access	 to	 the	 source	 code.	 Instead	 of	 relying
completely	 on	 code	 obfuscation,	 we	 suggest	 relying	 on	 “Server	 Side
Processing,”	where	possible	(covered	in	the	following	section).
One	 of	 the	 freely	 available	 Java	 obfuscators	 that	 can	 be	 used	 with
Android	is	ProGuard.	ProGuard	shrinks	and	obfuscates	Java	class	files.	It
is	 capable	 of	 detecting	 and	 removing	 unused	 classes,	 fields,	 methods,
and	so	forth.	It	can	also	rename	these	variables	to	shorter	(and	perhaps
meaningless)	names.	Thus,	the	resulting	apk	files	will	require	more	time
to	decipher.	ProGuard	has	been	integrated	into	the	Android-built	system.
It	runs	only	when	an	application	is	built	in	the	release	mode	(and	not	in
the	debug	mode).
To	 use	 ProGuard	 and	 enable	 it	 to	 run	 as	 part	 of	 the	 Ant	 or	 Eclipse
build	process,	set	the	proguard.config	property	in	the	properties.cfg	file.

This	 file	 can	 be	 found	 in	 the	 root	 directory	 of	 the	 project	 (see	 Figure
7.18).
The	screenshots	in	Figures	7.19	and	7.20	show	decompiled	code	in	JD-

GUI.	Figure	7.19	shows	code	when	code	obfuscation	(through	ProGuard)
was	not	used.	Figure	7.20	shows	it	after	using	ProGuard.	As	you	can	see,
ProGuard	shortens	class	names	and	renames	them.	It	also	performs	such
operations	on	methods	and	fields.	Since	this	is	a	simple	application,	code
obfuscation	does	not	result	in	much	difference	between	the	screenshots.
With	a	complex	application,	the	resulting	output	would	be	much	better.
ProGuard	might	not	be	one	of	the	best	obfuscators	out	there	for	Java.

However,	it	is	something	that	one	should	definitely	use	in	the	absence	of
other	options.

Figure	7.18	proguard.cfg	File	in	Eclipse

Figure	7.19	Code	without	Obfuscation	(in	JD-GUI)

Figure	7.20	Code	with	Obfuscation	(in	JD-GUI)

7.6.2	Perform	Server	Side	Processing
Depending	 on	 the	 type	 of	 application,	 it	might	 be	 possible	 to	 perform
sensitive	operations	and	data	processing	on	the	server	side.	For	example,
for	 an	 application	 that	 pulls	 data	 from	 the	 server	 to	 load	 locally	 (e.g.,
twitter),	much	of	 the	application	 logic	 is	performed	on	 the	 server	end.
Once	 the	 application	 authenticates	 successfully	 and	 the	 validity	 of	 the

user	is	verified,	the	application	can	rely	on	the	server	side	for	much	of
the	 processing.	 Thus,	 even	 if	 compiled	 binary	 is	 reverse	 engineered,
much	of	the	logic	would	be	out	of	reach,	as	it	will	be	on	server	side.

7.6.3	Perform	Iterative	Hashing	and	Use	Salt
Hash	 functions	 can	be	 susceptible	 to	 collision.	 In	 addition,	 it	might	be
possible	 to	brute	 force	hash	 for	weaker	hash	 functions.	Hash	 functions
make	it	very	difficult	to	brute	force	(unless	you	are	a	government	agency
with	 enormous	 computing	 power)	 while	 providing	 reasonably	 high
collision	resistance.	The	SHA-2	family	fits	this	category.
A	stronger	hash	can	be	obtained	by	using	salt.	In	cryptography,	a	salt

consists	 of	 random	 bits	 and	 is	 usually	 one	 of	 the	 inputs	 to	 the	 hash
function	(which	is	one	way	and	thus	collision	resistant).	The	other	input
is	the	secret	(PIN,	passcode,	or	password).	This	makes	brute	force	attacks
more	 difficult,	 as	 more	 time/space	 is	 needed.	 The	 same	 is	 true	 for
rainbow	 tables.	 Rainbow	 tables	 are	 a	 set	 of	 tables	 that	 provide
precomputed	password	hashes,	thus	making	it	easier	to	obtain	plaintext
passwords.	They	are	an	example	of	space-time	or	timememory	trade	off
(i.e.,	increasing	memory	reduces	computation	time).
In	addition,	we	recommend	using	iterative	hashing	for	sensitive	data.

This	means	simply	taking	the	hash	of	data	and	hashing	it	again	and	so
on.	If	this	is	done	a	sufficient	number	of	times,	the	resultant	hash	can	be
fairly	strong	against	brute	force	attacks	in	case	an	attacker	can	guess	or
capture	the	hash	value.

7.6.4	Choose	the	Right	Location	for	Sensitive	Information
The	location	of	sensitive	information	(and	access	to	it)	matters	as	much
as	the	techniques	described	above.	If	we	store	strong	hashes	at	a	publicly
accessible	location	(e.g.,	values.xml	or	on	an	sd	card	or	local	file	system
with	 public	 read	 attributes	 to	 it),	 then	we	make	 it	 a	 bit	 easier	 for	 an
attacker.	Android	provides	a	great	way	to	restrict	access—data	can	only
be	 explicitly	 made	 available	 through	 permissions	 wherein,	 by	 default,
only	the	UID	of	the	app	itself	can	access	it.
An	 ideal	 place	 for	 storing	 sensitive	 information	 would	 be	 in	 the

database	or	in	preferences,	where	other	applications	don’t	have	access	to

it.

7.6.5	Cryptography
In	 the	 iterative	 hashing	 section,	 we	 discussed	 how	 to	 make	 a	 user’s
passwords	 or	 sensitive	 information	 stronger	 through	 the	 use	 of
cryptography	 (hashing	 and	 salt).	 Cryptography	 can	 also	 be	 used	 to
protect	a	user’s	data.	There	are	two	main	ways	of	doing	this	for	Android:
(1)	Every	 application	 can	 store	data	 in	 an	 encrypted	manner	 (e.g.,	 the
user’s	contact	information	can	be	encrypted	and	then	stored	in	a	sqlite3
database).	 (2)	 Use	 disk	 encryption,	 wherein	 everything	 written	 to	 the
disk	is	encrypted/decrypted	on	the	fly.	System	administrators	prefer	full-
disk	encryption,	so	as	not	to	rely	on	developers	to	implement	encryption
capabilities	in	their	Apps.

7.6.6	Conclusion
Access	 Control	 (relying	 on	 the	 OS	 to	 prevent	 access	 to	 critical	 files),
cryptography	 (relying	 on	 encryption	 as	 well	 as	 hashing	 to	 protect
confidential	 data	 [e.g.,	 tokens]	 and	 to	 verify	 the	 integrity	 of	 an
application),	and	code	obfuscation	(making	it	difficult	to	decipher	class
files)	 are	 the	 main	 strategies	 that	 one	 should	 leverage	 to	 prevent	 the
reverse	engineering	of	applications.	Both	the	Google	Wallet	vulnerability
and	the	Skype	issue	would	have	been	prevented	if	developers	and	system
administrators	 had	 made	 appropriate	 use	 of	 access	 controls	 and
cryptography.

7.7	Summary
In	 this	 chapter,	 we	 discussed	 potential	 scenarios	 of	 disassembling	 and
reassembling	 an	 Android	 application	 without	 having	 access	 to	 source
code.	We	then	demonstrated	this	through	the	use	of	a	SecureApp	written
by	 the	authors.	We	presented	security	best	practices	 to	prevent	 reverse
engineering	 as	 well	 as	 the	 potential	 leaking	 of	 sensitive	 information
through	it.	The	reader	should	try	to	develop	an	Android	application	(or
download	 SecureApp	 from	 the	 book’s	 website
—www.androidinsecurity.com)	 and	 try	 the	 techniques	 listed	 in	 this
chapter.

http://www.androidinsecurity.com

Chapter	8

Hacking	Android

In	this	chapter,	we	introduce	forensics	and	techniques	used	to	perform	it.
We	 walk	 the	 reader	 through	 the	 Android	 file	 system,	 directories,	 and
mount	 points.	 We	 cover	 SD	 card	 analysis	 and	 Android-specific
techniques	to	perform	forensics.	Finally,	we	walk	the	reader	through	an
example	that	demonstrates	topics	covered	in	this	chapter.

8.1	Introduction
Mobile	device	forensics	is	a	branch	of	digital	forensics	that	relates	to	the
recovery	 of	 digital	 evidence	 or	 data	 from	 a	 mobile	 device	 under
forensically	 sound	 conditions
(http://en.wikipedia.org/wiki/Mobile_device_forensics).
As	discussed	in	Chapter	1,	mobile	devices	today	are	a	different	beast.

They	 are	 used	 for	 all	 kind	 of	 communications,	 transactions,	 and	 tasks.
The	 following	 kinds	 of	 personal	 information	 are	 typically	 found	 on	 a
smartphone:	 contacts,	 photos,	 calendars,	 notes,	 SMS,	 MMS,	 e-mail,
browser	history,	GPS	locations,	social	media	information,	financial	data,
passwords,	 and	 so	 forth.	You	 get	 the	 idea!	 If	we	have	 a	 device	 that	 is
evidence	 in	a	 legal	 investigation	or	needs	 to	be	analyzed	for	a	security
investigation,	 it	 can	 provide	 a	 goldmine	 of	 information,	 provided	 one
knows	 how	 to	 extract	 this	 information	 carefully.	 Our	 focus	 in	 this
chapter	 is	 on	 extracting	 as	 much	 information	 as	 we	 can,	 rather	 than
“extracting	 under	 forensically	 correct”	 conditions.	 The	 latter	 is	 a	 topic
for	a	different	book.
To	perform	forensics	on	Android	devices,	it	is	important	to	understand

the	Android	system.	We	have	already	covered	Android	architecture	and
the	 security	 model.	 In	 this	 chapter,	 we	 will	 walk	 through	 file	 system
specifics	(directories,	 files,	mount	points,	and	file	systems).	We	need	to

http://en.wikipedia.org/wiki/Mobile_device_forensics

understand	how,	where,	and	what	type	of	data	is	stored	on	the	device,	to
perform	the	actual	extraction	of	useful	 information.	Data	can	be	stored
on	 a	 file	 system	 as	 files,	 in	 application/system-specific	 formats,	 or	 in
SQLite	DBs.

8.2	Android	File	System
In	 this	 section,	 we	will	 review	 the	 Android	 File	 System	 by	 looking	 at
various	mount	points	(Figure	8.1)	on	a	typical	Android	device,	as	well	as
its	 directory	 structure,	 which	 might	 be	 of	 interest	 to	 us	 for	 gathering
useful	information.

8.2.1	Mount	Points
Let’s	 look	 at	 various	 partitions	 on	 an	 Android	 device	 and	 analyze
relevant	 ones	 for	 their	 directory	 structures.	 Typing	 “adb	 shell	 mount”
(Figure	8.2)	shows	mounted	file	systems	on	the	device,	whereas	typing
“adb	shell	cat	procfilesystems”	gives	us	a	listing	of	supported	file	systems
(see	 Figure	 8.3).	 Table	 8.1	 shows	 various	 partitions	 and	 their
descriptions.

8.2.2	File	Systems
Android	 supports	quite	a	 few	 file	 systems	 (based	on	 the	Linux	kernel).
One	 can	 obtain	 a	 list	 of	 supported	 file	 systems	 by	 typing	 “cat
procfilesystems”	at	 the	 command	 line.	As	 can	be	 seen	 from	Figure	 8.3,
the	 nodev	 entry	 next	 to	 file	 system	 indicates	 that	 there	 is	 no	 physical
device	associated	with	that	particular	 file	system,	thus	making	a	nodev
virtual	file	system.	Note	that	Android	supports	ext2,	ext3,	and	ext4	file
systems	 (used	 by	 Linux	 systems)	 and	 the	 vfat	 file	 system	 used	 by
Windows-based	systems.	Since	it	is	targeted	for	mobile	devices,	Android
supports	YAFFS	and	YAFFS2	file	systems	(needed	to	support	NAND	chips
used	in	these	devices).	Table	8.2	provides	more	information	on	these	file
systems.

8.2.3	Directory	Structure
Let’s	look	at	the	directory	structure	of	a	typical	Android	device.	One	can
access	 the	 file	 system	 through	 the	 command	 line	 (adb)	 or	 through

Eclipse/DDMS	(Figure	8.4).	There	are	three	main	directories	that	are	of
interest	to	us:	system,	sdcard,	and	data.	As	mentioned	earlier,	system	holds
most	of	 the	Operating	System	(OS)	 files,	 including	system	applications,
libraries,	 fonts,	 executables,	 and	 so	 forth.	 sdcard	 is	 a	 soft	 link	 to	 the
mnt/sdcard	 and	 refers	 to	 the	 SD	 card	 on	 the	 device.	 data	 directory
contains	 user	 data.	 More	 specifically,	 each	 application	 has	 an	 entry	 in
data/app/<application	 name>,	 and	 user	 data	 resides	 in
datadata/<application_name>.	On	 the	device	 itself,	 one	would	not	be
able	to	access	the	data	folder,	as	it	is	accessible	only	to	the	system	user	(as
opposed	to	the	shell	user).	We	use	an	emulator	to	demonstrate	the	contents	of
the	 data	 directory.	 Since	 user	 data	 for	 an	 application	 resides	 in
datadata/<application_name>,	it	is	important	that	only	that	application
has	 access	 to	 that	 particular	 folder.	 This	 is	 accomplished	 through	 user
permissions	 (each	application	has	 its	own	UID,	and	only	 that	UID/user
has	permissions	 to	access	 the	 folder).	Table	8.3	provides	a	summary	of
important	files/directories	on	Android	that	an	application	might	interact
with.	 We	 will	 cover	 the	 structure	 of	 the	 datadata/folder	 later	 in	 this
chapter.

Figure	8.1	Mount	Points	on	an	Android	Device

Figure	8.2	Directory	Structure	of	an	Android	Device	(ADB)

Figure	8.3	File	Systems	of	an	Android	Device

8.3	Android	Application	Data
In	this	section,	we	cover	how	applications	can	store	persistent	data	and
also	review	the	contents	of	the	datadata	folder	and	how	they	can	be	used
to	retrieve	useful	information.

8.3.1	Storage	Options
Android	 provides	 multiple	 options	 whereby	 an	 application	 can	 save
persistent	data	(depending	on	the	application’s	needs).	Table	8.4	shows
various	options	for	storing	data.

Table	8.1	–	Overview	of	Mounted	File	Systems	on	an	Android
Device

Mount	Point Description

/

This	is	a	read-only	root	file	system	and	is	mounted	by
the	kernel	before	any	other	file	system.	It	contains
important	system	information,	including	boot
configuration	and	libraries	that	the	kernel	needs	at
startup.

/system

Contains	system	libraries,	executable,	fonts,	system
applications,	and	configuration	files.	Subdirectories
include	ban,	lib,	etc,	bin,	app,	media,	fonts,	and	so
forth.	Permissions	on	this	file	system	are	ro.

/cache

Contains	temporary	files	such	as	browser	cache	and
downloads.	It	also	contains	files	that	are	recovered
when	a	repair	to	a	corrupted	file	system	is	performed.
Permissions	on	this	file	system	are	rw.

/data Contains	user	and	application	data,	including

userinstalled	applications,	settings,	and	preferences.

mntsdcard
This	partition	points	to	the	SD	card.	Note	that	this	is	a
FAT32	file	system	and	has	rw	permissions.

mntsecure/asec
This	is	an	encrypted	container	on	the	SD	card	for	apps
that	are	installed	on	the	SD	card.

Table	8.2	–	Different	Kinds	of	File	Systems	on	Android

File
System

Description

YAFFS
and
YAFFS2

These	are	fast	and	robust	file	systems	used	by	many	mobile
devices	to	support	NAND	or	NOR	flash	chips.	They	are
specifically	designed	to	be	used	in	embedded	devices.	Yaff2	is
a	newer	version	of	file	system	(Yaffs1	supported	512-byte	page
flash,	whereas	Yaffs2	supports	2k-byte	page	flash,	as	well).	For
more	details	refer	to	http://www.yaffs.net/

ext2,
ext3,
and
ext4

These	file	systems	(second,	third,	and	fourth	extended	file
systems)	are	commonly	used	by	the	Linux	kernel.	Ext	2	was
introduced	in	the	early	1990s	to	resolve	issues	in	the	ext	file
system	used	by	the	Linux	kernel.	Ext	3	added	journaling
capability,	among	other	features,	to	ext	2.	Ext	4	further	added
new	capabilities	to	ext3,	including	supporting	large	file
systems	and	file	sizes,	extents	(replaced	block	mapping	present
in	ext2	and	ext3),	and	so	forth.

vfat
This	is	a	FAT32	file	system	from	Microsoft.	Linux	kernel
implementation	of	it	is	referred	to	as	VFAT.	This	file	system	is
used	by	Android	primarily	for	SD	cards.

http://www.yaffs.net/

Figure	8.4	Directory	Structure	of	an	Android	Device	(DDMS)

Table	8.3	–	Important	Files/Directories	on	Android

Directory/File Description

cache
Temporary	information	such	as
browser	cache,	settings,	or
recovered	files.

Used	by	the	application	to	store

/sdcard data	(music	files,	downloads,
photos,	and	so	forth).

/vendor
Contains	files	specific	to	the
vendor	of	the	device	(Samsung,
HTC,	and	so	forth)

/system
The	Android	system.	Contains
configuration	files,	binaries,
system	applications,	and	so	forth.

systemetc/permissions/platform.xml

Maps	permissions	between	lower-
level	user	ID/group	ID	to
permission	names	used	by	the
system.

systemapp
System	applications	(preinstalled
with	the	device).

systembin Binary	executables	(e.g.,	ls,	mount)

systembuid.prop
Device-specific	settings	and
information.

datadata
User	data	for	installed
applications.

dataapp Userinstalled	applications.

dataapp-private
Userinstalled	applications	(usually
paid	applications).

mntasec
Container	for	an	application	on	the
SD	card.

8.3.2	datadata
Now	that	we	have	covered	options	available	to	an	application	for	storing
data,	 let’s	 examine	 some	 real-world	 applications	 and	 analyze	 their
datadata/	directory.	We	installed	the	Seesmic	application,	which	allows
you	to	connect	you	to	multiple	social	media	accounts.	Figure	8.5	shows
subdirectories	 of	 the	 datadata/com.seesmic	 application.	 The	 Seesmic
application	has	three	folders:	databases,	libs,	and	shared_prefs.	Accessing
the	 datadata	 directory	 on	 the	 device	 would	 not	 be	 possible,	 as
permissions	are	restricted	to	the	system	owner	(as	opposed	to	the	shell
user).	One	has	to	either	root	the	phone	or	image	it	to	be	able	to	obtain
access	to	the	contents	of	this	directory.

Table	8.4	–	Overview	of	Storage	Options	for	Android	Applications

Storage
Option

Description

Shared
Preferences

Stores	private	data	in	key-value	format.	Any	primitive	data
(Booleans,	float,	int,	strings,	etc.)	can	be	saved	using
Shared	Preferences.

Internal
Storage

Stores	private	data	on	the	internal	memory.	An	application
can	save	files	directly	onto	the	internal	memory	(as
opposed	to	external	memory,	such	as	an	SD	card).	Files	are
protected	through	file	permissions,	with	an	application
being	the	owner	of	the	file.	Note	that	one	needs	to	use	the
MODE_PRIVATE	option	to	create	a	file.	Using
MODE_WORLD_READABLE	or	MODE_WORLD_WRITABLE
will	make	a	file	accessible	to	other	applications.

External
Storage

Stores	data	on	shared	external	storage.	Files	saved	to
external	storage	are	world	readable,	and	there	is	no	file
permission-based	security.

SQLite
Databases

Stores	data	in	a	private	database	accessible	only	to	an
application.

Network
Connection

Stores	data	on	a	network	server.

Looking	at	the	folder	structure	suggests	that	the	application	might	be
storing	some	data	in	SQLite	databases,	as	well	as	in	the	form	of	Shared
Preferences.	 It	might	be	worthwhile	to	investigate	these	files	and	see	if
we	can	gather	more	information.	Browsing	to	the	shared_prefs	directory
and	performing	“cat”	on	one	of	the	XML	files,	we	get	information	used
by	the	application	(key-value	pairs).	Please	note	Figure	8.6.	One	of	the
key-value	 figures	 defined	 in	 the	 file	 is	 req_token_secret,	 and	 another	 is
req_token.	If	application	developers	are	not	careful,	they	might	store	all
kinds	of	sensitive	information	in	here	(including	passwords	in	plaintext).

Figure	8.5	Directories	Inside	datadata	for	the	Seesmic	Application

Figure	8.6	Contents	of	One	of	the	XML	Files	in	the	shared_prefs	Folder

We	 have	 noted	 that	 there	 is	 a	 database	 folder	 inside
datadata/com.seesmic.	Browsing	to	the	folder,	we	find	a	database	named
twitter.db,	 indicating	that	 the	user	of	 the	device	had	a	twitter	account.
Let’s	see	if	we	can	get	details	of	the	twitter	account	from	the	database.
This	can	be	done	through	the	sqlite3	command	line	utility.	As	seen	from
Figure	 8.7,	 we	 can	 understand	 the	 schema	 of	 the	 database	 and	 then
query	different	tables	to	retrieve	information.

8.4	Rooting	Android	Devices
Android,	 by	 default,	 comes	with	 a	 restricted	 set	 of	 permissions	 for	 its
user.	 These	 restrictions	 have	 been	 carefully	 designed	 to	 prevent
malicious	 applications	 (and	 users)	 to	 circumvent	 controls	 provided	 by
the	Android	security	model.	They	are	also	sometimes	used	to	prevent	a
particular	 functionality	 from	being	accessed	or	changed	 (e.g.,	 tethering

or	 installing	 proxy,	 and	 so	 forth).	 Rooting	 an	 Android	 device	 can	 be
useful	when	we	 need	 to	 analyze	 a	 device.	When	we	 log	 on	 to	 a	 shell
(through	adb	shell),	the	UID	of	the	user	is	“shell.”	We	can’t	really	access
directories	 such	as	/data,	as	we	don’t	have	sufficient	permission.	Thus,
we	need	 to	elevate	our	privileges	 to	 super	user.	The	process	of	getting
these	 is	 called	 rooting.	 Typically,	 a	 vulnerability	 in	 the	 system	 when
exploited	 successfully	 allows	 us	 to	 become	 a	 super	 user.	 One	 can
download	corresponding	<version>Break.	 apk	 files	 from	 the	web	and
root	 a	 device.	 In	 the	 following,	 we	 walk	 a	 user	 through	 rooting	 the
Android	Froyo	2.2.

Figure	8.7	Contents	of	SQLite	DB

1.	Determine	 the	version	of	 the	Android	OS	running	on	your	device.

This	 can	be	 found	by	going	 to	 “Settings”	 ->	“About	Phone.”	This
should	give	you	the	Android	and	kernel	version	details	(Figure	8.8).

2.	Connecting	through	the	adb	shell	and	executing	the	“ID”	command
should	show	you	as	a	“shell”	user	(UID	=	2000	[shell]).

3.	 Download	 Gingerbreak.apk	 (Figure	 8.9)	 (given	 you	 are	 running
Android	Froyo	2.2.2,	Honeycomb,	Gingerbread).

Figure	8.8	Android	Version

Figure	8.9	Gingerbreak	Application

4.	Enable	USB	Debugging.
5.	 Install	 Gingerbreak	 on	 the	 phone	 by	 executing	 the	 following
command	“adb	install	gingerbreak.apk.”

6.	Open	the	Gingerbreak	application	on	the	phone.	This	will	install	the
super	user	application.

7.	 Now,	 connect	 to	 the	 device	 using	 the	 command	 line	 (adb)	 and
execute	 the	 su	 command	 (see	 Figure	 8.10).	 You	 should	 now	 be
rooted	on	 the	device	and	be	able	 to	browse	 to	directories	 such	as
datadata.

8.5	Imaging	Android
It	 is	 sometimes	 useful	 to	 create	 an	 image	 of	 the	 Android	 device	 and
analyze	 it	 using	 various	 tools	 available	 on	 your	 workstation.	 This	 is
especially	 true	 in	 the	 case	 of	 an	 investigation	 where	 the	 original	 file
system	needs	to	be	preserved	for	evidence/future	reference.	We	may	also
not	 want	 to	 work	 directly	 off	 the	 device	 but,	 rather,	 a	 copy	 of	 it	 for
investigation/analysis.	 Below	 are	 instructions	 for	 imaging	 an	 Android

device:

Figure	8.10	Root	Shell	on	an	Android	Device

1.	Download	mkfs.yaffs2	 and	 copy	 it	 onto	 the	 SD	 card	 connected	 to
your	device,	through	the	following	command:

2.	Open	adb	shell	and	change	to	root	user	(su).	Change	the	permission
of	mntsdcard/tmp/yaffs2	file	to	755

3.	Create	an	image	of	the	Android	device	by	executing	the	command
that	 follows.	 This	 will	 create	 data.img,	 which	 will	 contain	 the
image	of	the	Android	device

4.	Pull	data	onto	your	workstation	by	using	the	“pull”	command	from
adb	shell

Now	that	you	have	the	device	image	on	your	workstation,	you	can	use
tools	such	as	yaffey	to	analyze	the	image	(Figure	8.11),	browse	through
different	directories,	review	files,	and	so	forth.	Yaffey	is	available	at	the
following	URL:	http//code.google.com/p/yaffey/.

8.6	Accessing	Application	Databases
As	discussed	earlier	in	the	chapter,	applications	can	store	structured	data
in	 SQLite	 databases.	 Each	 application	 can	 create	 DB	 files	 under	 the
datadata/<appname>/databases	folder.	Although	we	can	root	a	device
and	 analyze	 databases	 through	 the	 sqlite3	 command	 line	 utility,	 it	 is
convenient	 to	 image	 the	 device	 and	 analyze	 it	 using	workstation	 tools
such	as	yaffey	and	 the	SQLite	browser.	Below	are	 steps	 to	 retrieve	 the
database	files	and	view	them	in	SQLite:

1.	Root	and	image	the	/data	partition	on	your	phone	(as	shown	in	the
previous	section).

2.	 Download	 and	 install	 SQLite	 browser	 from
http://sqlitebrowser.sourceforge.net/index.html.

3.	Browse	 to	 the	 SQL	database	of	 an	 application	 through	yaffey	 and
pull	 the	 application	 database	 onto	 your	 workstation	 (see	 Figure
8.12)	or	execute	the	command	below:

4.	Open	twitter.db	in	the	SQLlite	database	browser	(see	Figure	8.13).

http://code.google.com/p/yaffey/
http://sqlitebrowser.sourceforge.net/index.html

Figure	8.11	Analyzing	a	Device	Image	through	Yaffey

Figure	8.12	Database	Location	for	a	Twitter	Application

Figure	8.13	Analyzing	a	Twitter	DB	in	the	SQLite	DB	Browser

8.7	Extracting	Data	from	Android	Devices
In	the	previous	section,	we	showed	how	to	root	an	Android	device	and
obtain	 useful	 information	 stored	 on	 it.	While	we	 can	 certainly	 do	 this
piece-by-piece,	there	are	tools	that	can	help	us	to	do	this	more	efficiently
—for	 example,	 the	 MOBILedit	 application.	 On	 a	 rooted	 device,
MOBILedit	allows	us	to	extract	all	kinds	of	information	from	the	device
(contact	 information,	 SMS	 messages,	 databases	 from	 different
applications,	and	so	forth).	Below	are	steps	to	extract	information	from	a

device	using	this	application:

1.	 Make	 sure	 your	 device	 is	 rooted	 (see	 previous	 sections	 in	 this
chapter).

2.	Download	and	install	the	MOBILedit	application	(Figure	8.14).
3.	 Input	your	device’s	 IP	address	 into	 the	MOBLedit	 application	 (see
Figure	8.15).

4.	 Once	 the	 application	 connects	 to	 your	 device,	 you	 can
download/view	 information,	 including	 call	 data,	 SMS	 messages,
photos,	and	so	forth	(see	Figure	8.16).

5.	 You	 can	 also	 download	 data	 from	 the	 MobilEdit	 and	 use	 the
techniques	 described	 in	 the	 previous	 sections	 to	 do	 a	 further
analysis	analysis	(see	Figure	8.17).

8.8	Summary
In	this	chapter,	we	described	different	file	systems	used	by	Android.	We
reviewed	relevant	partitions	and	mount	points	that	would	of	interest	to
security	 professionals	 to	 to	 analyze	 a	 device	 or	 applications.	 We
reviewed	different	mechanisms	 through	which	an	application	can	store
persistent	 data	 (databases,	 preferences,	 files,	 and	 so	 forth)	 and	how	 to
obtain	 and	 analyze	 these	 bits.	 We	 covered	 steps	 to	 root	 an	 Android
device	(though	this	will	be	different	from	release	to	release)	and	how	to
use	third-party	applications	to	retrieve	data	from	Android	devices.

Figure	8.14	MOBILedit	Application	after	Launching

Figure	8.15	Connecting	to	an	Android	Device	Using	MOBILedit

Figure	8.16	Obtaining	Contact	Data,	SMS/MMS,	E-mail,	and	Photos

Figure	8.17	Obtaining	Data	from	the	File	System	on	the	Device

Chapter	9

Securing	Android	for	the	Enterprise	Environment

In	this	chapter,	we	look	at	security	concerns	for	deploying	Android	and
Android	 applications	 in	 an	 enterprise	 environment.	 We	 first	 review
security	considerations	for	mobile	devices,	in	general,	as	well	as	Android
devices,	 in	 particular.	 We	 then	 move	 on	 to	 cover	 monitoring	 and
compliance/audit	 considerations,	as	well	 as	end-user	 training.	We	 then
look	 at	 hardening	 Android	 and	 developing	 secure	 applications	 for	 the
Android	platform.

9.1	Android	in	Enterprise
From	 an	 enterprise	 perspective,	 there	 are	 different	ways	 of	 looking	 at
Android	 in	 the	 environment,	with	 the	main	 being	 the	 following	 three:
deploying	 Android	 devices,	 developing	 Android	 applications,	 and	 the
implications	of	allowing	Android	applications	in	the	environment.
The	deployment	of	Android	devices	and	applications	is	primarily	an	IT

function,	 whereas	 developing	 secure	 Android	 applications	 is	 part	 of
either	development/engineering	teams	or	IT-development	teams.

9.1.1	Security	Concerns	for	Android	in	Enterprise
As	we	discussed	in	Chapter	1,	today’s	mobile	devices,	including	Android
cell	 phones,	 are	 evolving	 at	 a	 rapid	 rate	 in	 terms	 of	 hardware	 and
software	features.
Our	assessment	of	threats,	as	well	as	security	controls,	has	not	kept	up

with	 the	 evolution	 of	 these	 features.	 These	 devices,	 we	 would	 argue,
need	more	protection	due	to	 the	 features	available	on	them,	as	well	as
the	proliferation	of	threats	to	them.	Before	such	devices	can	be	deployed
in	 an	 enterprise	 (or	 applications	 developed),	 it	 is	 essential	 that	 we

carefully	 consider	 threats	 to	 mobile	 devices,	 as	 well	 as	 to	 enterprise
resources	 arising	 from	 mobile	 devices	 (and	 users).	 This	 can	 be	 done
using	a	 threat	model.	 In	 threat	modeling,	we	analyze	assets	 to	protect,
threats	 to	 these	 assets,	 and	 resulting	 vulnerabilities.	 We	 propose
appropriate	 security	 controls	 to	 mitigate	 these	 threats	 and
vulnerabilities.
As	 covered	 briefly	 in	 Chapter	 4,	 Android	 suffers	 from	 traditional
security	concerns,	 similar	 to	any	other	mobile	OS.	We	expand	on	them
here	 and	 include	ones	we	 intentionally	 left	 out	 in	 that	discussion.	The
following	 are	 security	 concerns	 that	 are	 applicable	 to	 Android	 mobile
devices	(http://csrc.nist.gov/publications/drafts/800-124r1/draft_sp800-
124-rev1.pdf):	1.	Lack	of	physical	control	of	devices
2.	Use	of	untrusted	mobile	devices
3.	Use	of	untrusted	connections	and	networks
4.	Use	of	untrusted	applications
5.	Connections	and	interactions	with	other	systems
6.	Use	of	untrusted	content
7.	Use	of	location	services
8.	Lack	of	control	on	the	patching	of	applications	and	the	OS

Lack	of	Physical	Control	of	Devices

Mobile	devices	are	physically	under	the	control	of	end	users	(not	system
administrators	or	 security	professionals).	The	 fact	 that	a	device	 is	with
the	user	pretty	much	all	the	time	increases	the	risk	of	compromise	to	an
enterprise’s	 resources.	 From	 shoulder	 surfing	 to	 the	 actual	 loss	 of	 the
physical	device,	 threats	arise	 from	the	 lack	of	physical	control	of	 these
devices.	 Mobile	 devices	 are	 more	 likely	 to	 be	 lost,	 stolen,	 or	 are
temporarily	 not	within	 the	 user’s	 immediate	 reach	 or	 view.	 Enterprise
security	should	assume	that	once	stolen	or	lost,	these	devices	could	fall
into	malicious	hands,	and	thus	security	controls	to	prevent	disclosure	of
sensitive	data	must	be	designed	with	this	assumption.
Considering	the	worst-case	scenario	in	which	a	lost	or	a	stolen	device
falls	 into	malicious	hands,	the	best	way	to	prevent	further	damage	will
be	 to	 encrypt	 the	 mobile	 device	 (if	 the	 storing	 of	 sensitive	 data	 is

http://csrc.nist.gov/publications/drafts/800-124r1/draft_sp800-124-rev1.pdf

allowed)	 or	 not	 allowing	 devices	 to	 access	 sensitive	 information	 (not
really	possible	with	Android	smartphones).	To	prevent	shoulder	surfing,
it	 might	 be	 prudent	 to	 use	 privacy	 screens	 (yes,	 there	 are	 ones	 for
phones).	In	addition,	a	screen	lock	(requiring	a	password/PIN)	should	be
a	requirement	for	using	these	devices,	if	access	to	enterprise	resources	is
desired.	 The	 best	 practice	 would	 be	 to	 authenticate	 to	 a	 different
application	 each	 time	 one	 uses	 it,	 although	 this	 is	 tedious,	 and,	 most
likely,	users	will	not	adhere	to	this	(imagine	logging	into	the	Facebook
application	on	an	Android	device	every	time	one	uses	it).

Use	of	“User-Owned”	Untrusted	Devices

Many	enterprises	are	following	a	BYOD	(bring	your	own	device)	model.
This	 essentially	 means	 that	 users	 will	 bring	 their	 own	 mobile	 device
(which	 they	 purchase)	 and	 use	 it	 to	 access	 company	 resources.	 This
poses	a	risk	because	these	devices	are	untrusted	(and	not	approved)	by
enterprise	security,	and	one	has	 to	rely	on	end	users	 for	due	diligence.
Thus,	the	assumption	that	all	devices	are	essentially	untrusted	is	not	far-
fetched.
Security	policies	need	to	be	enforced	even	if	these	devices	are	owned
by	the	users.	In	addition,	these	devices	and	applications	on	them	need	to
be	 monitored.	 Other	 solutions	 include	 providing	 enterprise	 devices
(which	have	a	hardened	OS	and	preapproved	applications	and	security
policies)	or	allowing	user-owned	devices,	with	sensitive	resources	being
accessed	through	well-protected	sandboxed	applications.

Connecting	to	“Unapproved	and	Untrusted	Networks”

Mobile	 devices	 have	 multiple	 ways	 to	 connect:	 cellular	 connectivity,
wireless,	Bluetooth	connections,	Near	Field	Communication	 (NFC),	and
so	forth.	An	enterprise	should	assume	that	any	or	all	of	these	means	of
connectivity	 are	 going	 to	 be	 employed	 by	 the	 end	 user.	 These
connectivity	options	enable	many	types	of	attacks:	sniffing,	man-in-the-
middle,	 eavesdropping,	 and	 so	 forth.	 An	 example	 of	 such	 an	 attack
would	 be	 the	 end	 user	 connecting	 to	 any	 available	 (and	 open)	 Wi-Fi
network	and	thus	allowing	an	attacker	to	eavesdrop	on	communications
(if	not	protected).

Making	sure	communications	are	authenticated	before	proceeding	and
then	encrypted	can	effectively	mitigate	risk	from	this	threat.

Use	of	Untrusted	Applications

This	 essentially	 replicates	 the	 problem	 on	 desktop/laptop	 computers.
End	users	 are	 free	 to	 install	 any	 application	 they	 choose	 to	 download.
Even	 if	 the	 device	 is	 owned	 and	 approved	 by	 an	 enterprise,	 users	 are
likely	to	install	their	own	applications	(unless	prevented	by	the	security
policy	 for	 the	 device).	 For	 Android,	 a	 user	 can	 download	 applications
from	dozens	of	application	markets	or	just	download	an	application	off
the	Internet.
There	are	several	options	for	mitigating	this	threat.	An	enterprise	can

either	 prohibit	 use	 of	 third-party	 applications	 through	 security	 policy
enforcement	or	through	acceptable	use	policy	guidelines.	It	can	create	a
whitelist	of	applications	that	users	are	allowed	to	install	and	use	if	they
would	 like	to	access	company	resources	through	their	Android	devices.
Although	 this	might	 prevent	 them	 from	 installing	 an	 application	 (e.g.,
Facebook),	they	might	still	be	able	to	use	this	application	through	other
means	(e.g.,	browser	interface).	The	most	effective	mitigating	step	here
is	 educating	 the	 end	 user,	 along	 with	 policy	 enforcement.	 The
monitoring	of	devices	is	another	step	that	can	be	taken.

Connections	with	“Untrusted”	Systems

Mobile	devices	 synchronize	data	 to/from	multiple	devices	and	 sources.
They	can	be	used	to	sync	e-mails,	calendars,	pictures,	music,	movies,	and
so	 forth.	 Sources/destinations	 can	be	 the	 enterprise’s	 desktops/laptops,
personal	desktops/laptops,	websites,	and	increasingly,	these	days,	cloud-
based	services.	Thus,	one	can	assume	any	data	on	the	device	might	be	at
risk.
If	the	device	is	owned	by	the	enterprise,	security	policies	on	the	device

itself	can	be	enforced	to	prevent	it	from	backing	up	or	synchronizing	to
unauthorized	 sources.	 If	 the	 user	 owns	 the	 device,	 awareness	 and
monitoring	(and	maybe	sandbox	applications)	are	the	way	to	go.

Unknown	Content

There	 can	 be	 a	 lot	 of	 untrusted	 content	 on	 mobile	 devices	 (e.g.,
attachments,	 downloads,	 Quick	 Response	 (QR)	 codes,	 etc.).	 Many	 of
these	will	be	from	questionable	or	unknown	sources	and	can	pose	risks
to	user	and	enterprise	data.	Take,	for	example,	QR	codes.	There	can	be
malicious	 URLs	 or	 downloads	 hidden	 throughout	 these	 codes,	 but	 the
user	might	not	be	aware	of	these,	thus	falling	victim	to	an	attack.
Installing	 security	 software	 (anti-virus)	 might	 mitigate	 some	 risk.
Disabling	the	camera	is	another	option	to	prevent	attacks	such	as	those
on	QR	codes.	Awareness,	however,	is	the	most	effective	solution	here.

Use	of	GPS	(location-related	services)

Increasingly,	 mobile	 devices	 are	 being	 used	 as	 a	 navigation	 device	 as
well	 as	 to	 find	 “information”	 based	 on	 location.	 Many	 applications
increasingly	 rely	on	 location	data	provided	 through	GPS	capabilities	 in
mobile	devices.	From	Facebook	to	yelp,	the	user’s	location	is	being	used
to	 facilitate	 user	 experience.	 This	 has	 a	 downside,	 aside	 from	 privacy
implications.	 Location	 information	 can	 be	 used	 to	 launch	 targeted
attacks	or	associate	users’	activities	based	on	their	location	data.
Disabling	the	GPS	is	one	way	to	mitigate	the	risk.	However,	this	is	not
possible	for	BYOD	devices.	Another	possibility	is	to	educate	users	on	the
implications	 of	 using	 location	 data.	 Policies	 preventing	 some
applications	(e.g.,	social	media	applications)	to	use	location	information
can	also	be	implemented	through	policy	enforcement.

Lack	of	Control	of	Patching	Applications	and	OS

This	 is	 an	 especially	 acute	 problem	 in	 BYOD	 environments.	 Users	 can
bring	 their	 own	 devices	 and	 may	 not	 patch	 or	 update	 their
OS/applications	 for	 security	 fixes	 that	become	available,	 thus	 exposing
enterprise	resources	to	security	risks.	Think	of	all	the	different	Android
versions	 (from	 2.2.21	 to	 4.x)	 in	 your	 environment	 today	 and	 the
potential	 security	 risks	 for	 each	 of	 them.	 Users	 probably	 have	 not
upgraded	 or	 kept	 up-to-date	 with	 security	 fixes	 for	 Android	 itself.	 In
addition,	many	users	don’t	install	application	updates.
Monitoring	the	devices	and	trying	to	ascertain	 information	about	the
respective	versions	of	their	OS/applications	can	provide	information	that

can	be	use	to	flag	out	insecure	OS/applications.	Users	can	then	be	forced
to	either	upgrade	or	risk	losing	access	to	enterprise	resources.

9.1.2	End-User	Awareness
Any	 strategy	 for	 securing	mobile	 devices	 or	 enterprise	 resources	 being
accessed	 through	mobile	 devices	must	 include	 end-user	 training.	Users
should	 be	made	 aware	 of	 the	 risks	 (listed	 above)	 and	 understand	why
security	controls	are	necessary.	Adhering	to	these	controls	should	be	part
of	acceptable-use	policy,	and	users	should	be	required	to	review	this	at
least	 annually.	 In	 addition,	 annual	 security-awareness	 training	 and	 a
follow-up	quiz	might	imbibe	some	of	these	best	practices	in	their	minds.
Secure	awareness	should	be	complemented	by	warning	users	when	they
are	about	to	perform	an	unwarranted	action	(e.g.,	access	unwanted	site,
download	malicious	code,	etc.).

9.1.3	Compliance/Audit	Considerations
Enterprise	security	needs	to	be	demonstrated	to	customers,	auditors,	and
other	 stakeholders.	 Increasingly,	mobile	devices	 are	 an	 integral	part	 of
the	“computing	 infrastructure”	of	an	enterprise	and	are	 thus	probed	 in
depth	 by	 auditors.	 Although	 current	 security	 certifications	 (standards)
have	 not	 kept	 up	with	 threats	 to	mobile	 devices,	 they	 do	 require	 that
basic	 security	 practices	 be	 applied	 to	mobile	 devices	 (and	 applications
developed	 for	 mobile	 devices).	 Failing	 to	 secure	 your	 mobile
devices/infrastructure	 can	 risk	 audit	 findings	 and	 fines,	 in	many	 cases
(depending	on	regulation/standards).
ISO	 27002	 is	 a	 widely	 used	 security	 standard	 published	 by	 the

ISO/IEC	body.	 It	 lists	39	control	objectives	and	130+	security	controls
for	securing	an	enterprise	environment.	Many	of	these	controls	directly
or	 indirectly	 provide	 guidance	 to	 securing	 mobile	 devices,	 data,	 and
applications	on	them.	Control	9.2.5	addresses	physical	security	concerns,
control	 10.8.1	 addresses	 information	 exchange,	 and	 control	 11.7.1
specifically	mandates	 security	policy	and	measures	 that	address	 threats
from	mobile	devices.
In	addition	to	the	controls	mentioned	above,	many	other	controls	are

applicable	to	mobile	devices.	Examples	of	such	controls	would	be	regular

patching,	security	scanning,	hardening,	cryptography,	and	so	forth.	The
control	 objective,	 “Information	 systems	 acquisition,	 development	 and
maintenance,”	 requires	 that	 security	 be	 taken	 into	 account	 while
developing	 information	systems	and	applications.	Coding	best	practices
(input	 validation,	 output	 encoding,	 error	 checking,	 etc.)	 is	 covered	 as
part	 of	 this	 objective.	 Other	 standards	 (NIST	 800-53,	 PCI	 DSS)	 have
similar	 requirements	 for	 protecting	 mobile	 devices.	 At	 the	 core,	 these
standards	mandate	performing	 regular	 assessment	of	 threats	on	mobile
assets,	 identify	 security	 issues,	 and	 implement	 controls,	 as	 well	 as
educate	end	users	and	developers.

9.1.4	Recommended	Security	Practices	for	Mobile	Devices

Security	controls	can	be	divided	into	four	main	categories:

1.	 Policies	 and	 restrictions	 on	 functionality:	 Restrict	 the	 user	 and
applications	 from	 accessing	 various	 hardware	 features	 (e.g.,
camera,	 GPS),	 push	 configurations	 for	 wireless,	 Virtual	 Private
Network	 (VPN),	 send	 logs/violations	 to	 remote	 server,	 provide	 a
whitelist	 of	 applications	 that	 can	 be	 used,	 and	 prevent	 rooted
devices	from	accessing	enterprise	resources	and	networks.

2.	Protecting	data:	This	includes	encrypting	local	and	external	storage,
enabling	 VPN	 communications	 to	 access	 protected	 resources,	 and
using	 strong	 cryptography	 for	 communications.	 This	 also	 should
include	a	 remote	wipe	 functionality	 in	 the	case	of	a	 lost	or	 stolen
device.

3.	 Access	 controls:	 This	 includes	 authentication	 for	 using	 the	 device
(e.g.,	 PIN,	 SIM	 password)	 and	 per-application	 passwords.	 A
PIN/Passcode	should	be	required	after	the	device	has	been	idle	for
few	minutes	(the	recommendation	is	2–5	minutes).

4.	 Applications:	 This	 includes	 application-specific	 controls,	 including
approved	sources/markets	from	which	applications	can	be	installed,
updates	to	applications,	allowing	only	trusted	applications	(digitally
signed	from	trusted	sources)	to	be	installed,	and	preventing	services
to	backup/restore	from	public	cloud-based	applications.

9.2	Hardening	Android
In	the	previous	section,	we	reviewed	common	threats	to	mobile	devices
and	some	of	 the	mitigation	steps	one	can	 take.	 In	 this	 section,	we	will
cover	in	detail	how	to	configure	(harden)	an	Android	device	to	mitigate
the	risks.	We	divide	this	section	into	two:	hardening	Android	devices	by
configuration	changes	(hardening)	and	developing	Android	applications
that	are	secure.

9.2.1	Deploying	Android	Securely
Out	 of	 the	 box,	 Android	 does	 not	 come	with	 all	 desired	 configuration
settings	 (from	 a	 security	 viewpoint).	 This	 is	 especially	 true	 for	 an
enterprise	 environment.	 Android	 security	 settings	 have	 improved	 with
each	 major	 release	 and	 are	 fairly	 easy	 to	 configure.	 Desired
configuration	changes	can	be	applied	either	locally	or	can	be	pushed	to
devices	by	Exchange	ActiveSync	mail	policies.	Depending	on	the	device
manufacturer,	 a	 device	 might	 have	 additional	 (manufacturer	 or	 third-
party)	tools	to	enhance	security.

Unauthorized	Device	Access

As	mentioned	earlier	 in	 the	chapter,	 lack	of	physical	 control	of	mobile
devices	is	one	of	the	main	concerns	for	a	user	and	for	an	enterprise.	The
risk	arising	out	of	this	can	be	mitigated	to	a	certain	extent	through	the
following	configuration	changes:	Setting	Up	a	Screen	Lock

After	enabling	this	setting,	a	user	is	required	to	enter	either	a	PIN	or	a
password	to	access	a	device.	There	is	an	option	to	use	patterns,	although
we	 do	 not	 recommend	 it.	 To	 enable	 this	 setting,	 go	 to	 “Settings”	 ->
“Security”	 ->	 “Screen	 Lock”	 and	 choose	 between	 the	 “PIN”	 and
“Password”	option.	We	recommend	a	strong	password	or	an	8-digit	PIN
(see	Figure	9.1).	Once	“Screen	Lock”	 is	enabled,	 the	automatic	 timeout
value	should	be	updated	as	well	(Figure	9.2)	Setting	up	the	SIM	Lock

Turning	on	the	“SIM	card	lock”	makes	it	mandatory	to	enter	this	code	to
access	“phone”	functionality.	Without	this	code,	one	would	not	be	able
to	make	calls	or	send	SMS	messages.	To	enable	SIM	lock,	go	to	“Settings”

->	“Set	up	SIM	card	 lock”	 (see	Figures	9.3	and	9.4)	 and	enable	 “Lock
SIM	card.”	Pick	a	value	that	is	different	from	the	screen	lock.

Figure	9.1	Enabling	Screen	Lock

Remote	Wipe

System	administrators	 can	enable	 the	“Remote	Wipe”	 function	 through
Exchange	 ActiveSync	 mail	 policies.	 If	 a	 user	 is	 connected	 to	 the
corporate	Exchange	server,	it	is	critical	to	enable	this	feature	in	case	the
device	 is	 lost	or	 stolen.	There	are	other	 settings	 that	 can	be	pushed	as
well	(e.g.,	password	complexity).	These	are	covered	later	in	this	chapter.
Remote	 Wipe	 essentially	 wipes	 out	 all	 data	 from	 the	 phone	 and

restores	 it	 to	 factory	 state.	 This	 includes	 all	 e-mail	 data,	 application
settings,	 and	 so	 forth.	 However,	 it	 does	 not	 delete	 information	 on
external	SD	storage.

Other	Settings

In	addition	to	the	above	settings,	we	strongly	recommend	disabling	the
“Make	 passwords	 visible”	 option.	 This	 will	 prevent	 shoulder	 surfing
attacks,	as	characters	won’t	be	repeated	back	on	screen	if	you	are	typing
a	 password	 or	 PIN.	 Go	 to	 “Settings”	 and	 uncheck	 “Make	 passwords
visible”	(see	Figure	9.5).

Figure	9.2	Automatic	Lock	Timeout	Value

Figure	9.3	Enable	SIM	Card	Lock

It	 is	 also	 recommended	 to	 disable	 “Allow	 installation	 of	 apps	 from
unknown	 sources.”	As	we	 have	mentioned	 before,	 there	 are	 secondary
application	stores	apart	from	Google	Play,	and	it	is	prudent	to	not	trust
applications	 from	 these	 sources	 before	 ascertaining	 their	 authenticity.
Disabling	this	option	will	prevent	applications	from	being	installed	from
other	sources	(see	Figure	9.5).
As	a	rule	of	thumb,	it	is	recommended	to	turn	off	services	that	are	not

being	 used.	 A	 user	 should	 turn	 off	 “Bluetooth,”	 “NFC,”	 and	 “Location
features”	 unless	 using	 them	 actively	 (see	 Figure	 9.6),	 as	 well	 as	 the
“Network	notification”	feature	from	the	Wi-Fi	settings	screen	(see	Figure
9.7).	This	will	make	the	user	choose	a	connection	rather	than	connecting

to	 any	 available	 network.	Discourage	 backing	 up	 of	 data	 to	 “Gmail	 or
Google”	 accounts	 or	 Dropbox.	 Create	 a	 whitelist	 of	 applications	 and
educate	users	on	the	list	so	they	do	not	install	applications	outside	of	the
approved	list.

Figure	9.4	Enter	SIM	Card	Lock	PIN

Figure	9.5	Disabling	“Make	Passwords	Visible”	and	“Unknown	Sources”

Figure	9.6	Disabling	“Location	Services”

Figure	9.7	Disabling	“Network	Notification”

A	new	 feature	 of	Android	 4.2	 enhances	 protection	 against	malicious
applications.	 Android	 4.2	 has	 a	 feature	 that,	 if	 enabled,	 verifies	 an
application	 being	 installed	 with	 Google.	 Depending	 on	 the	 risk	 of	 the
application,	Android	warns	users	that	it	is	potentially	harmful	to	proceed
with	the	installation.	Note	that	some	data	is	sent	to	Google	to	enable	this

process	 to	 take	 place	 (log,	 URL,	 device	 ID,	 OS,	 etc.).	 To	 turn	 on	 this
feature,	go	to	“Settings”	->	“Security”	->	“Verify	Apps.”
Another	 useful	 feature	 might	 be	 to	 enable	 “Always	 on	 VPN.”	 This
prevents	applications	from	connecting	to	the	network	unless	VPN	is	on.
We	also	recommend	turning	off	the	USB	debugging	feature	from	phones
(see	Figure	9.8).	USB	debugging	allows	a	user	to	connect	the	phone	to	an
adb	shell.	This	can	lead	to	the	enumeration	of	information	on	the	device.
Browser	 is	 one	 of	 the	most	 commonly	 used	 applications	 on	Android
devices.	Browser	security	and	privacy	settings	should	be	fine-tuned	(e.g.,
disable	location	access).	Figure	9.9	shows	security	settings	for	the	screen
browser.

Figure	9.8	Disabling	“USB	Debugging”

Figure	9.9	Browser	Security	Settings

Encryption

Android	3.0	and	later	have	the	capability	to	perform	full-disk	encryption
(this	does	not	include	the	SD	card).	Turning	this	feature	on	encrypts	all
data	on	the	phone.	 In	case	 the	phone	 is	 lost	or	stolen,	data	can	not	be
recovered	because	it	is	encrypted.	The	caveat	here	is	that	the	screen	lock
password	has	to	be	the	same	as	encryption	password.	Once	the	phone	is
encrypted,	during	boot	time	you	will	be	required	to	enter	this	password
to	decrypt	the	phone.

To	 turn	 on	 encryption,	 prepare	 your	 phone	 by	 going	 through	 the
following	steps:	1.	Set	up	a	strong	PIN	or	password
2.	Plug	in	and	charge	your	phone

Once	 ready	 to	encrypt	 the	phone,	go	 to	 “Settings”	 ->	“Security”	 ->
“Encrypt	 Phone.”	 Enable	 “Encrypt	 phone”	 and	 enter	 a	 lock	 screen
password	or	PIN.	Once	 the	encryption	process	 is	complete,	you	will	be
required	to	decrypt	your	phone	at	boot	time	by	entering	the	screen	lock
password	or	PIN.	Figure	9.10	shows	the	“Encrypt	phone”	screen	from	the
security	settings.

9.2.2	Device	Administration
The	 Android	 Device	 Administration	 APIs	 have	 been	 available	 since
Android	2.2.	These	APIs	allow	security-aware	enterprise	applications	to
be	developed.

Figure	9.10	Encrypt	Phone

The	built-in	e-mail	application	 leverages	 this	API	 to	 improve	Exchange
support	 and	 enables	 administrators	 to	 enforce	 certain	 security	 settings,
such	 as	 remote	wipe,	 screen	 lock,	 time	 out,	 password	 complexity,	 and

encryption.	Mobile	Device	Management	(MDM)	applications	from	third-
party	providers	leverage	these	APIs.
System	administrators	or	developers	write	security-aware	applications
leveraging	these	APIs.	Such	an	application	can	enforce	a	local	or	remote
security	policy.	Policy	can	be	either	hard	coded	in	an	application	(local)
or	can	be	fetched	from	a	remote	server	(e.g.,	E-mail	Exchange	server—
see	Figure	9.11).	Typically,	such	an	application	will	need	to	be	installed
by	users	from	Google	Play	or	another	installation	medium.	In	the	case	of
e-mail,	 a	 default	 e-mail	 application	 comes	 preinstalled,	 and	 thus	 it	 is
easiest	 to	 push	 security	 policies	 through	 this	 application	 if	 the	 devices
are	 to	 sync/connect	 to	 a	 corporate	 Exchange	 server.	 Once	 the
application	is	installed	(or	configured,	in	the	case	of	e-mail),	the	system
prompts	 the	 user	 to	 enable	 the	 device	 admin	 application.	 If	 the	 user
consents,	security	policies	are	enforced	going	forward,	and	if	he	or	she
does	not,	the	user	won’t	be	able	to	use	certain	functionality	(i.e.,	connect
to	corporate	resources,	sync	with	Exchange	server).

Figure	9.11	E-mail	Application	Pushing	Server	Specified	Policies	Below	are	some	of	the	policies
supported	by	Device	Administration	APIs.	These	policies	can	be	enforced	by	the	device	admin
application.

-	Password	enabled
-	Minimum	password	length
-	Strength/complexity	of	passwords
-	Password	expiry
-	Password	history	restrictions
-	Screen	lock	timeout
-	Storage	encryption
-	Remote	wipe

Figure	9.12	Policies	Pushed	through	the	E-mail	Application	Figure	9.12	shows	policies	pushed
by	the	e-mail	application.	This	is	typical	policy	enforcement	in	a	corporate	environment.

9.3	Summary
In	this	chapter,	we	first	reviewed	security	concerns	for	deploying	mobile
devices	in	an	enterprise	environment	and	how	to	mitigate	them.	We	then

walked	 through	 Android	 security	 settings	 that	 enable	 us	 to	 mitigate
some	 of	 the	 risk.	 Finally,	 we	 concluded	 by	 looking	 at	 the	 Device
Administration	 API	 mechanism	 that	 can	 be	 used	 to	 enforce	 security
policies	on	Android	devices.

Chapter	10

Browser	Security	and	Future	Threat	Landscape

In	 this	 chapter,	 we	 review	 HTML	 and	 browser	 security	 on	 mobile
devices.	We	cover	different	types	of	attacks	possible,	as	well	as	browser
vulnerabilities.	We	then	discuss	possible	advanced	attacks	using	mobile
devices.

10.1	Mobile	HTML	Security
The	 increasing	adoption	of	mobile	devices	and	 their	use	as	a	means	 to
access	 information	 on	 the	 Web	 has	 led	 to	 the	 evolution	 of	 websites.
Initially,	mobile	browsers	had	to	access	information	through	traditional
(desktop-focused)	websites.	 Today	most	 of	 these	websites	 also	 support
Wireless	Application	Protocol	 (WAP)	 technology	or	have	an	equivalent
mobile	HTML	(trimmed-down	sites	for	mobile	devices).
WAP	specification	defines	a	protocol	suite	that	enables	the	viewing	of

information	on	mobile	devices.	The	WAP	protocol	suite	 is	composed	of
the	 following	 layers	 (Figure	 10.1):	Wireless	Datagram	Protocol	 (WDP),
Wireless	Transport	Layer	Security	(WTLS),	Wireless	Transaction	Protocol
(WTP),	 Wireless	 Session	 Protocol	 (WSP),	 and	 Wireless	 Application
Environment	 (WAE).	 The	 protocol	 suite	 operates	 over	 any	 wireless
network.	Table	10.1	describes	different	layers	in	the	protocol	suite.
In	 a	 typical	 Internet	 or	WWW	model,	 there	 is	 a	 client	 that	makes	 a

request	 to	 a	 server.	 The	 server	 processes	 the	 request	 and	 sends	 a
response	(or	content)	back	to	the	client	(see	Figure	10.2).	This	is	more	or
less	 same	 in	 the	WAP	model,	 as	well.	However,	 there	 is	 a	 gateway	 or
proxy	that	sits	between	the	client	and	the	server	that	adapts	the	requests
and	 responses	 (encodes/decodes)	 for	mobile	 devices	 (see	 Figure	 10.3).
WAP	2.0	provides	support	for	richer	content	and	end-end	security	than
WAP	1.0.

Figure	10.1	WAP	Protocol	Suite

WAP	1.0	did	not	provide	 end-end	 support	 for	 SSL/TLS.	 In	WAP	1.0,
communications	 between	 a	mobile	 device	 and	WAP	 gateway	 could	 be
encrypted	 using	 WTLS.	 However,	 these	 communications	 would
terminate	 at	 the	 proxy/gateway	 server.	 Communications	 between	 the
gateway	and	application/HTTP	server	would	use	TLS/SSL.	This	exposed
WAP	 1.0	 communications	 to	 MITM	 (Man-In-The-Middle)	 attacks.	 In
addition,	 all	 kinds	 of	 sensitive	 information	 would	 be	 available	 on	 the
WAP	gateway	(in	plaintext).	This	meant	that	a	compromise	of	the	WAP
gateway/proxy	 could	 result	 in	 a	 severe	 security	 breach.	 WAP	 2.0
remediates	this	issue	by	providing	end-end	support	for	SSL/TLS.
WAP	 and	 Mobile	 HTML	 sites	 are	 also	 susceptible	 to	 typical	 Web
application	attacks,	 including	Cross-Site	Scripting,	SQL	Injection,	Cross-
Site	Request	Forgery,	and	Phishing.	Mobile	browsers	are	fully	functional
browsers	 with	 functionality	 that	 rivals	 desktop	 versions.	 They	 include
support	for	cookies,	scripts,	flash,	and	so	forth.	This	means	that	users	of
mobile	devices	are	exposed	to	attacks	similar	to	those	on	desktop/laptop
computers.	 We	 will	 cover	 these	 attacks	 briefly.	 A	 good	 source	 for
detailed	 information	 on	 these	 attacks	 is	 the	 Open	 Web	 Application

Security	Project	(OWASP)	website.

Table	10.1	–	WAP	Protocols

Layer Description

Wireless
Datagram
Protocol
(WDP)

Lowest	layer	in	the	suite.	Provides	unreliable	data	to
upper	layers	(i.e.,	the	UDP)	and	functions	somewhat	like
the	transport	layer.	Runs	on	top	of	bearers,	including
SMS,	CSD,	CDPD,	and	so	forth

Wireless
Transport
Layer
Security
(WTLS)

Provides	public-key	cryptography	security	mechanisms

Wireless
Transaction
Protocol
(WTP)

Provides	transaction	reliability	support	(i.e.,	reliable
requests	and	responses)

Wireless
Session
Protocol
(WSP)

Provides	HTTP	functionality

Wireless
Application
Environment
(WAE)

Provides	Wireless	Markup	Language	(WML),	WMLScript,
and	WTA	(Wireless	Telephony	Application	Interface).
WML	is	a	markup	language	like	HTML,	WMLScript	is	a
scripting	language	like	JavaScript,	and	WTA	provides
support	for	phone	functionality

Figure	10.2	WWW	Model

Figure	10.3	WAP	Model

10.1.1	Cross-Site	Scripting
Cross-Site	 Scripting	 (XSS)	 allows	 the	 injection	 of	 client-side	 script	 into
web	pages	and	can	be	used	by	attackers	 to	bypass	access	controls.	XSS
attacks	 can	 result	 in	 attackers	 obtaining	 the	 user’s	 session	 information
(such	as	 cookies).	They	 can	 then	use	 this	 information	 to	bypass	 access
controls.	 Figure	 10.4	 shows	 reflected	 XSS	 in	 a	 vulnerable	 website
accessed	through	the	Android	browser.
At	the	heart	of	XSS	attacks	is	the	fact	that	untrusted	user	input	is	not

thoroughly	vetted	and	is	used	without	sanitization/escaping.	In	the	case
of	XSS,	user	input	is	not	sanitized	for	and	is	then	either	displayed	back
to	 the	 browser	 (reflected	 XSS)	 or	 stored	 (persistent	 XSS)	 and	 viewed
later.
Mobile	sites	are	as	prone	to	XSS	attacks	as	their	regular	counterparts,

as	 mobile	 HTML	 sites	 might	 have	 even	 less	 controls	 around
validating/sanitizing	user	input.	Treating	mobile	HTML	sites	like	regular
websites	 and	performing	proper	 validation	of	user	 input	 can	prevent	 a
site	from	being	vulnerable	to	XSS	attacks.

Figure	10.4	Example	of	XSS	on	Mobile	Device

10.1.2	SQL	Injection
SQL	injection	allows	the	injection	of	an	SQL	query	from	a	client	into	an
application.	 A	 successful	 SQL	 query	 (or	 attack)	 can	 provide	 attackers
with	 sensitive	 information	 and	 enable	 them	 to	 bypass	 access	 controls,
run	administrative	commands,	and	query/update/delete	databases.
At	 the	 heart	 of	 SQL	 injection	 attacks	 is	 the	 fact	 that	 untrusted	 user
input	 is	directly	used	 in	crafting	SQL	queries	without	validation.	These
SQL	queries	are	then	executed	against	the	backend	database.
Similar	 to	 XSS,	 mobile	 HTML	 and	 WAP	 sites	 are	 prone	 to	 SQL
injection	 attacks.	 Mobile	 sites	 might	 have	 the	 same	 flaws	 as	 their
desktop	counterparts,	or,	even	worse,	they	might	not	be	performing	the
validation	 of	 user	 input	 when	 accepting	 inputs	 through	 mobile	 sites.
Using	 parameterized	 queries	 or	 stored	 procedures	 can	 prevent	 SQL
injection	attacks.

10.1.3	Cross-Site	Request	Forgery
A	Cross-Site	 Request	 Forgery	 (CSRF,	 XSRF)	 attack	 results	 in	 unwanted
(unauthorized)	 commands	 from	 a	 user	 already	 authenticated	 to	 a
website.	 The	 website	 trusts	 an	 authenticated	 user	 and,	 therefore,
commands	coming	from	him,	as	well.	In	CSRF,	the	website	is	the	victim
of	the	trust	in	the	user,	whereas	in	XSS,	the	user	is	the	victim	of	the	trust

in	the	server/website.
It	 is	 typical	 for	 a	user	 to	be	 authenticated	 to	multiple	websites	on	a

mobile	 device.	 Thus,	 CSRF	 attacks	 are	 possible,	 just	 as	 they	 are	 on
desktop/laptop	 computers.	 In	 addition,	 small	 interface	 and	 UI	 layouts
can	disguise	CSRF	attacks	(e.g.,	an	e-mail	with	a	URL	link)	and	trick	the
user	into	performing	unwanted	operations	on	a	website.

10.1.4	Phishing
Phishing	attacks	target	unsuspecting	users	and	trick	them	into	providing
sensitive	 information	 (e.g.,	 SSN,	 passwords,	 credit	 card	 numbers,	 etc.).
Through	 social	 engineering,	 attackers	 trick	 users	 to	 go	 to	 legitimate-
looking	websites	and	perform	certain	activities.	Users	trusting	the	source
for	this	request	(e.g.,	typically	in	an	e-mail)	performs	the	recommended
operation	and,	in	turn,	provides	an	attacker	with	sensitive	data.
As	an	example,	a	user	gets	an	e-mail	that	seems	legitimate	and	looks

like	 it	 came	 from	 his	 bank.	 It	 is	 requesting	 the	 user	 to	 change	 his
password	 due	 to	 a	 recent	 security	 breach	 at	 the	 bank.	 For	 his
convenience,	 the	user	 is	 provided	with	 a	URL	 to	 change	his	 password.
On	clicking	the	link,	the	user	is	taken	a	website	that	looks	like	the	bank’s
website.	 The	 user	 performs	 the	 password-reset	 operation	 and,	 in	 turn,
provides	the	current	password	to	the	attacker.
Such	attacks	are	even	more	difficult	for	users	to	recognize	on	mobile

devices.	 Due	 to	 small	 UI	 real	 estate,	 users	 can’t	 really	 read	 the	 entire
URL	that	they	are	viewing.	If	they	are	being	redirected	to	a	website,	they
would	 not	 be	 able	 to	 tell	 it	 easily	 on	 a	 mobile	 device.	 Differences
between	 legitimate	 and	 fake	websites	 are	 not	 easy	 to	 distinguish	 on	 a
small	UI	screen	of	mobile	devices.	If	URLs	are	disguised	(e.g.,	tiny	URL)
or	if	these	are	URLs	that	are	sent	through	a	Short	Message	Service	(SMS)
message	 (tiny	 URL	 via	 SMS),	 it	 is	 even	 more	 difficult	 to	 distinguish
between	 legitimate	 and	 fake	 requests.	Many	 users	 (even	 ones	who	 are
aware	of	such	attacks)	can	be	tricked	into	going	through	with	an	attack.
As	mentioned	 in	 the	previous	chapter,	Quick	Response	 (QR)	codes	can
also	be	used	for	such	attacks.

10.2	Mobile	Browser	Security

In	 this	 section,	 we	 review	 recent	 browser	 vulnerabilities	 on	 Android
platforms,	as	well	as	drive-by-download	attacks.

10.2.1	Browser	Vulnerabilities
As	 of	 the	 writing	 of	 this	 chapter,	 there	 are	 ~200+	 Common
Vulnerabilities	 and	 Exposures	 (CVEs)	 related	 to	 the	 Android	 platform
(search	 cve.mitre.org	 for	 “android”).	 Of	 these,	 many	 are	 related	 to
browsers	 (either	 built-in	 browsers	 or	 downloadable	 browsers,	 such	 as
Firefox).	Table	10.2	describes	the	following	CVEs:	CVE	2008-7298,	CVE
2010-1807,	 CVE	 2010-4804,	 CVE	 2011-2357,	 and	 CVE	 2012-3979,	 as
well	 as	 their	 descriptions,	 as	 depicted	 on	 the	 NIST	 website
(http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE).
CVE	2008-7298	can	result	in	attackers	modifying	or	deleting	cookies;

CVE	2010-1807	 can	allow	attackers	 to	 execute	 arbitrary	 code	or	 cause
application	crashes;	CVE	2010-4804	could	cause	information	leakage	on
an	 SD	Card;	 CVE	 2011-2357	 can	 cause	 an	XSS	 attack;	 and	CVE	 2012-
3979	 can	 cause	 code	 execution.	 If	 we	 look	 at	 computer	 browser
vulnerabilities,	we	see	that	vulnerabilities	found	on	mobile	browsers	are
of	 a	 similar	 nature.	 Often,	 mobile	 application	 development	 does	 not
follow	established	Security	Development	Lifecycle	 (SDL)	processes,	and
they	are	treated	as	“plug-ins”	or	applications	with	lesser	relevance.	This
can	 result	 in	 one	 or	 more	 controls	 (e.g.,	 threat	 modeling,	 static	 and
dynamic	analysis,	penetration	testing,	code	review)	not	being	applied	to
mobile	application	development.

Table	10.2	–	Examples	of	Browser-Related	Vulnerabilities	of
Android	Devices

Vulnerability Description

CVE	2008-
7298

The	Android	browser	in	Android	cannot	properly	restrict
modifications	to	cookies	established	in	HTTPS	sessions,
which	allows	man-in-the-middle	attackers	to	overwrite
or	delete	arbitrary	cookies	via	a	Set-Cookie	header	in	an
HTTP	response.	This	is	due	to	the	lack	of	the	HTTP	Strict

http://cve.mitre.org
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE

Transport	Security	(HSTS)	enforcement

CVE	2010-
1807

WebKit	in	Apple	Safari	4.x	before	4.1.2	and	5.x	before
5.0.2;	Android	before	2.2;	and	webkitgtk	before	1.2.6.
Does	not	properly	validate	floating-point	data,	which
allows	remote	attackers	to	execute	arbitrary	code	or
cause	a	denial	of	service	(application	crash)	via	a	crafted
HTML	document,	related	to	nonstandard	NaN
representation

CVE	2010-
4804

The	Android	browser	in	Android	before	2.3.4	allows
remote	attackers	to	obtain	SD	card	contents	via	crafted
content://	URIs,	related	to	(1)	BrowserActivity.java	and
(2)	BrowserSettings.java	in	com/android/browser/

CVE	2011-
2357

Cross-application	scripting	vulnerability	in	the	Browser
URL	loading	functionality	in	Android	2.3.4	and	3.1
allows	local	applications	to	bypass	the	sandbox	and
execute	arbitrary	Javascript	in	arbitrary	domains	by	(1)
causing	the	MAX_TAB	number	of	tabs	to	be	opened,	then
loading	a	URI	to	the	targeted	domain	into	the	current
tab,	or	(2)	making	two	startActivity	function	calls
beginning	with	the	targeted	domain’s	URI	followed	by
the	malicious	Javascript	while	the	UI	focus	is	still
associated	with	the	targeted	domain

CVE	2012-
3979

Mozilla	Firefox	before	15.0	on	Android	does	not
properly	implement	unspecified	callers	of	the

—android_log_print	function,	which	allows

remoteattackers	to	execute	arbitrary	code	via	a	crafted

web	page	that	calls	the	JavaScript	dump	function

Source:	 http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE
(vulnerability	descriptions	from	NVD	list).

Drive-by	Downloads

Drive-by	downloads	have	been	an	 issue	with	computers	 for	 some	time.
However,	we	are	starting	to	see	them	as	an	emerging	threat	on	mobile
devices,	 as	 well.	 A	 drive-by	 download	 is	 basically	 malware	 that	 gets
downloaded	and	often	installed	when	a	user	visits	an	infected	website.
Recently,	 we	 saw	 the	 first	 drive-by	 download	 malware	 for	 Android
(named	 “NonCompatible”).	 When	 visiting	 an	 infected	 website,	 the
browser	could	download	this	malware	file.	However,	it	can’t	install	itself
without	 user	 intervention.	 In	 addition,	 installation	 from	 non-trusted
sources	 needs	 to	 be	 enabled	 for	 the	 user	 to	 install	 this	 malware.	 An
attacker	 can	 disguise	 such	 a	 download	 by	 renaming	 it	 as	 a	 popular
Android	 application	 or	 updates	 to	 Android	 itself.	 Users	 are	 willing	 to
install	such	files	without	much	thought	and,	thus,	end	up	infecting	their
devices	with	malware.
As	 long	as	 “side	 loading”	and	 installation	of	 applications	 from	“non-
trusted”	sources	is	disabled,	such	malware	should	not	be	able	to	impact
Android	devices.

10.3	The	Future	Landscape
Thus	 far,	 we	 have	 covered	 vulnerabilities	 that	 have	 been	 widely
exploited	 or	 can	 be	 exploited	 today.	 In	 this	 section,	 we	 talk	 about
possible	attacks	on	Android	devices	 in	 the	near	 future.	Note	 that	 these
attacks	 cannot	 be	 executed	 by	 amateurs	 and	 would	 require	 planning,
execution,	 and	 resources	 probably	 available	 to	 organized	 crime,	 state,
and	 intelligence	 agencies.	 Although	 scenarios	 in	 this	 section	 seem
futuristic,	 in	 reality,	 they	 are	 very	 possible	 and	 for	 the	 future,	 quite
probable.	We	now	present	 the	 following	scenarios—using	a	phone	as	a
spying/tracking	device,	controlling	corporate	networks	and	other	devices
through	mobile	devices,	and	exploiting	Near	Field	Communication	(NFC)

http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE

on	mobile	devices.

10.3.1	The	Phone	as	a	Spying/Tracking	Device
Imagine	 exploiting	 vulnerabilities	 on	 an	Android	 device	 or	 application
and	 gaining	 full	 access	 to	 a	 phone.	 Rooted	 Android	 phones	 are	 most
vulnerable	 to	 these	 kinds	 of	 attacks.	One	 can	potentially	 turn	 a	 phone
into	a	tracking	and	spying	device.	Consider	the	following	functionalities
that	 can	 be	 potentially	 exploited:	 the	 camera	 and	 photos,	 GPS	 co-
ordinates,	 the	 microphone,	 e-mail	 and	 chat	 information,	 social	 media
information	 (location	 of	 restaurants,	 places	 of	 interest),	 medical
information	(e.g.,	hospital	and	clinics	visited,	doctors	searched	or	met),
medicines	looked	up	through	the	device,	and	so	forth.
One	 could	 argue	 that	 an	 exploited	 smartphone	 could	 be	 the	 best

tracker/spy	that	one	can	get,	as	it	will	provide	you	with	every	little	bit
of	 information	 to	piece	 together	 the	daily	 routines	of	users	and	people
around	 them.	 A	 user	 not	 aware	 of	 such	 a	 compromise	 would	 carry	 it
willingly	and	 so	would	a	malicious	user	who	 is	 intentionally	using	 the
device	 as	 a	 tracking/spying	 mechanism.	 Smartphones	 are	 preferred
devices	 for	 organized	 crime,	 criminals,	 terrorists,	 and	 law	 enforcement
agencies	alike.	Given	the	things	you	can	accomplish	using	these	devices,
they	can	also	be	a	great	tool	for	law	enforcement.	All	of	this	should	raise
concerns	for	a	typical	user	in	terms	of	security	and	privacy.

10.3.2	Controlling	Corporate	Networks	and	Other	Devices
through	Mobile	Devices

Exploiting	vulnerabilities	on	mobile	applications	or	the	Android	platform
itself	 can	 lead	 to	 other	 security	 concerns.	 Besides	 being	 a	 corporate
espionage	 tool,	 it	 can	 be	 used	 to	 launch	 attacks	 against	 corporate
resources	and	even	control	corporate	information	systems.
As	we	have	already	seen,	corporations	do	not	 really	control	Android

devices	purchased	and	owned	by	users.	Most	companies	do	not	require
the	 hardening	 of	 these	 devices	 to	 the	 extent	 that	 they	 should.	 The
patching	 of	 applications	 and	 platforms	 is	 not	 something	 that	 security
administrators	 always	 control	 in	 a	 BYOD	 world.	 All	 of	 this	 has	 very
significant	 implications	 for	 information	 resources	 in	 a	 corporate

environment.	 The	 fact	 that	 these	 devices	 are	 not	 covered	 by	 typical
security	controls	(e.g.,	security	scans,	patching,	 incident	response)	adds
to	 the	 risk.	 Rooted	 devices	 can	 expose	 not	 only	 the	 user	 but	 also	 the
environment	 to	 security	attacks.	With	all	kind	of	applications	available
on	Android	(e.g.,	Wireshark),	as	well	as	 the	possibly	of	writing	custom
applications	 to	 launch	 security	attacks,	one	can	 imagine	 the	headaches
security	 professionals	 will	 have	 dealing	 with	 these	 devices	 in	 their
environments.	 In	a	different	 scenario,	more	and	more	home	appliances
and	 systems	 are	 controlled	 through	 mobile	 devices.	 A	 vulnerable	 or
exploited	 Android	 device	 can	 be	 used	 to	 attack	 these	 appliances	 and
devices.

10.3.3	Mobile	Wallets	and	NFC
We	 briefly	 covered	 NFC	 in	 Chapter	 7	 and	 discussed	 Google	 Wallet
vulnerability.	 Increasingly,	 retailers	 and	 banks	 are	 looking	 to	 use	 NFC
for	 processing	 payments.	 Although	 still	 in	 its	 infancy,	 concerns	 have
been	 raised	 about	 privacy	 and	 security	 issues	 using	 NFC	 for	 mobile
wallet	 functionality.	 In	 addition	 to	 concerns	 around	 secure	 NFC
applications,	 there	 are	 other	 issues	 with	 such	 a	 mechanism,	 such	 as
eavesdropping,	 interception,	 and	 loss	 of	 control.	 NFC	 is	 essentially	 a
radio	communication,	and	it	is	possible	to	eavesdrop	on	communication,
if	 in	 range.	 NFC	 is	 limited	 in	 range	 compared	 to	 Radio-Frequency
Identification	 (RFID),	 although	 it	 is	 possible	 to	 amplify	 this	 using	 an
antenna.	Assuming	 that	 communication	 is	 secure	 (encrypted),	 it	 is	 still
possible	to	perform	traffic	analysis.	Another	issue	is	the	possibility	of	a
lost/stolen	phone,	 in	which	 case	 all	 of	 the	user’s	 bank	and	 credit	 card
information	 can	 be	 at	 risk	 (including	 corporate	 cards).	 Although	 users
might	be	eager	to	adopt	this	feature,	they	often	do	so	without	having	an
understanding	of	the	risk	or	best	practices	they	need	to	follow.
NFC	 is	not	only	used	 for	payment	processing.	The	 recently	 launched

Samsung	Galaxy	S	 III	uses	NFC	to	transfer	contents	 from	one	device	 to
another,	 seamlessly,	by	placing	 the	devices	back-to-back.	Although	this
is	 a	 user-friendly	 feature,	 it	 can	have	 serious	 implications	 for	 security,
including	data	security.	Imagine	that	data	can	be	directly	sent	to	devices
that	are	even	beyond	the	control	of	security	administrators.

10.4	Summary
In	this	chapter,	we	reviewed	mobile	HTML	security	(including	WAP).	We
covered	 typical	 attacks	 possible	 on	 mobile	 websites.	 We	 then	 walked
through	 browser	 vulnerabilities	 and	 drive-by	 downloads.	 We	 then
covered	possible	advanced	attacks	through	mobile	devices.

Appendix	A

In	Chapter	4,	we	 discussed	Manifest	 permissions	 that	 are	 requested	 by
applications	 for	 performing	 operations	 such	 as	 accessing	 the	 Internet,
sending	 SMS	messages,	 and	 so	 forth.	We	 have	 rated	 these	 permissions
based	on	their	security	implications.	Permission	to	access	SMS	messages
or	 install	 packages	 is	 rated	 higher	 in	 terms	 of	 security	 implications
(severity)	 than	 permission	 to	 access	 battery	 statistics.	 The	 table	 below
shows	the	assigned	score	and	severity/risk	rating.

Score Description/Risk

4 Critical

3 High

2 Medium

1 Information	Disclosure

Table	 A.1	 comprises	 a	 comprehensive	 list	 of	 Android	 “Manifest
Permissions.”	It	contains	a	description	as	well	as	the	risk	rating	assigned
to	each	permission	listed.

Table	A.1	–	Manifest	Permissions

Permission	Name Description
Rating

ACCESS_CHECKIN_PROPERTIES

Allows	read/write	access	to
the	“properties”	table	in	the
checkin	database,	to	change
values	that	get	uploaded

ACCESS_COARSE_LOCATION

Allows	an	app	to	access
approximate	location
derived	from	network
location	sources	such	as	cell
towers	and	Wi-Fi

ACCESS_FINE_LOCATION

Allows	an	app	to	access
precise	location	from
location	sources	such	as
GPS,	cell	towers,	and	Wi-Fi

ACCESS_LOCATION_EXTRA_COMMANDS
Allows	an	application	to
access	extra	location
provider	commands

ACCESS_MOCK_LOCATION
Allows	an	application	to
create	mock	location
providers	for	testing

ACCESS_NETWORK_STATE
Allows	applications	to	access
information	about	networks

ACCESS_SURFACE_FLINGER
Allows	an	application	to	use
SurfaceFlinger’s	low	level
features

ACCESS_WIFI_STATE
Allows	applications	to	access
information	about	Wi-Fi
networks

ACCOUNT_MANAGER
Allows	applications	to	call
into	AccountAuthenticators

ADD_VOICEMAIL Allows	an	application	to	add
voicemails	into	the	system

AUTHENTICATE_ACCOUNTS
Allows	an	application	to	act
as	an	AccountAuthenticator
for	the	AccountManager

BATTERY_STATS
Allows	an	application	to
collect	battery	statistics

BIND_ACCESSIBILITY_SERVICE

Must	be	required	by	an
AccessibilityService,	to
ensure	that	only	the	system
can	bind	to	it

BIND_APPWIDGET

Allows	an	application	to	tell
the	AppWidget	service
which	application	can	access
AppWidget’s	data

BIND_DEVICE_ADMIN

Must	be	required	by	device
administration	receiver,	to
ensure	that	only	the	system
can	interact	with	it

BIND_INPUT_METHOD

Must	be	required	by	an
InputMethodService,	to
ensure	that	only	the	system
can	bind	to	it

BIND_REMOTEVIEWS

Must	be	required	by	a
RemoteViewsService,	to
ensure	that	only	the	system

can	bind	to	it

BIND_TEXT_SERVICE
Must	be	required	by	a
TextService

BIND_VPN_SERVICE

Must	be	required	by	an
VpnService,	to	ensure	that
only	the	system	can	bind	to
it

BIND_WALLPAPER

Must	be	required	by	a
WallpaperService,	to	ensure
that	only	the	system	can
bind	to	it

BLUETOOTH
Allows	applications	to
connect	to	paired	bluetooth
devices

BLUETOOTH_ADMIN
Allows	applications	to
discover	and	pair	bluetooth
devices

BRICK
Required	to	be	able	to
disable	the	device	(very
dangerous!)

BROADCAST_PACKAGE_REMOVED

Allows	an	application	to
broadcast	a	notification	that
an	application	package	has
been	removed

Allows	an	application	to

BROADCAST_SMS broadcast	an	SMS	receipt
notification

BROADCAST_STICKY
Allows	an	application	to
broadcast	sticky	intents

BROADCAST_WAP_PUSH
Allows	an	application	to
broadcast	a	WAP	PUSH
receipt	notification

CALL_PHONE

Allows	an	application	to
initiate	a	phone	call	without
going	through	the	Dialer
user	interface	for	the	user	to
confirm	the	call	being
placed

CALL_PRIVILEGED

Allows	an	application	to	call
any	phone	number,
including	emergency
numbers,	without	going
through	the	Dialer	user
interface	for	the	user	to
confirm	the	call	being
placed

CAMERA
Required	to	be	able	to
access	the	camera	device

CHANGE_COMPONENT_ENABLED_STATE

Allows	an	application	to
change	whether	an
application	component

(other	than	its	own)	is
enabled	or	not

CHANGE_CONFIGURATION
Allows	an	application	to
modify	the	current
configuration,	such	as	locale

CHANGE_NETWORK_STATE
Allows	applications	to
change	network	connectivity
state

CHANGE_WIFI_MULTICAST_STATE
Allows	applications	to	enter
Wi-Fi	Multicast	mode

CHANGE_WIFI_STATE
Allows	applications	to
change	Wi-Fi	connectivity
state

CLEAR_APP_CACHE

Allows	an	application	to
clear	the	caches	of	all
installed	applications	on	the
device

CLEAR_APP_USER_DATA
Allows	an	application	to
clear	user	data

CONTROL_LOCATION_UPDATES
Allows	enabling/disabling
location	update	notifications
from	the	radio

DELETE_CACHE_FILES
Allows	an	application	to
delete	cache	files

DELETE_PACKAGES
Allows	an	application	to

delete	packages

DEVICE_POWER
Allows	low-level	access	to
power	management

DIAGNOSTIC
Allows	applications	to	read-
write	to	diagnostic	resources

DISABLE_KEYGUARD
Allows	applications	to
disable	the	keyguard

DUMP

Allows	an	application	to
retrieve	state	dump
information	from	system
services

EXPAND_STATUS_BAR
Allows	an	application	to
expand	or	collapse	the	status
bar

FACTORY_TEST
Run	as	a	manufacturer	test
application,	running	as	the
root	user

FLASHLIGHT
Allows	access	to	the
flashlight

FORCE_BACK
Allows	an	application	to
force	a	BACK	operation	on
whatever	is	the	top	activity

GET_ACCOUNTS
Allows	access	to	the	list	of
accounts	in	the	Accounts
Service

GET_PACKAGE_SIZE
Allows	an	application	to	find
out	the	space	used	by	any
package

GET_TASKS

Allows	an	application	to	get
information	about	the
currently	or	recently
running	tasks

GLOBAL_SEARCH

This	permission	can	be	used
on	content	providers	to
allow	the	global	search
system	to	access	their	data

HARDWARE_TEST
Allows	access	to	hardware
peripherals

INJECT_EVENTS

Allows	an	application	to
inject	user	events	(keys,
touch,	trackball)	into	the
event	stream	and	deliver
them	to	ANY	window

INSTALL_LOCATION_PROVIDER
Allows	an	application	to
install	a	location	provider
into	the	Location	Manager

INSTALL_PACKAGES
Allows	an	application	to
install	packages

INTERNAL_SYSTEM_WINDOW

Allows	an	application	to
open	windows	that	are	for
use	by	parts	of	the	system

user	interface

INTERNET
Allows	applications	to	open
network	sockets

KILL_BACKGROUND_PROCESSES
Allows	an	application	to	call
killBackgroundProcesses()

MANAGE_ACCOUNTS
Allows	an	application	to
manage	the	list	of	accounts
in	the	AccountManager

MANAGE_APP_TOKENS

Allows	an	application	to
manage	(create,	destroy,	Z-
order)	application	tokens	in
the	window	manager

MASTER_CLEAR 	

MODIFY_AUDIO_SETTINGS
Allows	an	application	to
modify	global	audio	settings

MODIFY_PHONE_STATE
Allows	modification	of	the
telephony	state—power	on,
mmi,	etc

MOUNT_FORMAT_FILESYSTEMS
Allows	formatting	file
systems	for	removable
storage

MOUNT_UNMOUNT_FILESYSTEMS
Allows	mounting	and
unmounting	file	systems	for
removable	storage

Allows	applications	to

NFC perform	I/O	operations	over
NFC

PERSISTENT_ACTIVITY

This	constant	was
deprecated	in	API	level	9.
This	functionality	will	be
removed	in	the	future;
please	do	not	use.	Allow	an
application	to	make	its
activities	persistent

PROCESS_OUTGOING_CALLS
Allows	an	application	to
monitor,	modify,	or	abort
outgoing	calls

READ_CALENDAR
Allows	an	application	to
read	the	user’s	calendar	data

READ_CALL_LOG
Allows	an	application	to
read	the	user’s	call	log

READ_CONTACTS
Allows	an	application	to
read	the	user’s	contacts	data

READ_EXTERNAL_STORAGE
Allows	an	application	to
read	from	external	storage

READ_FRAME_BUFFER

Allows	an	application	to
take	screen	shots	and	more
generally	get	access	to	the
frame	buffer	data

Allows	an	application	to

READ_HISTORY_BOOKMARKS read	(but	not	write)	the
user’s	browsing	history	and
bookmarks

READ_INPUT_STATE

This	constant	was
deprecated	in	API	level	16.
The	API	that	used	this
permission	has	been
removed

READ_LOGS
Allows	an	application	to
read	the	low-level	system
log	files

READ_PHONE_STATE
Allows	read-only	access	to
phone	state

READ_PROFILE
Allows	an	application	to
read	the	user’s	personal
profile	data

READ_SMS
Allows	an	application	to
read	SMS	messages

READ_SOCIAL_STREAM
Allows	an	application	to
read	from	the	user’s	social
stream

READ_SYNC_SETTINGS
Allows	applications	to	read
the	sync	settings

READ_SYNC_STATS
Allows	applications	to	read
the	sync	stats

READ_USER_DICTIONARY Allows	an	application	to
read	the	user	dictionary

REBOOT
Required	to	be	able	to
reboot	the	device

RECEIVE_BOOT_COMPLETED

Allows	an	application	to
receive	the
ACTION_BOOT_COMPLETED
that	is	broadcast	after	the
system	finishes	booting

RECEIVE_MMS

Allows	an	application	to
monitor	incoming	MMS
messages,	to	record	or
perform	processing	on	them

RECEIVE_SMS

Allows	an	application	to
monitor	incoming	SMS
messages,	to	record	or
perform	processing	on	them

RECEIVE_WAP_PUSH
Allows	an	application	to
monitor	incoming	WAP	push
messages

RECORD_AUDIO
Allows	an	application	to
record	audio

REORDER_TASKS
Allows	an	application	to
change	the	Z-order	of	tasks

This	constant	was

RESTART_PACKAGES deprecated	in	API	level	8.
The	restartPackage()	API	is
no	longer	supported

SEND_SMS
Allows	an	application	to
send	SMS	messages

SET_ACTIVITY_WATCHER

Allows	an	application	to
watch	and	control	how
activities	are	started	globally
in	the	system

SET_ALARM
Allows	an	application	to
broadcast	an	Intent	to	set	an
alarm	for	the	user

SET_ALWAYS_FINISH

Allows	an	application	to
control	whether	activities
are	immediately	finished
when	put	in	the	background

SET_ANIMATION_SCALE
Modify	the	global	animation
scaling	factor

SET_DEBUG_APP
Configure	an	application	for
debugging

SET_ORIENTATION

Allows	low-level	access	to
setting	the	orientation
(actually	rotation)	of	the
screen

SET_POINTER_SPEED
Allows	low-level	access	to

setting	the	pointer	speed

SET_PREFERRED_APPLICATIONS

This	constant	was
deprecated	in	API	level	7.
No	longer	useful;	see
addPackageToPreferred()	for
details

SET_PROCESS_LIMIT

Allows	an	application	to	set
the	maximum	number	of
(not	needed)	application
processes	that	can	be
running

SET_TIME
Allows	applications	to	set
the	system	time

SET_TIME_ZONE
Allows	applications	to	set
the	system	time	zone

SET_WALLPAPER
Allows	applications	to	set
the	wallpaper

SET_WALLPAPER_HINTS
Allows	applications	to	set
the	wallpaper	hints

SIGNAL_PERSISTENT_PROCESSES
Allow	an	application	to
request	that	a	signal	be	sent
to	all	persistent	processes

STATUS_BAR
Allows	an	application	to
open,	close,	or	disable	the
status	bar	and	its	icons

SUBSCRIBED_FEEDS_READ
Allows	an	application	to
allow	access	to	the
subscribed	feeds
ContentProvider

SUBSCRIBED_FEEDS_WRITE 	

SYSTEM_ALERT_WINDOW

Allows	an	application	to
open	windows	using	the
type	TYPE_SYSTEM_ALERT,
shown	on	top	of	all	other
applications

UPDATE_DEVICE_STATS
Allows	an	application	to
update	device	statistics.

USE_CREDENTIALS
Allows	an	application	to
request	authtokens	from	the
AccountManager

USE_SIP
Allows	an	application	to	use
SIP	service

VIBRATE Allows	access	to	the	vibrator

WAKE_LOCK

Allows	using	PowerManager
WakeLocks	to	keep
processor	from	sleeping	or
screen	from	dimming

WRITE_APN_SETTINGS
Allows	applications	to	write
the	apn	settings

Allows	an	application	to

WRITE_CALENDAR write	(but	not	read)	the
user’s	calendar	data

WRITE_CALL_LOG
Allows	an	application	to
write	(but	not	read)	the
user’s	contacts	data

WRITE_CONTACTS
Allows	an	application	to
write	(but	not	read)	the
user’s	contacts	data

WRITE_EXTERNAL_STORAGE
Allows	an	application	to
write	to	external	storage

WRITE_GSERVICES
Allows	an	application	to
modify	the	Google	service
map

WRITE_HISTORY_BOOKMARKS

Allows	an	application	to
write	(but	not	read)	the
user’s	browsing	history	and
bookmarks

WRITE_PROFILE
Allows	an	application	to
write	(but	not	read)	the
user’s	personal	profile	data

WRITE_SECURE_SETTINGS
Allows	an	application	to
read	or	write	the	secure
system	settings

WRITE_SETTINGS
Allows	an	application	to
read	or	write	the	system

settings

WRITE_SMS
Allows	an	application	to
write	SMS	messages

WRITE_SOCIAL_STREAM
Allows	an	application	to
write	(but	not	read)	the
user’s	social	stream	data

WRITE_SYNC_SETTINGS
Allows	applications	to	write
the	sync	settings

WRITE_USER_DICTIONARY
Allows	an	application	to
write	to	the	user	dictionary

Appendix	B:	JEB	Disassembler	and	Decompiler
Overview

In	Chapters	6	and	7,	we	showed	how	to	decompile	and	reverse	engineer
Android	 apps	 with	 different	 open	 source	 tools.	 In	 Appendix	 B	 we	 are
going	to	do	a	quick	overview	of	JEB.	JEB	is	an	Android	app	disassembler
and	 decompiler.	 It	 can	 handle	APK	 or	DEX	 files.	 The	 analyses	 can	 be
saved	to	JDB	files.
The	workspace	is	divided	into	four	areas,	as	seen	in	Figure	B.1:

1	-	The	menu	and	toolbar,	at	the	top
2	-	The	console	window	and	status	bar,	at	the	bottom
3	-	The	class	hierarchy	browser
4	-	A	tab	folder	consisting	of	many	important	subviews

B.1	Views
Within	a	workspace,	views	representing	portions	of	the	analyzed	file	are
contained	 within	 the	 tab	 folder	 (4).	 The	 views	 can	 be	 closed	 and
reopened	via	the	Windows	menu.	Here	is	a	list	of	common	views:

•	The	Assembly	view.	This	view	contains	the	disassembly	code	of	all
classes	 contained	 in	 the	 DEX	 file.	 This	 view	 is	 interactive.	 The
assembly	 can	 be	 exact	 Smali	 or	 simplified	 Dalvik	 assembly	 for
improved	clarity.

Figure	B.1	JEB	Main	Window

•	 	 	The	Decompiled	 view.	 This	 view	 contains	 the	 decompiled	 byte-
code	of	a	class,	in	Java.	Switching	back	and	forth	with	the	assembly
view	 can	 be	 done	 by	 pressing	 the	 Tab	 key,	 while	 the	 caret	 is

positioned	on	a	class.
•			The	Strings	view.	This	view	contains	the	list	of	strings	present	in
the	 DEX	 file.	 Double-clicking	 on	 a	 string	 switches	 back	 to	 the
assembly	 view	 and	 positions	 the	 caret	 on	 the	 first	 occurrence	 in
which	the	string	is	being	used.

•	 	 	 The	 Constants	 view.	 This	 view	 contains	 a	 list	 of	 numerical
constants	 present	 in	 the	 DEX	 file.	 Double-clicking	 on	 a	 constant
switches	back	to	the	assembly	view	and	positions	the	caret	on	the
first	occurrence	in	which	the	constant	is	being	used.

•	 	 	 The	 Manifest	 view.	 This	 view	 represents	 the	 decompressed
manifest	of	the	application.

•			The	Resources	view.	This	tree	view	allows	the	user	to	explore	the
applications	decompressed	resources.

•	 	 	The	Assets	view.	This	view	is	very	similar	to	the	Resources	view
and	is	used	to	browse	an	assets	files.

•	 	 	 The	 Certificates	 view.	 This	 view	 offers	 a	 human-readable
representation	of	the	certificates	used	to	sign	the	APK.

•			The	External	Classes/Methods/Fields	view.	These	views	list	 the
external	 (outside	 the	 DEX	 file)	 classes,	 methods,	 and	 fields
referenced	and	used	within	the	DEX	file.

•			The	Notes	view.	This	view	is	a	placeholder	for	analysis	notes.

The	class	hierarchy	view	(3)	contains	the	entire	list	of	classes	present
in	the	DEX	file.	Classes	are	organized	by	package.
Clicking	or	double-clicking	on	a	class	name	will	bring	up	the	Assembly
view	and	position	the	caret	on	the	chosen	class.
For	the	sake	of	clarity,	the	user	may	decide	to	temporarily	mask	inner
classes	by	marking	the	appropriate	checkbox	at	the	bottom	of	the	tree.

B.2	Code	Views
The	 assembly	 and	 decompiled	 code	 views	 are	 the	 most	 crucial	 views
when	it	comes	to	analyzing	an	app.	These	code	views	are	interactive	and
work	hand-in-hand.
Both	 views	 contain	 interactive	 items:	 they	 can	 be	 classes,	 fields,

methods,	opcodes,	instructions,	comments,	and	so	forth.
When	users	set	the	focus	on	either	one	of	these	views,	they	can:

•	 	 	Rename	 items	 (N):	 Classes,	 fields,	 and	methods	 can	be	 renamed.
Changes	 are	 reflected	 in	 the	 other	 view.	 In	 the	 decompiled	 view,
variables	 and	 parameters	 can	 also	 be	 renamed.	 External	 items
(those	not	defined	in	the	DEX	file)	cannot	be	renamed.

•			Insert	comments	(C):	Comments	may	be	specific	to	a	class,	a	field,	a
method,	 or	 a	 specific	method	 instruction.	 Comments	 can	 be	 text,
audio,	or	both.	Audio	comments	are	denoted	by	a	bang	character	(!)
prepended	to	the	optional	text	comment.

•			Examine	cross	references	(X):	Most	interactive	items	can	be	cross-
referenced	 to	 see	 where	 they	 are	 used.	 The	 cross-references	 are
listed	 by	 order	 of	 appearance	 in	 the	 code.	 Double-click	 a	 cross-
reference	to	jump	to	its	location.

•	 	 	Navigate	(Enter):	A	user	can	“follow”	 items.	 In	 in	 this	context,	 it
means	jumping	to	the	definition	of	that	item.	For	instance,	following
a	method	call	to	foo()	means	jumping	to	the	location	where	foo()	is
defined.

From	the	assembly	view,	the	user	can	decide	to	decompile	a	class
by	pressing	Tab.	The	current	view	will	switch	to	the	decompiled	view
for	the	target	class,	and	the	caret	will	be	positioned	on	the	closest	high-
level	 Java	 item	 that	 matches	 the	 source	 byte-code	 instruction.
Conversely,	 when	 positioning	 the	 caret	 on	 a	 high-level	 Java	 item	 and
switching	back	to	the	assembly	view,	JEB	tries	to	position	the	caret	on
the	low-level	byte-code	instruction	that	most	closely	matches	the	source
Java	statement.

B.3	Keyboard	Shortcuts
Keyboard	shortcuts	 (see	Table	B.1)	can	be	used	within	 the	code	views.
For	 improved	 productivity,	 it	 is	 highly	 recommended	 to	 use	 them.
Experienced	 reverse-engineers	 will	 recognize	 the	 shortcuts	 used	 by
standard	disassembler	tools.

B.4	Options
The	 Edit/Options	menu	 allows	 users	 to	 customize	 various	 aspects	 and
styles	 of	 JEB.	 The	 options	 are	 grouped	 into	 various	 categories
(general/specific	 to	 the	assembly	view,	 specific	 to	 the	code	view,	etc.),
and	most	of	them	are	self-explanatory,	as	can	be	seen	in	Figure	B.2.
The	 show	 debug	 directives/line	 numbers	 options	 show	 the	 specific
metadata	 in	 the	 assembly	 code.	 The	 user	 should	 be	 aware	 that	 such
metadata	can	be	easily	forged,	and	therefore,	should	not	be	trusted.
The	keep	Smali	compatibility	option	will	 try	to	produce	assembly	code
compliant	with	 Smali.	 Compliance	 in	 this	 context	means,	 for	 instance,
invoke	 instructions	with	 parameters	 first,	 fully	 qualified	method	 names
and	class	names,	specific	switch	structure,	and	so	forth.	By	disabling	the
Smali	 compatibility,	 a	 user	 can	 greatly	 improve	 the	 readability	 of	 the
assembly	code.

Table	B.1	Keyboard	Shortcuts	Available	within	Code	View

Shortcut Description

Tab
Decompile	a	class	(when	in	assembly	view)	/	Switch	back	to
assembly	(when	in	decompiled	view)

N Rename	an	internal	item	(class,	field,	method,	variable)

C	(or
Slash)

Insert	a	comment

X
Examine	the	cross-references	of	an	interactive	item	(xrefs	can
be	double-clicked	and	followed)

Enter Follow	an	interactive	item

Escape Go	back	to	the	previous	caret	position	in	the	follow-history

Ctrl-
Enter

Go	forward	to	the	next	caret	position	in	the	follow-history

F5 Refresh/synchronize	the	code	view

Figure	B.2	JEB	Options

Figure	B.3	JEB	Code	Style	Manager

Style	options	 include	 font	 selection	 (which	affect	 various	views)	 and
color	styles.
The	default	 font	 is	set	 to	a	standard	fixed	font,	usually	Courier	New.

This	may	vary	 from	 system	 to	 system.	Recent	versions	of	Courier	New
have	a	good	amount	of	Unicode	glyphs.	However,	yours	may	not	have
the	CJK	glyphs,	which	are	essential	when	dealing	with	Asian	locale	apps.
Should	 that	 happen,	 other	 fonts	 may	 be	 used,	 such	 as	 Fang	 Song	 on
Windows,	 or	 Sans	 on	 Ubuntu.	 These	 fonts	 offer	 good	 BMP	 support,
including	CJK,	Russian,	Thai,	and	Arabic.
The	 “Style	manager”	 button	 allows	 the	user	 to	 customize	 colors	 and

aspects	of	various	 interactive	 items.	This	affects	 the	code	views	as	well
as	the	XML	views	used	to	render	the	manifest	and	other	XML	resources.
Foreground	 and	 background	 colors	 as	 well	 as	 font	 attributes	 for
interactive	items	can	be	customized	(see	Figure	B.3).

Appendix	C:	Cracking	the	SecureApp.Apk
Application

In	 this	 appendix,	we	detail	 how	a	malicious	 user	 can	 reverse	 engineer
and	modify	 the	 behavior	 of	 a	 particular	 application.	 In	 Chapter	 7,	we
showed	this	using	the	SecureApp.apk	application	as	one	of	many	ways	in
which	 a	 malicious	 user	 can	 achieve	 this.	 In	 this	 tutorial,	 we	 will
demonstrate	 a	 few	 ways	 in	 which	 a	 malicious	 user	 can	 modify	 an
application’s	behavior	to	add	or	remove	functionality.
Due	to	the	hands-on	nature	of	this	exercise,	this	appendix	is	available

on	 the	 book’s	 website—www.androidinsecury.com—in	 the	 Chapters
section.	 All	 files	 related	 to	 this	 exercise	 are	 available	 in	 the	 Resource
section	of	the	website.	You	will	need	the	following	credentials	to	access
the	files	under	the	Resource	section.

Username:	android	Password:	1439896461

http://www.androidinsecury.com

Glossary

Chapter	1

A5/1	 Encryption	 A	 stream	 cipher	 used	 to	 provide	 over-the-air
communication	 privacy	 in	 the	 GSM	 cellular	 telephone.
(http://en.wikipedia.org/wiki/A5/1_encryption_algorithm)

AOSP	Android	Open	Source	Project

OHA	Open	Handset	Alliance

Chapter	2

etcshadow	 file	 Used	 to	 increase	 the	 security	 level	 of	 passwords	 by
restricting	 all	 but	 highly	 privileged	 users’	 access	 to	 hashed	 password
data.	(http://en.wikipedia.org/wiki/Shadow_(file))

Abstract	 Window	 Toolkit	 (AWT)	 Java’s	 platform-independent
windowing	graphics	and	user-interface	widget	toolkit.

Android	 Development	 Tools	 (ADT)	 A	 plug-in	 for	 Eclipse	 IDE	 to
develop	Android	applications.

API	Application	Programming	Interface

Daemon	 A	 computer	 program	 that	 runs	 as	 a	 background	 process.
(http://en.wikipedia.org/wiki/Daemon_(computing))

Dalvik	Debug	Monitor	Service	(DDMS)	A	debugging	tool	that	provides
port	 forwarding	 services.
(http://developer.android.com/tools/debugging/ddms.html)

SDK	Software	Development	Kit

http://en.wikipedia.org/wiki/A5/1_encryption_algorithm
http://en.wikipedia.org/wiki/Shadow_file
http://en.wikipedia.org/wiki/Daemon_computing
http://developer.android.com/tools/debugging/ddms.html

Chapter	3

Broadcast	 Receivers	 Enable	 applications	 to	 receive	 intents	 that	 are
broadcast	by	the	systems	of	other	applications.

Intents	 Messages	 through	 which	 other	 application	 components
(activities,	services,	and	Broadcast	Receivers)	are	activated.

Chapter	4

IMEI	International	Mobile	Equipment	Identity

IMSI	International	Mobile	Subscriber	Identity

IPC	Interprocess	Communication

MAC	 Mandatory	 Access	 Control	 refers	 to	 a	 type	 of	 access	 control	 by
which	the	operating	system	constrains	the	ability	of	a	subject	to	perform
some	 sort	 of	 operation	 on	 an	 object.
(http://en.wikipedia.org/wiki/Mandatory_access_control)

Superuser	A	user	account	used	for	system	administration.

TAN	Tax	Deduction	Account	Number

Chapter	5

JNI	Java	Native	Framework,	which	enables	Java	code	running	in	a	Java
Virtual	 Machine	 to	 call	 and	 be	 called	 by	 native	 applications.
(http://en.wikipedia.org/wiki/JNI)

OS	Fingerprinting	A	passive	collection	of	configuration	attributes	from
a	 remote	 device.
(http://en.wikipedia.org/wiki/TCP/IP_stack_fingerprinting)

OSSTMM	Open	Source	Security	Testing	Methodology	Manual

Pen	Testing	Penetration	testing	is	a	method	of	evaluating	the	security	of
a	 computer	 system	 by	 simulating	 an	 attack	 from	 malicious	 outsiders.

http://en.wikipedia.org/wiki/Mandatory_access_control
http://en.wikipedia.org/wiki/JNI
http://en.wikipedia.org/wiki/TCP/IP_stack_fingerprinting

(http://en.wikipedia.org/wiki/Pen_testing)

RPC	 Remote	 procedure	 call	 is	 an	 interprocess	 communication	 that
allows	 a	 computer	 program	 to	 cause	 a	 function	 to	 execute	 in	 another
address	space.	(http://en.wikipedia.org/wiki/Remote_procedure_call)

Static	 Analysis	 The	 analysis	 of	 computer	 software	 that	 is	 performed
without	 actually	 executing	 programs.
(http://en.wikipedia.org/wiki/Static_program_analysis)

SYN	Scan	In	this	type	of	scanning,	the	SYN	packet	is	used	for	port	scans.

Chapter	6

AndroidManifest	 An	 Android	 manifest	 file	 provides	 essential
information	 the	 system	 must	 have	 before	 it	 can	 run	 any	 of	 the
application	 code.
(http://developer.android.com/guide/topics/manifest/manifest-
intro.html)

APK	Android	Application	Package	File

apktool	A	tool	to	reverse	engineer	Android	apps.

BOT	Application	A	proof-of-concept	Android	application	written	by	the
authors	to	demonstrate	security	issues	with	the	Android	OS.

CnC	A	central	server	 for	a	BOT	network	which	 issues	commands	to	all
BOT	clients.

Cute	Puppies	Wallpaper	An	 application	developed	by	 the	 authors	 for
analysis.

Decompile	 Process	 of	 converting	 executable	 binary	 to	 a	 higher	 level
programming	language.

DEX	Dalvik	Executable	Format

dex2jar	 A	 tool	 to	 work	 with	 Android	 .dex	 and	 java	 .class	 files.

http://en.wikipedia.org/wiki/Pen_testing
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Static_program_analysis
http://developer.android.com/guide/topics/manifest/manifest-intro.html

(http://code.google.com/p/dex2jar/)

Interprocess	Communication	A	set	of	methods	for	the	exchange	of	data
among	 one	 or	 more	 processes.	 (http://en.wikipedia.org/wiki/Inter-
process_communication)

jar	Java	Archive;	an	aggregate	of	many	Java	class	files.

jd-gui	 A	 standalone	 graphical	 utility	 that	 displays	 Java	 source	 code
.class	files.	(http://java.decompiler.free.fr/?q=jdgui)

Key	Logger	An	application	 that	 can	 log	keys	pressed	by	 the	user.	The
key	logger	can	be	legitimate,	but	more	often	than	not,	most	key	logger
applications	are	malicious	in	nature.

Malware	Short	for	malicious	(or	malevolent)	software,	is	software	used
or	 created	 by	 attackers	 to	 disrupt	 computer	 operation.
(http://en.wikipedia.org/wiki/Malware)

Reverse	 Engineering	 The	 process	 of	 discovering	 the	 technological
principles	of	a	device,	object,	or	system	through	analysis	of	its	structure,
function,	 or	 operation.
(http://en.wikipedia.org/wiki/Reverse_engineering)

Chapter	7

Access	Control	Refers	to	exerting	control	over	who	can	interact	with	a
resource.	(http://en.wikipedia.org/wiki/Access_control)

Assembler	 Creates	 object	 code	 by	 translating	 assembly	 instruction
mnemonics	 into	 opcodes.
(http://en.wikipedia.org/wiki/Assembly_language)

Baksmali	A	dissembler	for	dex	format	used	by	Dalvik.

Brute	Force	Problem-solving	methods	involving	the	evaluation	of	every
possible	answer	for	fitness.	(http://en.wikipedia.org/wiki/Brute_force)

Byte	Code	Also	know	as	a	p-code;	a	form	of	instruction	set	designed	for

http://code.google.com/p/dex2jar/
http://en.wikipedia.org/wiki/Inter-process_communication
http://java.decompiler.free.fr/?q=jdgui
http://en.wikipedia.org/wiki/Malware
http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/wiki/Assembly_language
http://en.wikipedia.org/wiki/Brute_force

efficient	 execution	 by	 a	 software	 interpreter.
(http://en.wikipedia.org/wiki/Bytecode)

dexdump	Android	SDK	utility	to	dump	disassembled	dex	files.

Disassembler	Translates	machine	language	into	assembly	language.

Disk	Encryption	A	 technology	 that	protects	 information	by	converting
information	 into	 unreadable	 code.
(http://en.wikipedia.org/wiki/Disk_encryption)

Google	Wallet	An	app	on	the	Android	platform	that	stores	users	credit
and	 debit	 card	 information	 for	 online	 purchases	 on	 the	 Android
platform.

Hash	 Functions	 An	 algorithm	 that	 maps	 large	 data	 sets	 of	 variable
length	 to	 smaller	 data	 sets	 of	 a	 fixed	 length.
(http://en.wikipedia.org/wiki/Hash_function)

NFC	Near	Field	Communication

Obfuscation	The	hiding	of	intended	meaning	in	communication	making
communication	 confusing,	 ambiguous,	 and	 harder	 to	 interpret.
(http://en.wikipedia.org/wiki/Obfuscation)

ProGuard	The	proguard	tool	shrinks,	optimizes,	and	obfuscates	Android
application	code	by	removing	unused	code	and	renaming	classes,	fields,
and	 methods	 with	 obscure	 names.
(http://developer.android.com/tools/help/proguard.html)

Rainbow	Tables	A	precomputed	table	for	reversing	cryptographic	hash
functions	 for	 cracking	 password	 hashes.
(http://en.wikipedia.org/wiki/Rainbow_table)

RFID	Radio	Frequency	Identification

“salt”	Used	in	cryptography	to	make	it	harder	to	decrypt	encrypted	data
by	hashing	encrypted	data.

http://en.wikipedia.org/wiki/Bytecode
http://en.wikipedia.org/wiki/Disk_encryption
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Obfuscation
http://developer.android.com/tools/help/proguard.html
http://en.wikipedia.org/wiki/Rainbow_table

SHA-256	A	256-bit	SHA	hash	algorithm.

Signapk	 An	 open	 source	 utility	 to	 sign	 Android	 application	 packages.
(http://code.google.com/p/signapk/)

Smali	An	assembler	for	dex	format	used	by	Dalvik.

SQlite	A	relational	database	management	system	contained	in	a	small	C
programming	library.	(http://en.wikipedia.org/wiki/SQLite)

Chapter	8

adb	 Also	 known	 as	 Android	 Debug	 Bridge;	 a	 command	 line	 to
communicate	with	an	Android	emulator/device.

ext2	Second	extended	file	system	is	a	file	system	for	Linux	kernel.

ext3	Third	extended	file	system	is	a	file	system	for	Linux	kernel.

ext4	Fourth	extended	file	system	is	a	file	system	for	Linux	kernel.

Gingerbreak	 An	Android	 application	 to	 root	 the	Android	Gingerbread
version.

MOBILedit	MOBILedit	is	a	digital	forensics	tool	for	cell	phone	devices.

nodev	A	Linux	partition	option	that	prevents	having	special	devices	on
set	partitions.

Rooting	A	process	for	allowing	users	of	smartphones,	tablets,	and	other
devices	 to	 attain	 privileged	 control.
(http://en.wikipedia.org/wiki/Android_rooting)

Seesmic	A	cross-platform	application	that	allows	users	to	simultaneously
manage	 user	 accounts	 for	 multiple	 social	 networks.
(http://en.wikipedia.org/wiki/Seesmic)

vfat	An	extension	that	can	work	on	top	of	any	FAT	file	system.

http://code.google.com/p/signapk/
http://en.wikipedia.org/wiki/SQLite
http://en.wikipedia.org/wiki/Android_rooting
http://en.wikipedia.org/wiki/Seesmic

Virtual	File	System	(VFS)	Allows	client	applications	to	access	different
types	 of	 concrete	 file	 systems	 in	 a	 uniform	 way.
(http://en.wikipedia.org/wiki/Virtual_file_system)

YAFFS	 (Yet	 Another	 Flash	 File	 System)	 The	 first	 version	 of	 this	 file
system	 and	 works	 on	 NAND	 chips	 that	 have	 512	 byte	 pages.
(http://en.wikipedia.org/wiki/YAFFS)

YAFFS2	(Yet	Another	Flash	File	System)	The	second	version	of	YAFFS
partition.

Chapter	9

Acceptable	Use	Policy	(AUP)	A	set	of	rules	applied	by	the	owner	of	a
network	that	restrict	the	ways	in	which	the	network,	website	or	system
may	be	used.	(http://en.wikipedia.org/wiki/Acceptable_use_policy)

Bluetooth	 A	 wireless	 technology	 standard	 for	 exchanging	 data	 over
short	distances.	(http://en.wikipedia.org/wiki/Bluetooth)

BYOD	Bring	Your	Own	Device

Exchange	ActiveSync	(EAS)	An	XML-based	protocol	that	communicates
over	HTTP	(or	HTTPS)	designed	for	synchronization	of	email,	contacts,
calendar,	 and	 notes.
(http://en.wikipedia.org/wiki/Exchange_ActiveSync)

Google	 Play	 Formerly	 known	 as	 the	 Android	 Market;	 a	 digital
application	distribution	platform	for	Android	developed	and	maintained
by	Google.	(http://en.wikipedia.org/wiki/Google_Play)

Hardening	 Usually	 the	 process	 of	 securing	 a	 system	 by	 reducing	 its
surface	 of	 vulnerability.
(http://en.wikipedia.org/wiki/Hardening_(computing))

IEC	International	Electrotechnical	Commission

ISO	 27001-2	 An	 information	 security	 standard	 published	 by	 the

http://en.wikipedia.org/wiki/Virtual_file_system
http://en.wikipedia.org/wiki/YAFFS
http://en.wikipedia.org/wiki/Acceptable_use_policy
http://en.wikipedia.org/wiki/Bluetooth
http://en.wikipedia.org/wiki/Exchange_ActiveSync
http://en.wikipedia.org/wiki/Google_Play
http://en.wikipedia.org/wiki/Hardening_(computing)

International	 Organization	 for	 Standards	 (ISO).
(http://en.wikipedia.org/wiki/ISO/IEC_27002)

Man-in-the-Middle	 (MITM)	 A	 form	 of	 active	 eavesdropping	 in	 which
the	attacker	makes	independent	connections	with	the	victims	and	relays
the	messages	 between	 them.	 (http://en.wikipedia.org/wiki/Man-in-the-
middle)

Near	 Field	 Communication	 (NFC)	 A	 set	 of	 standards	 for	 devices	 to
establish	 radio	 communication	 with	 each	 other	 by	 touching	 them
together	 or	 bringing	 them	 into	 close	 proximity.
(http://en.wikipedia.org/wiki/Near_field_communication)

NIST	800-53	 Recommended	 Security	 Controls	 for	 Federal	 Information
Systems	 and	 Organizations.
(http://en.wikipedia.org/wiki/NIST_Special_Publication_800-53)

Patching	A	security	patch	is	a	change	applied	to	an	asset	to	correct	the
weakness	 described	 by	 a	 vulnerability.
(http://en.wikipedia.org/wiki/Patch_(computing)#Security_patches)

Payment	 Card	 Industry	 Data	 Security	 Standard	 (PCI	 DSS)	 An
information	 security	 standard	 for	 organizations	 that	 handle	 cardholder
information	 for	 major	 credit/debit	 cards.
(http://en.wikipedia.org/wiki/PCI_DSS)

Remote	Wipe	Ability	to	delete	all	the	data	on	a	mobile	device	without
having	physical	access	to	the	device.

Shoulder	Surfing	Refers	to	using	direct	observation	techniques,	such	as
looking	 over	 someone’s	 shoulder,	 to	 get	 information.
(http://en.wikipedia.org/wiki/Shoulder_surfing_(computer_security))

SP800-124	 A	 National	 Institute	 of	 Standards	 &	 Technology	 (NIST)
standard	 that	 makes	 recommendations	 for	 securing	 mobile	 devices.
(http://csrc.nist.gov/publications/nistpubs/800-124/SP800-124.pdf)

Whitelist	A	list	or	register	of	entities	that,	for	one	reason	or	another,	are

http://en.wikipedia.org/wiki/ISO/IEC_27002
http://en.wikipedia.org/wiki/Man-in-the-middle
http://en.wikipedia.org/wiki/Near_field_communication
http://en.wikipedia.org/wiki/NIST_Special_Publication_800-53
http://en.wikipedia.org/wiki/Patch_(computing)#Security_patches
http://en.wikipedia.org/wiki/PCI_DSS
http://en.wikipedia.org/wiki/Shoulder_surfing_computer_security
http://csrc.nist.gov/publications/nistpubs/800-124/SP800-124.pdf

being	 provided	 a	 particular	 privilege,	 service,	 mobility,	 access	 or
recognition.	(http://en.wikipedia.org/wiki/Whitelist)

Chapter	10

CSRF/XSRF	Cross-Site	Request	Forgery

Drive-by	 Downloads	 Any	 download	 that	 happens	 without	 a	 person’s
knowledge;	 often	 a	 computer	 virus,	 spyware,	 or	 malware.
(http://en.wikipedia.org/wiki/Drive-by_download)

HTML	Hyper	Text	Markup	Language

OWASP	An	open-source	application	security	project.

Phishing	The	act	of	attempting	to	acquire	information	by	masquerading
as	a	trustworthy	entity.	(http://en.wikipedia.org/wiki/Phishing)

QR	Code	(Quick	Response	Code)	The	 trademark	 for	a	 type	of	matrix
barcode.	(http://en.wikipedia.org/wiki/QR_code)

SQLi	SQL	Injection

WAE	Wireless	Application	Environment

WAP	Wireless	Application	Protocol

WDP	WAP	Datagram	Protocol

WML	Wireless	Markup	Language

WSP	Wireless	Session	Protocol

WTA	Wireless	Telephony	Application

WTLS	Wireless	Transport	Layer	Security

WTP	Web	Tools	platform

http://en.wikipedia.org/wiki/Whitelist
http://en.wikipedia.org/wiki/Drive-by_download
http://en.wikipedia.org/wiki/Phishing
http://en.wikipedia.org/wiki/QR_code

XSS	Cross-Site	Scripting

Index

datadata,	73,	74,	172,	173,	176–178,	181,	183
etcshadow,	18

Access	Control	List	(ACL),	98
ACL.	See	Access	Control	List	activity,	3,	27,	28,	39–43,	47–51,	53,	57,

61–70,	78,	86,	100,	124,	128,	196,	217
activity	lifecycle,	49,	61–70
adb,	22,	28,	31,	35,	38,	78,	79,	81,	82,	101,	170,	172,	180,	181,	183,

206
ADB.	See	Android	Debug	Bridge	ADT.	See	Android	Development	Tools

analyze,	1,	39,	90,	99,	100,	103,	119,	121–125,	128,	144,	147,
148,	150,	161,	170,	176,	180,	181,	183,	187,	194

Android	architecture,	17,	71,	97,	169
Android	attack,	88
Android	BOT,	119
Android	Debug	Bridge	(ADB),	22,	28,	31,	35,	38,	78,	79,	81,	82,	101,

170,	172,	180,	181,	183,	206
Android	Development	Tools	(ADT),	28,	31,	33,	35,	37
Android	kernel,	18,	25
Android	Manifest,	51,	223
Android	marketplace,	13,	16,	77,	120

Android	Open	Source	Project	(AOSP),	11
Android	Package	files	(APK),	35,	43,	75,	76,	78,	83,	88,	107,	108,	125,

148,	150,	153,	155,	156,	160–163,	180,	181
Android	releases,	11,	12,	18,	20
Android	runtime,	17,	26,	79,	80,	83

Android	SDK,	17,	28–31,	35,	36,	46,	149
Android	stack,	17–19,	31
Android	start	up,	28,	43
AOSP.	See	Android	Open	Source	Project	APK.	See	Android	Package	files

Apktool,	107,	123,	124,	150,	153,	155,	156,	161
application-based	attack,	9
application	components,	47,	51,	60,	70,	71
application	framework,	17,	25–27
application	security,	87,	113,	116,	118,	216
assembly,	233,	235,	236,	238
attack	surface,	5,	9,	20,	106

Bluetooth,	4,	21,	195,	203
BotWorker,	125,	132,	134,	136–141
bring	your	own	device	(BYOD),	195–197,	221
broadcast,	51,	57,	58,	70,	86,	107
Broadcast	Receiver,	51,	57,	58,	70,	107
browser	vulnerability,	213,	218,	222
brute	force,	117,	155,	162,	167
Burp	Suite,	110
BusyBox,	100–102
BYOD.	See	bring	your	own	device

callbacks,	49,	61
CDMA,	10,	88
cloud,	117,	118
CnC.	See	Command	and	Control	Center	code,	11,	18,	21,	22,	25,	35,	39,

41–43,	49,	50,	58–60,	63,	72,	88,	90,	91,	97,	99,	100,	103,	106,
109,	113,	117,	118,	120–122,	125,	129,	139,	147,	148,	150,	154,
155,	163,	165,	166,	168,	183,	196,	197,	199,	218,	233,	235–238

code	obfuscation,	163,	168

Command	and	Control	Center	(CnC),	139,	144
compliance,	193,	197
compliance/audit	considerations,	193
content	provider,	60,	70,	86
controlling	corporate	networks,	220,	221
Cross-Site	Request	Forgery	(CSRF,	XSRF),	87,	217
Cross-Site	Scripting	(XSS),	87,	117,	214,	216–218
cryptography,	109,	114,	167,	168,	198
CSRF.	See	Cross-Site	Request	Forgery	CutePuppiesWallpaper,	35,	125,

128,	130,	137

Dalvik	Debug	Monitoring	Service	(DDMS),	28,	31,	34–37,	170,	175
Dalvik	Virtual	Machine	(DVM),	11,	17,	26,	28,	72,	125,	148
database,	99,	109,	117,	118,	162,	168,	176–178,	183,	185,	187,	217
data	privacy,	87
data	storage,	117,	118
DDMS.	See	Dalvik	Debug	Monitoring	Service
decompile,	107,	119,	125,	147,	148,	153,	161,	163,	235,	236
decompiler,	125,	129,	233
decompiling	APK,	125
defensive	strategies,	163
device	access,	199
device	administration,	208,	210,	211
API,	208,	210,	211
DEX,	26,	107,	125,	128,	147–152,	233,	235,	236
dexdump	tool,	149
DEX	file	format,	147,	148
directory	ownership,	74
directory	structure,	170,	172,	175
disassembler,	150,	233,	236

disk	encryption,	168
drive-by-download,	218
DroidDream,	88,	89,	91
variant,	88
DVM.	See	Dalvik	Virtual	Machine	dynamic	analysis,	218

Eclipse,	28,	31,	33,	35,	37,	39,	43,	163,	164,	170
encryption,	9,	10,	87,	118,	168,	207–210
end-user	awareness,	197
enterprise,	11,	98,	193–199,	208,	211
error	handling,	117
ext2,	170
external	storage,	87,	91,	117,	198
extracting	data,	187

file	system,	23,	35,	78,	167,	169,	170,	173,	174,	181,	187,	191
flash,	215
forensics,	100,	101,	148,	169

GID.	See	group	id
Gingerbreak,	180,	181
Global	Smartphone	Sales,	4
Google	Wallet,	161,	168,	221
GPS,	4,	9,	22,	86,	87,	139,	169,	196,	198,	220
group	id	(GID),	21,	23,	72,	73,	79,	80,	83
GSM,	10,	88

hacking,	169
hardening	Android,	193,	199
hashing,	154,	167,	168

Hello	World,	39,	41–43,	149
Honeycomb,	12
HTML	security,	213,	222

imaging	Android,	181
Intents,	48,	51–54,	57–61,	70,	97,	107,	124
intercepting	traffic,	110
internal	storage,	117,	118
Interprocess	Communication	(IPC),	20,	25,	71,	73,	107,	114,	124,	127,

128
investigation,	169,	181,	183
IPC.	See	Interprocess	Communication	ISO	27002,	198
iterative	hashing,	167,	168

JD-GUI,	125,	128,	163,	165,	166

kernel	version,	18,	20,	180
keyboard,	87

Legacy	Code,	88
library,	17,	25,	26,	28,	29,	72,	100,	109,	116,	122,	162,	172
Linux	kernel,	11,	17,	18,	20,	21,	25,	26,	28,	43,	71,	72,	75,	79,	94,	122,

170
LogCat,	25,	28,	35,	41–43,	45,	47,	63

malicious	software,	87,	120,	121.	See	also	malware	malware,	9–11,	88–
90,	92,	93,	119–122,	144,	220.	See	also	malicious	software	man-
in-the-middle	(MITM),	91,	195,	214

Manifest,	42,	50,	51,	54–60,	72,	75,	76,	78,	83,	94,	107,	108,	123,	223,
224,	226,	228,	230,	232,	235,	238

Manifest	Permissions,	72,	75,	76,	78,	94,	107

MDM.	See	Mobile	Device	Management	MITM.	See	man-in-the-middle
mkfs,	183

mobile	browser	security,	218
Mobile	Device	Management	(MDM),	209
MOBILedit,	187–189
mobile	security	issue,	86
mobile	threats,	5
Mobile	Wallets,	221
mount	points,	169–171,	187

NAND,	170
native	layer	libraries,	25
near	field	communication	(NFC),	10,	22,	161,	162,	195,	203,	220–222
NFC.	See	near	field	communication	NIST	800-53,	198
NIST	800-115,	99
OHA.	See	Open	Handset	Alliance	OnCreate,	41,	42,	49,	50,	59,	61–63,

150
onDestroy,	49,	59,	61,	62,	70
OnPause,	49,	61–64
OnRestart,	49,	61
onResume,	49,	61–63
OnStart,	49,	61–63
onStop,	49,	61,	62,	64,	70
Open	Handset	Alliance	(OHA),	4,	11

Package	Manager,	27
partitions,	170,	187
patching,	86,	97,	116,	194,	197,	198,	221
PCI	DSS,	198
penetration	testing,	97,	99,	100,	106,	118,	218.	See	also	pen	testing

external,	98
internal,	98
pen	testing,	97,	98,	101,	106,	109,	116,	118.	See	also	penetration	testing

permission,	20,	22,	23,	25,	51,	54,	57–60,	72,	73,	75–85,	87–95,
97,	107–109,	114,	120,	122,	123,	125,	126,	139,	162,	167,	172,
176,	178,	180,	183,	223,	224,	226,	228,	230,	232

permission	enforcement,	72
persistent,	60,	173,	187,	216
persistent	XSS,	216
phishing,	9,	87,	215,	217
process	ownership,	74
ProGuard,	31,	35,	39,	40,	163,	164

QR.	See	quick	response
quick	response	(QR),	196,	218

rainbow	tables,	167
receiver,	51,	57,	58,	70,	107,	124,	139
reflected	XSS,	216
remote	wipe,	198,	200,	201,	209,	210
reporting,	99,	116
resource,	27,	43,	49,	51,	59,	61,	62,	70,	72,	100,	106,	107,	109,	114,

116,	117,	121,	128,	194–198,	210,	220,	221,	235,	238
reverse	engineering,	119–121,	123,	153,	163,	168
RFID,	10,	162,	222
risk,	10,	14,	78,	86,	87,	100,	194–197,	199,	206,	211,	221,	222,	223
rooting,	10,	178,	180

salt,	155,	162,	167,	168
screen	lock,	194,	199,	200,	207–210
SDK.	See	Software	Development	Kit	SecureApp.apk,	153,	156

security	issue,	16,	86,	87,	97,	99,	106,	116,	118,	120,	198,	221
security	model,	71–73,	93,	94,	169,	180
security	practices,	88,	197,	198
sensitive	information,	9,	54,	87,	114,	116,	117,	121,	167,	168,	177,	194,

214,	217
server	side	processing,	163,	167
service,	3,	9,	10,	17,	27,	28,	31,	35,	47,	51,	58–60,	70,	75,	86,	90,	98,

100,	101,	109,	119,	124,	128,	137,	139,	194,	196,	199,	203,	205,
218

session	management,	116
severity,	99,	113,	223

shell,	17,	22,	24,	25,	35,	73,	78,	79,	81,	82,	100,	101,	170,	172,	176,
180,	182,	183,	206

Short	Message	Service	(SMS),	9,	10,	27,	72,	75,	76,	78,	80,	83,	91,	93,
119,	136,	137,	139,	169,	187,	190,	200,	218

SignApk	tool,	160
SIM	card,	93,	199,	200,	202,	203
SIM	lock,	199,	200
Skype	vulnerability,	162
Smali,	147,	148,	150,	154–158,	233,	236,	238
smartphone,	1–5,	9,	86,	169,	194,	221
SMS.	See	Short	Message	Service	Software	Development	Kit	(SDK),	17,

28–31,	34–36,	39,	46,	149
spying,	220,	221
spying/tracking	device,	220
SQL	injection,	214,	217
SQlite,	25,	117,	118,	162,	170,	177,	179,	183,	186
browser,	183
static	analysis,	97–100,	118
strings,	23,	39,	42,	43,	235

strings.xml,	39,	42,	43
Symbian,	3,	8,	91

tool,	17,	25,	28,	29,	31,	33–36,	43,	86,	98–100,	118,	119,	121,	149,	160,
162,	181,	183,	187,	199,	221

trojan,	90,	91,	121

UID.	See	user	id
unapproved	networks,	195
unknown	content,	196
unknown	source,	14,	196,	202,	204
untrusted	application,	194,	195
untrusted	device,	195
untrusted	networks,	195
untrusted	systems,	196
user	id	(UID),	40,	57,	72–75,	79,	80,	167,	172,	180

verify	apps,	206
vfat,	170
vulnerability,	97–99,	103,	109,	116,	161,	162,	168,	180,	194,	213,	218–

222

WAP.	See	Wireless	Application	Protocol	WDP.	See	Wireless	Datagram
Protocol	Wireless	Application	Protocol	(WAP),	213–215,	217,	222

Wireless	Datagram	Protocol	(WDP),	213
Wireless	Transaction	Protocol	(WTP),	213
Wireshark,	100,	103–105,	113,	114,	221
WTP.	See	Wireless	Transaction	Protocol

XML,	22,	39,	42,	43,	54–60,	75,	76,	80,	83,	85,	89,	92,	107,	123,	124,
167,	177,	178,	238

XSRF.	See	Cross-Site	Request	Forgery	XSS.	See	Cross-Site	Scripting

Yaaic	application,	113
yaffey,	183,	184
yaffs2,	170,	183

Zitmo,	91,	93–95
Zsone,	90,	92
zygote,	28,	43

	Title Page
	Copyright
	Dedication
	Contents
	Foreword
	Preface
	About the Authors
	Acknowledgments
	Chapter 1 Introduction
	Chapter 2 Android Architecture
	Chapter 3 Android Application Architecture
	Chapter 4 Android (in)Security
	Chapter 5 Pen Testing Android
	Chapter 6 Reverse Engineering Android Applications
	Chapter 7 Modifying the Behavior of Android Applications without Source Code
	Chapter 8 Hacking Android
	Chapter 9 Securing Android for the Enterprise Environment
	Chapter 10 Browser Security and Future Threat Landscape
	Appendix A
	Appendix B
	Appendix C
	Glossary
	Index

