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Figure 1: Real-time area lighting with Linearly Transformed Cosines (LTCs) in a commercial game engine. Our LTC approxi-
mation for anisotropic materials takes 0.7 ms at 1080p resolution on an NVIDIA GeForce RTX 2080 GPU.

ABSTRACT
Linearly Transformed Cosines (LTCs) are a family of distributions
that are used for real-time area-light shading thanks to their an-
alytic integration properties. Modern game engines use an LTC
approximation of the ubiquitous GGX model, but currently this
approximation only exists for isotropic GGX and thus anisotropic
GGX is not supported. While the higher dimensionality presents a
challenge in itself, we show that several additional problems arise
when fitting, post-processing, storing, and interpolating LTCs in
the anisotropic case. Each of these operations must be done care-
fully to avoid rendering artifacts. We find robust solutions for each
operation by introducing and exploiting invariance properties of
LTCs. As a result, we obtain a small 84 look-up table that provides a
plausible and artifact-free LTC approximation to anisotropic GGX
and brings it to real-time area-light shading.
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1 INTRODUCTION
Today’s physically based shading models are largely based on the
GGX Bidirectional Reflectance Distribution Function (BRDF) [16, 30].
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In real-time engines, computing direct illumination requires inte-
grating the BRDF-light product. Dedicated techniques have been
developed to integrate the GGX BRDF against different kinds of
lights (probes, area lights, volumes, etc.). In this paper, we focus
on Linearly Transformed Cosines (LTCs), which have been widely
adopted as a means to integrate the GGX BRDF against area lights of
various shapes [11–13]. For instance, LTCs are used in the Unity and
Unreal engines for this purpose [3, 32]. However, their support is
currently limited to the isotropic GGX BRDF, and thus anisotropic
materials such as brushed metals cannot be shaded under area
lighting with LTCs (see Figure 1). The objective of this work is
to alleviate this limitation and bring real-time area lighting to the
anisotropic GGX BRDF via LTCs.

More specifically, LTCs are spherical distributions with analytic
integration properties over specific spherical domains. Thanks to
the LTC approximation of GGX, the integral of the BRDF over the
spherical domain covered by an area light can be computed analyt-
ically in real time (Fig. 2). LTCs are represented by 3 × 3 matrices
𝑀 fitted to isotropic GGX lobes and stored in a small 2D look-up
table [11]. Computing a similar look-up table for anisotropic GGX
raises new challenges, which is the focus of this work.

≈
𝑀

←−

−→
𝑀−1

(a) GGX (b) LTC (c) Cosine

not analytic analytic analytic

Figure 2: (a) A GGX lobe cannot be analytically integrated
over the spherical domain covered by the area light. (b) An
LTC represented by a matrix 𝑀 provides a good approxima-
tion to the GGX lobe, and the integral equals (c) the analytic
integral of a cosine lobe over the light transformed by𝑀−1.
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Objective. The crux of the problem is to obtain the 3 × 3 matrix
𝑀 of the LTC that best approximates a given GGX lobe. Previously,
Heitz et al. [11] proposed a fitting approach to compute a 2D look-
up table

𝑀 = 𝑇isoGGX (\, 𝛼) (1)

that approximates GGX lobes defined by the incidence angle \ and a
roughness coefficient 𝛼 . This is sufficient to cover the full isotropic
GGX BRDF. Our objective is to compute a similar 4D look-up table

𝑀 = 𝑇anisoGGX (\, 𝜙, 𝛼𝑥 , 𝛼𝑦) (2)

that takes an additional azimuthal angle 𝜙 and anisotropic rough-
ness coefficients (𝛼𝑥 , 𝛼𝑦). Note that once the matrix𝑀 is obtained,
all of the existing applications of LTCs (area-light integration with
various shapes, importance sampling, etc.) can be used without
further modification. Thus, the only problem to solve is the pre-
computation of the 4D look-up table 𝑇anisoGGX.

Contributions. The difficulty is that the fitting approach em-
ployed byHeitz et al. to compute𝑇isoGGX cannot simply be extended
to compute 𝑇anisoGGX. Indeed, in the isotropic case, the full dimen-
sionality of LTCs is not used and this avoids several problems that
arise in the anisotropic case. The artifacts highlighted in Figure 3
show that successfully bringing LTCs to anisotropic GGX requires
robust fitting (Sec. 4), well-defined interpolation (Sec. 5), valid sym-
metries (Sec. 6) and accurate storage (Sec. 7 and 8). We introduce
new mathematical properties of LTCs, such as non-uniqueness and
axial symmetries, that are required to understand and overcome
these failure cases. The final outcome of our method is a 4D look-up
table that yields a plausible and artifact-free LTC approximation
to anisotropic GGX and is small enough to be used in real time.
We validate this table in the context of area-light shading with
anisotropic GGX materials.

(a) broken fitted entry (Sec. 4) (b) ill-defined interpolation (Sec. 5)

(c) broken symmetry (Sec. 6) (d) early inversion (Sec. 7)

Figure 3: Illustration of the problems to overcome.

2 RELATEDWORK
Real-time stochastic techniques. Recent graphics hardware makes

it possible to use purely stochastic techniques such as reservoir
sampling [4]. With stochastic approaches, integrating area lighting
with arbitrary materials is simple but leads to noisy results. In the
context of this paper, we instead aim to provide an analytic shading
technique that produces a clean (noise-free) image.

Real-time analytic shading techniques. Even though stochastic
techniques are appealing for the future, analytic methods remain
important for today’s real-time graphics. The first analytic solution
to area lighting dates back to Lambert, who derived the irradiance
from a polygonal light [20]. This early formula was brought to
graphics for radiosity by Baum et al. [2] and was later extended
by Arvo [1], who derived the integral over spherical polygons of
cosines of arbitrary integer exponents (i.e., Phong distributions).
Despite the detailed implementation of this technique provided
by Snyder [29], it had limited practical impact due to the algorith-
mic complexity of the integration. In practice, real-time methods
involved cheap approximations, mainly based on punctual evalua-
tions [7, 19, 31]. As GPUs became more powerful, more accurate
techniques arose, such as the approach of Lecocq et al., which was
the first method to provide an accurate approximation for phys-
ically based materials while still being fast enough for real-time
rendering [21, 22]. This method was later outperformed by Linearly
Transformed Cosines (LTCs) [11], which remain today’s leading
approach for real-time area-light shading. We build on the state-of-
the-art LTC method by adding support of anisotropic materials.

Applications of Linearly Transformed Cosines (LTCs). While LTCs
were initially proposed for real-time polygonal-light shading, they
have since found uses in many applications that will benefit from
our contribution. The LTC analytic integration has been extended
to other types of light, such as line lights [12] and sphere/disk
lights [13]. Another important addition to LTC integration is shad-
owing. Though LTCs do not include visibility in the analytic shad-
ing integral, a low-variance ratio estimator has been proposed to
incorporate shadows on top of the analytic shading integral [14].
An alternative approach consists of incorporating visibility by re-
moving the edges of occluders in the LTC integral [18, 33]. The
analytic integration property of LTCs has also proven useful in
offline rendering, in the context of path guiding [6]. Besides inte-
gration, LTCs can also be importance sampled to provide noise-free
ray tracing with very low samples per pixel [26]. Furthermore, LTCs
have also found uses in differentiable rendering. Specifically, they
have been used to select points on edges for efficient differentiable
rendering [23] and to analytically compute gradients of the render-
ing equation [33]. Note that all of the aforementioned applications
leverage properties of LTC distributions and work independently
of how these distributions were fitted to a given material, and most
of them use the isotropic GGX look-up table originally provided by
Heitz et al. [11]. We provide a look-up table for anisotropic GGX.

BRDF fitting. There is a significant amount of work on the prob-
lem of fitting parametric models to BRDFs [8, 24] but the problem
we address is different. BRDF fitting means fitting a 4D function
with a simpler one. In our case, we fit the 2D outgoing-radiance
lobe of the BRDF in each view-roughness configuration separately.

2
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3 BACKGROUND
Here we review the mathematical background related to GGX and
LTCs used in the subsequent sections. Note that the implementation
of our method only requires Algorithms 1 and 2, with the rest used
for plots, reference comparisons and technical proofs.

3.1 Background on the GGX BRDF
The GGX (“Ground Glass Unknown”) microfacet BRDF was intro-
duced byWalter et al. [30] and its anisotropic extension by Heitz [9].
The equations of this model are as follows:

Normalized directions. 𝜔𝑣 denotes the view direction and 𝜔𝑙 the
light direction, with the following parameterizations:

𝜔 = (𝑥,𝑦, 𝑧) = (sin\ cos𝜙, sin\ sin𝜙, cos\ ) . (3)

Normal Distribution Function (NDF). The NDF represents the sta-
tistical distribution of specular microfacets that reflect the incident
light. It is parameterized by two roughness parameters (𝛼𝑥 , 𝛼𝑦):

𝐷ggx (𝜔) =
1

𝜋 𝛼𝑥 𝛼𝑦

(
𝑥2

𝛼2
𝑥
+ 𝑦2

𝛼2
𝑦
+ 𝑧2

)2 . (4)

Masking-shadowing. The masking-shadowing function 𝐺2 com-
putes the attenuation due to the microsurface’s self-shadowing:

𝐺2 (𝜔𝑣, 𝜔𝑙 ) =
1

1 + Λ(𝜔𝑣) + Λ(𝜔𝑙 )
with Λ(𝜔) =

−1 +
√︂
1 + 𝛼2

𝑥 𝑥2+𝛼2
𝑦 𝑦2

𝑧2

2 .

(5)

Bidirectional Reflectance Distribution Function (BRDF). The cosine-
weighted GGX BRDF is defined as

𝜌 (𝜔𝑣, 𝜔𝑙 ) cos\𝑙 =
𝐹 (𝜔𝑣, 𝜔ℎ) 𝐷ggx (𝜔ℎ)𝐺2 (𝜔𝑣, 𝜔𝑙 )

4 cos\𝑣
, (6)

where 𝜔ℎ =
𝜔𝑣+𝜔𝑙

∥𝜔𝑣+𝜔𝑙 ∥ is the half vector and 𝐹 is a Fresnel term. In
the following, we do as Hill et al. [15] and always consider 𝐹 = 1,
since it can be reintroduced after the LTC approximation via a
separate table. Equation (6) is used in the fitting approach of Heitz
et al. [11]. We use this formula to make reference comparisons, but
not in the implementation of our method.

Sampling. Sampling the Visible Normals Distribution Function
(VNDF) [10] produces an approximate sampling of the cosine-
weighted BRDF. The remainingweight of the samples is 1+Λ(𝜔𝑙 )

1+Λ(𝜔𝑣 )+Λ(𝜔𝑙 ) .
In Section 4, we use the rejection-sampling Algorithm 1 to produce
samples from the density that are perfectly proportional to the GGX
cosine-weighted BRDF.

ALGORITHM 1: Sampling the cosine-weighted GGX BRDF.
1 while true do
2 sample 𝜔ℎ from the GGX VNDF /* Heitz’s procedure [10] */

3 𝜔𝑙 = reflect (𝜔𝑣, 𝜔ℎ)
4 𝑈 ← rand() /* Uniform random number in [0, 1) */

5 if 𝑈 < 1+Λ(𝜔𝑙 )
1+Λ(𝜔𝑣 )+Λ(𝜔𝑙 )

then
6 return 𝜔𝑙

3.2 Background on LTCs
We now review properties of Linearly Transformed Cosines intro-
duced by Heitz et al. [11] and illustrated in Figure 2-(b, c):

Definition. An LTC is defined as a matrix𝑀 that maps a clamped
cosine distribution 𝐷𝑜 to a spherical distribution defined as

𝐷 (𝜔) = 𝐷𝑜 (𝜔𝑜 )
𝜕𝜔𝑜

𝜕𝜔
= 𝐷𝑜

(
𝑀−1𝜔
| |𝑀−1𝜔 | |

)
|𝑀−1 |
| |𝑀−1𝜔 | |3

. (7)

This equation is used by Heitz et al. [11] in their fitting procedure to
precompute the look-up table of Equation (1). We use this formula
to make a proof in Section 5, but not in the implementation of our
method.

Area-light integration. The integral of an LTC 𝐷 over the spheri-
cal domainA covered by an area light is the integral of the clamped
cosine distribution 𝐷𝑜 over the spherical domain A𝑜 covered by
the area light linearly transformed by𝑀−1:∫

A
𝐷 (𝜔) d𝜔 =

∫
A𝑜

𝐷𝑜 (𝜔𝑜 ) d𝜔𝑜 . (8)

Like Heitz et al., we use this property at run time in the fragment
shader to evaluate the integral of an LTC over an area light. The
integration procedure depends on the shape of the light [11–13].
Note that our contribution relates to how the matrix𝑀 is obtained,
which is independent of how the integration is computed.

Sampling. An LTC can be sampled by generating samples 𝜔𝑜

from the clamped cosine distribution and transforming them with
the LTC matrix𝑀 , as shown in Algorithm 2. We use this algorithm
in our fitting procedure, which is introduced in Section 4.

ALGORITHM 2: Sampling an LTC.
1 sample 𝜔𝑜 from a clamped cosine
2 𝜔 =

𝑀𝜔𝑜
∥𝑀𝜔𝑜 ∥

3 return 𝜔

4 FITTING
In this section, we address the problem of fitting an LTC represented
by a matrix𝑀 to a GGX lobe, as shown in Figure 4.

initialization 𝐿3 fit 𝐿SW fit target
LTC LTC LTC GGX

(a)

(b)

(c)

Figure 4: Fitting an LTC to a GGX lobe. We compare the 𝐿3

fit of Heitz et al. to the 𝐿SW fit we propose.3
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4.1 Experimenting with the Previous Approach
Heitz et al. minimize the point-wise 𝐿3 error between the cosine-
weighted GGX BRDF (Eq. (6)) and the LTC (Eq. (7)). Their approach
works in simple cases such as in Figure 4-(a), but we observed two
main issues that make it unstable in more challenging configura-
tions, leading to broken fits in our look-up table (Fig. 3-(a)).

Problem 1: null gradients. In Figure 4-(b), the LTC provided as
a starting point does not overlap with the target distribution. The
gradients of the 𝐿3 error metric are thus close to 0 and the optimizer
diverges.

Problem 2: high values. To avoid problem 1, in Figure 4-(c) we
use a diffuse LTC (represented by an identity matrix 𝑀) as the
starting point, such that there is significant overlap with the target
GGX distribution. However, the target is sharp and evaluates to
high values at the center of its lobe. These high values produce
extremely high 𝐿3 error gradients, which cause the optimizer to
overshoot and stay trapped in a divergent configuration with null
gradients (back to problem 1).

Discussion. Despite these issues, the 𝐿3 optimization of Heitz
et al. is successful because of the accuracy of their starting points.
They use a diffuse LTC (an identity matrix𝑀) for high roughnesses
and initialize the matrix parameters with the already-optimized
neighboring entries of the look-up table as the roughness decreases.
The resolution of their table (64 × 64) ensures neighboring entries
are close enough to provide accurate starting points. However, we
need to aggressively reduce the resolution to store a 4D table (Sec. 8),
so neighboring entries do not always overlap, especially with sharp
distributions (low roughness). This is why we need an optimization
process that is robust even with poor initialization.

4.2 Our Approach
Our objective is to find an optimization metric that is not subject
to vanishing gradients or numerical instabilities with sharp distri-
butions and works regardless of the accuracy of the initialization.

The Sliced Wasserstein loss. We use the Sliced Wasserstein (SW)
loss [5, 27] between the direction samples of the target GGX lobe
and the samples of the LTC distribution. This sample-wise loss
approximates the optimal transport between two distributions and
has shown several benefits in the machine learning community.
The advantage over point-wise losses such as 𝐿3 used by Heitz et
al. is that it always provides smooth and stable gradients [17].

Definition. Consider two Probability Density Functions (PDFs)
𝑓 and 𝑔 and their respective marginals 𝑓𝜔 and 𝑔𝜔 over a random
direction 𝜔 ∈ Ω. The SW distance between 𝑓 and 𝑔 is the expected
difference between their respective Inverse Cumulative Distribution
Functions (iCDF) 𝐹−1𝜔 and 𝐺−1𝜔 over all random directions:

𝐿SW (𝑓 , 𝑔) = E
𝜔 ∈Ω

[∫ 1

0

��𝐹−1𝜔 (𝑢) −𝐺−1𝜔 (𝑢)
�� d𝑢] . (9)

Despite this formulation appearing complicated at first sight, its
implementation is extremely simple, as we shall see in Algorithm 3.

Discretization. An inverse CDF can be approximated by a list
of sorted samples from the corresponding density. Hence, if we

consider two sets of random samples (𝑓1, ..., 𝑓𝑛) and (𝑔1, ..., 𝑔𝑛) from
respectively 𝑓 and 𝑔 and their sorted projections (𝑓1,𝜔 , ..., 𝑓𝑛,𝜔 ) and
(𝑔1,𝜔 , ..., 𝑔𝑛,𝜔 ) onto direction 𝜔 , Equation (9) can be written as

𝐿SW (𝑓 , 𝑔) = lim
𝑛→∞

E𝜔 ∈Ω

[
1
𝑛

𝑛∑︁
𝑖=1

��𝑓𝑖,𝜔 − 𝑔𝑖,𝜔 ��] , (10)

i.e., the average of the differences between the sorted projections
over the set of projection directions.

Optimization. In Algorithm 3, we compute a stochastic estimator
of Equation (10) by sampling 𝑛 random samples from the densi-
ties, projecting the samples onto a random direction 𝜔 , sorting
the projections and averaging the absolute differences. Finally, we
propagate the gradient of the loss back to the matrix 𝑀 and do a
gradient descent step. The variables highlighted in blue are the ones
through which the gradients are propagated from 𝐿SW back to 𝑀 .
Figure 5 illustrates the calculations. It is because this algorithm com-
putes a mapping between samples rather than a difference between
the densities that it is numerically stable even with sharp or non-
overlapping densities, as shown in Figure 4. With this algorithm,
we successfully fit all the entries of our look-up table 𝑇anisoGGX.

ALGORITHM 3: Optimization step over the LTC matrix 𝑀 with
the Sliced-Wasserstein distance (blue variables depend on𝑀).

Input: LTC matrix𝑀
Input: GGX lobe view direction 𝜔𝑣 and roughnesses (𝛼𝑥 , 𝛼𝑦 )

1 generate 𝑛 random samples (𝑔1, ..., 𝑔𝑛 ) from the GGX lobe
/* Algorithm 1 */

2 generate 𝑛 random samples (𝑓1, ..., 𝑓𝑛 ) from the LTC distribution
/* Algorithm 2 */

3 generate a random direction 𝜔

4 (𝑓1,𝜔 , ..., 𝑓𝑛,𝜔 ) = sort(𝑓1 ·𝜔, ..., 𝑓𝑛 ·𝜔)
5 (𝑔1,𝜔 , ..., 𝑔𝑛,𝜔 ) = sort(𝑔1 ·𝜔, ..., 𝑔𝑛 ·𝜔)
6 𝐿SW = 1

𝑛

∑𝑛
𝑖=1

��𝑓𝑖,𝜔 − 𝑔𝑖,𝜔 ��
7 backpropagate gradient from 𝐿SW to𝑀
8 update𝑀 = 𝑀 − 𝜖 ∇𝐿SW∇𝑀

(a) LTC samples (b) GGX samples (c) sorted projections

Figure 5: Illustration of Algorithm 3. We project random
samples from the LTC (a) and the GGX lobe (b) onto a ran-
dom direction and average the absolute differences between
the sorted projections (c).

Implementation. We implement this stochastic estimator in a
differentiable calculus library, PyTorch [25], which provides auto-
matic gradient backpropagation, and use the Stochastic Gradient
Descent (SGD) [28] optimizer for 𝑀 . We compute 10000 gradient
descent steps and for each step we use 𝑛 = 2048 random samples
and average the estimator over 64 random directions.

4
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5 INTERPOLATION
Even with the robust fitting approach described in the previous
section, we noticed that our rendered results still suffered from
jiggling artifacts shown in Figure 3-(b) when interpolating the
entries of our fitted look-up table 𝑇anisoGGX. In this section, we
explain that the non-uniqueness of LTCs (5.1) makes interpolation
ill-defined, and we propose a solution to this problem (5.2).

5.1 Non-Uniqueness of LTCs
The essential point of this section is that different matrices𝑀 can
produce the same LTC distribution.

Intuitive explanation. An LTC is a cosine distribution that has
undergone a linear transformation 𝑀 (and a normalization). But
the cosine distribution can also be invariant under some linear
transformations: rotations 𝑅𝑧 aligned with the 𝑧-axis and flipping
matrices 𝐹𝑥𝑦 that flip the 𝑥- and/or 𝑦-axis. Hence, these linear
operations can be appended to the matrix𝑀 without changing the
resulting LTC distribution, as shown in Figure 6.

Property. For any rotation and flipping matrices

𝑅𝑧 =


cos𝛼 − sin𝛼 0
sin𝛼 cos𝛼 0

0 0 1

 , 𝐹𝑥𝑦 =


±1 0 0
0 ±1 0
0 0 1

 , (11)

the LTC distributions associated with matrices𝑀 and𝑀 𝑅𝑧 𝐹𝑥𝑦 are
the same.

Proof. We show that the evaluation of Equation (7) remains the
same if we replace𝑀 by𝑀 𝑅𝑧 𝐹𝑥𝑦 . First, the value of the Jacobian
𝜕𝜔𝑜

𝜕𝜔 is unchanged because rotations or flips are area-preserving
transformations (i.e., their Jacobians are 1). Second, the variable 𝜔𝑜

is mapped to another location where 𝐷𝑜 (the cosine distribution)
evaluates to the same value, since rotations around 𝑧, or 𝑥,𝑦-axis
flipping do not change the value of the cosine distribution.

𝑀 𝑀

𝑅𝑧 𝐹𝑥𝑦

Figure 6: Non-uniqueness of LTCs. Cosine distributions re-
main unchanged under z-axis rotation 𝑅𝑧 and 𝑥𝑦 flipping
𝐹𝑥𝑦 . Linearly transformed cosines inherit this invariance.

5.2 Well-Defined Interpolation with Alignment
The obvious way to interpolate LTCs consists of interpolating their
matrices𝑀 . The non-uniqueness of the matrix𝑀 of a given LTC
therefore has a direct impact on the interpolation behavior.

(a)𝑀1 and𝑀2 represent the same LTC distribution

(1
)u

na
lig

ne
d

(2
)a

lig
ne
d

(b)𝑀1 and𝑀2 represent different LTC distributions

(1
)u

na
lig

ne
d

(2
)a

lig
ne
d

𝑀1
3𝑀1+𝑀2

4
𝑀1+𝑀2

2
𝑀1+3𝑀2

4 𝑀2
Figure 7: Interpolating LTC matrices with(out) alignment.

Naive interpolation. In Figure 7-(a1), we show that two different
matrices that represent the same LTC distribution yield another
unexpected distribution under interpolation. In the general case
of Figure 7-(b1), where 𝑀1 and 𝑀2 represent different LTC dis-
tributions, interpolating the matrices does not produce a smooth
transition between their respective distributions. Intuitively, this
is because the matrices are misaligned due to the degrees of free-
dom introduced by their arbitrary rotation or flipping. This is what
causes the interpolation artifacts shown in Figure 3-(b).

Aligned LTCs. Our idea is to align the LTC matrices𝑀 to cancel
out rotation and flipping of the transformed cosine samples by
aligning them with the original cosine samples. To do that, for
a given 𝑀 , we find the LTC matrix 𝑀aligned that minimizes the
average squared distance between the original cosine samples and
their transformed counterparts, i.e., we optimize

𝑀aligned = min
𝐹𝑥𝑦

min
𝑅𝑧
E𝜔𝑜∼𝐷𝑜

[ 𝑀 𝑅𝑧 𝐹𝑥𝑦 · 𝜔𝑜

∥𝑀 𝑅𝑧 𝐹𝑥𝑦 · 𝜔𝑜 ∥
− 𝜔𝑜

2] . (12)

Intuitively, this optimization minimizes the average squared lengths
of the lines in Figure 8. We implement it as a linear search over the
rotation angle 𝛼 and the four flipping cases.

𝑀 𝑀aligned

Figure 8: LTC alignment. We minimize the average squared
distance between the cosine (yellow) and LTC (green) samples.5
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Robust interpolation. By aligning the LTC matrices before inter-
polating them, we obtain robust interpolation behavior. As expected,
interpolating between the same distribution leaves it unchanged
(Fig. 7-(a2)) and interpolating between different distributions pro-
duces smooth transitions (Fig. 7-(b2)). Aligning the entries of our
fitted look-up table 𝑇anisoGGX removes the interpolation artifacts
of Figure 3-(b).

Discussion. Heitz et al. [11] do not report interpolation prob-
lems despite using a naive interpolation without alignment. This is
because they only need four parameters of the LTC matrix to fit
isotropic GGX:𝑀 =

[
𝑎 0 𝑏

0 𝑐 0
𝑑 0 1

]
. A side effect of this special case is

that the null entries of the matrix force its alignment and thus make
the interpolation well-defined. The interpolation problem that we
solve arises in the general case where all nine parameters of the
LTC matrix are used, which is necessary for fitting anisotropic
GGX. This is why we are, to our knowledge, the first to face the
problem of LTC interpolation misbehaving, and to investigate the
non-uniqueness property of LTCs.

6 SYMMETRIES
In this section, we leverage symmetries of the anisotropic GGX
BRDF to remove numerical errors and reduce the storage induced by
the dimensionality of our 4Dfitted look-up table𝑇anisoGGX (\, 𝜙, 𝛼𝑥 , 𝛼𝑦).

6.1 Parameterization of the Look-Up Table
Azimuthal symmetry. The GGX BRDF has axial symmetries over

the 𝑥 and 𝑦 axes with respect to the view vector, as shown in
Figure 9. We leverage this property to fit our look-up table over
𝜙 ∈ [0, 𝜋2 ] rather than 𝜙 ∈ [0, 2𝜋]. We recover the full range [0, 2𝜋]
in the following manner:

𝑀 =



[
+1 0 0
0 +1 0
0 0 1

]
·𝑇anisoGGX (𝜙) if 0 ≤ 𝜙 < 𝜋

2 ,[
−1 0 0
0 +1 0
0 0 1

]
·𝑇anisoGGX (𝜋 − 𝜙) if 𝜋

2 ≤ 𝜙 < 𝜋,[
−1 0 0
0 −1 0
0 0 1

]
·𝑇anisoGGX (𝜙 − 𝜋) if 𝜋 ≤ 𝜙 < 3𝜋

2 ,[
+1 0 0
0 −1 0
0 0 1

]
·𝑇anisoGGX (2𝜋 − 𝜙) if 3𝜋

2 ≤ 𝜙 < 2𝜋.

(13)

This reduces the size of the look-up table by a factor of four for the
same angular resolution.

0 ≤ 𝜙 < 𝜋
2

𝜋
2 ≤ 𝜙 < 𝜋 𝜋 ≤ 𝜙 < 3𝜋

2
3𝜋
2 ≤ 𝜙 < 2𝜋
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Figure 9: Azimuthal symmetries of the GGX BRDF. When
the view vector (green) is symmetrized over the 𝑥 and 𝑦 axes,
the GGX lobe undergoes the same symmetry.

Roughness symmetry. The GGX BRDF has roughness symmetries
shown in Figure 10 that can be written in the following manner:

𝑇anisoGGX (\, 𝜙, 𝛼𝑥 , 𝛼𝑦) =
[0 1 0
1 0 0
0 0 1

]
·𝑇anisoGGX (\,

𝜋

2 − 𝜙, 𝛼𝑦, 𝛼𝑥 ) .
(14)

Storing the data directly with the (𝛼𝑥 , 𝛼𝑦) parameterization vir-
tually duplicates the data, so instead we use an alternative pa-
rameterization 𝑇anisoGGX (\, 𝜙, 𝛼, _), where 𝛼 ∈ [0, 1] is the largest
roughness and _ ∈ [0, 1] is the roughness ratio:

𝑀 =


[
1 0 0
0 1 0
0 0 1

]
·𝑇anisoGGX (\, 𝜙, 𝛼𝑥 ,

𝛼𝑦

𝛼𝑥
) if 𝛼𝑥 ≥ 𝛼𝑦,[

0 1 0
1 0 0
0 0 1

]
·𝑇anisoGGX (\, 𝜋2 − 𝜙, 𝛼𝑦,

𝛼𝑥
𝛼𝑦
) otherwise.

(15)

This increases the roughness resolution by a factor of two for the
same storage.

𝜙 = 15, 𝛼𝑥 = 0.20, 𝛼𝑦 = 0.10 𝜙 = 75, 𝛼𝑥 = 0.10, 𝛼𝑦 = 0.20
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Figure 10: Roughness symmetries of the GGX BRDF. Per-
muting the 𝑥 and 𝑦 coordinates of the view vector and the
roughnesses 𝛼𝑥 and 𝛼𝑦 produces the same permutation in the
lobe’s shape.

6.2 Fixing Residual Errors in the Look-Up
Table

Other symmetries of the GGX BRDF imply that certain entries of
our fitted look-up table should be null. This would be the case if the
fitting and alignment optimizations were perfect, but even small
residual errors are sufficient to break these symmetries and produce
the discontinuity and singularity artifacts present in Figure 3-(c).We
can eliminate these artifacts by enforcing the expected symmetries
in the entries of the look-up table:

Axial symmetries. The GGX lobe has axial symmetry over the 𝑥
and 𝑦 axes when, respectively, 𝜙 = 0 and 𝜙 = 𝜋

2 (Fig. 11-(a, b)).

Rotational symmetry. In upward views, where \ = 0, the az-
imuthal angle 𝜙 does not contribute to the shape of the GGX lobe.
Furthermore, the GGX lobe is centered on 0 and symmetric over
the axes 𝑥 and 𝑦 (Fig. 11-(c, d)).

Look-up table post-processing. We post-process our look-up table
to set the following entries (blue) to zero, and ensure that when
\ = 0 all of the entries match for the different values of 𝜙 :

𝑇anisoGGX (\, 𝜙) =



[
𝑚00 0 𝑚02

0 𝑚11 0
𝑚20 0 𝑚22

]
for 𝜙 = 0,[

𝑚00 0 0
0 𝑚11 𝑚12
0 𝑚21 𝑚22

]
for 𝜙 = 𝜋

2 ,[
𝑚00 0 0

0 𝑚11 0
0 0 𝑚22

]
for \ = 0 and 𝜙 = 0,

𝑇anisoGGX (\, 0), for \ = 0.

(16)
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This post-processing step fixes the artifacts present in Figure 3-(c).

(a) 𝜙 = 0 (b) 𝜙 = 𝜋
2 (c) \ = 0, 𝜙 = 0 (d) \ = 0, 𝜙 = 𝜋

2
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Figure 11: Symmetries of the GGX lobes with axis-aligned
view directions.

7 MATRIX INVERSION
The LTC integration shown in Figure 2 actually uses the inverse
matrix𝑀−1. Heitz et al. spare the inversion by storing and interpo-
lating the inverse in their look-up table. However, interpolating the
inverse creates severe distortions with our coarse resolution. This is
because the diagonal coefficients of𝑀 that control the aperture of
the LTC behave linearly with respect to 𝛼𝑥 and 𝛼𝑦 at low roughness
while the diagonal coefficients of 𝑀−1 correlate with 1

𝛼𝑥
and 1

𝛼𝑦
.

We can therefore use a more aggressive discretization by storing
and interpolating𝑀 instead of𝑀−1, and performing the inversion
at run time in the fragment shader. To bring all of the entries of
the look-up table into the same precision range, we divide 𝑀 by
the length of its third column, i.e., we constrain𝑀 · [0, 0, 1] to be a
unit-length vector.

8 DISCRETIZATION
Heitz et al. [11] use a 642 resolution for their 2D look-up table
𝑇isoGGX (\, 𝛼) with five floats per entry (they only use five param-
eters of the matrix𝑀), which represents about 80 KB. If we were
to use the same angular and roughness resolution, i.e., a 644 4D
look-up table with nine floats per entry (we use the full matrix𝑀),
the memory requirement would be 576 MB. Thanks to the design
choices introduced in the previous sections, we are able to reduce
a resolution to 84. In Figure 12, we compare a resolution of 84 and
644 with respect to the GGX reference. The results show that the
additional discretization error at 84 is negligible compared to the
LTC approximation. As such, there is little to be gained by using a
larger resolution.

𝛼 = 0.06 𝛼 = 0.31 𝛼 = 0.56 𝛼 = 0.81

84
LU

T

0.0

0.2

0.4

0.6

0.8

1.0

Abs
Error

64
4
LU

T

Figure 12: Renderings using 84 and 644 look-up tables. Inset
difference images are with respect to the GGX reference.

9 IMPLEMENTATION OF OUR METHOD
In this section, we explain the implementation of our method, and
summarize its requirements in Table 1.

Precomputations. We compute an 84 table 𝑇anisoGGX (\, 𝜙, 𝛼, _)
with a uniform discretization over \ ∈ [0, 𝜋2 ], 𝜙 ∈ [0,

𝜋
2 ], 𝛼 ∈ [0, 1]

and _ ∈ [0, 1]. We compute each entry in the following way:
• Wefit𝑀 to the corresponding anisotropic GGX lobe of rough-
nesses 𝛼𝑥 = 𝛼 and 𝛼𝑦 = _ 𝛼 using Algorithm 3 from Sec-
tion 4.
• We align𝑀 by minimizing Equation (12) from Section 5, to
ensure that interpolation is well-defined.
• We fix residual errors in𝑀 by applying Equation (16) from
Section 6.
• We make𝑀 well-conditioned by dividing it by the length of
its last column, as explained in Section 7.

The whole precomputation procedure is implemented in PyTorch
and takes around two hours on an NVIDIA GeForce 2080 RTX GPU.

Storage. We store the parameters in 3D textures of resolution
64 × 8 × 8 to benefit from trilinear hardware interpolation.

Run time. In the fragment shader, we proceed as follows:
• We get \ , 𝜙 , 𝛼𝑥 , and 𝛼𝑦 .
• We map 𝜙 to the first quarter [0, 𝜋2 ] using Equation (13) and
compute 𝛼 and _ using Equation (15).
• We fetch the 3D textures accordingly, manually interpolate
over the last dimension, and apply the flipping and/or rota-
tionmatrices following Equations (13) and (15). This provides
us with the matrix𝑀 .
• We invert𝑀 to obtain𝑀−1.

The cost of these operations is 0.610 ms for a full-screen quad at
1080p resolution with an NVIDIA GeForce RTX 2080 GPU, which
is about four times the cost of the isotropic version.

LTC integration. Once𝑀−1 is obtained, we use the existing LTC
integration algorithms as in previous work [11–13]. Note that the
overhead of our method only impacts the obtainment of𝑀−1, which
can be amortized over the integration of multiple area lights.

Fresnel. We inject the Fresnel term of the GGX BRDF in the same
way as Hill et al. [15]. We preintegrate the first and second Fresnel
terms for each (\, 𝜙, 𝛼, _) entry and store them as two additional
channels in the look-up table that we interpolate at run time.

Heitz et al. [11, 15] ours
param. 𝑀−1 = 𝑇isoGGX (\, 𝛼) 𝑀 = 𝑇anisoGGX (\, 𝜙, 𝛼, _)
resolution 64 × 64 8 × 8 × 8 × 8
containers 2D textures (64 × 64) 3D textures (64 × 8 × 8)
channels 5 (for𝑀) + 2 (for Fresnel) 9 (for𝑀) + 2 (for Fresnel)
memory 112 KB 176 KB
interpolation HW 2D HW 3D + SW 1D
inversion - fragment shader
total timing 0.160 ms 0.610 ms
LTC integration 0.110 ms/light

Table 1: Requirements of our method.
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10 RESULTS
In this section, we discuss the results produced by our method.
Note that our supplemental material covers a dense set of plot and
rendering configurations.

Plots. Figure 13 shows the fitted GGX lobes and our LTC ap-
proximation. We found out that the main limiting factor of our
approximation is not our fitting technique but rather the represen-
tation power of LTCs. When the shape of the GGX lobe can be
closely approximated by an LTC, our fitting technique is always
successful (top rows in Fig. 13). However, the GGX lobe can exhibit
lune shapes in certain configurations (high anisotropy, grazing view
angle) and these shapes cannot be represented by LTCs (bottom
rows in Fig. 13). Indeed, an LTC is a diffuse distribution transformed
by a linear transformation. This allows for various first-order trans-
formations such as changing the isotropic span of the lobe, elliptic
anisotropy or skewness, but excludes lune-shaped lobes. In other
words, it is not possible to accurately approximate these GGX con-
figurations with LTCs, regardless of the fitting technique.

Renderings. Figure 14 shows the GGX reference and our LTC ap-
proximation. As expected from the plots, the approximation might
have large errors compared to the reference but it remains plausi-
ble, and we did not find configurations where the result is visually
unacceptable. Therefore, we believe that our approximation is good
enough to be considered for non-predictive real-time rendering,
but would discourage its use for more demanding applications.

11 CONCLUSION
We have proposed a method to bring Linearly Transformed Cosines
to anisotropic GGX. It is the product of the experience we gained
from many failed attempts. New insights into the mathematical
properties of LTCs, careful design choices, and attention to detail
were all crucial elements in ensuring a clean and artifact-free ap-
proximation. We believe that the proposed method provides a plau-
sible approximation that passes the quality bar for game engines.
It has low memory overhead compared to the isotropic version al-
ready used by practitioners. The 4D texture fetch is more expensive
than the isotropic version but remains competitive for a real-time
technique and can be amortized over multiple area lights. Thus, we
don’t see any barrier to using our anisotropic extension for video
games. Furthermore, the same methodology could be applicable to
other anisotropic materials. To facilitate reproduction, we plan to
release the PyTorch fitting code, the fitted table and a minimalistic
OpenGL demo that shows how to use it.

The main limitation is that our approximation is not accurate
enough for all applications. For instance, we do not advise using it
for predictive rendering or as an importance sampling technique
for anisotropic GGX.

A notable finding is that the limiting factor of our approximation
is the representation power of LTCs, which cannot produce all of
the possible GGX shapes, such as lunes. Therefore, we believe our
method reaches the limit of what is possible with LTC approxima-
tions of GGX BRDFs. Further improvements should thus be sought
with a fundamentally different approach.

𝛼𝑥 = 0.05, 𝛼𝑦 = 0.05
\ = 66, 𝜙 = 294

𝛼𝑥 = 0.01, 𝛼𝑦 = 0.80
\ = 0, 𝜙 = 272

𝛼𝑥 = 0.25, 𝛼𝑦 = 0.80
\ = 0, 𝜙 = 316

𝛼𝑥 = 0.80, 𝛼𝑦 = 1.00
\ = 44, 𝜙 = 316

𝛼𝑥 = 0.25, 𝛼𝑦 = 0.05
\ = 44, 𝜙 = 294

𝛼𝑥 = 0.05, 𝛼𝑦 = 1.00
\ = 88, 𝜙 = 338

𝛼𝑥 = 1.00, 𝛼𝑦 = 0.25
\ = 66, 𝜙 = 338

𝛼𝑥 = 0.50, 𝛼𝑦 = 0.01
\ = 66, 𝜙 = 316

Figure 13: Plot results.We show the GGX reference (left) and
our LTC approximation (right). More results in our supple-
mental material.

𝛼𝑥 = 0.01, 𝛼𝑦 = 0.05 𝛼𝑥 = 0.01, 𝛼𝑦 = 0.50

𝛼𝑥 = 0.05, 𝛼𝑦 = 0.25 𝛼𝑥 = 0.50, 𝛼𝑦 = 0.02

𝛼𝑥 = 0.50, 𝛼𝑦 = 0.25 𝛼𝑥 = 0.50, 𝛼𝑦 = 1.00
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Figure 14: Rendered spheres with anisotropic materials and
rectangular lights.We show the GGX reference (left), our LTC
approximation (right), and the difference image. More results
in our supplemental material.
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