From 767547fd0db7601b1faa10c4232a3cd09e2585a1 Mon Sep 17 00:00:00 2001 From: rvollmer Date: Fri, 13 Apr 2018 13:28:42 +0200 Subject: [PATCH 1/2] Add spectroscopy analysis from thij's branch #455 --- pycqed/analysis_v2/spectroscopy_analysis.py | 588 ++++++++++++++++++++ 1 file changed, 588 insertions(+) create mode 100644 pycqed/analysis_v2/spectroscopy_analysis.py diff --git a/pycqed/analysis_v2/spectroscopy_analysis.py b/pycqed/analysis_v2/spectroscopy_analysis.py new file mode 100644 index 0000000000..4a81a7fa13 --- /dev/null +++ b/pycqed/analysis_v2/spectroscopy_analysis.py @@ -0,0 +1,588 @@ +""" +Spectroscopy class + +This file contains the Spectroscopy class that forms the basis analysis of all the spectroscopy measurement analyses. +""" +import pycqed.analysis_v2.base_analysis as ba +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +from pycqed.analysis import measurement_analysis as MA +from pycqed.analysis import analysis_toolbox as a_tools +from pycqed.analysis.tools import data_manipulation as dm_tools +from pycqed.analysis import fitting_models as fit_mods +import lmfit + +import importlib +importlib.reload(ba) + + +class Spectroscopy(ba.BaseDataAnalysis): + def __init__(self, t_start, + options_dict=None, + t_stop=None, + extract_only=False, + auto=True, + do_fitting=False): + super(Spectroscopy, self).__init__(t_start, t_stop=t_stop, + options_dict=options_dict, + extract_only=extract_only, + do_fitting=do_fitting) + self.extract_fitparams = self.options_dict.get('fitparams', False) + self.params_dict = {'freq_label': 'sweep_name', + 'freq_unit': 'sweep_unit', + 'measurementstring': 'measurementstring', + 'freq': 'sweep_points', + 'amp': 'amp', + 'phase': 'phase'} + self.options_dict.get('xwidth', None) + # {'xlabel': 'sweep_name', + # 'xunit': 'sweep_unit', + # 'measurementstring': 'measurementstring', + # 'sweep_points': 'sweep_points', + # 'value_names': 'value_names', + # 'value_units': 'value_units', + # 'measured_values': 'measured_values'} + + if self.extract_fitparams: + self.params_dict.update({'fitparams': 'fit_params'}) + + self.numeric_params = ['freq', 'amp', 'phase'] + if 'qubit_label' in self.options_dict: + self.labels.extend(self.options_dict['qubit_label']) + sweep_param = self.options_dict.get('sweep_param', None) + if sweep_param is not None: + self.params_dict.update({'sweep_param': sweep_param}) + self.numeric_params.append('sweep_param') + if auto is True: + self.run_analysis() + + def process_data(self): + proc_data_dict = self.proc_data_dict + proc_data_dict['freq_label'] = 'Frequency (GHz)' + proc_data_dict['amp_label'] = 'Transmission amplitude (arb. units)' + + proc_data_dict['phase_label'] = 'Transmission phase (degrees)' + proc_data_dict['freq_range'] = self.options_dict.get( + 'freq_range', None) + proc_data_dict['amp_range'] = self.options_dict.get('amp_range', None) + proc_data_dict['phase_range'] = self.options_dict.get( + 'phase_range', None) + proc_data_dict['plotsize'] = self.options_dict.get('plotsize', (8, 5)) + if len(self.raw_data_dict['timestamps']) == 1: + proc_data_dict['plot_frequency'] = np.squeeze( + self.raw_data_dict['freq']) + proc_data_dict['plot_amp'] = np.squeeze(self.raw_data_dict['amp']) + proc_data_dict['plot_phase'] = np.squeeze( + self.raw_data_dict['phase']) + else: + # TRANSPOSE ALSO NEEDS TO BE CODED FOR 2D + sweep_param = self.options_dict.get('sweep_param', None) + if sweep_param is not None: + proc_data_dict['plot_xvals'] = np.array( + self.raw_data_dict['sweep_param']) + proc_data_dict['plot_xvals'] = np.reshape(proc_data_dict['plot_xvals'], + (len(proc_data_dict['plot_xvals']), 1)) + proc_data_dict['plot_xlabel'] = self.options_dict.get( + 'xlabel', sweep_param) + else: + xvals = np.array([[tt] for tt in range( + len(self.raw_data_dict['timestamps']))]) + proc_data_dict['plot_xvals'] = self.options_dict.get( + 'xvals', xvals) + proc_data_dict['plot_xlabel'] = self.options_dict.get( + 'xlabel', 'Scan number') + proc_data_dict['plot_xwidth'] = self.options_dict.get( + 'xwidth', None) + if proc_data_dict['plot_xwidth'] == 'auto': + x_diff = np.diff(np.ravel(proc_data_dict['plot_xvals'])) + dx1 = np.concatenate(([x_diff[0]], x_diff)) + dx2 = np.concatenate((x_diff, [x_diff[-1]])) + proc_data_dict['plot_xwidth'] = np.minimum(dx1, dx2) + proc_data_dict['plot_frequency'] = np.array( + self.raw_data_dict['freq']) + proc_data_dict['plot_phase'] = np.array( + self.raw_data_dict['phase']) + proc_data_dict['plot_amp'] = np.array( + self.raw_data_dict['amp']) + + else: + # manual setting of plot_xwidths + proc_data_dict['plot_frequency'] = self.raw_data_dict['freq'] + proc_data_dict['plot_phase'] = self.raw_data_dict['phase'] + proc_data_dict['plot_amp'] = self.raw_data_dict['amp'] + + def prepare_plots(self): + proc_data_dict = self.proc_data_dict + plotsize = self.options_dict.get('plotsize') + if len(self.raw_data_dict['timestamps']) == 1: + plot_fn = self.plot_line + self.plot_dicts['amp'] = {'plotfn': plot_fn, + 'xvals': proc_data_dict['plot_frequency'], + 'yvals': proc_data_dict['plot_amp'], + 'title': 'Spectroscopy amplitude: %s' % (self.timestamps[0]), + 'xlabel': proc_data_dict['freq_label'], + 'ylabel': proc_data_dict['amp_label'], + 'yrange': proc_data_dict['amp_range'], + 'plotsize': plotsize + } + self.plot_dicts['phase'] = {'plotfn': plot_fn, + 'xvals': proc_data_dict['plot_frequency'], + 'yvals': proc_data_dict['plot_phase'], + 'title': 'Spectroscopy phase: %s' % (self.timestamps[0]), + 'xlabel': proc_data_dict['freq_label'], + 'ylabel': proc_data_dict['phase_label'], + 'yrange': proc_data_dict['phase_range'], + 'plotsize': plotsize + } + else: + plotcbar = self.options_dict.get('colorbar', False) + plot_fn = self.plot_colorx # (self, pdict, axs) + self.plot_dicts['amp'] = {'plotfn': plot_fn, + 'xvals': proc_data_dict['plot_xvals'], + 'xwidth': proc_data_dict['plot_xwidth'], + 'yvals': proc_data_dict['plot_frequency'], + 'zvals': proc_data_dict['plot_amp'], + 'title': 'Spectroscopy amplitude: %s' % (self.timestamps[0]), + 'xlabel': proc_data_dict['plot_xlabel'], + 'ylabel': proc_data_dict['freq_label'], + 'zlabel': proc_data_dict['amp_label'], + 'yrange': proc_data_dict['freq_range'], + 'zrange': proc_data_dict['amp_range'], + 'plotsize': plotsize, + 'plotcbar': plotcbar + } + + def plot_for_presentation(self, key_list=None, no_label=False): + super(Spectroscopy, self).plot_for_presentation( + key_list=key_list, no_label=no_label) + for key in key_list: + pdict = self.plot_dicts[key] + if key == 'amp': + if pdict['plotfn'] == self.plot_line: + ymin, ymax = 0, 1.2*np.max(np.ravel(pdict['yvals'])) + self.axs[key].set_ylim(ymin, ymax) + self.axs[key].set_ylabel('Transmission amplitude (V rms)') + + +class complex_spectroscopy(Spectroscopy): + def __init__(self, t_start, + options_dict=None, + t_stop=None, + do_fitting=False, + extract_only=False, + auto=True): + super(complex_spectroscopy, self).__init__(t_start, t_stop=t_stop, + options_dict=options_dict, + extract_only=extract_only, + auto=False, + do_fitting=do_fitting) + self.params_dict = {'freq_label': 'sweep_name', + 'freq_unit': 'sweep_unit', + 'measurementstring': 'measurementstring', + 'measured_values': 'measured_values', + 'freq': 'sweep_points', + 'amp': 'amp', + 'phase': 'phase', + 'real': 'real', + 'imag': 'imag'} + self.options_dict.get('xwidth', None) + + if self.extract_fitparams: + self.params_dict.update({'fitparams': 'fit_params'}) + + self.numeric_params = ['freq', 'amp', 'phase', 'real', 'imag'] + self.do_fitting = do_fitting + self.fitparams_guess = self.options_dict.get('fitparams_guess', {}) + if auto is True: + self.run_analysis() + + def process_data(self): + super(complex_spectroscopy, self).process_data() + self.proc_data_dict['amp_label'] = 'Transmission amplitude (V rms)' + self.proc_data_dict['phase_label'] = 'Transmission phase (degrees)' + if len(self.raw_data_dict['timestamps']) == 1: + self.proc_data_dict['plot_phase'] = np.unwrap( + np.pi/180.*self.proc_data_dict['plot_phase'])*180/np.pi + self.proc_data_dict['plot_xlabel'] = 'Readout Frequency (Hz)' + else: + pass + self.raw_data_dict['real'] = [ + self.raw_data_dict['measured_values'][0][2]] + self.raw_data_dict['imag'] = [ + self.raw_data_dict['measured_values'][0][3]] + self.proc_data_dict['real'] = self.raw_data_dict['real'][0] + self.proc_data_dict['imag'] = self.raw_data_dict['imag'][0] + self.proc_data_dict['plot_real'] = self.proc_data_dict['real'] + self.proc_data_dict['plot_imag'] = self.proc_data_dict['imag'] + self.proc_data_dict['real_label'] = 'Real{S21} (V rms)' + self.proc_data_dict['imag_label'] = 'Imag{S21} (V rms)' + if len(self.raw_data_dict['timestamps']) == 1: + self.proc_data_dict['plot_phase'] = np.unwrap( + np.pi/180.*self.proc_data_dict['plot_phase'])*180/np.pi + self.proc_data_dict['plot_xlabel'] = 'Frequency (Hz)' + else: + pass + + def prepare_plots(self): + super(complex_spectroscopy, self).prepare_plots() + proc_data_dict = self.proc_data_dict + plotsize = self.options_dict.get('plotsize') + if len(self.raw_data_dict['timestamps']) == 1: + plot_fn = self.plot_line + self.plot_dicts['amp']['title'] = 'S21 amp: %s' % ( + self.timestamps[0]) + self.plot_dicts['amp']['setlabel'] = 'amp' + self.plot_dicts['phase']['title'] = 'S21 phase: %s' % ( + self.timestamps[0]) + self.plot_dicts['phase']['setlabel'] = 'phase' + self.plot_dicts['real'] = {'plotfn': plot_fn, + 'xvals': proc_data_dict['plot_frequency'], + 'yvals': proc_data_dict['plot_real'], + 'title': 'S21 amp: %s' % (self.timestamps[0]), + 'xlabel': proc_data_dict['freq_label'], + 'ylabel': proc_data_dict['real_label'], + 'yrange': proc_data_dict['amp_range'], + 'plotsize': plotsize + } + self.plot_dicts['imag'] = {'plotfn': plot_fn, + 'xvals': proc_data_dict['plot_frequency'], + 'yvals': proc_data_dict['plot_imag'], + 'title': 'S21 phase: %s' % (self.timestamps[0]), + 'xlabel': proc_data_dict['freq_label'], + 'ylabel': proc_data_dict['imag_label'], + 'yrange': proc_data_dict['amp_range'], + 'plotsize': plotsize + } + pdict_names = ['amp', 'phase', 'real', 'imag'] + + self.figs['combined'], axs = plt.subplots( + nrows=4, ncols=1, sharex=True, figsize=(8, 6)) + + for i, name in enumerate(pdict_names): + combined_name = 'combined_' + name + self.axs[combined_name] = axs[i] + self.plot_dicts[combined_name] = self.plot_dicts[name].copy() + self.plot_dicts[combined_name]['ax_id'] = combined_name + + # shorter label as the axes are now shared + self.plot_dicts[combined_name]['ylabel'] = name + self.plot_dicts[combined_name]['xlabel'] = None if i in [ + 0, 1, 2, 3] else self.plot_dicts[combined_name]['xlabel'] + self.plot_dicts[combined_name]['title'] = None if i in [ + 0, 1, 2, 3] else self.plot_dicts[combined_name]['title'] + self.plot_dicts[combined_name]['touching'] = True + + + else: + raise NotImplementedError('Not coded up yet for multiple traces') + + +class VNA_analysis(complex_spectroscopy): + def __init__(self, t_start, + options_dict=None, + t_stop=None, + do_fitting=False, + extract_only=False, + auto=True): + super(VNA_analysis, self).__init__(t_start, t_stop=t_stop, + options_dict=options_dict, + extract_only=extract_only, + auto=auto, + do_fitting=do_fitting) + + def process_data(self): + super(VNA_analysis, self).process_data() + + def prepare_plots(self): + super(VNA_analysis, self).prepare_plots() + if self.do_fitting: + self.plot_dicts['reso_fit'] = { + 'ax_id': 'amp', + 'plotfn': self.plot_fit, + 'fit_res': self.fit_dicts['reso_fit']['fit_res'], + 'plot_init': self.options_dict['plot_init'], + 'setlabel': 'hanger', + 'line_kws': {'color': 'r'}, + 'do_legend': True} + + def prepare_fitting(self): + # Fitting function for one data trace. The fitted data can be + # either complex, amp(litude) or phase. The fitting models are + # HangerFuncAmplitude, HangerFuncComplex, + # PolyBgHangerFuncAmplitude, SlopedHangerFuncAmplitude, + # SlopedHangerFuncComplex. + fit_options = self.options_dict.get('fit_options', None) + subtract_background = self.options_dict.get( + 'subtract_background', False) + if fit_options is None: + fitting_model = 'hanger' + else: + fitting_model = fit_options['model'] + if subtract_background: + self.do_subtract_background(thres=self.options_dict['background_thres'], + back_dict=self.options_dict['background_dict']) + if fitting_model == 'hanger': + fit_fn = fit_mods.SlopedHangerFuncAmplitude + fit_guess_fn = fit_mods.SlopedHangerFuncAmplitudeGuess + elif fitting_model == 'simple_hanger': + fit_fn = fit_mods.HangerFuncAmplitude + raise NotImplementedError( + 'This functions guess function is not coded up yet') + # TODO HangerFuncAmplitude Guess + elif fitting_model == 'lorentzian': + raise NotImplementedError( + 'This functions guess function is not coded up yet') + fit_fn = fit_mods.Lorentzian + # TODO LorentzianGuess + elif fitting_model == 'complex': + raise NotImplementedError( + 'This functions guess function is not coded up yet') + # hanger_fit = VNA_analysis(self.timestamps, + # do_fitting= True, + # options_dict= {'fit_options': + # {'model':'hanger'}}, + # extract_only= True) + # hanger_fit_res = hanger_fit.fit_dicts['reso_fit']['fit_res'] + # complex_guess = hanger_fit_res.best_values + + # delta_phase = np.unwrap(self.proc_data_dict['plot_phase'])[-1] - / + # np.unwrap(self.proc_data_dict['plot_phase'])[0] + # delta_freq = self.proc_data_dict['plot_frequency'][-1] - / + # self.proc_data_dict['plot_frequency'][0] + # phase_v = delta_phase/delta_freq + # fit_fn = fit_mods.SlopedHangerFuncComplex2 + + # TODO HangerFuncComplexGuess + + if len(self.raw_data_dict['timestamps']) == 1: + if fitting_model == 'complex': + self.fit_dicts['reso_fit'] = {'fit_fn': fit_fn, + 'fit_guess_fn': fit_guess_fn, + 'fit_yvals': {'data': self.proc_data_dict['plot_amp']}, + 'fit_xvals': {'f': self.proc_data_dict['plot_frequency']} + } + else: + self.fit_dicts['reso_fit'] = {'fit_fn': fit_fn, + 'fit_guess_fn': fit_guess_fn, + 'fit_yvals': {'data': self.proc_data_dict['plot_amp']}, + 'fit_xvals': {'f': self.proc_data_dict['plot_frequency']} + } + else: + self.fit_dicts['reso_fit'] = {'fit_fn': fit_fn, + 'fit_guess_fn': fit_guess_fn, + 'fit_yvals': [{'data': np.squeeze(tt)} for tt in self.plot_amp], + 'fit_xvals': np.squeeze([{'f': tt[0]} for tt in self.plot_frequency])} + + def analyze_fit_results(self): + pass + + +class ResonatorSpectroscopy(Spectroscopy): + def __init__(self, t_start, + options_dict=None, + t_stop=None, + do_fitting=False, + extract_only=False, + auto=True): + super(ResonatorSpectroscopy, self).__init__(t_start, t_stop=t_stop, + options_dict=options_dict, + extract_only=extract_only, + auto=False, + do_fitting=do_fitting) + self.do_fitting = do_fitting + self.fitparams_guess = self.options_dict.get('fitparams_guess', {}) + if auto is True: + self.run_analysis() + + def process_data(self): + super(ResonatorSpectroscopy, self).process_data() + self.proc_data_dict['amp_label'] = 'Transmission amplitude (V rms)' + self.proc_data_dict['phase_label'] = 'Transmission phase (degrees)' + if len(self.raw_data_dict['timestamps']) == 1: + self.proc_data_dict['plot_phase'] = np.unwrap( + np.pi/180.*self.proc_data_dict['plot_phase'])*180/np.pi + self.proc_data_dict['plot_xlabel'] = 'Readout Frequency (Hz)' + else: + pass + + def prepare_fitting(self): + # Fitting function for one data trace. The fitted data can be + # either complex, amp(litude) or phase. The fitting models are + # HangerFuncAmplitude, HangerFuncComplex, + # PolyBgHangerFuncAmplitude, SlopedHangerFuncAmplitude, + # SlopedHangerFuncComplex. + fit_options = self.options_dict.get('fit_options', None) + subtract_background = self.options_dict.get( + 'subtract_background', False) + if fit_options is None: + fitting_model = 'hanger' + else: + fitting_model = fit_options['model'] + if subtract_background: + self.do_subtract_background(thres=self.options_dict['background_thres'], + back_dict=self.options_dict['background_dict']) + if fitting_model == 'hanger': + fit_fn = fit_mods.SlopedHangerFuncAmplitude + fit_guess_fn = fit_mods.SlopedHangerFuncAmplitudeGuess + elif fitting_model == 'simple_hanger': + fit_fn = fit_mods.HangerFuncAmplitude + raise NotImplementedError( + 'This functions guess function is not coded up yet') + # TODO HangerFuncAmplitude Guess + elif fitting_model == 'lorentzian': + raise NotImplementedError( + 'This functions guess function is not coded up yet') + fit_fn = fit_mods.Lorentzian + # TODO LorentzianGuess + elif fitting_model == 'complex': + raise NotImplementedError( + 'This functions guess function is not coded up yet') + fit_fn = fit_mods.HangerFuncComplex + # TODO HangerFuncComplexGuess + + if len(self.raw_data_dict['timestamps']) == 1: + self.fit_dicts['reso_fit'] = {'fit_fn': fit_fn, + 'fit_guess_fn': fit_guess_fn, + 'fit_yvals': {'data': self.proc_data_dict['plot_amp']}, + 'fit_xvals': {'f': self.proc_data_dict['plot_frequency']} + } + else: + self.fit_dicts['reso_fit'] = {'fit_fn': fit_fn, + 'fit_guess_fn': fit_guess_fn, + 'fit_yvals': [{'data': np.squeeze(tt)} for tt in self.plot_amp], + 'fit_xvals': np.squeeze([{'f': tt[0]} for tt in self.plot_frequency])} + + def do_subtract_background(self, thres=None, back_dict=None,): + if len(self.raw_data_dict['timestamps']) == 1: + pass + else: + x_filtered = [] + y_filtered = [] + for tt in range(len(self.raw_data_dict['timestamps'])): + y = np.squeeze(self.plot_amp[tt]) + x = np.squeeze(self.plot_frequency)[tt] + # print(self.plot_frequency) + # [print(x.shape) for x in self.plot_frequency] + # print(x) + # print(y) + # print(len(x),len(y)) + guess_dict = SlopedHangerFuncAmplitudeGuess(y, x) + Q = guess_dict['Q']['value'] + f0 = guess_dict['f0']['value'] + df = 2*f0/Q + fmin = f0-df + fmax = f0+df + indices = np.logical_or(x < fmin*1e9, x > fmax*1e9) + x_filtered.append(x[indices]) + y_filtered.append(y[indices]) + self.background = pd.concat([pd.Series(y_filtered[tt], index=x_filtered[tt]) + for tt in range(len(self.raw_data_dict['timestamps']))], axis=1).mean(axis=1) + background_vals = self.background.reset_index().values + freq = background_vals[:, 0] + amp = background_vals[:, 1] + # thres = 0.0065 + indices = amp < thres + freq = freq[indices]*1e-9 + amp = amp[indices] + fit_fn = double_cos_linear_offset + model = lmfit.Model(fit_fn) + fit_yvals = amp + fit_xvals = {'t': freq} + # fit_guess_fn = double_cos_linear_offset_guess + # guess_dict = fit_guess_fn(fit_yvals, **fit_xvals) + for key, val in list(back_dict.items()): + model.set_param_hint(key, **val) + params = model.make_params() + print(fit_xvals) + fit_res = model.fit(fit_yvals, + params=params, + **fit_xvals) + self.background_fit = fit_res + + for tt in range(len(self.raw_data_dict['timestamps'])): + divide_vals = fit_fn(np.squeeze(self.plot_frequency)[ + tt]*1e-9, **fit_res.best_values) + self.plot_amp[tt] = np.array( + [np.array([np.divide(np.squeeze(self.plot_amp[tt]), divide_vals)])]).transpose() + + def prepare_plots(self): + super(ResonatorSpectroscopy, self).prepare_plots() + + def plot_fitting(self): + if self.do_fitting: + for key, fit_dict in self.fit_dicts.items(): + fit_results = fit_dict['fit_res'] + ax = self.axs['amp'] + if len(self.raw_data_dict['timestamps']) == 1: + ax.plot(list(fit_dict['fit_xvals'].values())[ + 0], fit_results.best_fit, 'r-', linewidth=1.5) + textstr = 'f0 = %.5f $\pm$ %.1g GHz' % (fit_results.params['f0'].value, fit_results.params['f0'].stderr) + '\n' \ + 'Q = %.4g $\pm$ %.0g' % (fit_results.params['Q'].value, fit_results.params['Q'].stderr) + '\n' \ + 'Qc = %.4g $\pm$ %.0g' % (fit_results.params['Qc'].value, fit_results.params['Qc'].stderr) + '\n' \ + 'Qi = %.4g $\pm$ %.0g' % ( + fit_results.params['Qi'].value, fit_results.params['Qi'].stderr) + box_props = dict(boxstyle='Square', + facecolor='white', alpha=0.8) + self.box_props = {key: val for key, + val in box_props.items()} + self.box_props.update({'linewidth': 0}) + self.box_props['alpha'] = 0. + ax.text(0.03, 0.95, textstr, transform=ax.transAxes, + verticalalignment='top', bbox=self.box_props) + else: + reso_freqs = [fit_results[tt].params['f0'].value * + 1e9 for tt in range(len(self.raw_data_dict['timestamps']))] + ax.plot(np.squeeze(self.plot_xvals), + reso_freqs, + 'o', + color='m', + markersize=3) + + def plot(self, key_list=None, axs_dict=None, presentation_mode=None, no_label=False): + super(ResonatorSpectroscopy, self).plot(key_list=key_list, + axs_dict=axs_dict, presentation_mode=presentation_mode) + if self.do_fitting: + self.plot_fitting() + + +class ResonatorDacSweep(ResonatorSpectroscopy): + def __init__(self, t_start, + options_dict, + t_stop=None, + do_fitting=True, + extract_only=False, + auto=True): + super(ResonatorDacSweep, self).__init__(t_start, t_stop=t_stop, + options_dict=options_dict, + do_fitting=do_fitting, + extract_only=extract_only, + auto=False) + self.params_dict['dac_value'] = 'IVVI.dac12' + + self.numeric_params = ['freq', 'amp', 'phase', 'dac_value'] + if auto is True: + self.run_analysis() + + def process_data(self): + super(ResonatorDacSweep, self).process_data() + # self.plot_xvals = self.options_dict.get('xvals',np.array([[tt] for tt in range(len(self.raw_data_dict['timestamps']))])) + conversion_factor = self.options_dict.get('conversion_factor', 1) + print(self.raw_data_dict['dac_value']) + # self.plot_xvals = + self.plot_xlabel = self.options_dict.get('xlabel', 'Gate voltage (V)') + self.plot_xwidth = self.options_dict.get('xwidth', None) + for tt in range(len(self.plot_xvals)): + print(self.plot_xvals[tt][0]) + print(self.plot_xvals) + if self.plot_xwidth == 'auto': + x_diff = np.diff(np.ravel(self.plot_xvals)) + dx1 = np.concatenate(([x_diff[0]], x_diff)) + dx2 = np.concatenate((x_diff, [x_diff[-1]])) + self.plot_xwidth = np.minimum(dx1, dx2) + self.plot_frequency = np.array( + [[tt] for tt in self.raw_data_dict['freq']]) + self.plot_phase = np.array( + [[tt] for tt in self.raw_data_dict['phase']]) + self.plot_amp = np.array( + [np.array([tt]).transpose() for tt in self.raw_data_dict['amp']]) From 2f981694f9ee07cf9bc4453eb3dc11ea5fc90fbd Mon Sep 17 00:00:00 2001 From: rvollmer Date: Fri, 13 Apr 2018 13:48:54 +0200 Subject: [PATCH 2/2] Merge changes from thij's branch #455 --- pycqed/analysis_v2/base_analysis.py | 71 ++++++++++++++++++++++------- 1 file changed, 54 insertions(+), 17 deletions(-) diff --git a/pycqed/analysis_v2/base_analysis.py b/pycqed/analysis_v2/base_analysis.py index e7a7fcaaf1..7b1afb7e71 100644 --- a/pycqed/analysis_v2/base_analysis.py +++ b/pycqed/analysis_v2/base_analysis.py @@ -8,7 +8,6 @@ import numbers from matplotlib import pyplot as plt -from matplotlib import cm from pycqed.analysis import analysis_toolbox as a_tools from pycqed.utilities.general import NumpyJsonEncoder from pycqed.analysis.analysis_toolbox import get_color_order as gco @@ -16,8 +15,6 @@ from pycqed.analysis.tools.plotting import set_xlabel, set_ylabel from pycqed.analysis.tools.plotting import ( flex_colormesh_plot_vs_xy, flex_color_plot_vs_x) -# import pycqed.analysis_v2.default_figure_settings_analysis as def_fig -from . import default_figure_settings_analysis as def_fig from mpl_toolkits.axes_grid1 import make_axes_locatable import datetime import json @@ -191,7 +188,10 @@ def run_analysis(self): self.prepare_plots() # specify default plots if not self.extract_only: self.plot(key_list='auto') # make the plots - self.save_figures(close_figs=self.options_dict['close_figs']) + + + if self.options_dict.get('save_figs', False): + self.save_figures(close_figs=self.options_dict.get('close_figs', False)) def get_timestamps(self): """ @@ -306,6 +306,23 @@ def extract_data(self): self.raw_data_dict[ 'measured_values_ord_dict'] = measured_values_dict + def extract_data_json(self): + file_name = self.t_start + with open(file_name, 'r') as f: + raw_data_dict = json.load(f) + # print [[key, type(val[0]), len(val)] for key, val in + # raw_data_dict.items()] + self.raw_data_dict = {} + for key, val in list(raw_data_dict.items()): + if type(val[0]) is dict: + self.raw_data_dict[key] = val[0] + else: + self.raw_data_dict[key] = np.double(val) + # print [[key, type(val), len(val)] for key, val in + # self.raw_data_dict.items()] + self.raw_data_dict['timestamps'] = [self.t_start] + + def process_data(self): """ process_data: overloaded in child classes, @@ -347,14 +364,14 @@ def save_figures(self, savedir: str=None, savebase: str =None, for key in key_list: if self.presentation_mode: savename = os.path.join(savedir, savebase+key+tstag+'presentation'+'.'+fmt) - self.axs[key].figure.savefig(savename, bbox_inches='tight', fmt=fmt) + self.figs[key].savefig(savename, bbox_inches='tight', fmt=fmt) savename = os.path.join(savedir, savebase+key+tstag+'presentation'+'.svg') - self.axs[key].figure.savefig(savename, bbox_inches='tight', fmt='svg') + self.figs[key].savefig(savename, bbox_inches='tight', fmt='svg') else: savename = os.path.join(savedir, savebase+key+tstag+'.'+fmt) - self.axs[key].figure.savefig(savename, bbox_inches='tight', fmt=fmt) + self.figs[key].savefig(savename, bbox_inches='tight', fmt=fmt) if close_figs: - plt.close(self.axs[key].figure) + plt.close(self.figs[key]) def save_data(self, savedir: str=None, savebase: str=None, tag_tstamp: bool=True, @@ -481,7 +498,7 @@ def save_fit_results(self): # Delete the old group and create a new group (overwrite). del analysis_group[fr_key] fr_group = analysis_group.create_group(fr_key) - + # TODO: convert the params object to a simple dict # write_dict_to_hdf5(fit_res.params, entry_point=fr_group) write_dict_to_hdf5(fit_res.best_values, entry_point=fr_group) @@ -521,7 +538,8 @@ def plot(self, key_list=None, axs_dict=None, pdict.get('numplotsy', 1), pdict.get('numplotsx', 1), sharex=pdict.get('sharex', False), sharey=pdict.get('sharey', False), - figsize=pdict.get('plotsize', None)) # (8, 6))) + figsize=pdict.get('plotsize', None) #plotsize None uses .rc_default of matplotlib + ) # transparent background around axes for presenting data self.figs[pdict['ax_id']].patch.set_alpha(0) @@ -531,10 +549,20 @@ def plot(self, key_list=None, axs_dict=None, else: for key in key_list: pdict = self.plot_dicts[key] + + plot_id_y = pdict.get('plot_id_y', None) + plot_id_x = pdict.get('plot_id_x', None) + plot_touching = pdict.get('touching', False) + if type(pdict['plotfn']) is str: plotfn = getattr(self, pdict['plotfn']) else: plotfn = pdict['plotfn'] + + # used to ensure axes are touching + if plot_touching: + self.axs[pdict['ax_id']].figure.subplots_adjust(wspace=0, hspace=0) + # ensures the argument convention is preserved if hasattr(self, plotfn.__name__): plotfn(pdict, axs=self.axs[pdict['ax_id']]) @@ -584,6 +612,7 @@ def plot_bar(self, pdict, axs): dataset_desc = pdict.get('setdesc', '') dataset_label = pdict.get('setlabel', list(range(len(plot_yvals)))) do_legend = pdict.get('do_legend', False) + plot_touching = pdict.get('touching', False) plot_xwidth = (plot_xedges[1:]-plot_xedges[:-1]) # center is left edge + widht /2 @@ -594,8 +623,7 @@ def plot_bar(self, pdict, axs): for ii, this_yvals in enumerate(plot_yvals): p_out.append(pfunc(plot_centers, this_yvals, width=plot_xwidth, color=gco(ii, len(plot_yvals)-1), - label='%s%s' % ( - dataset_desc, dataset_label[ii]), + label='%s%s' % (dataset_desc, dataset_label[ii]), **plot_barkws)) else: @@ -624,6 +652,9 @@ def plot_bar(self, pdict, axs): legend_pos = pdict.get('legend_pos', 'best') axs.legend(title=legend_title, loc=legend_pos, ncol=legend_ncol) + if plot_touching: + axs.figure.subplots_adjust(wspace=0, hspace=0) + if self.tight_fig: axs.figure.tight_layout() @@ -924,7 +955,7 @@ def plot_color2D(self, pfunc, pdict, axs): clim=fig_clim, cmap=plot_cmap, xvals=traces['xvals'][tt], yvals=traces['yvals'][tt], - zvals=traces['zvals'][tt], # .transpose(), + zvals=traces['zvals'][tt], transpose=plot_transpose, normalize=plot_normalize) @@ -946,10 +977,16 @@ def plot_color2D(self, pfunc, pdict, axs): if plot_yrange is None: if plot_xwidth is not None: - ymin, ymax = min([min(yvals[0]) - for tt, yvals in enumerate(plot_yvals)]), \ - max([max(yvals[0]) - for tt, yvals in enumerate(plot_yvals)]) + ymin_list, ymax_list = [], [] + for ytraces in block['yvals']: + ymin_trace, ymax_trace = [], [] + for yvals in ytraces: + ymin_trace.append(min(yvals)) + ymax_trace.append(max(yvals)) + ymin_list.append(min(ymin_trace)) + ymax_list.append(max(ymax_trace)) + ymin = min(ymin_list) + ymax = max(ymax_list) else: ymin = np.min(plot_yvals) - plot_yvals_step / 2. ymax = np.max(plot_yvals) + plot_yvals_step/2.