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Abstract 
Application designers must decide whether to store 

large objects (BLOBs) in a filesystem or in a database.  

Generally, this decision is based on factors such as 

application simplicity or manageability.  Often, system 

performance affects these factors. 

Folklore tells us that databases efficiently handle 

large numbers of small objects, while filesystems are 

more efficient for large objects.  Where is the 

break-even point?  When is accessing a BLOB stored 

as a file cheaper than accessing a BLOB stored as a 

database record? 

Of course, this depends on the particular 

filesystem, database system, and workload in question.  

This study shows that when comparing the NTFS file 

system and SQL Server 2005 database system on a 
create, {read, replace}* delete 

workload, BLOBs smaller than 256KB are more 

efficiently handled by SQL Server, while NTFS is 

more efficient BLOBS larger than 1MB.  Of course, 

this break-even point will vary among different 

database systems, filesystems, and workloads. 

By measuring the performance of a storage server 

workload typical of web applications which use get/put 

protocols such as WebDAV [WebDAV], we found that 

the break-even point depends on many factors.  

However, our experiments suggest that storage age, the 

ratio of bytes in deleted or replaced objects to bytes in 

live objects, is dominant.  As storage age increases, 

fragmentation tends to increase.  The filesystem we 

study has better fragmentation control than the 

database we used, suggesting the database system 

would benefit from incorporating ideas from filesystem 

architecture.  Conversely, filesystem performance may 

be improved by using database techniques to handle 

small files.   

Surprisingly, for these studies, when average 

object size is held constant, the distribution of object 

sizes did not significantly affect performance.  We also 

found that, in addition to low percentage free space, a 

low ratio of free space to average object size leads to 

fragmentation and performance degradation. 

1. Introduction 
Application data objects are getting larger as digital 

media becomes ubiquitous.  Furthermore, the 

increasing popularity of web services and other 

network applications means that systems that once 

managed static archives of “finished” objects now 

manage frequently modified versions of application 

data as it is being created and updated.  Rather than 

updating these objects, the archive either stores 

multiple versions of the objects (the V of WebDAV 

stands for “versioning”), or simply does wholesale 

replacement (as in SharePoint Team Services 

[SharePoint]). 

Application designers have the choice of storing 

large objects as files in the filesystem, as BLOBs 

(binary large objects) in a database, or as a 

combination of both. Only folklore is available 

regarding the tradeoffs – often the design decision is 

based on which technology the designer knows best.  

Most designers will tell you that a database is probably 

best for small binary objects and that that files are best 

for large objects. But, what is the break-even point?  

What are the tradeoffs? 

This article characterizes the performance of an 

abstracted write-intensive web application that deals 

with relatively large objects. Two versions of the 

system are compared; one uses a relational database to 

store large objects, while the other version stores the 

objects as files in the filesystem.  We measure how 

performance changes over time as the storage becomes 

fragmented. The article concludes by describing and 

quantifying the factors that a designer should consider 

when picking a storage system.  It also suggests 

filesystem and database improvements for large object 

support. 

One surprising (to us at least) conclusion of our 

work is that storage fragmentation is the main 

determinant of the break-even point in the tradeoff.  

Therefore, much of our work and much of this article 

focuses on storage fragmentation issues.  In essence, 

filesystems seem to have better fragmentation handling 

than databases and this drives the break-even point 

down from about 1MB to about 256KB.  
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2. Background 

2.1. Fragmentation  

Filesystems have long used sophisticated allocation 

strategies to avoid fragmentation while laying out 

objects on disk.  For example, OS/360’s filesystem was 

extent based and clustered extents to improve access 

time.  The VMS filesystem included similar 

optimizations and provided a file attribute that allowed 

users to request a (best effort) contiguous layout 

[McCoy, Goldstein]. Berkeley FFS [McKusick] was an 

early UNIX filesystem that took sequential access, seek 

performance and other hardware characteristics into 

account when laying data out on disk.  Subsequent 

filesystems were built with similar goals in mind.  

The filesystem used in these experiments, NTFS, 

uses a ‘banded’ allocation strategy for metadata, but 

not for file contents [NTFS]. NTFS allocates space for 

file stream data from a run-based lookup cache. Runs 

of contiguous free clusters are ordered in decreasing 

size and volume offset. NTFS attempts to satisfy a new 

space allocation from the outer band. If that fails, large 

extents within the free space cache are used. If that 

fails, the file is fragmented. Additionally, when a file is 

deleted, the allocated space cannot be reused 

immediately; the NTFS transactional log entry must be 

committed before the freed space can be reallocated. 

The net behavior is that file stream data tends to be 

allocated contiguously within a file.  

In contrast, database systems began to support 

large objects more recently [BLOB, DeWitt].  

Databases historically focused on small (100 byte) 

records and on clustering tuples within the same table.  

Clustered indexes let users control the order in which 

tuples are stored, allowing common queries to be 

serviced with a sequential scan over the data. 

Filesystems and databases take different 

approaches to modifying an existing object.  

Filesystems are optimized for appending or truncating 

a file. In-place file updates are efficient, but when data 

are inserted or deleted in the middle of a file, all 

contents after the modification must be completely 

rewritten. Some databases completely rewrite modified 

BLOBS; this rewrite is transparent to the application. 

Others, such as SQL Server, adopt the Exodus design 

that supports efficient insertion or deletion within an 

object by using B-Tree based storage of large objects 

[DeWitt]. 

IBM DB2’s DataLinks
TM

 technology stores 

BLOBs in the filesystem, and uses the database as an 

associative index of the file metadata [Bhattacharya].  

Their files are updated atomically using a mechanism 

similar to old-master, new-master safe writes (Section 

2.2). 

To ameliorate the fact that the database poorly 

handles large fragmented objects, the application could 

do its own de-fragmentation or garbage collection.  

Some applications simply store each object directly in 

the database as a single BLOB, or as a single file in a 

filesystem.  However, in order to efficiently service 

user requests, other applications use more complex 

allocation strategies.  For instance, objects may be 

partitioned into many smaller chunks stored as 

BLOBS.  Video streams are often “chunked” in this 

way. Alternately, smaller objects may be aggregated 

into a single BLOB or file – for example TAR, ZIP, or 

CAB files.   

2.2. Safe writes 

This study only considers applications that insert, 

replace or delete entire objects. In the replacement 

case, the application creates a new version and then 

deletes the original.  Such applications do not force the 

storage system to understand their data’s structure, 

trading opportunities for optimization for simplicity 

and robustness.  Even this simple update policy is not 

entirely straightforward.  This section describes 

mechanisms that safely update entire objects at once. 

Most filesystems protect internal metadata 

structures (such as directories and filenames) from 

corruption due to dirty shutdowns (such as system 

crashes and power outages). However, there is no such 

guarantee for file contents. In particular, filesystems 

and the operating system below them reorder write 

requests to improve performance. Only some of those 

requests may complete at dirty shutdown. 

As a result, many desktop applications use a 

technique called a “safe write” to achieve the property 

that, after a dirty shutdown, the file contents are either 

new or old, but not a mix of old and new. While 

safe-writes ensure that an old file is robustly replaced, 

they also force a complete copy of the file to disk even 

if most of the file contents are unchanged. 

To perform a safe write, a new version of the file 

is created with a temporary name.  Next, the new data 

is written to the temporary file and those writes are 

flushed to disk. Finally, the new file is renamed to the 

permanent file name, thereby deleting the file with the 

older data.  Under UNIX, rename() is guaranteed to 

atomically overwrite the old version of the file. Under 

Windows, the ReplaceFile() call is used to atomically 

replace one file with another.  

In contrast, databases typically offer transactional 

updates, which allow applications to group many 

changes into a single atomic unit called a transaction. 

Complete transactions are applied to the database 

atomically regardless of system dirty shutdown, 

database crash, or application crashes. Therefore, 

applications may safely update their data in whatever 

manner is most convenient.  Depending on the database 
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implementation and the nature of the update, it can be 

more efficient to update a small portion of the BLOB 

instead of overwriting it completely. 

The database guarantees transactional semantics 

by logging both metadata and data changes throughout 

a transaction. Once the appropriate log records have 

been flushed to disk, the associated changes to the 

database are guaranteed to complete—the write-ahead-

log protocol. The log is written sequentially, and 

subsequent database disk writes can be reordered to 

minimize seeks.  Log entries for each change must be 

written; but the database writes can be coalesced.  

Logging all data and metadata guarantees 

correctness at the cost of writing all data twice—once 

to the database and once to the log. With large data 

objects, this can put the database at a noticeable 

performance disadvantage. The sequential write to the 

database log is roughly equivalent to the sequential 

write to a file. The additional write to the database 

pages will form an additional sequential write if all 

database pages are contiguous or many seek-intensive 

writes if the pages are not located near each other. 

Large objects also fill the log causing the need for 

more frequent log truncation and checkpoint, which 

reduces opportunities to reorder and combine page 

modifications. 

We exploited the bulk-logged option of SQL 

Server to ameliorate this penalty.  Bulk-logged is a 

special case for BLOB allocation and de-allocation – it 

does not log the initial writes to BLOBs and their final 

deletes; rather it just logs the meta-data changes (the 

allocation or de-allocation information).  Then when 

the transaction commits the BLOB changes are 

committed.  This supports transaction UNDO and 

supports warm restart, but it does not support media 

recovery (there is no second-copy of the BLOB data in 

the log) – it is little-D ACId rather than big-D ACID. 

2.3. Dealing with Media Failures 

Databases and filesystems both provide transactional 

updates to object metadata. When the bulk-logged SQL 

option is used, both kinds of systems write the large 

object data once. However, database systems guarantee 

that large object data are updated atomically across 

system or application outages.  However, neither 

protects against media failures. 

Media failure detection, protection, and repair 

mechanisms are often built into large-scale web 

services. Such services are typically supported by very 

large, heterogeneous networks built from low cost, 

unreliable components. Hardware faults and 

application errors that silently corrupt data are not 

uncommon. Applications deployed on such systems 

must regularly check for and recover from corrupted 

application data.  When corruption is detected, intact 

versions of the affected data can be copied from a valid 

replica.   

This study does not consider the overhead of 

detecting and correcting silent data corruption and 

media failures.  These overheads are comparable for 

the both file and database systems. 

3. Prior work 
While filesystem fragmentation has been studied 

within numerous contexts in the past, we were 

surprised to find relatively few systematic 

investigations.  There is common folklore passed by 

word of mouth between application and system 

designers. A number of performance benchmarks are 

impacted by fragmentation, but these do not measure 

fragmentation per se. There are algorithms used for 

space allocation by database and filesystem designers.  

We found very little hard data on the actual 

performance of fragmented storage. Moreover, recent 

changes in application workloads, hardware models, 

and the increasing popularity of database systems for 

the storage of large objects present workloads not 

covered by existing studies. 

3.1. Folklore 

There is a wealth of anecdotal experience with 

applications that use large objects. The prevailing 

wisdom is that databases are better for small objects 

while filesystems are better for large objects. The 

boundary between small and large is usually a bit 

fuzzy.  The usual reasoning is:   

• Database queries are faster than file opens. The 

overhead of opening a file handle dominates 

performance when dealing with small objects.  

• Reading or writing large files is faster than 

accessing large database BLOBS. Filesystems are 

optimized for streaming large objects.  

• Database client interfaces aren’t good with large 

objects. Remote database client interfaces such as 

MDAC have historically been optimized for short 

low latency requests returning small amounts of 

data.  

• File opens are CPU expensive, but can be easily 

amortized over cost of streaming large objects.  

None of the above points address the question of 

application complexity. Applications that store large 

objects in the filesystem encounter the question of how 

to keep the database object metadata and the filesystem 

object data synchronized. A common problem is the 

garbage collection of files that have been “deleted” in 

the database but not the filesystem.  

Also missing are operational issues such as 

replication, backup, disaster recovery, and 

fragmentation.  
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3.2. Standard Benchmarks 

While many filesystem benchmarking tools exist, most 

consider the performance of clean filesystems, and do 

not evaluate long-term performance as the storage 

system ages and fragments. Using simple clean initial 

conditions eliminates potential variation in results 

caused by different initial conditions and reduces the 

need for settling time to allow the system to reach 

equilibrium. 

Several long-term filesystem performance studies 

have been performed based upon two general 

approaches [Seltzer].  The first approach, trace based 

load generation, uses data gathered from production 

systems over a long period.  The second approach,  and 

the one we adopt for our study, is vector based load 

generation that models application behavior as a list of 

primitives (the ‘vector’), and randomly applies each 

primitive to the filesystem with the frequency a real 

application would apply the primitive to the system.  

NetBench [NetBench] is the most common 

Windows file server benchmark. It measures the 

performance of a file server accessed by multiple 

clients.  NetBench generates workloads typical of 

office applications.  

SPC-2 benchmarks storage system applications 

that read and write large files in place, execute large 

read-only database queries, or provide read-only 

on-demand access to video files [SPC]. 

The Transaction Processing Performance Council 

[TPC] have defined several benchmark suites to 

characterize online transaction processing workloads 

and also decision support workloads.  However, these 

benchmarks do not capture the task of managing large 

objects or multimedia databases.  

None of these benchmarks consider file 

fragmentation.  

3.3. Data layout mechanisms 

Different systems take surprisingly different 

approaches to the fragmentation problem.   

The creators of FFS observed that for typical 

workloads of the time, fragmentation avoiding 

allocation algorithms kept fragmentation under control 

as long as volumes were kept under 90% full [Smith].  

UNIX variants still reserve a certain amount of free 

space on the drive, both for disaster recovery and in 

order to prevent excess fragmentation.  

NTFS disk occupancy on deployed Windows 

systems varies widely. System administrators’ target 

disk occupancy may be as low as 60% or over 90% 

[NTFS]. On NT 4.0, the in-box defragmentation utility 

was known to have difficulties running when the 

occupancy was greater than 75%. This limitation was 

addressed in subsequent releases. By Windows 2003 

SP1, the utility included support for defragmentation of 

system files and attempted partial file defragmentation 

when full defragmentation is not possible.   

LFS [Rosenblum], a log based filesystem, 

optimizes for write performance by organizing data on 

disk according to the chronological order of the write 

requests.  This allows it to service write requests 

sequentially, but causes severe fragmentation when 

files are updated randomly.  A cleaner that 

simultaneously defragments the disk and reclaims 

deleted file space can partially address this problem.  

Network Appliance’s WAFL (“Write Anywhere 

File Layout”) [Hitz] is able to switch between 

conventional and write-optimized file layouts 

depending on workload conditions.  WAFL also 

leverages NVRAM caching for efficiency and provides 

access to snapshots of older versions of the filesystem 

contents. Rather than a direct copy-on-write of the 

data, WAFL metadata remaps the file blocks. A 

defragmentation utility is supported, but is said not to 

be needed until disk occupancy exceeds 90+%.   

GFS [Ghemawat], a filesystem designed to deal 

with multi-gigabyte files on 100+ terabyte volumes, 

partially addresses the data layout problem by using 

64MB blocks called ‘chunks’.  GFS also provides a 

safe record append operation that allows many clients 

to simultaneously append to the same file, reducing the 

number of files (and opportunities for fragmentation) 

exposed to the underlying filesystem.  GFS records 

may not span chunks, which can result in internal 

fragmentation.  If the application attempts to append a 

record that will not fit into the end of the current 

chunk, that chunk is zero padded, and the new record is 

allocated at the beginning of a new chunk.  Records are 

constrained to be less than ¼ the chunk size to prevent 

excessive internal fragmentation.  However, GFS does 

not explicitly attempt to address fragmentation 

introduced by the underlying filesystem, or to reduce 

internal fragmentation after records are allocated. 

4. Comparing Files and 
BLOBs 
This study is primarily concerned with the deployment 

and performance of data-intensive web services.  

Therefore, we opted for a simple vector based 

workload typical of existing web applications, such as 

WebDAV applications, SharePoint, Hotmail, flickr, 

and MSN spaces. These sites allow sharing of objects 

that range from small text mail messages (100s of 

bytes) to photographs (100s of KB to a few MB) to 

video (100s of MBs.)   

The workload also corresponds to collaboration 

applications such as SharePoint Team Services 

[SharePoint]. These applications enable rich document 

sharing semantics, rather than simple file shares. 
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Examples of the extra semantics include document 

versioning, content indexing and search, and rich 

role-based authorization.  

Many of these sites and applications use a database 

to hold the application specific metadata including that 

which describes the large objects. Large objects may be 

stored in the database, in the filesystem, or distributed 

between the database and the filesystem. We consider 

only the first two options here. We also did not include 

any shredding or chunking of the objects.  

4.1. Test System Configuration 

All the tests were performed on the system described in 

Table 1:  All test code was written using C# in Visual 

Studio 2005 Beta 2.  All binaries used to generate tests 

were compiled to x86 code with debugging disabled.  

4.2. File based storage 

For the filesystem based storage tests, we stored 

metadata such as object names and replica locations in 

SQL server tables. Each application object was stored 

in its own file.  The files were placed in a single 

directory on an otherwise empty NTFS volume.  SQL 

was given a dedicated log and data drive, and the 

NTFS volume was accessed via an SMB share.   

We considered a purely file-based approach, but 

such a system would need to implement complex 

recovery routines, would lack support for consistent 

metadata, and would not provide functionality 

comparable to the systems mentioned above. 

This partitioning of tasks between a database and 

filesystem is fairly flexible, and allows a number of 

replication and load balancing schemes. For example, a 

single clustered SQL server could be associated with 

several file servers. Alternately, the SQL server could 

be co-located with the associated files and then the 

combination clustered. The database isolates the client 

from changes in the architecture – changing the pointer 

in the database changes the path returned to the client.   

We chose to measure the configuration with the 

database co-located with the associated files. This 

single machine configuration kept our experiments 

simple and avoids building assumptions and 

dependencies on the network layout into the study. 

However, we structured all code to use the same 

interfaces and services as a networked configuration. 

4.3. Database storage 

The database storage tests were designed to be as 

similar to the filesystem tests as possible.  As explained 

previously, we used bulk-logging mode. We also used 

out-of-row storage for the BLOB data so that the 

BLOBS did not decluster the metadata. 

For simplicity, we did not create the table with the 

option TEXTIMAGE ON filegroup, which would 

store BLOBS in a separate filegroup.  Although the 

BLOB data and table information are stored in the 

same file group, out-of-row storage places BLOB data 

on pages that are distinct from the pages that store the 

other table fields.  This allows the table data to be kept 

in cache even if the BLOB data does not fit in main 

memory.  Analogous table schemas and indices were 

used and only minimal changes were made to the 

software that performed the tests.  

4.4. Performance tuning 

We set out to fairly evaluate the out-of-the-box 

performance of the two storage systems.  Therefore, we 

did no performance tuning except in cases where the 

default settings introduced gross discrepancies in the 

functionality that the two systems provided. 

We found that NTFS’s file allocation routines 

behave differently when the number of bytes per file 

write (append) is varied.  We did not preset the file 

size; as such NTFS attempts to allocate space as 

needed.  When NTFS detects large, sequential appends 

to the end of a file its allocation routines aggressively 

attempt to allocate contiguous space.  Therefore, as the 

disk gets full, smaller writes are likely to lead to more 

fragmentation.  While NTFS supports setting the valid 

data length of a file, this operation incurs the write 

overhead of zero filling the file, so it is not of interest 

here [NTFS]. Because the behavior of the allocation 

routines depends on the size of the write requests, we 

use a 64K write buffer for all database and filesystem 

runs.  The files were accessed (read and written) 

sequentially.  We made no attempt to pass hints 

regarding final object sizes to NTFS or SQL Server. 

4.5. Workload generation 

Real world workloads have many properties that are 

difficult to model without application specific 

information such as object size distributions, workload 

characteristics, or application traces.  

However, the applications of interest are extremely 

simple from a storage replica’s point of view. Over 

time, a series of object allocation, deletion, and 

safe-write updates are processed with interleaved read 

requests. 

For simplicity, we assumed that all objects are 

equally likely to be written and/or read. We also 

assumed that there is no correlation between objects. 

Table 1: Configurations of the test systems 

Tyan S2882 K8S Motherboard,  

1.8 Ghz Opteron 244, 2 GB RAM (ECC) 

SuperMicro “Marvell”  MV8 SATA controller 

4 Seagate 400GB ST3400832AS 7200 rpm SATA  

Windows Server 2003 R2 Beta (32 bit mode). 

SQL Server 2005 Beta 2 (32 bit mode).  
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This lets us measure the performance of write-only and 

read-only workloads.   

We measured constant size objects rather than 

objects with more complicated size distributions. We 

expected that size distribution would be an important 

factor in our experiments. As shown later, we found 

that size distribution had no obvious effect on the 

behavior. Given that, we chose the very simple 

constant size distribution. 

Before continuing, we should note that synthetic 

load generation has led to misleading results in the 

past.  We believe that this is less of an issue with the 

applications we study, as random storage partitioning 

and other load balancing techniques remove much of 

the structure from application workloads.  However, 

our results should be validated by comparing them to 

results from a trace-based benchmark.  At any rate, 

fragmentation benchmarks that rely on traces are of 

little use before an application has been deployed, so 

synthetic workloads may be the best tool available to 

web service designers.  

4.6. Storage age 

We want to characterize the behavior of storage 

systems over time. Past fragmentation studies measure 

age in elapsed time such as ‘days’ or ‘months.’ We 

propose a new metric, storage age, which is the ratio of 

bytes in objects that once existed on a volume to the 

number of bytes in use on the volume.  This definition 

of storage age assumes that the amount of free space on 

a volume is relatively constant over time.  This 

measurement is similar to measurements of heap age 

for memory allocators, which frequently measure time 

in “bytes allocated,” or “allocation events.” 

For a safe-write system storage age is the ratio of 

object insert-update-delete bytes over the number of 

total object bytes.  When evaluating a single node 

system using trace-based data, storage age has a simple 

intuitive interpretation.   

A synthetic workload effectively speeds up 

application elapsed time. Our workload is disk arm 

limited; we did not include extra think time or 

processor overheads. The speed up is application 

specific and depends on the actual application 

read:write ratio and heat.  

We considered reporting time in “hours under 

load”. Doing so has the undesirable property of 

rewarding slow storage systems by allowing them to 

perform less work during the test.   

In our experimental setup, storage age is 

equivalent to “safe writes per object.” This metric is 

independent of the actual applied read:write load or the 

number of requests over time. Storage ages can be 

compared across hardware configurations and 

applications.  Finally, it is easy to convert storage age 

to elapsed wall clock time after the rate of data churn, 

or overwrite rate, of a specific system is determined.   

5. Results 
Our results use throughput as the primary indicator of 

performance. We started with the typical 

out-of-the-box throughput study. We then looked at the 

longer term changes caused by fragmentation with a 

focus on 256K to 1M object sizes where the filesystem 

and database have comparable performance.  Lastly, 

we discuss the effects of volume size and object size on 

our measurements. 

5.1. Database or Filesystem:  Throughput 
out-of-the-box 

We begin by establishing when a database is clearly the 

right answer and when the filesystem is clearly the 

right answer.   

Following the lead of existing benchmarks, we 

evaluated the read performance of the two systems on a 

clean data store. Figure 1 demonstrates the truth of the 

folklore: objects up to about 1MB are best stored as  

database BLOBS.  Performance of SQL reads for 

objects of 256KB was 2x better than NTFS; but the 

systems had parity at 1MB objects.  With 10MB 

objects, NTFS outperformed SQL Server.   

The write throughput of SQL Server exceeded that 

of NTFS during bulk load. With 512KB objects, 

database write throughput was 17.7MB/s, while the 

filesystem only achieved 10.1MB/s.  

5.2 Database or Filesystem over time 

Next, we evaluated the performance of the two systems 

on large objects over time. If fragmentation is 

important, we expect to see noticeable performance 

degradation.   

Our first discovery was that SQL Server does not 
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Figure 1: Read throughput immediately after bulk 

loading the data. Databases are fastest on small 

objects. As object size increases, NTFS throughput 

improves faster than SQL Server throughput. 
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provide facilities to report fragmentation of large object 

data or to defragment such data. While there are 

measurements and mechanisms for index 

defragmentation, the recommended way to defragment 

a large BLOB table is to create a new table in a new 

file group, copy the old records to the new table and 

drop the old table [SQL].  

To measure fragmentation, we tagged each of our 

objects with a unique identifier and a sequence number 

at 1KB intervals.  We also implemented a utility that 

looks for the locations of these markers on a raw 

device in a way that is robust to page headers and other 

artifacts of the storage system.  In other words, the 

utility measures fragmentation in the same way 

regardless of whether the objects are stored in the 

filesystem or the database.  We ran our utility against 

an NTFS volume to check that it reported figures that 

agreed with the NTFS fragmentation report.  

The degradation in read performance for 256K, 

512K, and 1MB BLOBS is shown in Figure 2. Each 

storage age (2 and 4) corresponds to the time necessary 

for the number of updates, inserts, or deletes to be N 

times the number of objects in our store since the bulk 

load (storage age 0) shown in Figure 1.  Fragmentation 

under NTFS begins to level off over time. SQL 

Server’s fragmentation increases almost linearly over 

time and does not seem to be approaching any 

asymptote.  This is dramatically the case with very 

large (10MB) objects as seen in Figure 3. 

We also ran our load generator against an 

artificially and pathologically fragmented NTFS 

volume. We found that fragmentation slowly decreased 

over time. The best-effort attempt to allocate 

contiguous space actually defragments such volumes. 

This suggests that NTFS is indeed approaching an 

asymptote in Figure 3. 

Figure 4 shows the degradation in write 

performance as storage age increases.  In both database 

and filesystems, the write throughput during bulk load 

is much better than read throughput immediately 

afterward.  This is not surprising, as the storage 

systems can simply append each new file to the end of 

allocated storage, avoiding seeks during bulk load.  On 

the other hand, the read requests are randomized, incur 

the overhead of at least one seek.  After bulk load, the 

write performance of SQL Server degrades quickly, 

while the NTFS write performance numbers are 

slightly better than its read performance.   
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Figure 2: Fragmentation causes read performance 

to degrade over time. The filesystem is less 

affected by this than SQL Server.  Over time 

NTFS outperforms SQL Server when objects are 

larger than 256KB.  

Long Term Fragmentation With 10 MB Objects
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Figure 3:  For large objects, NTFS deals with 

fragmentation more effectively than SQL server.  

“Storage Age” is the average number of times 

each object has been replaced with a newer 

version.   An object in a contiguous region on disk 

has 1 fragment. 
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Figure 4: Although SQL Server quickly fills a 

volume with data, performance suffers when 
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Note that these write performance numbers are not 

directly comparable to the read performance numbers 

in Figures 1 and 2. Read performance is measured after 

fragmentation, while write performance is the average 

performance during fragmentation.  To be clear, the 

“storage age four” write performance is the average 

write throughput between the read measurements 

labeled “bulk load” and “storage age two.”  Similarly, 

the reported write performance for storage age four 

reflects average write performance between storage 

ages two and four.  

The results so far indicate that as storage age 

increases, the parity point where filesystems and 

databases have comparable performance declines from 

1MB to 256KB.  Objects up to about 256KB are best 

kept in the database; larger objects should be in the 

filesystem.  

To verify this, we attempted to run both systems 

until the performance reached a steady state.  

Figure 5 indicates that fragmentation converges to 

four fragments per file, or one fragment per 64KB, in 

both the filesystem and database.  This is interesting 

because our tests use 64KB write requests, again 

suggesting that the impact of write block size upon 

fragmentation warrants further study.  From this data, 

we conclude that SQL Server indeed outperforms 

NTFS on objects under 256KB, as indicated by 

Figures 2 and 4. 

5.3. Fragmentation effects of object size, 
volume capacity, and write request size 

Distributions of object size vary greatly from 

application to application. Similarly, applications are 

deployed on storage volumes of widely varying size 

particularly as disk capacity continues to increase.   

This series of tests generated objects using a 

constant size distribution and compared performance 

when the sizes were uniformly distributed.  Both sets 

of objects had a mean size of 10MB.  

Intuition suggested that constant size objects 

should not lead to fragmentation. Deleting an initially 

contiguous object leaves a region of contiguous free 

space exactly the right size for any new object. As 

shown in Figure 6, our intuition was wrong.  

As long as the average object size is held constant 

there is little difference between uniformly distributed 

and constant sized objects. This suggests that 

experiments that use extremely simple size 

distributions can be representative of many different 

workloads.  This contradicts the approach taken by 

prior storage benchmarks that make use of complex, 

accurate modeling of application workloads.  This may 

well be due to the simple all-or-nothing access pattern 

that avoids object extension and truncation, and our 

assumption that application code has not been carefully 

tuned to match the underlying storage system.  

The time it takes to run the experiments is 

proportional to the volume’s capacity.  When the entire 

disk capacity (400GB) is used, some experiments take 

a week to complete.  Using a smaller (although perhaps 

unrealistic) volume size, allows more experiments; but 

how trustworthy are the results?  

As shown in Figure 7, we found that volume size 

does not really affect performance for larger volume 

sizes.  However, on smaller volumes, we found that as 

the ratio of free space to object size decreases, 

performance degrades.   
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Figure 5: For small objects, the systems have 

similar fragmentation behavior. 
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Figure 6: Fragmentation for large (10MB) BLOBS 

– increases slowly for NTFS but rapidly for SQL. 

However objects of a constant size show no better 

fragmentation performance than objects of sizes 

chosen uniformly at random with the same 

average size.  
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We did not characterize the exact point where this 

becomes a significant issue. However, our results 

suggest that the effect is negligible when there is 10% 

free space on a 40GB volume storing 10MB objects, 

which implies a pool of 400 free objects.  With a 4GB 

volume with a pool of 40 free objects, performance 

degraded rapidly. 

While these findings hold for the SQL Server and 

NTFS allocation policies, they probably do not hold for 

all current production systems.   Characterizing other 

allocation policies is beyond the scope of this work. 

6. Implications for system 
designers  
This article has already mentioned several issues that 

should be considered during application design. 

Designers should provision at least 10% excess storage 

capacity to allow each volume to maintain free space 

for many (~400 in our experiment) free objects.  If the 

volume is large enough, the percentage free space 

becomes a limiting factor.  For NTFS, we can see this 

in Figure 7, where the performance of a 97.5% full 

400GB volume is worse than the performance of a 90% 

full 40GB volume.  (A 99% full 400GB volume would 

have the same number of free objects as the 40GB 

volume.) 

While we did not carefully characterize the impact 

of application allocation routines upon the allocation 

strategy used by the underlying storage system, we did 

observe significant differences in behavior as we varied 

the write buffer size.  Experimentation with different 

buffer sizes or other techniques that avoid incremental 

allocation of storage may significantly improve long 

run storage performance. This also suggests that 

filesystem designers should re-evaluate what is a 

“large” request and be more aggressive about 

coalescing larger sequential requests.  

Simple procedures such as manipulating write 

size, increasing the amount of free space, and 

performing periodic defragmentation can improve the 

performance of a system.  When dealing with an 

existing system, tuning these parameters may be 

preferable to switching from database to filesystem 

storage, or vice versa.   

When designing a new system, it is important to 

consider the behavior of a system over time instead of 

looking only the performance of a clean system.  If 

fragmentation is a significant concern, the system must 

be defragmented regularly. Defragmentation of a 

filesystem implies significant read/write impacts or 

application logic to garbage collect and reinstantiate a 

volume. Defragmentation of a database requires 

explicit application logic to copy existing BLOBS into 

a new table.  To avoid causing still more 

fragmentation, that logic must be run only when ample 

free space is available.  A good database 

defragmentation utility (or at least good automation of 

the above logic including space estimation required) 

would clearly help system administrators.  

Using storage age to measure time aids in the 

comparison of different designs.  In this study we use 

“safe-writes per object” as a measurement of storage 

age.  In other applications, appends per object or some 

combination of create/append/deletes may be more 

appropriate.  

For the synthetic workload presented above, NFTS 

based storage works well for objects larger than 

256KB. A better database BLOB implementation 

would change this. At a minimum, the database should 

report fragmentation. An in-place defragmentation 
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Figure 7: Fragmentation for 40GB and 400GB 

volumes.  Other than the 50% full filesystem run, 

volume size has little impact on fragmentation.  
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utility would be helpful. To support incremental object 

modification rather than the full rewrite considered 

here, a more flexible B-Tree based BLOB storage 

algorithm that optimizes insertion and deletion of 

arbitrary data ranges within objects would be 

advantageous.  

7. Conclusions 
The results presented here predict the performance of a 

class of storage workloads, and reveal a number of 

previously unknown factors in the importance of 

storage fragmentation.  They describe a simple 

methodology that can measure the performance of 

other applications that perform a limited number of 

storage create, read, update, write, and delete 

operations.   

The study indicates that if objects are larger than 

one megabyte on average, NTFS has a clear advantage 

over SQL Server.  If the objects are under 256 

kilobytes, the database has a clear advantage.  Inside 

this range, it depends on how write intensive the 

workload is, and the storage age of a typical replica in 

the system. 

Instead of providing measurements in wall clock 

time, we use storage age, which makes it easy to apply 

results from synthetic workloads to real deployments. 

We are amazed that so little information regarding 

the performance of fragmented storage was available. 

Future studies should explore how fragmentation 

changes under load. We did not investigate the 

behavior of NTFS or SQL Server when multiple writes 

to multiple objects are interleaved. This may happen if 

objects are slowly appended to over long periods of 

time or in multithreaded systems that simultaneously 

create many objects. We expect that fragmentation gets 

worse due to the competition, but how much worse?  

Finally, this study only considers a single 

filesystem and database implementation. We look 

forward to seeing similar studies of other systems.   

Any meaningful comparison between storage 

technologies should take fragmentation into account.  
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