
 1

To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem?

Russell Sears

2
, Catharine van Ingen

1
, Jim Gray

1

1: Microsoft Research, 2: University of California at Berkeley

sears@cs.berkeley.edu, vanIngen@microsoft.com, gray@microsoft.com

April 2006

Revised June 2006

Technical Report

MSR-TR-2006-45

Microsoft Research

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052

 2

To BLOB or Not To BLOB:
Large Object Storage in a Database or a Filesystem?

Russell Sears
2
, Catharine van Ingen

1
, Jim Gray

1

1: Microsoft Research, 2: University of California at Berkeley

sears@cs.berkeley.edu, vanIngen@microsoft.com, gray@microsoft.com

MSR-TR-2006-45

April 2006 Revised June 2006

Abstract
Application designers must decide whether to store

large objects (BLOBs) in a filesystem or in a database.

Generally, this decision is based on factors such as

application simplicity or manageability. Often, system

performance affects these factors.

Folklore tells us that databases efficiently handle

large numbers of small objects, while filesystems are

more efficient for large objects. Where is the

break-even point? When is accessing a BLOB stored

as a file cheaper than accessing a BLOB stored as a

database record?

Of course, this depends on the particular

filesystem, database system, and workload in question.

This study shows that when comparing the NTFS file

system and SQL Server 2005 database system on a
create, {read, replace}* delete

workload, BLOBs smaller than 256KB are more

efficiently handled by SQL Server, while NTFS is

more efficient BLOBS larger than 1MB. Of course,

this break-even point will vary among different

database systems, filesystems, and workloads.

By measuring the performance of a storage server

workload typical of web applications which use get/put

protocols such as WebDAV [WebDAV], we found that

the break-even point depends on many factors.

However, our experiments suggest that storage age, the

ratio of bytes in deleted or replaced objects to bytes in

live objects, is dominant. As storage age increases,

fragmentation tends to increase. The filesystem we

study has better fragmentation control than the

database we used, suggesting the database system

would benefit from incorporating ideas from filesystem

architecture. Conversely, filesystem performance may

be improved by using database techniques to handle

small files.

Surprisingly, for these studies, when average

object size is held constant, the distribution of object

sizes did not significantly affect performance. We also

found that, in addition to low percentage free space, a

low ratio of free space to average object size leads to

fragmentation and performance degradation.

1. Introduction
Application data objects are getting larger as digital

media becomes ubiquitous. Furthermore, the

increasing popularity of web services and other

network applications means that systems that once

managed static archives of “finished” objects now

manage frequently modified versions of application

data as it is being created and updated. Rather than

updating these objects, the archive either stores

multiple versions of the objects (the V of WebDAV

stands for “versioning”), or simply does wholesale

replacement (as in SharePoint Team Services

[SharePoint]).

Application designers have the choice of storing

large objects as files in the filesystem, as BLOBs

(binary large objects) in a database, or as a

combination of both. Only folklore is available

regarding the tradeoffs – often the design decision is

based on which technology the designer knows best.

Most designers will tell you that a database is probably

best for small binary objects and that that files are best

for large objects. But, what is the break-even point?

What are the tradeoffs?

This article characterizes the performance of an

abstracted write-intensive web application that deals

with relatively large objects. Two versions of the

system are compared; one uses a relational database to

store large objects, while the other version stores the

objects as files in the filesystem. We measure how

performance changes over time as the storage becomes

fragmented. The article concludes by describing and

quantifying the factors that a designer should consider

when picking a storage system. It also suggests

filesystem and database improvements for large object

support.

One surprising (to us at least) conclusion of our

work is that storage fragmentation is the main

determinant of the break-even point in the tradeoff.

Therefore, much of our work and much of this article

focuses on storage fragmentation issues. In essence,

filesystems seem to have better fragmentation handling

than databases and this drives the break-even point

down from about 1MB to about 256KB.

 3

2. Background

2.1. Fragmentation

Filesystems have long used sophisticated allocation

strategies to avoid fragmentation while laying out

objects on disk. For example, OS/360’s filesystem was

extent based and clustered extents to improve access

time. The VMS filesystem included similar

optimizations and provided a file attribute that allowed

users to request a (best effort) contiguous layout

[McCoy, Goldstein]. Berkeley FFS [McKusick] was an

early UNIX filesystem that took sequential access, seek

performance and other hardware characteristics into

account when laying data out on disk. Subsequent

filesystems were built with similar goals in mind.

The filesystem used in these experiments, NTFS,

uses a ‘banded’ allocation strategy for metadata, but

not for file contents [NTFS]. NTFS allocates space for

file stream data from a run-based lookup cache. Runs

of contiguous free clusters are ordered in decreasing

size and volume offset. NTFS attempts to satisfy a new

space allocation from the outer band. If that fails, large

extents within the free space cache are used. If that

fails, the file is fragmented. Additionally, when a file is

deleted, the allocated space cannot be reused

immediately; the NTFS transactional log entry must be

committed before the freed space can be reallocated.

The net behavior is that file stream data tends to be

allocated contiguously within a file.

In contrast, database systems began to support

large objects more recently [BLOB, DeWitt].

Databases historically focused on small (100 byte)

records and on clustering tuples within the same table.

Clustered indexes let users control the order in which

tuples are stored, allowing common queries to be

serviced with a sequential scan over the data.

Filesystems and databases take different

approaches to modifying an existing object.

Filesystems are optimized for appending or truncating

a file. In-place file updates are efficient, but when data

are inserted or deleted in the middle of a file, all

contents after the modification must be completely

rewritten. Some databases completely rewrite modified

BLOBS; this rewrite is transparent to the application.

Others, such as SQL Server, adopt the Exodus design

that supports efficient insertion or deletion within an

object by using B-Tree based storage of large objects

[DeWitt].

IBM DB2’s DataLinks
TM

 technology stores

BLOBs in the filesystem, and uses the database as an

associative index of the file metadata [Bhattacharya].

Their files are updated atomically using a mechanism

similar to old-master, new-master safe writes (Section

2.2).

To ameliorate the fact that the database poorly

handles large fragmented objects, the application could

do its own de-fragmentation or garbage collection.

Some applications simply store each object directly in

the database as a single BLOB, or as a single file in a

filesystem. However, in order to efficiently service

user requests, other applications use more complex

allocation strategies. For instance, objects may be

partitioned into many smaller chunks stored as

BLOBS. Video streams are often “chunked” in this

way. Alternately, smaller objects may be aggregated

into a single BLOB or file – for example TAR, ZIP, or

CAB files.

2.2. Safe writes

This study only considers applications that insert,

replace or delete entire objects. In the replacement

case, the application creates a new version and then

deletes the original. Such applications do not force the

storage system to understand their data’s structure,

trading opportunities for optimization for simplicity

and robustness. Even this simple update policy is not

entirely straightforward. This section describes

mechanisms that safely update entire objects at once.

Most filesystems protect internal metadata

structures (such as directories and filenames) from

corruption due to dirty shutdowns (such as system

crashes and power outages). However, there is no such

guarantee for file contents. In particular, filesystems

and the operating system below them reorder write

requests to improve performance. Only some of those

requests may complete at dirty shutdown.

As a result, many desktop applications use a

technique called a “safe write” to achieve the property

that, after a dirty shutdown, the file contents are either

new or old, but not a mix of old and new. While

safe-writes ensure that an old file is robustly replaced,

they also force a complete copy of the file to disk even

if most of the file contents are unchanged.

To perform a safe write, a new version of the file

is created with a temporary name. Next, the new data

is written to the temporary file and those writes are

flushed to disk. Finally, the new file is renamed to the

permanent file name, thereby deleting the file with the

older data. Under UNIX, rename() is guaranteed to

atomically overwrite the old version of the file. Under

Windows, the ReplaceFile() call is used to atomically

replace one file with another.

In contrast, databases typically offer transactional

updates, which allow applications to group many

changes into a single atomic unit called a transaction.

Complete transactions are applied to the database

atomically regardless of system dirty shutdown,

database crash, or application crashes. Therefore,

applications may safely update their data in whatever

manner is most convenient. Depending on the database

 4

implementation and the nature of the update, it can be

more efficient to update a small portion of the BLOB

instead of overwriting it completely.

The database guarantees transactional semantics

by logging both metadata and data changes throughout

a transaction. Once the appropriate log records have

been flushed to disk, the associated changes to the

database are guaranteed to complete—the write-ahead-

log protocol. The log is written sequentially, and

subsequent database disk writes can be reordered to

minimize seeks. Log entries for each change must be

written; but the database writes can be coalesced.

Logging all data and metadata guarantees

correctness at the cost of writing all data twice—once

to the database and once to the log. With large data

objects, this can put the database at a noticeable

performance disadvantage. The sequential write to the

database log is roughly equivalent to the sequential

write to a file. The additional write to the database

pages will form an additional sequential write if all

database pages are contiguous or many seek-intensive

writes if the pages are not located near each other.

Large objects also fill the log causing the need for

more frequent log truncation and checkpoint, which

reduces opportunities to reorder and combine page

modifications.

We exploited the bulk-logged option of SQL

Server to ameliorate this penalty. Bulk-logged is a

special case for BLOB allocation and de-allocation – it

does not log the initial writes to BLOBs and their final

deletes; rather it just logs the meta-data changes (the

allocation or de-allocation information). Then when

the transaction commits the BLOB changes are

committed. This supports transaction UNDO and

supports warm restart, but it does not support media

recovery (there is no second-copy of the BLOB data in

the log) – it is little-D ACId rather than big-D ACID.

2.3. Dealing with Media Failures

Databases and filesystems both provide transactional

updates to object metadata. When the bulk-logged SQL

option is used, both kinds of systems write the large

object data once. However, database systems guarantee

that large object data are updated atomically across

system or application outages. However, neither

protects against media failures.

Media failure detection, protection, and repair

mechanisms are often built into large-scale web

services. Such services are typically supported by very

large, heterogeneous networks built from low cost,

unreliable components. Hardware faults and

application errors that silently corrupt data are not

uncommon. Applications deployed on such systems

must regularly check for and recover from corrupted

application data. When corruption is detected, intact

versions of the affected data can be copied from a valid

replica.

This study does not consider the overhead of

detecting and correcting silent data corruption and

media failures. These overheads are comparable for

the both file and database systems.

3. Prior work
While filesystem fragmentation has been studied

within numerous contexts in the past, we were

surprised to find relatively few systematic

investigations. There is common folklore passed by

word of mouth between application and system

designers. A number of performance benchmarks are

impacted by fragmentation, but these do not measure

fragmentation per se. There are algorithms used for

space allocation by database and filesystem designers.

We found very little hard data on the actual

performance of fragmented storage. Moreover, recent

changes in application workloads, hardware models,

and the increasing popularity of database systems for

the storage of large objects present workloads not

covered by existing studies.

3.1. Folklore

There is a wealth of anecdotal experience with

applications that use large objects. The prevailing

wisdom is that databases are better for small objects

while filesystems are better for large objects. The

boundary between small and large is usually a bit

fuzzy. The usual reasoning is:

• Database queries are faster than file opens. The

overhead of opening a file handle dominates

performance when dealing with small objects.

• Reading or writing large files is faster than

accessing large database BLOBS. Filesystems are

optimized for streaming large objects.

• Database client interfaces aren’t good with large

objects. Remote database client interfaces such as

MDAC have historically been optimized for short

low latency requests returning small amounts of

data.

• File opens are CPU expensive, but can be easily

amortized over cost of streaming large objects.

None of the above points address the question of

application complexity. Applications that store large

objects in the filesystem encounter the question of how

to keep the database object metadata and the filesystem

object data synchronized. A common problem is the

garbage collection of files that have been “deleted” in

the database but not the filesystem.

Also missing are operational issues such as

replication, backup, disaster recovery, and

fragmentation.

 5

3.2. Standard Benchmarks

While many filesystem benchmarking tools exist, most

consider the performance of clean filesystems, and do

not evaluate long-term performance as the storage

system ages and fragments. Using simple clean initial

conditions eliminates potential variation in results

caused by different initial conditions and reduces the

need for settling time to allow the system to reach

equilibrium.

Several long-term filesystem performance studies

have been performed based upon two general

approaches [Seltzer]. The first approach, trace based

load generation, uses data gathered from production

systems over a long period. The second approach, and

the one we adopt for our study, is vector based load

generation that models application behavior as a list of

primitives (the ‘vector’), and randomly applies each

primitive to the filesystem with the frequency a real

application would apply the primitive to the system.

NetBench [NetBench] is the most common

Windows file server benchmark. It measures the

performance of a file server accessed by multiple

clients. NetBench generates workloads typical of

office applications.

SPC-2 benchmarks storage system applications

that read and write large files in place, execute large

read-only database queries, or provide read-only

on-demand access to video files [SPC].

The Transaction Processing Performance Council

[TPC] have defined several benchmark suites to

characterize online transaction processing workloads

and also decision support workloads. However, these

benchmarks do not capture the task of managing large

objects or multimedia databases.

None of these benchmarks consider file

fragmentation.

3.3. Data layout mechanisms

Different systems take surprisingly different

approaches to the fragmentation problem.

The creators of FFS observed that for typical

workloads of the time, fragmentation avoiding

allocation algorithms kept fragmentation under control

as long as volumes were kept under 90% full [Smith].

UNIX variants still reserve a certain amount of free

space on the drive, both for disaster recovery and in

order to prevent excess fragmentation.

NTFS disk occupancy on deployed Windows

systems varies widely. System administrators’ target

disk occupancy may be as low as 60% or over 90%

[NTFS]. On NT 4.0, the in-box defragmentation utility

was known to have difficulties running when the

occupancy was greater than 75%. This limitation was

addressed in subsequent releases. By Windows 2003

SP1, the utility included support for defragmentation of

system files and attempted partial file defragmentation

when full defragmentation is not possible.

LFS [Rosenblum], a log based filesystem,

optimizes for write performance by organizing data on

disk according to the chronological order of the write

requests. This allows it to service write requests

sequentially, but causes severe fragmentation when

files are updated randomly. A cleaner that

simultaneously defragments the disk and reclaims

deleted file space can partially address this problem.

Network Appliance’s WAFL (“Write Anywhere

File Layout”) [Hitz] is able to switch between

conventional and write-optimized file layouts

depending on workload conditions. WAFL also

leverages NVRAM caching for efficiency and provides

access to snapshots of older versions of the filesystem

contents. Rather than a direct copy-on-write of the

data, WAFL metadata remaps the file blocks. A

defragmentation utility is supported, but is said not to

be needed until disk occupancy exceeds 90+%.

GFS [Ghemawat], a filesystem designed to deal

with multi-gigabyte files on 100+ terabyte volumes,

partially addresses the data layout problem by using

64MB blocks called ‘chunks’. GFS also provides a

safe record append operation that allows many clients

to simultaneously append to the same file, reducing the

number of files (and opportunities for fragmentation)

exposed to the underlying filesystem. GFS records

may not span chunks, which can result in internal

fragmentation. If the application attempts to append a

record that will not fit into the end of the current

chunk, that chunk is zero padded, and the new record is

allocated at the beginning of a new chunk. Records are

constrained to be less than ¼ the chunk size to prevent

excessive internal fragmentation. However, GFS does

not explicitly attempt to address fragmentation

introduced by the underlying filesystem, or to reduce

internal fragmentation after records are allocated.

4. Comparing Files and
BLOBs
This study is primarily concerned with the deployment

and performance of data-intensive web services.

Therefore, we opted for a simple vector based

workload typical of existing web applications, such as

WebDAV applications, SharePoint, Hotmail, flickr,

and MSN spaces. These sites allow sharing of objects

that range from small text mail messages (100s of

bytes) to photographs (100s of KB to a few MB) to

video (100s of MBs.)

The workload also corresponds to collaboration

applications such as SharePoint Team Services

[SharePoint]. These applications enable rich document

sharing semantics, rather than simple file shares.

 6

Examples of the extra semantics include document

versioning, content indexing and search, and rich

role-based authorization.

Many of these sites and applications use a database

to hold the application specific metadata including that

which describes the large objects. Large objects may be

stored in the database, in the filesystem, or distributed

between the database and the filesystem. We consider

only the first two options here. We also did not include

any shredding or chunking of the objects.

4.1. Test System Configuration

All the tests were performed on the system described in

Table 1: All test code was written using C# in Visual

Studio 2005 Beta 2. All binaries used to generate tests

were compiled to x86 code with debugging disabled.

4.2. File based storage

For the filesystem based storage tests, we stored

metadata such as object names and replica locations in

SQL server tables. Each application object was stored

in its own file. The files were placed in a single

directory on an otherwise empty NTFS volume. SQL

was given a dedicated log and data drive, and the

NTFS volume was accessed via an SMB share.

We considered a purely file-based approach, but

such a system would need to implement complex

recovery routines, would lack support for consistent

metadata, and would not provide functionality

comparable to the systems mentioned above.

This partitioning of tasks between a database and

filesystem is fairly flexible, and allows a number of

replication and load balancing schemes. For example, a

single clustered SQL server could be associated with

several file servers. Alternately, the SQL server could

be co-located with the associated files and then the

combination clustered. The database isolates the client

from changes in the architecture – changing the pointer

in the database changes the path returned to the client.

We chose to measure the configuration with the

database co-located with the associated files. This

single machine configuration kept our experiments

simple and avoids building assumptions and

dependencies on the network layout into the study.

However, we structured all code to use the same

interfaces and services as a networked configuration.

4.3. Database storage

The database storage tests were designed to be as

similar to the filesystem tests as possible. As explained

previously, we used bulk-logging mode. We also used

out-of-row storage for the BLOB data so that the

BLOBS did not decluster the metadata.

For simplicity, we did not create the table with the

option TEXTIMAGE ON filegroup, which would

store BLOBS in a separate filegroup. Although the

BLOB data and table information are stored in the

same file group, out-of-row storage places BLOB data

on pages that are distinct from the pages that store the

other table fields. This allows the table data to be kept

in cache even if the BLOB data does not fit in main

memory. Analogous table schemas and indices were

used and only minimal changes were made to the

software that performed the tests.

4.4. Performance tuning

We set out to fairly evaluate the out-of-the-box

performance of the two storage systems. Therefore, we

did no performance tuning except in cases where the

default settings introduced gross discrepancies in the

functionality that the two systems provided.

We found that NTFS’s file allocation routines

behave differently when the number of bytes per file

write (append) is varied. We did not preset the file

size; as such NTFS attempts to allocate space as

needed. When NTFS detects large, sequential appends

to the end of a file its allocation routines aggressively

attempt to allocate contiguous space. Therefore, as the

disk gets full, smaller writes are likely to lead to more

fragmentation. While NTFS supports setting the valid

data length of a file, this operation incurs the write

overhead of zero filling the file, so it is not of interest

here [NTFS]. Because the behavior of the allocation

routines depends on the size of the write requests, we

use a 64K write buffer for all database and filesystem

runs. The files were accessed (read and written)

sequentially. We made no attempt to pass hints

regarding final object sizes to NTFS or SQL Server.

4.5. Workload generation

Real world workloads have many properties that are

difficult to model without application specific

information such as object size distributions, workload

characteristics, or application traces.

However, the applications of interest are extremely

simple from a storage replica’s point of view. Over

time, a series of object allocation, deletion, and

safe-write updates are processed with interleaved read

requests.

For simplicity, we assumed that all objects are

equally likely to be written and/or read. We also

assumed that there is no correlation between objects.

Table 1: Configurations of the test systems

Tyan S2882 K8S Motherboard,

1.8 Ghz Opteron 244, 2 GB RAM (ECC)

SuperMicro “Marvell” MV8 SATA controller

4 Seagate 400GB ST3400832AS 7200 rpm SATA

Windows Server 2003 R2 Beta (32 bit mode).

SQL Server 2005 Beta 2 (32 bit mode).

 7

This lets us measure the performance of write-only and

read-only workloads.

We measured constant size objects rather than

objects with more complicated size distributions. We

expected that size distribution would be an important

factor in our experiments. As shown later, we found

that size distribution had no obvious effect on the

behavior. Given that, we chose the very simple

constant size distribution.

Before continuing, we should note that synthetic

load generation has led to misleading results in the

past. We believe that this is less of an issue with the

applications we study, as random storage partitioning

and other load balancing techniques remove much of

the structure from application workloads. However,

our results should be validated by comparing them to

results from a trace-based benchmark. At any rate,

fragmentation benchmarks that rely on traces are of

little use before an application has been deployed, so

synthetic workloads may be the best tool available to

web service designers.

4.6. Storage age

We want to characterize the behavior of storage

systems over time. Past fragmentation studies measure

age in elapsed time such as ‘days’ or ‘months.’ We

propose a new metric, storage age, which is the ratio of

bytes in objects that once existed on a volume to the

number of bytes in use on the volume. This definition

of storage age assumes that the amount of free space on

a volume is relatively constant over time. This

measurement is similar to measurements of heap age

for memory allocators, which frequently measure time

in “bytes allocated,” or “allocation events.”

For a safe-write system storage age is the ratio of

object insert-update-delete bytes over the number of

total object bytes. When evaluating a single node

system using trace-based data, storage age has a simple

intuitive interpretation.

A synthetic workload effectively speeds up

application elapsed time. Our workload is disk arm

limited; we did not include extra think time or

processor overheads. The speed up is application

specific and depends on the actual application

read:write ratio and heat.

We considered reporting time in “hours under

load”. Doing so has the undesirable property of

rewarding slow storage systems by allowing them to

perform less work during the test.

In our experimental setup, storage age is

equivalent to “safe writes per object.” This metric is

independent of the actual applied read:write load or the

number of requests over time. Storage ages can be

compared across hardware configurations and

applications. Finally, it is easy to convert storage age

to elapsed wall clock time after the rate of data churn,

or overwrite rate, of a specific system is determined.

5. Results
Our results use throughput as the primary indicator of

performance. We started with the typical

out-of-the-box throughput study. We then looked at the

longer term changes caused by fragmentation with a

focus on 256K to 1M object sizes where the filesystem

and database have comparable performance. Lastly,

we discuss the effects of volume size and object size on

our measurements.

5.1. Database or Filesystem: Throughput
out-of-the-box

We begin by establishing when a database is clearly the

right answer and when the filesystem is clearly the

right answer.

Following the lead of existing benchmarks, we

evaluated the read performance of the two systems on a

clean data store. Figure 1 demonstrates the truth of the

folklore: objects up to about 1MB are best stored as

database BLOBS. Performance of SQL reads for

objects of 256KB was 2x better than NTFS; but the

systems had parity at 1MB objects. With 10MB

objects, NTFS outperformed SQL Server.

The write throughput of SQL Server exceeded that

of NTFS during bulk load. With 512KB objects,

database write throughput was 17.7MB/s, while the

filesystem only achieved 10.1MB/s.

5.2 Database or Filesystem over time

Next, we evaluated the performance of the two systems

on large objects over time. If fragmentation is

important, we expect to see noticeable performance

degradation.

Our first discovery was that SQL Server does not

Read Throughput After Bulk load

0

2

4

6

8

10

12

256K 512K 1M

Object Size

M
B

/s
e
c

Database

Filesystem

Figure 1: Read throughput immediately after bulk

loading the data. Databases are fastest on small

objects. As object size increases, NTFS throughput

improves faster than SQL Server throughput.

 8

provide facilities to report fragmentation of large object

data or to defragment such data. While there are

measurements and mechanisms for index

defragmentation, the recommended way to defragment

a large BLOB table is to create a new table in a new

file group, copy the old records to the new table and

drop the old table [SQL].

To measure fragmentation, we tagged each of our

objects with a unique identifier and a sequence number

at 1KB intervals. We also implemented a utility that

looks for the locations of these markers on a raw

device in a way that is robust to page headers and other

artifacts of the storage system. In other words, the

utility measures fragmentation in the same way

regardless of whether the objects are stored in the

filesystem or the database. We ran our utility against

an NTFS volume to check that it reported figures that

agreed with the NTFS fragmentation report.

The degradation in read performance for 256K,

512K, and 1MB BLOBS is shown in Figure 2. Each

storage age (2 and 4) corresponds to the time necessary

for the number of updates, inserts, or deletes to be N

times the number of objects in our store since the bulk

load (storage age 0) shown in Figure 1. Fragmentation

under NTFS begins to level off over time. SQL

Server’s fragmentation increases almost linearly over

time and does not seem to be approaching any

asymptote. This is dramatically the case with very

large (10MB) objects as seen in Figure 3.

We also ran our load generator against an

artificially and pathologically fragmented NTFS

volume. We found that fragmentation slowly decreased

over time. The best-effort attempt to allocate

contiguous space actually defragments such volumes.

This suggests that NTFS is indeed approaching an

asymptote in Figure 3.

Figure 4 shows the degradation in write

performance as storage age increases. In both database

and filesystems, the write throughput during bulk load

is much better than read throughput immediately

afterward. This is not surprising, as the storage

systems can simply append each new file to the end of

allocated storage, avoiding seeks during bulk load. On

the other hand, the read requests are randomized, incur

the overhead of at least one seek. After bulk load, the

write performance of SQL Server degrades quickly,

while the NTFS write performance numbers are

slightly better than its read performance.

Read Throughput After Two Overwrites

0

2

4

6

8

10

12

256K 512K 1M

Object Size

M
B

/s
e
c

Database

Filesystem

Read Throughput After Four Overwrites

0

1

2

3

4

5

6

7

8

9

10

256K 512K 1M

Object Size

M
B

/s
e
c

Database

Filesystem

Figure 2: Fragmentation causes read performance

to degrade over time. The filesystem is less

affected by this than SQL Server. Over time

NTFS outperforms SQL Server when objects are

larger than 256KB.

Long Term Fragmentation With 10 MB Objects

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

g
m

e
n

ts
/o

b
je

c
t

Database

Filesystem

Figure 3: For large objects, NTFS deals with

fragmentation more effectively than SQL server.

“Storage Age” is the average number of times

each object has been replaced with a newer

version. An object in a contiguous region on disk

has 1 fragment.

512K Write Throughput Over Time

0

2

4

6

8

10

12

14

16

18

20

After bulk load (zero) Two Four

Storage Age

M
B

/s
e
c

Database

Filesystem

Figure 4: Although SQL Server quickly fills a

volume with data, performance suffers when

existing objects are replaced.

 9

Note that these write performance numbers are not

directly comparable to the read performance numbers

in Figures 1 and 2. Read performance is measured after

fragmentation, while write performance is the average

performance during fragmentation. To be clear, the

“storage age four” write performance is the average

write throughput between the read measurements

labeled “bulk load” and “storage age two.” Similarly,

the reported write performance for storage age four

reflects average write performance between storage

ages two and four.

The results so far indicate that as storage age

increases, the parity point where filesystems and

databases have comparable performance declines from

1MB to 256KB. Objects up to about 256KB are best

kept in the database; larger objects should be in the

filesystem.

To verify this, we attempted to run both systems

until the performance reached a steady state.

Figure 5 indicates that fragmentation converges to

four fragments per file, or one fragment per 64KB, in

both the filesystem and database. This is interesting

because our tests use 64KB write requests, again

suggesting that the impact of write block size upon

fragmentation warrants further study. From this data,

we conclude that SQL Server indeed outperforms

NTFS on objects under 256KB, as indicated by

Figures 2 and 4.

5.3. Fragmentation effects of object size,
volume capacity, and write request size

Distributions of object size vary greatly from

application to application. Similarly, applications are

deployed on storage volumes of widely varying size

particularly as disk capacity continues to increase.

This series of tests generated objects using a

constant size distribution and compared performance

when the sizes were uniformly distributed. Both sets

of objects had a mean size of 10MB.

Intuition suggested that constant size objects

should not lead to fragmentation. Deleting an initially

contiguous object leaves a region of contiguous free

space exactly the right size for any new object. As

shown in Figure 6, our intuition was wrong.

As long as the average object size is held constant

there is little difference between uniformly distributed

and constant sized objects. This suggests that

experiments that use extremely simple size

distributions can be representative of many different

workloads. This contradicts the approach taken by

prior storage benchmarks that make use of complex,

accurate modeling of application workloads. This may

well be due to the simple all-or-nothing access pattern

that avoids object extension and truncation, and our

assumption that application code has not been carefully

tuned to match the underlying storage system.

The time it takes to run the experiments is

proportional to the volume’s capacity. When the entire

disk capacity (400GB) is used, some experiments take

a week to complete. Using a smaller (although perhaps

unrealistic) volume size, allows more experiments; but

how trustworthy are the results?

As shown in Figure 7, we found that volume size

does not really affect performance for larger volume

sizes. However, on smaller volumes, we found that as

the ratio of free space to object size decreases,

performance degrades.

Long Term Fragmentation With 256K Objects

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

g
m

e
n

ts
/o

b
je

c
t

Database

Filesystem

Figure 5: For small objects, the systems have

similar fragmentation behavior.

Database Fragmentation: Blob Distributions

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

g
m

e
n

ts
/o

b
je

c
t

Constant

Uniform

Filesystem Fragmentation: Blob Distributions

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

g
m

e
n

ts
/o

b
je

c
t

Constant

Uniform

Figure 6: Fragmentation for large (10MB) BLOBS

– increases slowly for NTFS but rapidly for SQL.

However objects of a constant size show no better

fragmentation performance than objects of sizes

chosen uniformly at random with the same

average size.

 10

We did not characterize the exact point where this

becomes a significant issue. However, our results

suggest that the effect is negligible when there is 10%

free space on a 40GB volume storing 10MB objects,

which implies a pool of 400 free objects. With a 4GB

volume with a pool of 40 free objects, performance

degraded rapidly.

While these findings hold for the SQL Server and

NTFS allocation policies, they probably do not hold for

all current production systems. Characterizing other

allocation policies is beyond the scope of this work.

6. Implications for system
designers
This article has already mentioned several issues that

should be considered during application design.

Designers should provision at least 10% excess storage

capacity to allow each volume to maintain free space

for many (~400 in our experiment) free objects. If the

volume is large enough, the percentage free space

becomes a limiting factor. For NTFS, we can see this

in Figure 7, where the performance of a 97.5% full

400GB volume is worse than the performance of a 90%

full 40GB volume. (A 99% full 400GB volume would

have the same number of free objects as the 40GB

volume.)

While we did not carefully characterize the impact

of application allocation routines upon the allocation

strategy used by the underlying storage system, we did

observe significant differences in behavior as we varied

the write buffer size. Experimentation with different

buffer sizes or other techniques that avoid incremental

allocation of storage may significantly improve long

run storage performance. This also suggests that

filesystem designers should re-evaluate what is a

“large” request and be more aggressive about

coalescing larger sequential requests.

Simple procedures such as manipulating write

size, increasing the amount of free space, and

performing periodic defragmentation can improve the

performance of a system. When dealing with an

existing system, tuning these parameters may be

preferable to switching from database to filesystem

storage, or vice versa.

When designing a new system, it is important to

consider the behavior of a system over time instead of

looking only the performance of a clean system. If

fragmentation is a significant concern, the system must

be defragmented regularly. Defragmentation of a

filesystem implies significant read/write impacts or

application logic to garbage collect and reinstantiate a

volume. Defragmentation of a database requires

explicit application logic to copy existing BLOBS into

a new table. To avoid causing still more

fragmentation, that logic must be run only when ample

free space is available. A good database

defragmentation utility (or at least good automation of

the above logic including space estimation required)

would clearly help system administrators.

Using storage age to measure time aids in the

comparison of different designs. In this study we use

“safe-writes per object” as a measurement of storage

age. In other applications, appends per object or some

combination of create/append/deletes may be more

appropriate.

For the synthetic workload presented above, NFTS

based storage works well for objects larger than

256KB. A better database BLOB implementation

would change this. At a minimum, the database should

report fragmentation. An in-place defragmentation

Database Fragmentation: Different Volumes

0

2

4

6

8

10

12

14

16

18

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Storage Age

F
ra

g
m

e
n

ts
/o

b
je

c
t

50% full - 40G

50% full - 400G

Filesystem Fragmentation: Different Volumes

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

g
m

e
n

ts
/o

b
je

c
t

50% full - 40G

50% full - 400G

Filesystem Fragmentation: Different Volumes

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10

Storage Age

F
ra

g
m

e
n

ts
/O

b
je

c
t

90% full - 40G

90% full - 400G

97.5% full - 40G

97.5% full - 400G

Figure 7: Fragmentation for 40GB and 400GB

volumes. Other than the 50% full filesystem run,

volume size has little impact on fragmentation.

 11

utility would be helpful. To support incremental object

modification rather than the full rewrite considered

here, a more flexible B-Tree based BLOB storage

algorithm that optimizes insertion and deletion of

arbitrary data ranges within objects would be

advantageous.

7. Conclusions
The results presented here predict the performance of a

class of storage workloads, and reveal a number of

previously unknown factors in the importance of

storage fragmentation. They describe a simple

methodology that can measure the performance of

other applications that perform a limited number of

storage create, read, update, write, and delete

operations.

The study indicates that if objects are larger than

one megabyte on average, NTFS has a clear advantage

over SQL Server. If the objects are under 256

kilobytes, the database has a clear advantage. Inside

this range, it depends on how write intensive the

workload is, and the storage age of a typical replica in

the system.

Instead of providing measurements in wall clock

time, we use storage age, which makes it easy to apply

results from synthetic workloads to real deployments.

We are amazed that so little information regarding

the performance of fragmented storage was available.

Future studies should explore how fragmentation

changes under load. We did not investigate the

behavior of NTFS or SQL Server when multiple writes

to multiple objects are interleaved. This may happen if

objects are slowly appended to over long periods of

time or in multithreaded systems that simultaneously

create many objects. We expect that fragmentation gets

worse due to the competition, but how much worse?

Finally, this study only considers a single

filesystem and database implementation. We look

forward to seeing similar studies of other systems.

Any meaningful comparison between storage

technologies should take fragmentation into account.

8. Acknowledgements
We thank Eric Brewer for the idea behind our

fragmentation analysis tool, helping us write this article

and reviewing several earlier drafts. We also thank

Surendra Verma, Michael Zwilling and the SQL Server

and NTFS development teams for answering numerous

questions throughout the study. We thank Dave

DeWitt, Ajay Kalhan, Norbert Kusters, Wei Xiao and

Michael Zwilling for their constructive criticism of the

paper.

9. References
[Bhattacharya] Suparna Bhattacharya, Karen W.

Brannon, Hui-I Hsiao, C. Mohan, Inderpal Narang

and Mahadevan Subramanian. “Coordinating

Backup/Recovery and Data Consistency Between

Database and File Systems. ACM SIGMOD, June 4-

6, 2002.

[DeWitt] D. DeWitt, M. Carey, J. Richardson, E.

Shekita. “Object and File Management in the

EXODUS Extensible Database System.” VLDB,

Japan, August 1986.

[Ghemawat] S. Ghemawat, H. Goblioff, and S. Leung.

“The Google File System.” SOSP, October 19-21,

2003.

[Goldstein] A. Goldstein. “The Design and

Implementation of a Distributed File System.”

Digital Technical Journal, Number 5, September

1987.

[Hitz] D. Hitz, J. Lau and M. Malcom. “File System

Design for an NFS File Server Appliance.” NetApp

Technical Report #3002, March, 1995.

http://www.netapp.com/library/tr/3002.pdf

[McCoy] K. McCoy. VMS File System Internals.

Digital Press, 1990.

[McKusick] M. K. McKusick, W. N. Joy, S. J. Leffler,

Robert S. Fabry. “A Fast File System for UNIX.”

Computer Systems, Vol 2 #3 pages 181-197, 1984.

[NetBench] “NetBench.” Lionbridge Technologies,

2002.

http://www.veritest.com/benchmarks/netbench/

[NTFS] Microsoft NTFS Development Team. Personal

communication. August, 2005.

[Rosenblum] M. Rosenblum, J. K. Ousterhout. “The

Design and Implementation of a Log-Structured File

System.” ACM TOCS, V. 10.1, pages 26-52, 1992.

[Seltzer] M. Seltzer, D. Krinsky, K. Smith, X. Zhang.

“The Case for Application-Specific Benchmarking.”

HotOS, page 102, 1999.

[SharePoint] http://www.microsoft.com/sharepoint/

[Smith] K. Smith, M. Seltzer. “A Comparison of FFS

Disk Allocation Policies.” USENIX Annual

Technical Conference, 1996.

[SPC] SPC Benchmark-2 (SPC-2) Official

Specification, Version 1.0. Storage Performance

Council, 2005.

http://www.storageperformance.org/specs/spc2_v1.0.

pdf

[SQL] Microsoft SQL Server Development Team.

Personal communication. August, 2005.

[TPC] Transaction Processing Performance Council.

http://www.tpc.org

[WebDAV] http://www.webdav.org/

