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Abstract—The past decade has witnessed a resurgence of unsu-
pervised learning with neural network, among which autoencoder
and its variants have been studied widely. These models have been
applied to the field of remote sensing recently. The representative
include terrain classification, land-use scene recognition with
hyperspectral image, PoISAR image classification, remote sensing
imagery retrieval, semantic annotation, target recognition and
detection in SAR images. Though many works have been done
previously, a comprehensive review of the literature is absent,
especially from a comparative perspective. This paper attempts
to fill this gap. We summarize the contributions of the existing
works first, followed by a systematic summary of autoencoder
and its variants. More attention have been paid to the recent
progresses in the remote sensing community. To verify the
performance, multiple comparative studies have been pursued
from the perspective of target recognition in SAR images. The
experimental results prove the advantage of autoencoder neural
network in comparison to the delicate-handcrafted features. In
addition, some propositions concerning the configuration of deep
neural network can be concluded accordingly. We go on to
provide several hints for readers about the logical choice of a
neural network architecture based on the task at hand. All of the
experiments are implemented by the Keras and Theano library
on Python 3.6. The source code of this paper was publicly released
on https://ganggangdong.github.io/homepage.

Keywords—Autoencoder, target recognition, SAR, deep learning,
neural network, convolutional, unsupervised learning.

I. INTRODUCTION
A. Background

N the recent years, unsupervised feature learning with

neural network architecture has become a new research
hotspot [1]-[4]. The revival of interest in such deep net-
work can be attributed to the development of the efficient
optimization skills, by which the model parameters can be
optimally estimated [5]. The milestone work has been done by
G. Hinton and R. Salakhutdinov [6]. They propose to initialize
the weights that allows deep autoencoder networks to learn
the low-dimensional codes. The proposed encoding trick works
much better than principal components analysis (PCA) in terms
of dimension reduction.
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The basic neural network model include autoencoder [7],
restricted Boltzmann machine (RBM) [8], convolutional neural
network (CNN) [9]. The deep neural network architecture,
such as stacked autoencoder, deep belief network, deep CNN,
are formed by concatenating the basic models hierarchically.
Due to the simple implementation and attractive computation
cost, autoencoder has been utilized in many fields. Examples
include but are not limited to natural language processing [10],
image processing [11], object detection [12], biometric recog-
nition [13], data analysis [14]. This paper mainly focuses on
the applications to remote sensing. The representative include
terrain classification, land-use recognition, image retrieval,
semantic annotation, object detection, and target recognition
in radar images and hyperspectral images [15]-[26]. Though
a great many works concerning the family of topics have been
done previously, a systematic summary is still absent. This
paper attempts to fill the gap. We first review most of the
related works. Their contributions have been categorized as
fourfold.

(a) Information Fusion. In the early works, the predefined
features or raw pixel values are combined by an autoencoder
model, from which a refined representation can be learned.
It is then connected with a softmax layer to achieve different
classification tasks. Since each set of features represent certain
kind of information, the autoencoder model can be actually
viewed as a black-box to achieve information aggregation.

Z. Lin et al. design an autoencoder model for hyperspectral
image classification [27], [28]. The spatial patches and the
spectral bands of hyperspectral image are jointly considered
for classification. The basic model and the stacked autoencoder
are used to generate the shallow and deep representation.
The spatial information and spectral information can be then
combined by the autoencoder network. C. Tao et al. propose
to learn a good representation adaptively from the unlabeled
data [24]. They establish two learning schemes, sparse spectral
feature learning and multiscale spatial feature learning. The
learned spectral-spatial feature is then embedded into a linear
support vector machine for classification. J. Geng et al. present
a deep supervised and contractive neural network for SAR
image classification [21], [29]. Three kinds of handcrafted
features, gray level-gradient co-occurrence matrix, Gabor filter
banks, and histogram of oriented gradient descriptors are
jointly fed into a stacked autoencoder network. The learned
representation is then input to a softmax classifier for land-
cover classification. The similar thought has been employed
in [30], where the geometric feature and the local texture



IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, SEPTEMBER 2018

feature are combined to train a stacked autoencoder for target
recognition in SAR images. Inspired by the change detection
algorithm, P. Planini and D. Gleich propose to assess the
damage caused by fires [31]. They extract the higher order
log cumulants of fractional Fourier transform from the tunable
() discrete wavelet transform. The obtained features are then
used to train a stacked autoencoder model to distinguish
the changed and unchanged areas. L. Zhang et al. design a
framework to learn robust features from PolSAR data [32].
The local spatial information has been exploited to train a
stacked sparse autoencoder model. The influence of neighbor
pixels is controlled according to the spatial distance to the
central pixel. To handle the presence of clouds, S. Malek et
al. utilize an autoencoder neural network to recover the missing
data in multispectral images [33]. They aim to modeling the
relationship between a given cloud-free image (source image)
and a cloud-contaminated one (target image). Two schemes,
pixel-level and patch-level mapping are developed to exploit
the spatial contextual information. The size of hidden layer is
determined by a new solution that combines the minimum de-
scriptive length criterion and a Pareto-like selection procedure.

(b) New Cost Function. Training an autoencoder model
refers to estimating the model parameters, weight and bias. It
is achieved by solving an optimizing problem whose objective
function is composed of a loss function and certain regular-
ization terms. The performance can be therefore improved by
designing a task-specific objective function, into which certain
information can be incorporated. The loss function and the
regularization term can be tuned according to the task at hand.
In addition, the unsupervised learning can be also converted to
supervised fashion by designing a label-related cost function.

X. Ma et al. present a spatial updated deep autoencoder
for hyperspectral image classification [17]. They present a
new regularization term composing of the similarity of the
hidden neurons weighted by the cosine distance of visible
nodes. The contextual information can be then exploited. The
similar thought has been utilized in [34], where the objective
function is tuned according to the task of target recognition.
The authors design a regularization term that measures the total
difference of the hidden neurons. Since the class membership
is incorporated into the objective function, it is actually a
supervised learning fashion. Similarly, Wen Xie et al. present
an improved objective for autoencoder model according to the
task of PoISAR image classification [20]. The deviation of the
reconstructed data to the initial value is measured by Wishart
distance, rather than mean square error or cross entropy. K.
Liang et al. learn a robust and discriminative feature repre-
sentation by an improved model, smooth autoencoder [35].
The encoding of each sample is used to reconstruct its local
neighbors. The learned representations are therefore consistent
among the local neighbors and robust to small variations of
input. M. Gong et al. propose a multi-objective sparse feature
learning model based on autoencoder [36]. The model param-
eters are learnt by optimizing two objectives, reconstruction
error and the sparsity of hidden units simultaneously.

(c) Combination with other learning scheme. To promote the
performance further, some researchers propose to introduce the
third party learning scheme, such as active learning, extreme

learning machine (ELM). The key issue is how to utilize
the additional-learning skill reasonably during the training of
neural network.

Y. Sun et al. propose a hybrid plan, where autoencoder
and active learning are simultaneously considered for hy-
perspectral image classification [37]. The most informative
samples selected by active sampling algorithm are used to pre-
train the autoencoder. Three active sampling strategies, mutual
information, breaking ties, and random sampling are verified.
J. Tang et al. present an extreme learning machine based
hierarchical framework [38]. The compact and meaningful rep-
resentations are obtained by unsupervised multilayer encoding
and ELM-based sparse autoencoder. B. Hou et al. consider
autoencoder model and super-pixel trick jointly for PolSAR
images classification [23]. To integrate the contextual infor-
mation, the RGB image formed by Pauli decomposition is
used to produce superpixels. Multilayer autoencoder network is
then employed to learning the features, by which the multiple
categories for each pixel can be distinguished. Y. Zhou et
al. combine the spectral feature learning and the spectral
feature learning in a hierarchical fashion [39]. A shallow
neural network, kernel extreme learning machine, is then
embedded into the developed hierarchical network. F. Lv et
al. achieve hyperspectral image classification with the ensem-
ble of extreme learning machine and stacked autoencoder [19].
The latent representations learned from stacked autoencoder
are fed into several ELM base classifiers, from which the
inference can be drawn. Y. Chen et al. employed multilayer
projective dictionary pair learning (MPDL) and sparse autoen-
coder jointly for PolSAR image classification [18]. MPDL
is first used to extract the discriminative feature, followed
by sparse autoencoder to get the nonlinear relationship be-
tween the elements of feature vectors in an adaptive way. E.
Li et al. learn a mid-level feature representation by sparse
autoencoder and pooling skill [22]. Sparse autoencoder is first
employed to produce the relatively small number of convolu-
tional features from the input dataset. The extended features
are then extracted from the learned features by a multiple
normalized difference method to compose a derivative feature
set. The global statistics (histogram moments, mean, variance,
standard deviation) are finally utilized to build the mid-level
representation. H. Wu er al. propose a hybrid architecture,
deep filter banks, for land-use scene classification [40]. They
combine multicolumn stacked denoising sparse autoencoder
and Fisher vector to automatically learn the representative
and discriminative features in a hierarchical manner. H. Kim
and A. Hirose consider PolSAR image classification by a
quaternion autoencoder and a quaternion self-organizing map
simultaneously [41]. A quaternion autoencoder is employed to
extract feature information based on the natural distribution of
PolSAR features. The extracted features are classified by the
quaternion SOM in an unsupervised manner, by which new
and more detailed land categories can be discovered.

(d) Achieve Transfer Learning. Though supervised deep
learning methods are currently state-of-the-art, they require
a great many labeled data. The labeled image benchmarks
available are too small to train a deep supervised network ef-
fectively. To handle the problem, some researchers recommend
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transfer learning by the large quantities of unrelated data, such
as self-taught learning [42]. A popularly used idea is to rely
on autoencoder. The small sample size and the limited training
resource can be then dealt with.

R. Kemker and C. Kanan achieve hyperspectral image
classification by self-taught learning [43]. They extract a bag of
generalizable features (or filters) by training an unsupervised
model on sufficiently large amount of unlabeled data that are
distinct from the target dataset. The trained model is used to
produce the discriminative features from small labeled target
datasets. Two kinds of schemes are developed. The first designs
a shallow architecture by means of independent component
analysis, while the second presents a deep network via stacked
autoencoder. Esam Othman ef al. develop a deep model for
land-use scene classification [26]. They generate the initial
feature representation of scene image by a deep pretrained
convolutional neural networks. The generated features are then
fed into an autoencoder to refine the representation. The CNN
features can be therefore transfered to the terminal learning
architecture. X. Yao et al. consider autoencoder for automatic
semantic annotation of high resolution optical satellite im-
ages [44]. They learn a high-level feature from an auxiliary
satellite image dataset by an stacked discriminative sparse
autoencoder. The learned high-level features are transferred
to semantic annotation. The transferred representations are
further fine-tuned in a weakly supervised fashion by the
tile-level annotated training data. F. Zhang et al. design an
unsupervised feature learning framework for land-use scene
classification [3]. They extract a set of representative patches
from the salient regions in the image data set. These unlabeled
patches are then employed to generate a set of high-level
features via sparse autoencoder. The scene is finally character-
ized by the statistics computed from the learned features. G.
Chen et al. achieve land-use classification by an effective mid-
level visual elements-oriented representation [15]. A library
of pretrained part detectors, namely “partlet” is generated for
mid-level visual elements discovery. Their responses to a large
number of part detectors are then employed to represent the
scene image. This is achieved by building a single-hidden-layer
autoencoder and a single-hidden-layer neural network with an
£y-norm sparsity constraint respectively.

Additionally, autoencoder has been also utilized to other
related fields. Z. Shao et al. develop a deep learning based
workflow for mapping forest above-ground biomass by inte-
grating Landsat 8 and Sentinel-1A images with airborne light
detection and ranging data [45]. They demonstrate the advan-
tage of stacked sparse autoencoder network in comparison to
five different prediction techniques including multiple stepwise
linear regressions, k-nearest neighbor, support vector machine,
back propagation neural networks, and random forest. H. Li
and S. Misra train a variational autoencoder to generate the
NMR-T?2 distributions along a 300-ft depth interval in a shale
petroleum system at 11000-ft depth below sea level [46]. The
trained model successfully predicts the T2 distributions for
100 discrete depths at an R? of 0.75 and normalized root-
mean-square deviation of 15%. A. Elshamli er al. generate
the domain-invariant representations by denoising autoencoder
and domain-adversarial neural networks [47]. The former

plan builds an unsupervised feature learning followed by a
supervised classification, while the latter plan jointly con-
siders the invariant representation learning and classification
during training. S. De et al. develop a new technique for
the classification of urban areas in PolSAR image [48]. They
leverage a synthetic target database for data augmentation. A
new reference database is formed by the uniformly rotated and
collated dataset. They are used to train a stacked autoencoder.
The information in the augmented dataset is transformed into
a compact representation. The classification is performed by
a multilayer perception network. L. Windrim et al. extend the
Spectral Angle-Stacked Autoencoder with the incorporation
of a physics-based model for illumination [49]. The proposed
algorithm learns a shadow invariant mapping without the need
for any labeled training data, additional sensors, a priori knowl-
edge of the scene or the assumption of Planckian illumination.

On account of the advances on deep learning, there is an
encouraging evidence that the learned representation could
produce a better performance than the canonical, predefined
image feature. It is therefore no need to pay more attention to
designing the delicate handcrafted features, as studied in the
preceding works [50]-[60].

B. Contributions

Though many studies on autoencoder have been done previ-
ously, a comprehensive summary is still absent. Seldom work
is dedicated to the appropriate choice of network architecture
to remote sensing, i.e., the impact of related factors. This is
adverse to the further development of the technique. This paper
attempts to fill the gap. We pursue a comprehensive review
of the related studies. Multiple comparative experiments are
performed from the viewpoint of target recognition in SAR
image. Some qualitative propositions can be then concluded.
We go on to provide some hints for the readers about the
logical choice of an appropriate network architecture according
to the application at hand. The contribution therefore includes:

o The review of autoencoder and its variants. Many im-
proved versions had been developed since the optimiza-
tion algorithms of deep network were presented [61].
We pursue a systematic review of autoencoder and its
variants, including the shallow framework and the neural
network architecture.

o The verification of network configuration from a com-
parative perspective. Though studied widely, seldom
work devotes to studying the effect of related factors,
especially from a comparative perspective. We verify the
performance of autoencoder with multiple quantitative
experiments. The experimental results demonstrate a
sound proof on some conclusions.

C. Organization

The rest of this paper is organized as follows. Section II
provides the basic autoencoder, and some improved versions.
A quantitative comparison of autoencoder and principal com-
ponent analysis (PCA) is pursued. The deep architecture is
described in Section III. The implementation of classification is
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detailed in Section IV. We simply review linear regression and
logistic regression, followed by multi-class logistic regression.
Section V delineates the application of autoencoder to target
recognition in SAR images. A short review of related works is
pursued, followed by the architecture of deep network formed
by SAR images. Section VI provides multiple comparative
studies, by which the impact of related factors can be studied.
Section VII concludes this paper and outlines the future work.

II. THE BASIC MODEL

The thought of deep learning has not been harnessed until
the efficient optimization algorithms are developed [61], [62].
The deep network is usually composed of several basic models.
In this section, we review the basic autoencoder and the
improved versions. All of the notations used in this article
are listed in TABLE L.

TABLE 1. THE NOTATIONS USED IN THIS ARTICLE.
X, X visible units, corrupted visible units
h,h hidden units, dropped hidden units
dy,dp dimension of visible layer, and hidden layer
We, Wh weight of visible units, and hidden units
b,, by bias of visible units, and hidden units
J(),L(-)  cost function and loss function
o(+),d0(+) activation function
P, P desired and real average activation of hidden units
*, ® convolution and element-wise product

A. AutoEncoder

Autoencoder is a typical unsupervised learning algorithm.
It aims to setting the target values to be equal to the original
input. As shown in Fig. 1, a generic model is usually composed
of three separate phases.

e Encoder: a set of linear feed-forward filters parameter-
ized by the weight matrix and bias. (Feed-forward neural
network)

e Activation: a nonlinear mapping that transforms the
encoded coefficients into the range [0,1].

e Decoder: a set of reverse linear filters that produce the
reconstruction of the input. (Back-propagation)

Encode Activation Decode
X h moon| 2
o(Wx+b O(W h+b
Alnput Wxtb ( ) ( ) Output i
1
| min {Loss(x,z)} i
Fig. 1. The generic flowchart of autoencoder.

Autoencoder is a typical feed-forward neural network. It
hooks together many of the simple “neurons”. The output of
a neuron can be the input of another. The parameters can be
estimated by back-propagation algorithm. A “forward pass” is
first run to compute the activations throughout the network,
including the output value of the hypothesis. For each middle
node, an “error term” that measures how much that node was

responsible for any errors in the output is computed. For an
output node, the difference between the network’s activation
and the true target value can be measured directly. It can be
further used to renew the “error term”.

Given the visible layer x € R autoencoder first maps it
into a hidden layer h € R% with a weight matrix W,, bias
b, and an activation function o(-) : R — [0, 1],

h=oc(Wyx +Db) (1

The hidden units are then cast into the output layer z € R%
in a reverse fashion with weight matrix W), bias b; and
activation 6(-) : R — [0, 1]

z=0(Wrh+by) 2)

To simplify the network architecture, the tied weights strategy
W, = W, = W was usually employed. The parameters to be
determined are {W,b,, by }. The objective function to train
an autoencoder is to minimize the cost function

arg min  J(W,b,, by). 3)

sPv DR

Given the training samples, the cost function is defined as,
j(Wa bvv bh) = ‘C(Xv Z) + )‘g(W) (4)

where £(x, z) is the loss function, and g(VV) is a regularization
(weight decay). The comparative studies on loss function can
be found in Section VI-A. The weight decay is the Frobenius
norm of weight, g(W) = 0.5(| W, ||% + [[Wh||%). It tends to
decrease the magnitude of the weights, and hence prevents
over-fitting. The weight matrix and bias are obtained by the
mini-batch stochastic gradient descent algorithm,

3]
(new) (old)
w =W —a—iWJ(V\%bmbh)

0
bg)new) — b’gOld) — aaTJ(W, b1)7 bh) (5)

v

new o 0
bgL ) = b§7, @ - aaibhj(y\&bvvbh)

where « is the learning rate. W(Old), be’ld), bELO id) denote the

old model parameters, and W<MW>,b£”e“’),b§f ) are the
renewed ones.

B. Sparse AutoEncoder

To exploit the inner structure of data, an additional regular-
ization, the sparsity constraint on the hidden units is developed.
A neuron whose output is close to 1 is activate, while the one
whose output is close to 0 is inactive. Sparse autoencoder aims
to limiting the neurons to be inactive most of the time.

Given a set of training samples, X1,Xa, ..., X,,, the average
activation of j-th hidden unit is p; = = > [h;(x;)]. Sparse
autoencoder enforces the constraint p; = p, where p is the
desired average activation value. Most activations of the hidden
units are then near 0. The constraint is realized by a penalty

dh
> {p10g§ +(1—p)log

J

1—p
1_,}. (6)

i=1 Pi
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It is the Kullback-Leibler (KL) divergence Z(j’;l KL(pllp;).
The cost function of sparse autoencoder is

dp

= L(x,2) +8)_ KL(pll;) (M

j=1

Jsparse

C. Denoising AutoEncoder

To deal with the small variation of input data, Pascal Vin-
cent et al. propose a trick, namely denoising autoencoder [63].
They destruct the input data manually, and verify that even
partially destroyed input could yield almost the same result.
This is because a good representation should be capable to
capture the stable structures in form of dependencies and
regularities characteristic of the unknown distribution. The
learned representation is robust towards the slight disturbance
of the observed.

For input x, it is first corrupted to get a partially destroyed
version X by means of stochastic mapping. The random
corruption can be implemented in two fashions:

e Binary noise: Randomly choose a fixed number of raw

data, and force their values to be 0.

e Gaussian noise: Generate a number of Gaussian random

values, and add them with the initial data.

The corrupted data x is then mapped to the hidden layer

h =oc(W,x+b,), (8)
from which the reconstruction can be obtained

z = 0(Wrh + by,). )

A diagram of denoising autoencoder is illustrated in Fig. 2.

Encode - Decode z
Input data - Reconstructed -
X Representation data !
i
!

! min { Loss(x,z)}

Corruption

z
Input data ed -
|
1
1
1
]

! min{Loss(x,z)}

Fig. 2. The top chart displays the prototype of autoencoder, while the bottom
one shows the denoising autoencoder. The input data is manually corrupted in
a certain level. The corrupted data is then mapped to the hidden layer, from
which the initial data can be reconstructed.

As proved in the preceding works, there is a low-
dimensional manifold near which the data concentrate. The
denoising autoencoder can be then viewed as a way to define
and learn a manifold [64]. It aims to building a mapping from
the low probability event x to the high probability event x.
This is achieved by promoting the probability p(x|X), similar
to minimizing the loss function. The learned representation h
can be interpreted as a coordinate system for points on the
manifold. The tendency is much significant if the dimension
of h is specified to be smaller than the dimension of x. The
process can be seen as that the learned representation captures

the main change of the input. On the other hand, the latent
state h can be viewed as the low-dimensional representation of
input x. The autoencoder can be also seen as a linear (without
activation) or nonlinear (with activation) dimension reduction

mapping.

D. AutoEncoder with Dropout

Dropout is a strategy popularly used in training large neural
network with limited training resource [65]. It provides a
way of approximately combining exponentially many different
neural network architectures efficiently. “Dropout” refers to
dropping out some hidden units in a neural network. Dropping
an unit out means temporarily removing it from the network,
along with all its all incoming and outgoing connections. The
diagram flow is shown in Fig. 3.

Input data Encode B becoce Reconstructed) £ _
X Representation data 1

i min {Loss(X,z)}

Corruption

Representation

! min {Loss(x,l)}

Fig. 3. The top flow shows the archetypal autoencoder, while the bottom
draws autoencoder with dropout. The input data is mapped to the hidden layer,
in which some neurons are deactivated. Only the remaining units are employed
to reconstruct the input data.

Consider a simple neural network with three layer, the input
layer x, the hidden layer h, and the output layer z. The feed-
forward operation with dropout is expressed as

h=oc(W,x+b,)
h = h ® Bernoulli(p) (10)
z = §(Wyh + by,)

where ® is the element-wise product operation, and p is the
proportion of hidden units to be dropped. The autoencoder
with denoising and dropout is pictorially shown in Fig. 4.

E. Contractive AutoEncoder

Both denoising and dropout trick produce a stochastic
fashion of neural network. All of the corrupted (or dropped)
neurons are randomly determined. Differently, Salah Rifai et
al. propose to train a deterministic fashion of neural network,
contractive autoencoder [66]. They design a well chosen
penalty term, the Frobenius norm of the Jacobian matrix of the
encoder activations with respect to the input. The penalty could
generate a localized space contraction which in turn yields the
robust features on the activation layer.

To enhance the robustness of the learned representation, an
intuitive idea is to penalize the sensitivity to the input. This
thought is realized by the Frobenius norm of the Jacobian
matrix J,(x) of activations, h = ¢(WWx + b,). The penalty
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Hidden Dropped

Reconstructed

Fig. 4. The implementation flow of autoencoder with denoising and dropout.
The circles in blue denote the manually corrupted (or dropped) neurons. All
of them are randomly determined.

term is defined as the sum of square of all partial derivatives
of the hidden nodes with regarding to input

[FASSIEDY (3%(5%2

1j

(1)

Considering the linear encoder, the penalty is degraded to the
weight decay, g(WW). The Jacobian penalty encourages the
mapping to the hidden layer to be contractive in the neigh-
borhood of input. The objective function is then expressed as
jcontractive = E(Xv Z) + 77HJ0 (X)”%’ (12)
Since the training examples congregate near a low-
dimensional manifold, the variations present in the original
data correspond to the local dimensions along the manifold.
Specifically, the small variations in the input data correspond
to the directions orthogonal to the manifold. The contractive
autoencoder tries to make the features invariant in all directions
by means of the F-norm of Jacobian matrix penalty. Simul-
taneously, it should be capable to reconstruct the input. It is
therefore good at representing the data variations near a lower-
dimensional manifold.

F. Variational AutoEncoder (VAE)

Variational autoencoder is a recently developed skill [67],
[68]. It is not a precise concept of autoencoder model, but
a generative model. It could generate the training samples
which are not available in the gallery. Different from the
archetypal autoencoder, the outputs of encoder and decoder are
the samples drawn from a parameterized probability density
function, as shown in Fig. 5.

From a perspective of coding theory, the hidden variables h
can be interpreted as a latent representation or code. It refers to
the recognition model g, (h|x) as a probabilistic encoder. The
data is encoded into a soft ellipsoidal region in the latent space,
rather than a single point. Given an example x, VAE produces
a distribution (e.g., Gaussian) over the possible values of the
code h, from which the datapoint x could be generated. The

6
phase of encoding can be then expressed as
fl = O'(W()X + bo)
Encoder H 9 =Wih+b, (13)
log g = Wgh + bQ
logg(hlx) =logN(h;pu,o%I)

where the model parameters and the latent states are sampling
form the statistical distribution h ~ ¢4 (h|x).

In the phase of decoding, a similar vein can be obtained.
We refer to pyp(x|h) as a probabilistic decoder. Given a code
h, it produces a distribution over the possible corresponding
value of x. The decoder is therefore a conditional generative
model that estimates the probability of generating x given the
latent variable z,

b’ = §(Wsh + bs)
’ _ ’
Decoder H 9 = Wah'+ b, (14)
IOg o7 = W5h/ + b5
logp(x|z) = log N'(x; ', 071)
Encoder ——> Decoder

i
i
1
i
i
1
i

Fig. 5. Tllustration of variational autoencoder. The model parameters and the
latent states are sampling from a parameterized statistical distribution.

Variational autoencoder aims to approximating pg(x|h) by
the given distribution g4 (h|x). It is needed to balance the
reconstruction accuracy and the goodness-of-fit of Gaussian
distribution. The objective can be achieved by the neural
network itself. The loss function is therefore composed of
these items. The reconstruction accuracy can be measured by
the mean square error, while the difference between the latent
variables and the Gaussian distribute is typically quantified by
the KL divergence,

Jvae = Dir(qe(h|x)||pe(x|h)) + MSE(x, z) (15)

where ¢ and 6 are the variational parameters and the generative
parameters.

For the high-dimensional data, the similar examples may
distribute in a high-dimensional manifold. The task of repre-
sentation learning is actually to predict that manifold explicitly
or implicitly. The observations can be then reconstructed
from the low-dimensional latent variants. The latent variants
could approximate the observations. Moreover, the similarity
is varied smoothly.

G. Convolutional AutoEncoder

The fully connected autoencoder ignores the spatial structure
of image. To handle the problem, J. Masci et al. present con-
volutional autoencoder [69]. They introduce some redundancy

it e
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in the model parameters, forcing the learned representation to
be global, spanning the entire visual field. Since the weights
and bias are shared among all locations of input, the spatial
locality can be preserved. Given the single channel image x,
the latent representation of the k-th feature map is given by

h* = o(x+* WK +b,). (16)

The bias b, is broadcasted to the whole map. Since one bias
per pixel would introduce too many degrees of freedom, one
bias per latent map is employed. Then each kernel filter could
specialize on features of the whole input.

Following the road-map of convolutional neural network, a
max-pooling layer is connected with the convolutional layer.
The sparsity over the representation can be then introduced. It
erases the non-maximal values in non overlapping subregions.
It could generate more broadly applicable feature, and avoid
the trivial solutions such as having only one weight “on”. The
reconstruction is obtained using

z=0(>_ h"« WF+by) (17)
k

where )V denotes the flip of W over both dimensions of
the weights. In the phase of reconstruction, the sparse latent
coding decreases the average number of filters contributing to
the decoding of each pixel, forcing filters to be more general.
Consequently, the /1 - or £o-regularization over the hidden layer
is no need. The cost function is

jconv :‘C(Xaz) :Z{Hxl_ZZHS} (]8)

H. Illustrative Examples

The generic autoencoder model is composed of a encoder
and a decoder. The learned feature is the encoded coefficients.
For the nonlinearly separable dataset, a network with much
more hidden neurons is usually built (overcomplete repre-
sentation). For the high-dimensional examples, the dimension
can be reduced by training a network with less hidden neu-
rons. Autoencoder can be therefore viewed as a dimension
reduction trick. The network with nonlinear activation plays
a similar role to the nonlinear mappings, such as locally
linear embedding, Laplacian eigenmaps, while the network
with linear activation resembles the linear skills, such as
principal component analysis, linear discriminant analysis. In
this subsection, we demonstrate some illustrative examples,
by which PCA, autoencoder with linear activation, and with
nonlinear activation are compared with.

To visually compare autoencoder and PCA, we perform a
group of experiments. The images are of 96x96 pixels in size,
and from three different classes. The details can be found in
Section VI. We produce the 2-D representations for the bag
of images by a trained autoencoder and PCA, and display the
learned features in Fig. 6. As can be seen, the representations
learned by autoencoder are scattered more separably, while the
ones produced by PCA are overlapped. It is therefore much
easier to differentiate these samples by the representations
learned by autoencoder.

Fig. 6. The scattering map of the learned 2-D feature by (a) autoencoder
and (b) principal component analysis.

We then evaluate the recognition performance. The learned
representations are connected with a softmax layer to im-
plement target classification. The experimental results are
displayed in Fig. 7. As can be seen, the tendency is obvious.
With the dimension of learned representation increased, the
recognition accuracy is is changed. The 256-D representation
always produces the best performance. On the other hand,
the recognition accuracy obtained using PCA is consistently
poorer than autoencoder, whether the linear activation or the
ReLU activation are utilized. Simultaneously, we found the
performance obtained using autoencoder with ReLLU activation
is always much better than the linear activation for all six
dimensions of representation.
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Fig. 7. The recognition performance obtained using autoencoder and PCA.

III. THE DEEP MODEL

A deep architecture is formed by the composition of multiple
levels of representations. Likewise, the basic autoencoder can
be concatenated to build the deep model, stacked autoencoder.
It is composed of a visible layer, several hidden layers, and
an output layer. The output of previous layer is wired to the
input of the successive layer, as illustrated in Fig. 8. Stacked
autoencoder inherits the benefits of deep network of greater
expressive power. An autoencoder model aims to learning a
good representation of the input. The first-hidden layer of
stacked autoencoder tends to learn the first-order feature from
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the input data. Likely, the successive-hidden layer typically
generates the high-level feature corresponding to pattern in
the appearance of previous-level ones. It therefore captures a
useful “hierarchical grouping” or “part-whole decomposition”
of the input [70].

Fig. 8. Stacked autoencoder with two hidden layers. The successive layers are
connected with the preceding layer by the model parameters. To implement
classification, the last-hidden layer is usually connected with a softmax layer,
whose output is the probability of the class taking each possible values.

For stacked autoencoder with [V hidden layers, the wei(é;ht
and the bias of the k-th layer are denoted by Wq(,k), th),
bq(,k), b;lk). The encoding is implemented layer by layer in a
forward order,

h) :g(z(k))

20D IR0 4 b0 (19)
where z(*) = x(*=1) is the output of previous layer. Similarly,
the decoding is run layer by layer in a reverse order,

h(nJrk‘) :6(z(n+k) )

z(n+k+1) :W}(Ln*k)h(n—i-k) + bl(znik) (20)

The information interested is contained in the transition period,
i.e., the activation of the deepest layer of hidden units. The
model parameters are estimated by a layer-wise greedy strat-

egy [61]. Specifically, the first-hidden layer is trained by the
input data, resulting in the parameters qul), W,(Ll), bS}), b;ll).
The activations of the hidden neurons are then used to train the
second-hidden layer, producing the parameters WU2 , W,(f),

1(,2), bf). The procedure is transfered to the final-hidden layer.
Each layer is trained individually, i.e., those parameters of
the network which is not involved are frozen. To boost the
performance, fine-tuning via back-propagation is proposed. It
improves the results by tuning the parameters of all layers.

The implementation flow is summarized as follows:

e Compute the activations of each hidden layers.
e For certain layer n;, compute the partial derivative

50 = —~(Vypen J) - o' (2™))
e Forl=n—1,n,—2,...,2, set

6O = (WINT DY . 57 (z0)

e Produce the desired partial derivatives:
Vo I(W, by, b,) = 5(l+1)(h(1))T
Vo J (W, by, by) = 60D

Due to the representation power, stacked autoencoder has
been widely used in the preceding works. Y. Chen et al. build
a deep learning architecture by stacking autoencoder, with
which the useful high-level features can be learned from
the hyperspectral data [28]. J. Geng et al. refine the hand-
engineered features by a contractive neural network [21]. S.
Hao et al. encode the spectral values of the input pixel by
stacked denoising autoencoder, and handle the corresponding
image patch by a deep convolutional neural network [71]. X.
Sun et al. learn a discriminative deep feature by a trained
stacked autoencoder, where the constraint of the label con-
sistency on a neighborhood region has been introduced [16].
X. Zhang et al. consider the spatial and spectral information
jointly by a recursive autoencoder network [72]. A weighting
scheme is developed to enhance the representation power. They
determine the weights by the spectral similarity between the
neighboring pixels and the investigated pixel. D. Zhang et
al. build a stacked denoising autoencoder to learn the saliency
prior knowledge from auxiliary annotated data sets and then
transfer the learned knowledge to estimate the intra-saliency
for each image in co-saliency data sets [73]. L. Cao et al. prove
that the sparsity regularization and denoising mechanism seem
to be mandatory for constructing interpretable feature rep-
resentations [74]. J. Feng et al. propose a stacked marginal
discriminative autoencoder model to handle the limited training
samples [75]. The marginal samples obtained by k nearest
neighbors between different classes are used to fine-tune the
defined network. S. Paul and D. Kumar present a mutual
information based segmented stacked autoencoder model to
reduce the computational complexity [76]. A non-parametric
dependency measure based spectral segmentation is defined to
consider both linear and nonlinear inter-band dependency for
spectral segmentation of the hyperspectral bands. X. Han et
al. present an unsupervised convolutional sparse auto-encoder
model to represent the spatial-spectral features around the
central pixel within a spatial neighborhood window [77].

IV. CLASSIFICATION

Though autoencoder is an unsupervised learning skill, it can
be appended by a softmax layer to achieve pattern classifi-
cation. This section first provides a simple review of linear
regression and its special form, logistic regression, followed
by multi-class logistic regression (softmax classifier).

A. Linear Regression

Linear regression models the relationship between a scalar
dependent variable y (response) and a set of explanatory
variables x1, 2, ..., Tm,

y=hg(x) =00+ 0121 + Ooxo + - -+ + O, = 07x (21)
where x = [1,21,%2,...,%m,] is an observed instance. § =
[00,01,...,0,,] is the regression coefficients. Given a set of
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labeled training samples {(x1,y1), (X2, ¥2), -, (Xar,yar) }

the cost function is defined as
M
T0: et = 512 D0 (- holx)) . @)
y Xy Yi)i=1) = IM et Yi 0 (X; .
The regression parameters 6 is obtained by optimizing objec-
tive = argming 7 (0; (x;,y:)M,). It is solved by the gradient
descent method,

9§new) _ 0§old) j( ) (23)

80

where « is the learning rate. It is important to the solution of
the regression parameters 6.

B. Logistic Regression

Logistic regression is a special form of linear regression
where the dependent variable is categorical (biological). It
typically produces the binary classification, y € {0,1}. The
hypothesis concerning the label of sample x takes the form,

1
ho(x) = 1+ exp(—0Tx)"

It is obtained by a logarithm operation on the ratio of positive
and negative hypotheses,

o (Ply=1x)\
log Zt(X) =In <m) =In (
=0y + 0121 + oo + - -

The cost function can be then expressed as

o(07x) = (24)

P(y = 1x) )
1-Ply=1x)/ 25)
+ O0pzm = 07x

T (0; (xi,u:)) = —% [Zyz log he(XiH‘(l—yi)log(l—ho(xi»}

i=1

C. Multi-class Logistic Regression

Multi-class logistic regression is a generalization of logistic
regression to the case of multiple classes. The labels of logistic
regression are binary, while softmax classifier allows multiple
classes, y € {1,2,..., K}. For a query sample x € R, the
output of softmax classifier is the probability of the class label
taking one each of the K different possible values,

Py = 1]x;0) exp(6] x)

Py = 2[x;0) 1 exp(63 x)
ho(x) = s TS ew@) |

Py = K|x;0) exp(0%x)

where 6 = [01,0,,...
probability function is

K
Pluixit) =[] (e
j[[l > i1 exp(6] x)
where I{-} is a indicator function. The likelihood function is

HH(

i=1j5=1

,0k] are the model parameters. The

exp(Gij)

Hy=3}
) (26)

exp( 0 X;)

)I(yi:j)
exp(0Fx;
Zk 1 p(

LK(0; (xi,9:)) (27)

Taking the logarithm operation, it can be then written as

ZZI{% 7]}10g<

1=1 j=1

07,
log LK (6 exp(0; %) )

iy exp(07 ;)

The cost function is

[ZZI{%—k}l

i=1 j=1

exp(0Fx;) )8
S o)) O

V. APPLICATION TO TARGET RECOGNITION

With the development of integrated circuit technology, huge
high-resolution images are collected by various kinds of sen-
sors. It is urgent to achieve image interpretation automatically.
Target recognition' in SAR images is a typical research topic
of image interpretation. Though studied widely, it is still an
open problem due to the complicated battlefield environment
and the mutable imaging conditions. The conventional methods
used in the optical sensor images is not effective to radar
image. The researchers gradually recommend learning the
effective representation from the data itself via deep neural
network [78]-[82]. In this section, we provide a simple re-
view of the preceding works on the hand-engineered features.
The achievement of target recognition in SAR image via an
autoencoder neural network is then presented.

A. The Previous Works

The performance of radar target recognition is mainly de-
pendent on two key issues, how to design an effective feature
from a radar image, and how to implement classification with
the defined feature. We give a simple summary of the hand-
engineered features developed for SAR images, followed by
the typical classification methods popularly used.

1) Handcrafted feature: In SAR imaging process, there are
multiple scattering mechanisms contributing to the backscat-
tered signal [83]. The interaction of electromagnetic wave
and object includes the direct backscatter, the single-direction
double bounce, and the return-direct multi-bounce. Due to
the complicated scattering mechanisms, it is much difficult to
extract feature from radar image. The conventional features
developed for the optical sensor images are not effective any
more. Therefore, some delicate features specific to SAR image
have been presented.

e Raw intensity. In the early works, the raw intensity
values, or the enhanced image are directly employed
to produce a feature [84], [85]. The defined feature is
then input to a trained classifier. The performance is
therefore mainly dependent on a discriminative classifier,
rather than the feature itself. Though easily defined, the
recognition performance is limited, especially in the non-
literal settings.

'In this paper, the term “target” refers to the ground, military vehicles,
such as main-battle tank, armored personnel carrier, car. We aim to differen-
tiating these military vehicles by the radar images. We use the term “target
recognition” to classify a scenery of radar image as one of several classes.
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o Geometry feature. This kind of features are obtained by
separating the target and the radar shadow, from which
some region (or shape) descriptors can be obtained [86],
[87], such as the shape context descriptor of radar
shadow and target, various kinds of statistical moment.
This family of features are usually needed the fine
segmentation of target, an open problem in radar images.

e Projection coefficients. Some researchers propose to
project the initial image into a designed linear subspace,
and define a feature by the transformed coefficients. The
representative trick includes principal component anal-
ysis, locality preserving projection, non-negative matrix
factorization [53]. There is considerable ambiguity about
what these features actually mean.

e Filter banks. To deal with the extended conditions such
as translation, distortion, some researchers propose to
define the feature by a family of filter banks. The repre-
sentative includes Fourier transform, wavelet, and Gabor
filters [88], [89]. These methods are usually effective
to the certain dataset or task, and hence difficult to be
extended to other generalized applications.

o Scattering center models. This family of feature refers
to the received returns by the interactions between the
incident radio wave and the physical structure of object.
The thought has been led by L. Potter and R. Moses [90].
They present a framework for feature extraction predi-
cated on parametric models for the radar returns. The
models are motivated by the scattering behavior pre-
dicted by the geometrical theory of diffraction. Then
some improved methods have been developed [91]-[95].

2) Typical Classifier: The generated feature is input to a

trained classifier to predict the class membership. The methods
popularly used include kNN classifier, kernel-based classifier,
Bayesian inference, and sparse representation. KNN classifier
predicts the identity by measuring the similarity between the
probe and the training. The key is to define an appropriate
metric, such as mean square error [96], KL-divergence [97],
[98], Wishart distance [99]. Kernel-based classifier projects the
initial data into an abstract feature space, whose dimensionality
can be much high or even infinite. The class separability can
be then enhanced in the feature space. One of the most repre-
sentative method is SVM with the linear kernel, the Sigmoid
kernel, the Gaussian radial function, or the polynomial kernel.
Q. Zhao and J. Principe present an application of SVMs for
SAR automatic target recognition [85]. They demonstrate the
advantage of SVM compared with the conventional classifiers
in both closed and open sets. Y. Sun et al. propose to classify
the SAR images by using the adaptive boosting algorithm with
the radial basis function network as the base learner [50].
R. Kemker and C. Kanan implement the hyperspectral im-
age classification by feeding the learned representation into
a SVM classifier [43]. Bayesian inference. This family of
classifiers predict the identification with the Bayesian theory,
such as maximum a posterior probability [51], maximum
likelihood [100], generalized likelihood ratio [101]. Sparse
representation-based classifier is a recently developed method.
It considers the classification problem as the multiple linear
regression models, and address the problem by the theory of

sparse representation [84].

B. Target Recognition via AutoEncoder

Though great efforts have been pursued, feature generation
from radar image is still much challenging due to the unique
imaging mechanism. The handcrafted and predefined features
are usually effective to the certain dataset or task, and yet could
not be transferred to the other dataset. In the preceding studies,
the researchers mainly focus on how to design a delicate
feature, by which target recognition can be achieved. Seldom
works are devoted to learning the latent representation from
the original data itself. To break this tendency and improve
the performance, a good choice is to rely on the advanced
learning skills, such as deep neural network [32], [102], by
which an effective representation can be learned.

This paper considers target classification in radar images.
To avoid the multiple complicated procedures in the conven-
tional methods, this paper proposes to learning an effective
representation by an unsupervised learning skill, autoencoder
neural network [103]. The learned representation can be then
input to a third-party trained classifier, or a softmax layer
to predict the class membership of the query. To form an
autoencoder model, we reshape the radar image to be a single
array, whose entries are the nodes of visible layer. The visible
layer is then cast into the hidden layer by the model parameters
(weights and bias) and the activation function. Each visible
node is connected with all of the hidden neurons, some of
which are deactivated or dropped. The network is allowed
only to transmit forward, and hence also called feed-forward
neural network. The deep neural network architecture is built
by concatenating the basic autoencoder models hierarchically.
To estimate the model parameters, a generic method is to
optimize a loss function composing of the reconstruction error
and some regularization terms. The deviation is allowed only to
transmit from the end to the beginning, i.e., back-propagation.
The latent representation is obtained by training the network
layer by layer [61]. To implement target classification, the
learned representation is then input to a softmax layer, or
a third-party classifier, by which the identification can be
predicted. The whole procedure is pictorially shown in Fig. 9.
The implementation flow is summarized as twofold,

e Generate the representation by training an autoencoder
neural network.

e Predict the identification via a softmax (or third-party)
classifier.

VI. EXPERIMENTS AND DISCUSSIONS

This section verifies the performance of autoencoder and
its variants from a comparative perspective. The experiments
are pursued on MSTAR database, a collection consisting of
X-band SAR images in one-foot resolution. Images are taken
at several different operating conditions, including depression
angle, aspect view, configuration, occlusion and articulation.
The depression angle refers to the angle between the line of
sight (from the radar to the target) and the horizontal plane
at the radar. For each target, images are captured at different
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Target recognition in SAR images via the autoencoder network.

Fig. 9.

depression angles over a full 0 ~ 359° range of aspect view.
The initial images are of 128 x 128 pixels around in size, and
are standardized by cropping the center patches.

We organize two kinds of experiment plans, standard ver-
ification and extended evaluation. The first devotes to tar-
get recognition under the standard settings, with which the
impacts of related factors can be studied. The second aims
to the non-literal conditions, from which the quantitative
comparison with state-of-the-art algorithms is performed. The
network models are realized by Keras and Theano library.
All of the experiments are pursued on Python 3.6 of Win
7. The source codes are publicly released in the website
https://ganggangdong.github.io/homepage.

A. Fundamental Validation

We first consider the fundamental evaluations. The effect of
related factors are studied by changing some configurations,
including the size of visible layer, the size of hidden layer,
activation, loss function, optimizer, the variants of autoencoder,
and the depth of network. Images of BMP2, BTR70, and T72
are used. The details on training and testing are shown in
TABLE II.

TABLE II. NUMBER OF ASPECT VIEW FOR BMP2, BTR70, AND T72.
Target SeriesNo. | Training | Testing
SN_9563 233 195
BMP2 | SN_9566 — 196
SN_c21 — 196
BTR70 SN_c71 233 196
SN_132 232 196
BMP?2 SN_812 — 195
SN_s7 — 191
Total 698 1365

1) The Size of Visible Layer: The size of input layer refers
to the dimension of input data. It influences the effectiveness
of the learned representation in some degree. To study the
effect, we pursue a set of experiments. The initial images
are of 128x128 pixels around in size. To produce different
size of input data, we standardize the images by cropping
the center 48x48, 56x56, 64x64, 72x72, 80x80, 88x88,
96x96, 104x104, and 112x112 patches, corresponding to
2304-, 3136-, 4096-, 5184-, 6400-, 7744-, 9216-, 10816-, and
12544-node visible layer. Fig. 10 displays a set of the cropped

images. The cropped patches are used to train an autoencoder.
The number of hidden unit is changed in a range [400, 1200].

$
J .
K ’ >

Fig. 10. The center 48x48, 56 x56, 64x64, 72x72, 80x 80, 8888, 9696,
and 104 x104 pixels patches generated from the original image.

The results are reported as some statistics (the minimum,
median, and minimum, the 25th and 75th percentiles) of
different settings, as box-plotted in Fig. 11. As can be seen,
the input data does play an important role to the effectiveness
of learned feature. The recognition accuracies are gradually
increased when the size of visible layer increased from 2304-
D to 12544-D. The lowest accuracy is obtained by 48x48-
pixel patches, in which part of radar shadow and most of the
background have been excluded. Contrarily, the best rate is
produced by 96x96- and 112x112-pixel patches. The most
stable performance is obtained using 96x96-pixel patches,
while the least stable performance is generated by 56x56-
pixel input. The recognition performance is much poor when
the size of visible layer is too small. The results demonstrate
that 96x96-pixel patches is suitable for our task of target
recognition. This set of experiments also confirm that both
radar shadow and background have some discriminative power.
The performance can be improved by considering target, radar
shadow, and background jointly.
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Fig. 11. The recognition accuracy over different size of visible layer.

2) The Size of Hidden Layer: Autoencoder neural network
is an unsupervised learning trick. The learned representation
is actually the encoded coefficients (hidden neurons). The
dimension of learned feature is therefore determined by the
size of hidden layer. To study which number of hidden unit
is appropriate to the task of target recognition, we pursue a
group of experiments. The 88x88- and 96 x96-pixel patches
are employed as the input, while the hidden layer is changed
from 300 to 2000.
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Fig. 12. The recognition accuracy across the number of hidden unit.

The results are reported as the overall recognition rate,
as shown in Fig. 12. We can see the recognition rates are
irregularly varied with the size of hidden layer increased. Two
kinds of input data demonstrate similar trend. For 96x96-
pixel input, the lowest rate is produced by 300-hidden-unit
network. Correspondingly, 300-, 700-, and 2000-hidden-unit
networks produce the poor performance for 88 x 88-pixel input.
The recognition accuracies are not proportional to the size of
hidden layer. The best recognition rate is obtained by 1600-
hidden-node network with 96x96 pixels input. The results
prove that it is important to tune an appropriate size of hidden
layer according to our mission at hand. Neither small nor large
size of hidden layer could learn an effective representation.

3) Activation: The activation function is a nonlinear map-
ping. It projects the encodings (or decodings) into a certain
range [0,1], and hence converts a linear encoder (or decoder)
to be a nonlinear one. The typical activation includes sigmoid
function, hyperbolic tangent, and rectify linear unit.

e Sigmoid: o(z) = L

1+exp (—x)
e Hyperbolic tangent (tanh): o(z) = %

e Rectify linear unit (ReLU): o(z) = max (z,0)

To study the effect of activation, a set of experiments are
performed. We set the size of visible layer as 96x96, and vary
the units of hidden layer from 400 to 1600. Fig. 13 draws the
recognition accuracy across the size of hidden layer. Three
activation functions are compared with.

The results demonstrated in Fig. 13 (a) and (b) are slightly
different. When the cross entropy function is used to measure
the deviation, ReLU function produces the best performance.
The accuracies are gradually decreased with the number of
hidden unit increased. The sigmoid function generates a much
poor performance. On the contrary, hyperbolic tangent function
provides great advantage when mean square error function
is employed to quantify the deviation. The improvement is
significant in terms of the recognition accuracy. The perfor-
mance obtained using sigmoid function is varied sharply, even
increasing from 0.8200 to 0.8852. Hyperbolic tangent function
always produces the most stable recognition performance.
From this round of experiments, we could conclude that the
hyperbolic tangent function is better to be conjunction with
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Fig. 13. The comparison of activation function with the loss function of (a)

cross entropy and (b) mean square error.

the loss of mean square error.

4) The Loss Function: The loss function is used to quantify
the deviation of the reconstructed sample from the initial input
data. An ideal autoencoder neural network aims to building an
identity function, with which the input data can be perfectly
reconstructed. The deviation of a reconstruction amount from
the original value is expected to be as minimal as possibly.
The metrics popularly used are mean square error (MSE) and
Cross entropy.

e MSE: L(x,2z) = i Z?l1 {(z; — 2)*}

e Cross Entropy:

L(x,2) = Y52, {i-log () + (1 — i) -log (1 — z:)}

To study the impact of loss function, a set of experiments are
pursued. We set the size of visible layer as 96x96, and change
the number of hidden unit from 400 to 1600. The experimental
results are shown in Fig. 14, where two loss functions are
compared with.
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Fig. 14. The comparison of loss function with the activation of (a) hyperbolic
tangent and (b) rectify linear unit.

As can be seen, Fig. 14 (a) and (b) demonstrate the totally
different tendency. The recognition accuracy obtained using
MSE function is much better than cross entropy function when
the hyperbolic tangent is used to achieve activation. The bigger
the hidden layer size, the better the performance, when MSE
function is employed to measure the deviation. The 1200-
hidden-neuron network produces the best performance. On the
contrary, the performance produced by cross entropy function
is much better than MSE function when ReLU function is
employed to implement activation. The recognition accuracy is
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gradually decreased with the number of hidden unit increased.
The 400-hidden-unit network generates the best performance.
The results prove that large-scale hidden layer network is
suitable to be conjunction with MSE function, while small-
scale hidden layer network is appropriate to be configured with
the cross entropy function.

5) Optimizer: Have determined the architecture of neural
network, the next problem is to solve the model parameters
(the weights, the bias) by an optimization scheme. The most
popularly used method is the gradient descent optimization
algorithm. In the community of deep learning, many variants
of gradient descent have been presented. The representative
include stochastic gradient descent (SGD), RMSprop, adagrad,
adadelta, adaptive moment estimation (adam), adamax, and
Nesterov-accelerated adaptive moment estimation (Nadam).
The comprehensive review on optimization can be found in
the preceding work [104]. To verify the performance of these
algorithms, we pursue a set of experiments. The results are
reported as some statistics (minimum, median, maximum, the
25th and 75th percentiles) of 10 sample runs, as drawn in

Fig. 15°.
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Fig. 15. The recognition performance obtained using different optimizers.

As can be seen from Fig. 15, the family of optimization
algorithms demonstrate sharply different recognition perfor-
mance. The best performance is obtained by ‘adam’ optimizer,
as also widely studied in the preceding works. The poorest
performance is generated by ‘adadelta’ algorithm. Nearly 20-
percent drop of recognition accuracy has been produced. The
result is conform to the preceding study [104]. The recognition
accuracy produced by ‘SGD’, ‘adadelta’, ‘adam’ optimizer are
much more robust than the remaining algorithms. The fluctua-
tion of recognition rate produced by ‘nadam’ algorithm is more
drastic than the remaining. It can be therefore concluded that
the ‘adam’ algorithm is a good and general choice to solve the
model parameters.

6) Sparse AutoEncoder: Sparse autoencoder introduces a
sparse constraint, KL divergence between the average activa-

2This round of experiments are performed by Keras library with tensorflow
backend. A 1024-hidden-neuron network is built, followed by a softmax layer
on the top architecture.

tion hidden units and the desired value, with which the inner
structure of input can be exploited. To validate the performance
of sparse constraint, we conduct a set of experiments. The
input layer is set as 96x96-pixel patches, while the number
of hidden units are specified as 800. We manually change
the desired activation value from 0.01 to 0.8. Two different
structures of network are configured. The first scheme achieves
the nonlinear mapping with hyperbolic tangent function, and
measures the reconstruction error by cross entropy function.
The second scheme implements the activation by the sigmoid
function, and quantifies the loss by MSE function. The exper-
imental results are drawn in Fig. 16.
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Fig. 16. The comparison of autoencoder with and without sparse constraint.
(a) hyperbolic tangent activation and cross entropy loss, (b) sigmoid activation
and mean square error loss.

As can be seen from Fig. 16 (a) and (b), two totally different
kinds of tendency are displayed. Only sparse autoencoder with
the desired sparsity value of 0.01, 0.1 and 0.5 outperform
the prototype of autoencoder when the hyperbolic tangent
activation and cross entropy loss function are configured. On
the contrary, the recognition accuracy obtained using sparse
autoencoder with all desired sparsity values (from 0.01 to 0.8)
are better than autoencoder when the sigmoid activation is
conjunction with MSE loss function. The results prove that
sparse autoencoder is effective to the network configuration of
sigmoid activation and MSE loss. The desired sparsity value
should be tuned according to the task at hand. An inappropriate
sparsity constraint may degrade the recognition performance.

7) Denoising AutoEncoder: Denoising autoencoder is de-
veloped to deal with the slight disturbance of observed input.
It trains the network by the manually corrupted data. To verify
the performance, a group of experiments are conducted. The
size of visible layer is set as 96x96, while 600- and 1200-
hidden-neuron networks are built. We enhance the corruption
level gradually from 0.01 to 0.5. The recognition accuracies
across the level of corruption are drawn in Fig 17, where
denoising autoencoder and the prototype of autoencoder are
compared with.

As can be seen from Fig. 17, two configurations of network
produce the similar trend. Significant improvement has been
obtained when the input data are manually destructed. The
best recognition rate is produced by denoising autoencoder
with 600-hidden-neuron, 3.04% better than the prototype of
autoencoder. Similarly, the best recognition rate for denoising
autoencoder is 0.9237 when 1200-hidden-unit network is built,
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Fig. 17. The comparison of autoencoder with and without denoising trick.
(a) 600-hidden-node network, (b) 1200-hidden-node network.

2.93% better than the prototype of autoencoder. Only the
accuracy of denoising with 0.05-level is slightly lower than
autoencoder. The similar conclusion can be concluded in the
preceding study [63]. The results prove that the effectiveness of
learned representation can be promoted by manually corrupting
the input data.

8) Dropout: Denoising trick corrupts the input data man-
ually, by which the slight perturbance can be allowed. Dif-
ferently, dropout skill abandons the hidden neurons randomly.
It aims to handling the small training samples. To verify the
performance, we pursue a group of experiments. The visible
layer is set as 96x96, while 600- and 1200-hidden-neuron
network are configured. We promote the level of dropout
gradually from 0.05 to 0.4. The results are reported in Fig 18,
where the recognition accuracy over the level of dropout is
plotted.
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Fig. 18. The performance obtained using autoencoder with and without

dropout. Two structural networks with (a) 600-hidden-neuron and (b) 1200-
hidden-neuron are built. The recognition accuracy of the former network
forms a unimodal sequence, while the performance of the latter network is
monotonically increased.

As can be seen from Fig. 18, autoencoder with and without
dropout trick demonstrates the similar trend in comparison
to autoencoder with and without denoising, as shown in
Fig. 17. Autoencoder with all levels of dropout performs much
better than the prototype of autoencoder. The best recognition
accuracy is produced by the 600-hidden-unit network with
dropout trick, 2.07% better than autoencoder without dropout.
Similarly, for the 1200-hidden-neuron network, the best recog-
nition rate for autoencoder with dropout is 0.9104, 1.63%

better than the archetypal autoencoder. Simultaneously, it can
be observed that the curves drawn in Fig. 18 (a) and (b) are
slightly different. The recognition accuracy is approximately
monotonically increased for the 1200-hidden-unit network,
while the recognition rate produced by the 600-hidden-neuron
network forms a unimodal sequence.

9) Contractive AutoEncoder: Different from denoising and
dropout tricks, where the corrupted (or dropped) nodes are
randomly determined, contractive autoencoder presents a de-
terministic constraint. The new constraint term is defined as
the Frobenius norm of Jacobian matrix of hidden neurons, with
which a robust representation can be learned. To validate the
performance, a group of experiments are performed. We set
the visible layer as 96x96, and change the number of hidden
neurons from 400 to 800. The experimental results are shown
in Fig. 19.
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Fig. 19. The comparison of autoencoder with and without Jacobian constraint.
(a) hyperbolic tangent activation and (b) sigmoid activation.

We found the similar conclusion can be concluded from
Fig. 19 (a) and (b). The performance obtained using con-
tractive autoencoder is consistently better than the archetypal
autoencoder except for the 400-hidden-neuron network with
sigmoid activation. The improvement is much more significant
if the hyperbolic tangent function is employed to achieve ac-
tivation. The recognition accuracy is monotonically increased
with the number of hidden neurons increased. Contrarily, the
recognition rate of the network with sigmoid activation forms
an approximate unimodal pattern. On the other hand, though
the recognition performance can be improved by contractive
autoencoder, the computational cost is much more intensive
than autoencoder. The memory consumption of contractive
autoencoder is much huge than autoencoder >.

10Variational AutoEncoder: Variational autoencoder is usu-
ally composed of a generative model and a recognition model.
It can be viewed as a special form of autoencoder, where
the recognition model plays the role of an encoder, and the
generative model is regarded as the decoder. The most arresting
characteristics of variational autoencoder consists in the model
parameters, which are sampled from a certain statistical distri-
bution. Variational autoencoder imposes the constraint terms
on the hidden neurons, and hence is similar to contractive

30ur 2Gb GPU (GeForce GTX 750 Ti) memory could only build the
network within 800 hidden neurons. The network with more hidden neurons
makes the GPU memory overflow.
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autoencoder. To verify the performance, we perform a set of
experiments. We manually change the dimension of the latent
representation. The experimental results are given in Fig. 20,
where some statistics (minimum, median, maximum, the 25th
and 75th percentiles) of 10 sample runs are reported®.

10
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Fig. 20. The recognition performance obtained using variational autoencoder.

As can be seen from Fig. 20, the recognition performance
obtained is slightly varied. Though the recognition accuracy is
gradually promoted with the dimension of learned represen-
tation increased, the improvement is much slight. The 128-
D, 160-D, and 192-D learned representation even produce
the similar performance. The performance obtained by 224-
dimension latent representation is much better than the remain-
ing. Moreover, the recognition accuracy is much more stable
than the baseline. The 256-dimension learned representation
generates the poorest performance. Moreover, the fluctuation
of recognition accuracy is much sharper than the others. It
could be therefore concluded that the recognition performance
is not proportional to the dimension of learned representation.

11 Convolutional AutoEncoder: Convolutional autoencoder
(CAE) is developed by combining convolutional neural net-
work and autoencoder. Different from the archetypal autoen-
coder, convolutional autoencoder shares the kernel weights
and bias among all locations in the input, and hence could
preserve the spatial locality. To evaluate the performance, we
conduct a group of experiments. We manually change the size
of convolutional kernel, and pursue a quantitative comparison
with the deep CNN. Three kinds of convolutional kernels,
3x3, 5x5, and 7x7 are verified. The experimental results are
displayed in Fig. 21, where some statistics (maximum, mean,
minimum, percentiles) are reported”. The convolutional neural
network is employed as the baseline. To avoid over-fitting, 3-
layer CNN and CAE architectures are constructed.

As can be seen from Fig. 21, the recognition performance
for convolutional autoencoder is changed for different size

4The set of experiments are implemented by Keras library. The model
parameters are sampled from the normal distribution N (0, 1).

3The experiments are pursued by Keras library with tensorflow backend.
We build three convolutional layers, followed by the 2x2 max-pooling trick.
For convolutional autoencoder, an up-sampling layer is followed by the
deconvolutional layer. For 3-layer CNN, the learned representation is flattened
to input a softmax classifier, a fully connected layer.
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Fig. 21. The recognition accuracy obtained using convolutional autoencoder
and convolutional neural network. Three kinds of convolutional kernels, 3 x 3,
5x5, and 7x7 are tested.

of convolutional kernel. The recognition accuracy obtained
using 5x5 convolutional kernel is much better than 3x3 and
7x7. In addition, CAE(5) produces the most robust recognition
performance. As for 3-layer convolutional neural network, it
always outperforms the convolutional autoencoder, whichever
convolutional kernel is employed. The result is not surprising
due to their working mechanism. The deep CNN is initially
developed for the task of large-scale classification, such as
ImageNet, GoogLeNet, VGGNet. It aims to achieving pattern
classification. Differently, the convolutional autoencoder is a
variant of autoencoder. Though it inherits some advantages of
convolutional neural network, the fundamental purpose is to
learn a good representation. A good representation will not
necessarily produce an ideal classification accuracy. On the
other hand, we found that the performance obtained using con-
volutional autoencoder is much more stable than convolutional
neural network.

12]The Depth of Network: The neural network architecture
of autoencoder is formed by concatenating the basic model
layer by layer. The output (hidden state) of previous layer is
wired to the inputs of the successive layer. To study which
depth of network is appropriate to our task, we conduct a
groups of experiments. Several different structural networks
are configured. The sigmoid function is used to achieve acti-
vation. The experimental results are given in TABLE III, where
the overall recognition rate is reported.

TABLE III. THE RECOGNITION ACCURACIES OBTAINED USING

STACKED AUTOENCODER.

Input Layer 96 X 96 = 9216—Node
AutoEncoder 1000 1000 1000 1000 1000 1000
Stacked AE®) 0 400 400 400 400 400
Stacked AE®®) ) 1 1000 1000 1000 1000
Stacked AE™) 0 0 1 500 500 500
Stacked AE®®) ) 1 1 1 1000 1000
Stacked AE®) 0 0 1 0 0 500
Output Layer Softmax classifier (3—class)

Accuracy 0.8711 09119 09119 09193 09237 0.9244

As can be seen, the performance obtained using stacked
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autoencoder is much better than the single-hidden-layer model.
The recognition accuracy for two-hidden-layer stacked au-
toencoder is 4.08% better than the archetypal autoencoder.
The recognition accuracies are gradually improved with the
network deepened. The deeper the network, the better the
performance. However, the recognition performance reaches a
plateau when the depth of network is beyond 3-hidden-layer.
Stacked autoencoder with six-hidden-layer only outperforms
the one with two-hidden-layer 1.25%. We can therefore con-
clude that although the representation power can be inherited
by stacked autoencoder, the recognition performance could not
be proportional to the depth of network. For the task of clas-
sification with limited training samples, the deep architecture
usually sinks into the over-fitting. It is therefore important to
configure a network with an appropriate structure.

B. Extended Evaluation

The related factors of autoencoder have been studied previ-
ously. All of the experiments are performed under the standard
conditions. This section devotes to the extended evaluation
under the non-literal settings, including the changes of aspect
view, configuration, and depression angle, articulation and oc-
clusion. Two learning strategies popularly used, support vector
machine (SVM) and sparse representation-based classification
(SRC) [105], are used to provide the baseline performance.
The input features are directly resulting from the raw intensity
values. Linear kernel is employed to implement target classifi-
cation. In the preceding work [106], a family of correlation pat-
tern recognition were reviewed. The representative application
to radar target recognition include optional tradeoff synthetic
discriminant function filter (OTSDF) [107] and minimum
noise and correlation energy filter (MINACE) [108]. A set of
correlation filters were generated by the Fourier transformed
coefficients. The inference is reached according to the correla-
tion response to the generated filters. Sparse representation of
monogenic signal (MSRC) [89], [109] is a recently developed
strategy for target recognition in radar images. The monogenic
signal is used to characterize target signature, while sparse
signal modeling is utilized to implement classification. All
of these methods employ the global, predefined, handcrafted
features for target recognition, and hence are specified as the
baseline.

1) Configuration Change: The configuration refers to the
additional or removal of discrete components on the target,
such as physical difference, structural modification. All of the
variants can be categorized as a single class in military sense.
Exemplars on configuration variation are listed in TABLE IV.

TABLE IV. TYPICAL EXAMPLES ON CONFIGURATION CHANGE.

Category
Version Variants

Examples

Smoke grenade, Launchers, Side skirts

Configuration Variants Two cables, Fuel barrels

Structural Changes Dented fenders, Broken antenna mount

To evaluate the performance under configuration change,
images of four targets, BMP2, BTR60, T72 and T62 are
utilized, among which BMP2, BTR60 are armored personnel

carriers, while T72, T62 are main-battle tanks. Both two pairs
of vehicles demonstrate much similar scattering phenomenol-
ogy. Moreover, BMP2 and T72 still have several configuration
variants, noted by the series number. The detail is tabulated in
TABLE V. The standards, BMP2_SN_9563 and T72_SN_132
taken at 17° depression angle are used to train the algo-
rithms, while the variants, BMP2_SN_9566, BMP2_SN_c21,
and T72_SN_812, T72_SN_s7 captured at 15° depression
angle are specified for testing. The configurations used for
training are not contained in the query set. The task of target
recognition is therefore much challenging than the previous
experiments.

TABLE V. ASPECT VIEWS OF DIFFERENT CONFIGURATIONS.
Target SeriesNo. Training | Testing

SN_9563 233 —

BMP2 SN_9566 — 196
SN_c21 — 196

BTR60 | k10yt7532 256 195
SN_132 232 —

BMP2 SN_812 — 195
SN_s7 — 191

762 A5l 299 273
Total 1020 1246

TABLE VI reports the experimental results, where Stacked
AE(™) denotes stacked autoencoder with n hidden layers °. As
can be seen, the whole performance is much poorer than the
standard evaluation in the previous experiments. The recogni-
tion accuracy is 0.8443 for autoencoder, lower than the stan-
dard verification. The drop of recognition accuracy can be at-
tributed to the hard settings. In this round of experiments, both
the configuration and the depression angle are significantly
different between the images available for training and those
for testing. The performance obtained using autoencoder is
comparable to (or slightly better than) SVM with raw intensity
values and the correlation filters, OTSDF and MINACE. Some
improvement has been achieved by stacked autoencoders. The
recognition accuracy is 0.8540 for Stacked AE(®), 0.8581 for
Stacked AE®), 0.8694 for Stacked AE(®), and 0.8726 for
Stacked AE(5), 2.34%, 2.75%, 3.88%, 4.20% better than the
single-hidden-layer autoencoder. Though the performance can
be improved by stacked autoencoders, the improvement is
slight. The recognition accuracy is only comparable to sparse
representation with shallow representation and 3-layer CNN,
and lower than the preceding works [89], 0.8748. Much more
effort should be pursued to further promote the performance
under the configuration changes.

2) Articulation and Occlusion: In the field of radar image
interpretation, articulation and occlusion generally refer to the
relative movement between different attached parts on the
target. It is usually designated as continuous, such as tank
turret rotation and gun elevation, or discrete, such as opening
and closing the hatches and doors. A pair of examples are
shown in Fig. 22.

5The recognition accuracy of SVM-Raw and SRC-Raw are consistent with
the results reported in our preceding works [88], [89].
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TABLE VI PERFORMANCE ON CONFIGURATION CHANGES.
Algorithm Handcrafted Feature & Network Architecture | Accuracy
SVM-Raw The raw intensity values 0.8331
SRC-Raw The raw intensity values 0.8708

MSRC The monogenic signal 0.8748
OTSDF The Fourier transformed coefficients 0.8373
MINACE The Fourier transformed coefficients 0.8354
AutoEncoder 9216—1200—4 0.8443
Stacked AE() | 9216—1200—500—4 0.8540
Stacked AE(®) 9216—1200—500— 1200—4 0.8581
Stacked AE( 9216—1200—500— 1200—500—4 0.8694
Stacked AE(®) 9216—1200—500—1200—500—600—4 0.8726
ConvNN 3-layer convolutional neural network 0.8664

Fig. 22. Target articulation, turret straight and turret articulated of ZSU23/4.

To validate the performance under the operating of articu-
lation and occlusion, we pursue a set of experiments. Images
of three military vehicles, ZSU23/4, 2S1, and BRDM_2 are
employed, among which BRDM_2 and ZSU23/4 have the sev-
eral articulated variants. The standards taken at 17° depression
angle are used for training, while the variants collected at
45° depression angle are employed for testing. The details
are tabulated in TABLE VII. Images available for training
and those for testing are taken in two significantly different
operating conditions. Moreover, the target may be on different
states, such as moving the gun. The task of target recognition
is therefore much more difficult than the previous ones.

TABLE VILI. ASPECT VIEWS OF STANDARD AND ARTICULATED.
Target SeriesNo. Training Testing -
Standard | Articulated
2S1 b01 299 303 —
BRDM_2 E-71 298 303 120
ZSU23/4 dos 299 303 119
Total 896 1148

The results is reported as the overall recognition rate,
as listed in TABLE VIII’. The recognition performance is
much poorer than the above experiments. The best recognition
accuracy is even lower than 0.75. The sharp drop of recognition
accuracy is caused mainly by the harsh experiment setting.
Images used for training are taken at 17° depression angle,
while the ones used for testing are collected at 45° depression
angle. A drastic change of 28° exists between the images
available for training and the ones for testing. In addition,
BRMD_2 and ZSU23/4 still have several articulated variants,

7 Again, the recognition rates of SVM-Raw and SRC-Raw are resulting from
the preceding works [88], [89]

as detailed in TABLE VII. The recognition accuracy obtained
using the correlation filters (OTSDF and MINACE) are only
around 0.4, much lower than the remaining. The performance
obtained using autoencoder neural network is much better
than the baseline, even though the experimental setting is
much tough. The single-hidden-layer autoencoder produces the
recognition accuracy of 0.6727, 14.66%, 13.61%, and 3.33%
better than the competitors, SVM-Raw, SRC-Raw, and MSRC.
It is slightly lower than 3-layer convolutional neural network,
0.6871. The best performance, 0.7436, is obtained by Stacked
AEW. Tt is 0.46%, 3.0%, 4.72%, 7.09% better than Stacked
AE®), Stacked AE®), Stacked AE(?), and autoencoder. The
recognition accuracy obtained using Stacked AE(*) is better
than Stacked AE(®). The phenomenon proves that the classifi-
cation accuracy is not necessarily proportional to the depth of
neural network. It is therefore necessary to tune an appropriate
structure of neural network according to our task at hand.

TABLE VIIL. PERFORMANCE ON ARTICULATION AND DEPRESSION
VARIATIONS.

Algorithm Architecture Accuracy
SVM-Raw Raw intensity values 0.5261
SRC-Raw Raw intensity values 0.5366
MSRC Monogenic signal 0.6394
OTSDF Fourier transformed coefficients 0.4486
MINACE Fourier transformed coefficients 0.3998
AutoEncoder 9216—2400—3 0.6727
Stacked AE® | 9216—2400—400—3 0.6964
Stacked AE®®) 9216—2400—400—800—3 0.7136
Stacked AE(V) 9216—2400—400—800—600—3 0.7436
Stacked AE(®) 9216—2400—400—800—600— 500—3 0.7390
ConvNN 3-layer convolutional neural network 0.6871

C. Discussion

This section devotes to the verification of autoencoder and
the variants. Two family of experimental plans, fundamental
validation and extended evaluation are pursued. The former
aims to studying the impacts of related factors and verifying
the configuration of neural network. The latter intends evaluat-
ing the performance under the extended operating conditions,
such as the depression angle and configuration changes, ar-
ticulation and occlusion. The comparative studies demonstrate
that

e the improvement can be obtained by stacked autoencoder

compared to the basic model.

e the configuration of network plays an important role for

representation learning.

e the autoencoder neural network could handle the non-

literal experimental settings in some degree.
Though autoencoder and the deep models could handle the
extended operating conditions, this problem is far more to be
solved. It is much difficult to tune a suitable network structure.
In addition, the performance is needed to be promoted further.

VII. CONCLUSION

In this article, we attempt to pursue a systematic review
of autoencoder and its variants. Much more attention are
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paid to those applications to remote sensing and radar image
interpretations. The contributions of the existing works are
categorized from four viewpoints, the implementation of in-
formation fusion, the development of cost function, the renew
of learning process, and the achievement of transfer learning.
Some comparative studies are performed from the perspective
of target recognition in SAR images. The performance are
validated by two kinds of experimental plans, fundamental
verification under the standard setting and extended evaluation
in the non-literal conditions. The quantitative comparison leads
to interesting hints about the logical configuration of deep
network for the task at hand. The main conclusion concluded
from our study include four-fold:

e The latent representation learned by deep neural network
does outperforms those handcrafted, shallow, predefined
features, as proved in the preceding works.

e The drastic fluctuation on recognition performance can
be produced if the network are configured unsuitably.
A neural network with inappropriate configurations may
degrade the performance.

e There is no certain network structure that could provide
the best performance consistently. It is therefore impor-
tant to tune the network flexibly according to the task at
hand.

e The performance can be further improved by deep neural
network, especially for target recognition under the
extended operating conditions.

This article pursues an attempt on the application of au-
toencoder to target recognition in SAR images. Though some
improvement have been achieved, much more difficult works
should be pursued further. The most urgent problem is how
to handle the real-world sources of variability. In the future
research, we aim to dealing with target recognition under the
non-literal conditions. Some new tricks will be develoepd,
including the initialization via pre-training, the update of
learning algorithm, and an adaptive architecture of neural
network, the tuning skill to network structure. Thought the
relative studies have been done in the preceding works [2],
[43], [110], the further research in SAR target recognition is
yet to be uncovered.
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