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Abstract: Deep learning, which is a subfield of machine learning, has opened a new era for the
development of neural networks. The auto-encoder is a key component of deep structure, which can
be used to realize transfer learning and plays an important role in both unsupervised learning and
non-linear feature extraction. By highlighting the contributions and challenges of recent research
papers, this work aims to review state-of-the-art auto-encoder algorithms. Firstly, we introduce the
basic auto-encoder as well as its basic concept and structure. Secondly, we present a comprehensive
summarization of different variants of the auto-encoder. Thirdly, we analyze and study auto-encoders
from three different perspectives. We also discuss the relationships between auto-encoders, shallow
models and other deep learning models. The auto-encoder and its variants have successfully been
applied in a wide range of fields, such as pattern recognition, computer vision, data generation,
recommender systems, etc. Then, we focus on the available toolkits for auto-encoders. Finally, this
paper summarizes the future trends and challenges in designing and training auto-encoders. We
hope that this survey will provide a good reference when using and designing AE models.
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1. Introduction

Deep neural networks (DNNs), usually referred to as deep learning [1], are a cutting-
edge area of machine learning on the forefront of artificial intelligence (AI). They are
based on algorithms for learning multiple levels of representation in order to model com-
plex relationships among data. Higher-level concepts and features are thus defined in
terms of lower-level ones. Neural networks had traditionally been trained with the back-
propagation (BP) algorithm, which is so named because this algorithm propagates the
error in the neural network’s estimate backward from the output layer towards the input
layer [2]. We can use BP to adjust the model parameters along the way. Unfortunately,
there were several weaknesses with the BP algorithm which did not work well for DNNs.
These included the tendency for the algorithm to fall into poor local minima when the
DNNs were initialized with random weights. This is mainly because local optima and
other optimization challenges are widespread in the non-convex objective function of the
DNNs [3]. The severity will increase essentially as the depth of the network increases. The
requirement for labeled datasets is another problem because most data are unlabeled. In
2006, the optimization difficulty associated with DNNs was empirically alleviated when
Ref. [4] proposed the Deep Belief Network (DBN), which was a significant advance in deep
learning (DL). This class of deep generative models, with a new learning algorithm that
greedily trains one layer at a time, exploits an unsupervised learning algorithm for each
layer called the Restricted Boltzmann Machine (RBM) [5]. Meanwhile, Ref. [6] exploited
the same principle to pre-train the network, and then the RBMs were “unrolled” to create a
deep auto-encoder (AE).
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Specifically, an AE is one of the basic building blocks, which can be stacked to form
hierarchical deep models to organize, compress, and extract high-level features without any
labeled training data. It allows for unsupervised learning and non-linear feature extraction.
There are some historical contexts of the AE. In the 1980s, the AE was also called an “auto-
associator” as described by Ref. [7]. They proposed that the optimal parameter values
can be obtained by applying the usual BP or can be derived using standard linear algebra.
Then, in 2006, Ref. [8] verified that the principle of the layer-wise greedy unsupervised
pre-training can be applied when an AE is used as the layer building block instead of the
RBM. In 2008, Ref. [9] showed a straightforward variation of ordinary AEs—the denoising
auto-encoder (DAE)—that is trained locally to denoise corrupted versions of the inputs.
Ref. [10] introduced a sparse auto-encoder (SAE), which is another variant of the AE.
Sparsity is a useful constraint when the number of hidden units is large. In Ref. [11], Rifai
et al. presented a novel method for training a deterministic AE. They show that by adding
a well-chosen penalty term to the traditional reconstruction cost function, they can achieve
results that equal or surpass those attained using DAE as well as other regularized AEs on
a range of datasets. This penalty term corresponds to the Frobenius norm of the Jacobian
matrix of the encoder activations with respect to the input. Lately, various approaches for
AEs have been extensively studied and discussed [12–16]. Among those, Ref. [16] proposed
the “k sparse auto-encoder (kSA)”, which is an AE with a linear activation function, where
in hidden layers only the k highest activities are kept. Based on Ref. [16], two novel feature
aggregation algorithms, called Database-adaptive kSA aggregation and Per-data adaptive
kSA aggregation, realize more accurate local feature aggregation. The two algorithms
have jointly optimized codebook learning and feature encoding. The AE and its various
variants have been widely applied in AI, such as image classification [17–19], saliency
estimation [20,21], medical image analysis [22], and many more.

• Importance of this survey. There are plenty of studies that have been performed in
the field of deep learning-based AEs. However, as far as we know, there are very few
reviews that have shaped this area well by positioning the existing works and current
progress. Although some Refs. [23,24] have attempted to formalize this research field,
but few try to summarize the current efforts in depth or elaborate on the outstanding
problems in this field. This survey will seek to provide a comprehensive summary of
the current research on deep learning based on AEs and to point out future directions
along this dimension. Because of the rising popularity and potential of AEs in deep
learning, this survey will be of high scientific and practical value. We have analyzed
these works based on AEs from different perspectives and put forward some new
insights in this area. To this end, nearly 300 studies are shortlisted and studied in
this survey.

• How were the papers collected? In this survey, we collected over three hundred related
papers. We used Google Scholar as the main search engine. Additionally, we used
the database, Web of Science, as an important tool to discover related papers. We also
focused on some high-quality academic conferences such as NIPS, ECCV, ICML, ICLR,
CVPR, IJCAI, ICCV, AAAI, etc., to find recent works. The major keywords we used
included auto-encoder, deep learning, neural networks, overview, etc.

• Contributions of this survey. This survey provides an overview of various AE methods
and their applications; particularly, these can be applied in the computer vision
domain. It is intended to be useful for computer vision and general neural computing
researchers who are interested in state-of-the-art DL. In addition, one of our main goals
is to thoroughly review the literature, clarify less understood challenges, and offer
learned lessons from existing works. To summarize, there are three key contributions
of this survey: (1) we conducted a literature review of AE models and highlighted
many influential research prototypes; (2) we provided an overview and summary of
the state of the art; and (3) we discussed promising future extensions in this research
field to highlight the vision and expand the horizons of research on AEs.
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• Paper Organization. The basic AE and its variants will be discussed in Section 2.
In this section, we have introduced the basic AE as well as its basic concept and
structure. Additionally, different variants as well as their developments were listed. In
Section 3, we analyze and study AEs from three different perspectives. In Section 4,
the relationships between AEs, shallow models, and other DL models are described.
Section 5 discusses the basic AE and its variants that have successfully been applied in
a wide range of fields, such as pattern recognition, computer vision, data generation,
recommender systems, etc. In Section 6, we focus on the available toolkits for AEs.
Finally, this paper summarizes the future trends and challenges in designing and
training AEs.

2. Methods and Recent Developments

In recent years, AEs have been extensively studied in the field of AI. Therefore, a large
number of related works have emerged. In this section, we divide these models into two
major categories: the basic AE and its variants. In addition, we will further review each
technology of these models and their recent developments.

2.1. The Basic AE

The idea of AEs has been part of the historical landscape of neural networks for
decades. So, what is an AE? The basic AE is an auto-associative neural network, and it
derives from the multi-layer perceptron, which attempts to reproduce its input, i.e., the
target output is the input [7]. Ref. [25] proposed another explanation: an AE network can
convert an input vector into a code vector using a set of recognition weights. Then, a set of
generative weights are used to convert the code vector into an approximate reconstruction
of the input vector. We can use the basic AE as a building block to train deep networks.
Being associated with a basic AE, each level of a deep network can be trained separately.

2.1.1. Structure and Objectives

The basic AE is composed of an input layer, a hidden layer, and an output layer (see
Figure 1).
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Figure 1. An example of the basic AE with 6 input units and 4 hidden units (features). From left to 

right, respectively, the input layer, the hidden layer, and the output layer. xi is an input unit, yj is a 

Figure 1. An example of the basic AE with 6 input units and 4 hidden units (features). From left to
right, respectively, the input layer, the hidden layer, and the output layer. xi is an input unit, yj is
a hidden unit, and zi is an output unit. The number “1” denotes bias. Connections are exclusively
drawn between different layers.

An AE takes an input vector and then maps it to the hidden representation y ∈ Rd′

using the deterministic mapping y = fΘ (x) = sf (Wx + b). W is a d′ × d weight matrix, b is a
bias vector, and sf is the encoder activation function (typically the element-wise sigmoid
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or hyperbolic tangent non-linearity or the identity function, if staying linear). The latent
representation y, or the hidden representation, is then mapped back (with a decoder) into a
reconstruction vector z ∈ Rd (z is the same shape as x). The mapping is performed using a
similar transformation, e.g., z = gΘ (y) = sg(W′y + b′), where θ = {W, b, W′, b′} and sg is the
decoder activation function. In addition, z can be seen as a prediction of x given the hidden
representation y. This process can be summarized as follows: each input xi is thus mapped
to a corresponding yj which is then mapped to a reconstruction zi, such that zi ≈ xi. It is a
good approach for the weight matrix W′ to be optionally constrained by W′ = WT. In this
way, the number of free parameters is reduced, which simplifies the training [26]. This is
referred to as tied weights.

The set of parameters θ of such a model is optimized so that the loss function is
minimized, as shown in Equation (1):

θ∗ = argmin
θ

∑ L(x, z) (1)

where L is a loss function. The method for choosing sg and L depends largely on the input
domain range and nature [27]. L can be chosen as the traditional mean squared error (MSE),
which can be expressed as Equation (2). This, coupled with a linear decoder (i.e., sg(a) = a),
is a natural choice for an unbounded domain. Conversely, if inputs are bounded between 0
and 1, using sg (sigmoid) can ensure a similarly bounded reconstruction. In addition, if the
input x is interpreted as either a sequence of bits or a sequence of bit probabilities (i.e., they
are Bernoulli probability vectors), then the cross-entropy (CE) can be used [8], as defined in
Equation (3).

L(x, z) =
1
2∑

i
(xi − zi)

2 (2)

L(x, z) = −∑
i

xi log zi + (1− xi) log(1− zi) (3)

In particular, there are two properties that make it reasonable to interpret the CE as a
cost function [28]. First, it is non-negative, that is, L(x, z) > 0. Second, the CE tends toward
zero as the neuron becomes better at computing the desired output, z, for all training inputs,
x. Provided the output neurons are sigmoid neurons, the CE is nearly always the better
choice. However, if the output neurons are linear neurons, then the MSE will not give rise
to any problems with a learning slowdown. In this case, the MSE is, in fact, an appropriate
cost function to use [28].

Recent Refs. [29,30] use another kind of cost function called exponential (EXP) cost,
which is inspired by the error entropy concept. This is a parameterized function, which
holds an extra parameter (tau), namely,

L(x, z) = τ exp(
1
τ ∑

i
(xi − zi)

2) (4)

This cost can be flexible enough to emulate the behavior of the classic costs mentioned
above and to exhibit properties that are preferable in particular types of problems, such as
good robustness to the presence of outliers [29]. In these works, the authors compare the
performances of MSE, CE, and EXP costs when used for the pre-training of deep networks
whose hidden layers are regarded as stacked AEs. Additionally, Ref. [29] also uses the three
costs in the supervised fine-tuning of deep networks. Various combinations of pre-training
and fine-tuning costs are compared in terms of their impact on classification performance.

In 1994, Hinton and Zemel applied the Minimum Description Length (MDL) principle
to derive an energy-based objective function for training an AE [25]. They developed a
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stochastic Vector Quantization (VQ) method, which is very similar to a mixture of Gaussians,
where each input vector is encoded with:

Ei = − log πi − k log t +
k
2

log 2πσ2 +
d2

2σ2 (5)

where πi is the weight of the ith Gaussian; k is the dimensionality of the input vector; t is
the quantization width; d is the Mahalanobis distance to the mean of the Gaussian; and
σ2 is the variance in the fixed Gaussian used for encoding the reconstruction errors. They
define Ei to be the energy of the code. Using only this scheme to encode wastes bits because,
for example, there may be vectors that are equally distant from two Gaussians. The amount
wasted is:

H = −∑ pi log pi (6)

where pi is the probability that the code will be assigned to the ith Gaussian. So, the true
expected cost is obtained as:

F = ∑
i

piEi − H (7)

Note that F has exactly the form of Helmholtz free energy. The probability distribution
that minimizes F is:

pi =
e−Ei

∑j e−Ej
(8)

This study also demonstrates that an AE can learn factorial codes using non-equilibrium
Helmholtz free energy as an objective function. More details can be found in [25]. We argue
that the loss functions mentioned above are based on a common underlying principle.
At a high level, they can be viewed as a scalar-valued energy function E(x, t) (t is the
model parameters) that operates on input data vectors x. The function E(x, t) is designed to
produce low energy values when x is similar to some training data vectors and high energy
values when x is dissimilar to any training data vector.

2.1.2. Training

‘Training’ is the learning process in artificial neural networks (ANNs); it is usually im-
plemented using examples and achieved with iteratively adjusting the connection weights.
Training algorithms for ANNs fall into two major categories—gradient-based and non-
gradient-based. AEs may be thought of as being a special case of feed-forward networks
and can be trained with all of the same techniques. In this section, we will focus on gradient-
based methods as they are more commonly used in recent times and usually converge
much faster as well [31,32].

As mentioned in Section 2.1.1, our discussion has centered on implementing the
functions that compute L(θ; x) with the parameters set θ. Therefore, the goal of the training
process is to find a θ such that L(θ; x) approximates the function we are trying to model.
Let ∇L(θ; x) denote the gradient of L(θ; x) with the parameters θ. The gradient does
not have a closed form solution. Instead, it can be efficiently implemented using the BP
algorithm, which is the workhorse of learning in neural networks. The parameters θ of
an AE can be most commonly trained with the optimization algorithms following the
gradient computed using BP. In Ref. [33], the authors introduce three BP-based optimizers—
Stochastic Gradient Descent (SGD), limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS), and Conjugate Gradient (CG), which can be used to optimize AEs.

A widely used heuristic for training neural networks relies on a framework called
SGD [34]. In neural networks, the loss function is highly non-convex; however, we can
still implement the SGD algorithms and find a reasonable solution. The insight of the
SGD is that the gradient is an expectation, which may be approximately estimated using
a small set of samples [35]. Specifically, during each step of the algorithm, we can pick
out a small number of examples D = {x1, . . . , xm} drawn uniformly from the training set.
We refer to them as a mini-batch. Additionally, we usually choose m as a relatively small
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number of examples, which ranges from one to a few hundred (according to the value
of m, a recent work [36] divides SGD methods into two types: single and mini-batch).
Additionally, m usually stays the same as the training set size M grows. We may fit a
training set with billions of examples using updates computed on only a hundred examples.
This step is repeated for many small sets of examples from the training set until the average
of the loss function stops decreasing. In recent years, several algorithms have been most
commonly used for optimizing SGD including Momentum, Adam, Adagrad, Adamax,
Nadam, Nesterov Accelerated Gradient Descent, and RMSprop [37]. These algorithms can
further improve the empirical performance of SGD [38].

In Ref. [39], the loss function of AE is optimized with the L-BFGS algorithm [40],
which is also called the SQN method. It is almost identical in its implementation to the
BFGS method. The only difference is in the matrix update: the BFGS corrections are stored
separately, and when the available storage is used up, the oldest correction is deleted to
make space for the new one. All subsequent iterations are in this form: one correction
is deleted and a new one is inserted [41]. It is a variant of BFGS; however, it reduces the
computational cost of BFGS from O(n2) to O(mn) space and time per iteration (where n
denotes the number of variables in a system and m is the number of updates allowed in
L-BFGS). In this case, m is specified by the user [42]. In practice, we rarely want to use
m greater than 15 and always take the empirical value of m as 5, 7, or 9 [41]. m is much
smaller compared to a very large number of variables about n. The computational cost of
L-BFGS reduces to linear complexity O(n). We now turn to an analysis of an alternative
optimization algorithm—Conjugate Gradient (CG)—that is one of the most widely used
methods in optimization. In 1952, Ref. [43] developed the linear CG for solving large
systems of linear equations. It is the most popular iterative method that is effective for a
system of the form:

Ax = b (9)

where A is a symmetric and positive definite matrix, x is an unknown vector, and b is
a known vector. If A is positive-definite as well as symmetric, the problem of solving
Equation (1) can be stated equivalently as the following minimization problem:

min
x

1
2

xT Ax− bTx (10)

Based on this, the work in [43] can also be regarded as a method for finding the
minimum of the quadratic function. Then, the authors in [44] extended the linear CG to
solve the minimum of general functions and hence, nonlinear optimization was achieved.
Later, some important global convergence results for CG methods were given by Polak
and Ribiere [45], Zoutendijk [46], Powell [47], and Albaali [48]. CG methods comprise a
class of unconstrained optimization algorithms that are characterized by simplicity, modest
demands on memory required, and strong local and global convergence properties [49].

We will now analyze the different strengths and weaknesses of these three types of
optimization methods in detail. SGD methods have the merits of easy implementation;
however, they have many disadvantages [31,50]. One key disadvantage is that they require
much manual tuning of optimization parameters such as convergence criteria and learn-
ing rates. Another weakness of SGD is that they are inherently sequential. Hence, it is
very difficult to parallelize them using GPUs or distribute them using computer clusters.
Comparatively, L-BFGS and CG methods can only work with batch leaning, which use the
full training set to compute the next update to parameters at each iteration. As available
datasets grow ever larger, such batch optimizers are conventionally considered to become
increasingly inefficient. Thanks to the availability of fast network hardware, such as large
amounts of RAMs, multi-core CPUs, GPUs and computer clusters, these batch methods can
be fast [31]. In addition, when the dataset is large, we can use mini-batch training to solve
the weakness of batch methods. L-BFGS and CG methods with the presence of a line search
procedure are usually much more stable to train and easier to check for convergence [50].
This has already been shown in DL. Here, the authors present experiments carried out
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on training the basic AE and sparse auto-encoder (SAE) [31]. Mini-batch L-BFGS and CG
with line search converge faster than carefully tuned plain SGDs. Compared to L-BFGS,
CG performs better because computing the conjugate information can be less expensive
than estimating the Hessian. They also reported the performance of different optimization
methods on a sparse AE. The results also show that L-BFGS and CG are much faster than
SGDs. However, the difference is more significant than in the case of standard AEs. This is
because L-BFGS/CG prefers larger mini-batch sizes, and hence, it is easier to estimate the
expected value of the hidden activation [31].

In the preceding paragraphs, we have discussed many BP-based optimization tech-
niques commonly used in AEs. Unlike general feed-forward networks, AEs may also be
trained using recirculation [51]: a learning algorithm measures the gradient by measuring
the effect of a small difference in the input. Although recirculation is regarded as more
biologically plausible than BP, it is rarely used for machine-learning applications.

In the past, many genetic algorithms (GAs) have been successfully applied to training
neural networks [52–55]. Specifically, GAs have been used as a substitute for the BP-based
optimization algorithm or used in conjunction with BP to improve overall performance.
In [56], David et al. extend previous works and propose a GA-assisted method for a deep
AE. The experimental results indicate that this GA-assisted approach improves performance.
The improved performance in the GA-assisted AE could arise from a similar principle of
dropout [57] and dropconnect [58] since mutation randomly disables some of the weights
during training. Learning rules are the heart of ANN training algorithms. In traditional
ANN training, learning rules are previously assigned, such as the generalized chain rule of
the BP network. When using GA, we can apply it to design the learning rules of ANNs.
Because AEs are feed-forward ANNs, these learning rules also can be applied to AEs.

2.1.3. Taxonomy of the Basic AE

As discussed in Section 2.1.1, the general structure of a basic AE consists of three
layers: an input layer, a hidden layer forming the encoding, and an output layer whose
units correspond to the input layer. Since the outputs are equal to the input, this amounts
to learning an approximation of the identity function. However, copying the input to
the output may sound pointless, and we are generally not interested in the output of the
decoder. Instead, training the AE is completed to perform the input copying task to make
the hidden representation y take on useful properties [33]. For that reason, we can place
various constraints on the network, as described below in more detail, and we call these
regularized AEs. One constraint is to limit the number of units in the hidden layer, which
forces the network to learn a compressed representation of the input. An AE whose hidden
dimension is less than the input dimension is called under-complete [33] (also dubbed
“narrow” [59] or “bottleneck” [60]). This method allows for the discovery of the most
salient features from the dataset that rely on fewer hidden layer units. In the case of a linear
AE (linear encoder and decoder) with a traditional MSE function, minimizing Equation (1)
learns the same subspace as Principal Component Analysis (PCA) [61,62]. The same is true
when using a nonlinear function (such as sigmoid) in the encoder, but it is not true if the
weights W and W′ are tied, since W cannot be forced to be small and W′ large to achieve a
linear encoder [27] (Section 4.1.1 describes the relationship of dimension reduction between
AE and PCA in more detail). This AE can obtain a more powerful nonlinear generalization
of PCA when equipped with nonlinear encoder functions f and nonlinear decoder functions
g. Regrettably, if the encoder and decoder are allowed too much capacity, this AE will fail
to learn anything useful other than the ability to copy its input to its output [33].

If the hidden code is allowed to have dimensions equal to the input, or in the over-
complete case (or so-called “wide AE”) where the hidden units have dimensions greater
than the input, a similar problem will occur. In these cases, rather than limiting the
number of hidden units, regularized AEs can provide alternative constraints. These include
sparsity in the representation, robustness to noise, or to missing inputs and smallness in the
derivative of the representation. Recent research has demonstrated that these alternative
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constraints are very successful, even when the network is over-complete [27]. In summary,
using comparisons of the size of the hidden layer and the input layer, the basic AE structure
can be divided into two categories: the narrow AE and wide AE (also known as under-
complete and over-complete, respectively). Using various means in the different forms, we
can achieve regularized AEs. In addition to the old bottleneck AEs with fewer hidden units
than input, there are other forms of regularize AEs, which will be discussed next.

2.2. Regularized AEs

As described in the previous section, using various regularizers in different forms,
we can achieve regularized AEs (also called “variants of the AE” [63]). These regularizers
include: a sparsity regularizer, a contractive regularizer, or a denoising form of regular-
ization, etc. In an AE network, inputs x can be mapped to an internal representation
f (x) using the encoder function f, and then f (x) is mappeds back to the input space using
a decoding function g (detailed above). The regularizer basically attempts to force f to
throw away some information present in x or at least represent it with less precision. This
means that the r (or f ) has to be as simple as possible, i.e., as unresponsive to x as possible,
and as constant as possible. In regularized AEs, the derivatives of f (x) or r(x) along the
manifold in the x-directions must remain large, while the derivatives of f (x) or r(x) in the
x-directions orthogonal to the manifold can be very small. Since a regularized AE with
a non-linear encoder is allowed to choose different principal directions, it can capture
non-linear manifolds [64].

In Table 1, we list the well-known regularized AEs along with some representative
works and briefly summarize their characteristics and advantages. In the next sections, we
will describe each of these variants and their most recent developments.

Table 1. Various regularized AEs.

Method Remark References

Sparse Auto-encoder 1. Imposes a sparsity constraint on the hidden units
[65]2. Learns useful representations/features for images/audio domains

k-sparse Auto-encoder In hidden layers, only the k highest activities are kept, and the others are set to zero [16,66]

FC-WTA Auto-encoder Using mini-batch statistics to directly enforce a lifetime sparsity in the activations of
the hidden units [67]

Denoising Auto-encoder An explicit denoising criterion helps to capture interesting structure in the input [68,69]
Variational Auto-encoder Elegant theory, but tends to generate blurry samples when applied to natural images [70,71]

Ladder Variational
Auto-encoder

Providing advanced predictive log-likelihood and a tighter lower bound on the
true log-likelihood [72]

Triplet-based
Variational Auto-encoder Incorporating deep metric learning to learn latent embedding in VAE [73]

Conditional Variational
Auto-encoder A VAE architecture conditioning on another description of the data, y [74–76]

Wasserstein
Auto-encoder

Using the optimal transport cost between the model distribution and the
target distribution [77–79]

Contractive Auto-encoder Adding the Froenius norm of the Jacobian matrix of the encoder activations to the
reconstruction cost [80,81]

What and Where
Auto-encoder

Providing a unified approach to unsupervised, semi-supervised, and
supervised learning [82]

Convolutional
Auto-encoder Extending the AE using convolution operation [83–86]

Adversarial
Auto-encoder

Training an auto-encoder with an adversarial loss to match the distribution in the
latent space to an arbitrary prior [87,88]

Sequence-to-sequence
Auto-encoder

1. Based on Recurrent Neural Networks (RNNs)
2. Learn fixed-length representations of variable-length input [89–91]

2.2.1. Sparse Auto-Encoder

Sparsity has become an interesting concept recently. It is a useful and desirable con-
straint when the number of hidden units is large (even larger than the number of input
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values), allowing the discovery of interesting structures in the dataset and avoiding simply
learning the identity function of the encoder–decoder architecture [92,93]. Why use a sparse
representation (“representation” is also known as the feature vector or the code)? It has pre-
sented several potential advantages in a number of recent studies [94–96]. Particularly, they
are robust to noise. In addition, they are advantageous for classifiers because classification
is more likely to be easier in higher dimensional spaces. Furthermore, this may explain
why biology seems to follow sparse representations. Interest in sparse representations is
inspired in part by evidence that neural activity in the brain seems to be sparse. Hence, this
has burgeoned the seminal work on sparse coding [97]. Sparsity is a special regularization.
SAE introduces sparsity regularization into AE by penalizing either the hidden unit biases
or the activations of the hidden units to be sparse [27,98]. The former is completed to make
these additive offset parameters more negative, whereas the latter is completed to make
them closer to their saturating value at 0 [27]. These two sparse regularization methods can
also be called parameterization sparsity and representational sparsity, respectively, which
are ascribed to parameter regularization and representational regularization, respectively.
With respect to parameter regularization, we can add a parameter norm penalty Ω(θ) to
the objective function L. We denote the regularized objective function by L̃:

L̃(θ; x, y) = L(θ; x, y) + αΩ(θ) (11)

where α ∈ [0, ∞) is a hyper-parameter that weights the relative contribution of the norm
penalty term. Setting α to 0 means no regularization. Larger values about α will result in
more regularization. When the regularized objective function L̃ is minimized, both the
original objective L on the training data and some measure about the size of parameters θ
(or some subset of the parameters) will be reduced. In Refs. [28,33], the authors put forward
a different view from Refs. [27,98]—a parameter norm penalty Ω is usually chosen. In
this way, only the weights of the affine transformation at each layer are penalized, and
the biases are left to be unregularized. Therefore, the vector w is used to denote all of the
weights that should be affected by a norm penalty. If there is no bias parameter, then θ is
just w. L2 regularization and L1 regularization are two common methods to penalize the
size of the model parameters. In comparison to L2 regularization, L1 regularization results
in a solution that is sparser. It induces parameterization sparsity—meaning that many of
the parameters become zero (or close to zero) [33]. Formally, L1 regularization on the model
parameter can be defined as:

Ω(θ) = ‖w‖1 = ∑
i
|wi| (12)

Representational sparsity, on the other hand, describes a representation in which many
elements in the representation are zero (or close to it). Representational regularization is
finished with the same types of mechanisms that are used in parameter regularization [33].
When the activations about hidden units are directly penalized, we can add a penalty on
the representation to the loss function L, which is expressed as Ω(y). As mentioned before,
we use L to represent the regularized loss function. As mentioned before, we use L̃ to
represent the regularized loss function:

L̃(θ; x, y) = L(θ; x, y) + αΩ(y) (13)

where α ∈ [0, ∞) weights the relative contribution of the penalty term and the larger
value α corresponds to more regularization. Here, an L1 penalty also can be used on the
elements of the representation to induce representational sparsity: Ω(y) = ‖y‖1 = ∑i|yi|.
In addition to the L1 penalty, Kullback–Leibler (KL) divergence penalties are also useful for
representations with elements constrained to lie on the unit interval. It can be computed as:

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j
(14)
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where KL(ρ‖ρ̂j) is the KL divergence between a Bernoulli random variable with mean ρ

and a Bernoulli random variable with mean ρ̂j. Further, let ρ̂j =
1
n

n
∑

k=1

[
yj(x(k))

]
∀j = 1 . . . S

be the average activation of hidden unit j averaged over the training set. Hereinto, yj(x)
denotes the activation of this hidden unit when the network is given a specific input x and
S is the number of hidden notes. We would like to enforce the constraint ρ̂j = ρ, where ρ is
a sparsity parameter. By setting ρ to be a small value near zero, the activations of many
hidden units can be close to or equal to zero, resulting in sparse connections between layers.
In Refs. [10,99], the authors depict a kind of sparse AE which comprises parameterization
sparsity and representational sparsity. The overall cost function is now:

L̃(θ; x) =
1
M

M

∑
k=1

L(x(k), z(k)) + α
s

∑
j=1

KL(ρ‖ρ̂j) + β‖W‖2
2 (15)

Recall that the first term describes the discrepancy between the input x(k) and re-
construction z(k) over the entire data. In the second term, KL(ρ‖ρ̂j) is used to induce
representational sparsity. The third term is a parameter regularization term (also called a
weight decay term) that tends to decrease the magnitude of the weight and helps preventing
overfitting. Here:

‖W‖2
2 =

nl

∑
l=1

sl−1

∑
i

sl

∑
j
(w(l)

i,j )
2

(16)

where nl is the number of layers and Sl is the number of neurons in layer l. w(l)
i,j represents

the connection between the i-th neuron in layer l-1 and the j-th neuron in layer l.
From the above, and after noting that in order to learn sparse representations, a term

about enforcing sparsity can be added to the loss. This term usually penalizes those active
code units and aims to make the distribution of their activities reach a high peak at zero
and have heavy tails. One disadvantage of these methods is that some measures may need
to be taken in order to prevent the model from always activating the same several units
and collapsing all other units to zero [94].

An alternative approach is to place a non-linear module (dubbed the “Sparsifying
Logistic”) between the encoder and decoder [94]. We can understand this non-linearity
in two different ways. Let us consider the k-th training sample and the i-th component
of the code zi(k) with i ∈ [1. . . τ]. τ is the number used to represent the components of
the code vector. Let zi(k) be its corresponding output after this non-linear module. The
transformation performed with this non-linearity is given by:

zi(k) =
ηeβzi(k)

ςi(k)
, i ∈ [1. . . τ] with ςi(k) = ηeβzi(k) + (1− η)ςi(k− 1) (17)

Let us assume that η ∈ [0, 1] and β > 0. Additionally, ςi(k) is the weighted sum of
values of eβzi(ϕ) corresponding to the previous training samples ϕ with ϕ ≤ k. In this
sum, the weights are exponentially decaying, which can be seen by unrolling the recursive
expression of the denominator in Equation (16). This non-linearity can be seen as a kind
of weighted “softmax” function over consecutive samples of the same code unit. The
sparseness of the code is controlled by the parameter η. By dividing the right-hand side of
Equation (16) by ηeβzi(k), we have:

zi(k) = [1 + e−β(zi(k)− 1
β log( 1−η

η ςi(k−1)))
]
−1

, i ∈ [1. . . τ] (18)

At this point, the Sparsifying Logistic that tracks the average input can be viewed
as a logistic function with an adaptive bias. A larger β will turn the non-linearity into a
step function and make zi(k) a binary code vector. In this non-linear module, sparsity is a
“temporal” property that characterizes every single unit in the code rather than a “spatial”
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property that is shared by all the units in a code. Spatial sparsity often requires some type
of special normalization to ensure that the “on” components of the code are not always
the same. In contrast to spatial sparsity methods, this framework tackles the problem in a
different way—when encoding different samples, each unit must be sparse independently
from the activities of the other components in the code vector.

In the following, we use the feature distribution view to analyze the sparsity of an AE.
Ref. [100] analyzes two desirable properties of the feature distribution: population sparsity
and lifetime sparsity. The first describes codes in which few neurons are active at any time,
and the later describes codes in which each neuron’s lifetime response distribution has
high kurtosis [101]. To investigate the effectiveness of sparsity by itself, Makhzani et al. [16]
propose the “k-sparse auto-encoder”, which is an AE with a linear activation function,
where in hidden layers, only the k highest activities are kept, and the others are set to zero.
This is performed by sorting the activities or by using ReLU hidden units with adaptively
adjusted thresholds until the k largest activities are identified. This is different from the
traditional methods [10,99] that reconstruct the input from all of the hidden units. This
algorithm is also typically seen as enforcing population sparsity.

A “lifetime sparsity” penalty function proportional to the KL divergence between
the target sparsity probability (ρ) and the hidden unit marginals (ρ̂) is added to the cost
function: λKL(ρ‖ρ̂). A major drawback of this algorithm is that it only works for certain
target sparsity, and the tuning of the λ parameter is a laborious task that requires expert
knowledge. In addition, KL divergence was originally proposed for sigmoidal AEs, and it
is not clear how to apply it to ReLU AEs where ρ̂ could be larger than one (in which case,
the KL divergence cannot be evaluated) [67]. For this reason, Ref. [67] proposes a Fully
Connected Winner-Take-All (FC-WTA) AE, which aims for any target sparsity rate and
has no hyper-parameter to be tuned (except the target sparsity rate). This approach uses
mini-batch statistics to directly enforce a lifetime sparsity in the activations of the hidden
units. FC-WTA imposes sparsity (lifetime sparsity) across training examples, whereas
k-sparse AEs impose sparsity (population sparsity) across different channels. When low
sparsity levels are the goal, the latter uses a scheduling technique to avoid the problem of
a dead dictionary atom. However, FC-WTA will not encounter this problem because no
matter how aggressive the sparsity rate is (no scheduling required), all the hidden units
will be updated when visiting every mini-batch.

Earlier, we discussed and analyzed the sparsity of AEs from different views. In sum-
mary, sparse over-complete representations can be regarded as an alternative “compressed”
representation. Because there are a large number of zeros, it has implicit direct compress-
ibility. This is different from an explicit lower dimensionality [96]. If the representation
learned by an AE is sparse, then the AE cannot reconstruct every possible input pattern
well. The reason for this is that the number of sparse configurations is necessarily smaller
than the number of dense configurations. In addition, the number of configurations in
sparse vectors is much less than when less sparsity (or no sparsity at all) is applied, so the
entropy of sparser codes is smaller [102].

2.2.2. Denoising Auto-Encoder

As previously mentioned, one strategy to avoid simply copying the input is to con-
strain the representation: the traditional bottleneck and sparse representations. Ref. [96]
has explored and proposed a very different strategy, which is a both more interesting and
more challenging objective. The authors change the reconstruction criterion by cleaning
partially corrupted input or, in short, “denoising”. Denoising is advocated and investi-
gated as a training criterion for learning to extract useful features. This conception leads
to a very simple variant of the basic AE. Denoising auto-encoders (DAEs) are trained to
reconstruct clean “repaired” input from corrupted versions. First, we need to corrupt the
initial input vector x into x̃ using stochastic mapping x̃ ∼ qD(x̃|x ), where qD denotes a
stochastically corrupted process. Each time a training example x is presented, a different
corrupted version x̃ is generated according to qD(x̃|x ). With the basic AE, the corrupted
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input x̃ is then mapped to hidden representation y = fθ(x̃) = s f (Wx̃ + b) from which we
reconstruct z = gθ(y) = sg(W ′y + b′). Just as in the case of the basic AE, the weight matrix
may also optionally be tied to weights. In Ref. [103], the authors justified the use of tied
weights between the encoder and decoder within the Score Matching (SM) framework
presented. Parameters θ are trained to force z as close as possible to the uncorrupted input
x. As previously mentioned, the considered reconstruction error L(x, z) can be MSE, with
an affine decoder, or the cross-entropy loss, equipped with an affine+sigmoid decoder.
Ref. [96] also claims that denoising, that is, restoring the values of corrupted elements, is
only possible due to the dependencies between dimensions in high dimensional distribu-
tions. In addition, it is probably less suitable for very low dimensional problems. It has
been proven that DAEs can be viewed as an empirically successful alternative to Restricted
Boltzmann Machines (RBMs) trained with contrastive divergence for pre-training deep
networks [9,96,104].

In the corruption process, there are several types of noise such as salt-and-pepper
noise for gray-scale images, additive isotropic Gaussian noise, and masking noise (salt
or pepper only). The last type of noise has been used in most simulations [105]. Noise
injection, which can be much more powerful than simply shrinking the parameters, is
a way to improve the robustness of neural networks. Injecting noise in the input to a
neural network can also be seen as a form of data augmentation, which is a particularly
effective technique for a specific classification problem—object recognition [33]. This well-
known data augmentation method uses stochastically “transformed” patterns to augment
the training data, such as transforming original bitmaps using small rotations, scalings,
and translations to augment a training set [106,107]. However, the difference between
this technique and noise injection in DAE lies in the fact that the latter does not produce
extra labeled examples for supervised training, nor does it use any prior knowledge of
image topology.

Noise injection in the input data is the key ingredient of a DAE. We can extend this
idea to apply noise to the hidden units and visible units of a neural network. This creats a
computationally inexpensive but powerful regularization—dropout [108,109]. The term
“dropout” means dropping out units (visible and hidden) in a neural network. Dropping a
unit out means temporarily removing it from the network together with all its incoming
and outgoing connections. The choice of which units to drop is random. Similar to the
DAE, it also can be considered as a process of constructing new inputs by multiplying with
noise. As noise is applied to the hidden units, dropout can be seen as performing dataset
augmentation at multiple levels of abstraction [33].

DAEs also can be analyzed from the following theoretical points of view: the manifold
learning perspective, information-theoretic perspective, and stochastic operator perspec-
tive [97]. Recently, Ref. [110] proposed a different probabilistic interpretation of the DAE,
which is valid for any data type, any corruption process, and any reconstruction loss (so
long as it can be viewed as a log-likelihood). In addition, Ref. [104] relates the DAE to
energy-based models (EBMs), which are a rich class of probabilistic models. These models
define a probability distribution using an exponentiated energy function. Using linear
reconstruction and squared error to train a DAE is equivalent to learning an energy-based
model, and its energy function is very close to that of a Gaussian RBM. The training uses a
regularized variant of the score-matching parameter estimation technique [111], which is
called denoising score matching. Finally, Ref. [62] summarized and extended the existing
results from Vincent [104]. They further proved that a DAE with arbitrary parametrization
with small Gaussian corruption noise is a general estimator of the score. Meanwhile, we
also can demonstrate denoising as a learning criterion that can be seen as a dynamical
system from the view of the AE [112].

2.2.3. Variational Auto-Encoder

In just four years, the variational auto-encoder (VAE), which is proposed by Ref. [113],
has been a slightly more modern and interesting work. So, what is a VAE? It is a model
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with added constraints on the encoded representations being learned. More precisely, it
can learn a latent variable model for its input data. Ref. [33] has also demonstrated that
“besides SAE and DAE, VAE is the most naturally interpreted as regularized AE. Almost
any generative model with latent variables and equipped with an inference procedure to
compute latent representations of a given input may be considered as a particular form
of AE”. Moreover, VAE is built on top of neural networks, which are appealing and can
also be trained with SGD [114]. Instead of letting these neural networks learn an arbitrary
function, we can learn the parameters of a complicated distribution modeling its input data.
By sampling points from this distribution, we can generate new input data samples: a VAE
is also a generative model, which emphasizes the connection with the AE. Additionally, a
VAE is the descendant of the Helmholtz machine [33].

How does a VAE work? The underlying process can be divided into four steps,
which are shown schematically in Figure 2. Let us consider a high-dimensional dataset

X =
{

x(i)
}N

i=1
considering of N i.i.d. samples of some continuous or discrete variable x.

First, an encoder network qφ(z
∣∣x) (also dubbed a “recognition model”) turns a given data

point x into two parameters in a latent space, which we note as z_mean and z_log_sigma.
Here, the unobserved variables z have an interpretation as a code or latent representation,
and qφ(z

∣∣x) is an approximation to the intractable true posterior pθ(z|x) . Ø and θ are,
respectively, the recognition model parameters and generative model parameters. Then,
we randomly sample similar points z from the latent normal distribution that is assumed to
generate the data using:

z = z_mean + exp(z_ log _sigma/2) ∗ ε (19)

where ε ∼ N(0, I). This operation is called the “reparameterization trick”, which can
further improve the efficiency in the variational inference of a Gaussian posterior over
model parameters [115]. It is a popular regularization method that provides a Bayesian
perspective of dropout [116]. Lastly, a decoder network pθ(x|z) maps these latent space
points back to the original input data. By context, we can learn that VAE can be understood
from two perspectives: neural networks and graphical models.
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As previously discussed above, the VAE is a type of AE. However, there remain some
differences between a VAE and an AE. The traditional AE learn an arbitrary function to
encode and decode the input data, whereas the VAE learn the parameters of a probability
distribution modeling the data. Hence, the VAE is a modern version of the AE [82,117].
Recently, some descendants of VAE have been proposed. Ref. [72] proposed the Ladder
Variational Auto-encoder, which can recursively correct the generative distribution using a
data dependent approximate likelihood in a process. Compared to the purely bottom-up
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inference in a VAE, it provides advanced predictive log-likelihood and a tighter lower
bound on the true log-likelihood. A novel integrated framework called the Triplet based
Variational Auto-encoder (TVAE) was proposed in [73]. In this model, the authors con-
structed a new loss function (as shown in Equation (20)) that combines a triplet loss and
standard evidence lower bound (ELBO) of plain a VAE. In Equation (20), Lrec and LKL are
the reconstruction loss and the KL Divergence loss, respectively. Thereinto, Ltriplet denotes
the triplet loss. Compared to the traditional VAE, TVAEs are better at encoding more
semantic structural information in the latent embedding.

LTVAE = Lrec + LKL + Ltriplet (20)

In addition to these varieties, there is another extension of the VAE called the Condi-
tional Variational Auto-encoder (CVAE) [75]. Compared to the traditional VAE, it is a more
advanced model capable of modeling the distribution of high dimensional output space as
a generative model conditioned on the input observation. Taking image generation as an
example, the CVAE can generate diverse human faces given skin color.

2.2.4. Wasserstein Auto-Encoder

Ref. [77] proposed a new family of regularized auto-encoders called the Wasserstein
auto-encoder (WAE). There are some similarities and differences between the WAE and
VAE depicted in the last section. Similar to the VAE, the loss function of the WAE is
composed of two terms: the reconstruction cost and a regularizer. The first reconstruction
term aligns the encoder–decoder pair so that the decoder can accurately reconstruct the
encoded image based on the measurement of the cost function. The second regularization
term forces the aggregated posterior q(z) to match the prior distribution p(z) instead of
requiring point-wise posteriors q(z|x = x(i)) to match p(z) for all data points x(i) at the
same time. This point is different from the VAE. The authors have proposed two different
regularizers. When the reconstruction cost is the squared cost and the regularizer is the
GAN objective, the WAE coincides with the adversarial auto-encoder (AAE) [13], which we
will more formally introduce in Section 2.2.8. Unlike the VAE, the WAE aims at minimizing
optimal transport (OT) between the probabilistic latent variable model distribution and
the unknown data distribution. The WAE shares many of the properties of the VAE, such
as the encoder–decoder architecture, stable training, and good latent manifold structure.
However, the WAE can generate samples with better quality.

Ref. [78] has applied a WAE to the problem of disentangled representation learning.
With satisfactory results on a benchmark disentanglement task, the potential of the WAE
is demonstrated and proven. Ref. [79] also studied the role of latent space dimensionality
in WAE. Using experimentation on synthetic and real datasets, it was demonstrated that
random encoders are better than deterministic encoders.

2.2.5. Contractive Auto-Encoder

Another breakthrough development in the AE field was the contractive auto-encoder
(CAE1) proposed by Refs. [11,118]. We can achieve this model by adding a well-chosen
penalty term to the traditional reconstruction cost function. Further, this penalty term
corresponds to the Frobenius norm of the Jacobian matrix of the encoder activations with
respect to the input. The resulting CAE1 can then be expressed as:

JCAE(θ) = ∑
x∈D

L(x, g( f (x))) + λ‖J f (x)‖2
F (21)

where L is the reconstruction error, which can be chosen as MSE or CE loss (see Section 2.1
for a longer discussion). J f (x) = ∂y

∂x (x) is the regularization term that corresponds to the
Jacobian of the hidden representation y with respect to the input x. Additionally, λ is a
hyper-parameter controlling the strength of the regularization. In Ref. [27], the authors
listed several core differences between the CAE1 and DAE. First, CAE1 only contract the



Mathematics 2023, 11, 1777 15 of 54

encoder function f (·) rather than the whole reconstruction function. From another point of
view, a DAE is actually a particular kind of CAE1 with very small Gaussian corruption and
MSE loss [62]. Second, the hyper-parameter λ controls the norm of the Jacobian penalized;
it adjusts the trade-off between reconstruction and robustness (while in the DAE, the two
are mingled). Additionally, the CAE1 and VAE also have certain features in common. These
two kinds of models impose constraints on the output of hidden neurons.

Ref. [80] proposed a simple and computationally efficient method to extend the CAE1

method. This improved method not only penalizes the first order derivative (Jacobian) of
the mapping but also the second order (Hessian). This improvement can help to stabilize
the learned representation around training points.

2.2.6. What-Where Auto-Encoder

In 2016, Ref. [82] presented a novel architecture called the “stacked what-where auto-
encoder” (SWWAE). The idea of “what” and “where” has been proposed previously in
cognitive neuroscience. The “what” pathway is involved with object and visual identi-
fication. The “where” pathway is used to process the object’s spatial location relative to
the viewer. The authors have put the idea of “what” and “where” into the model of the
SWWAE. In this model, each pooling layer produces two sets of variables, namely, “what”
and “where”. The former is fed to the next layer. Its complementary variable, the “where”,
is fed to the corresponding layer in the decoder. The SWWAE integrates discriminative and
generative pathways and provides a unified approach for supervised, semi-supervised,
and unsupervised learning. The loss function of the SWWAE depicted in Equation (22) is
composed of three parts:

L = λNLLLNLL + λL2recLL2rec + λL2MLL2M (22)

where LNLL denotes the classification loss, LL2rec is the reconstruction loss at the input level,
and LL2M is intermediate reconstruction terms. λ weights the losses against each other.

Contrary to the traditional AE, SAE, and DAE mentioned above, this model includes
a supervised loss, which can help factorize the data into semantically relevant factors of
variation. Additionally, the SWWAE uses the reconstruction term as a regularizer.

2.2.7. What-Where Auto-Encoder

In the previous section, we depicted the loss function of the SWWAE using Equation
(22). If we set LNLL = 0, then the SWWAE is equivalent to a deep convolutional auto-
encoder (CAE2). So, what kind of structure is the CAE2? It equips the convolutional neural
network (CNN) as encoders and decoders. Ref. [84] developed the CAE2 with logistic
sigmoid units for feature learning. However, the learning properties of this model were
not fully studied, and the connections to other related models were not mentioned. Hence,
Ref. [119] proposed a convolutional sparse auto-encoder (CSAE) and built its connections
to convolutional sparse coding (CSC). The proposed CSAE includes three basic modules:
encoder, sparsifying, and decoder. Contrary to Ref. [84], this model has added a sparsifying
module, which can quickly predict the sparse feature maps. Additionally, they also built
connections between the CSAE and CSC. In Ref. [85], the authors developed several deep
CAE2 models using the Caffe deep learning framework and evaluated their experiments
with MNIST.

Comparing the CAE2 with the well-known SAE and DAE, there are some advantages.
First, this model can scale well to realistic-sized high-dimensional inputs. Both the SAE
and DAE, however, are common fully connected deep networks. Hence, these two models
introduce computational complexity and force each feature to be global. Additionally, the
CAE2 is different from the traditional AE as it can preserve spatial locality because the
weights are shared among all locations in the input.
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2.2.8. Adversarial Auto-Encoder

In Section 2.2.4, we referred to the AAE proposed by Ref. [13]. The AAE is a proba-
bilistic AE that incorporates adversarial training [120] to match the aggregated posterior
q(z) of the hidden code vector z with an arbitrary prior distribution p(z), such as a mul-
tivariate standard normal distribution. Hence, this probabilistic AE is trained with dual
objectives: a traditional reconstruction error criterion and an adversarial training criterion.
The architecture of the AAE is shown in Figure 3. AAE is trained with SGD in two phases:
the reconstruction phase and the regularization phase. In the former phase, the encoder
and decoder are updated to minimize the reconstruction error of the inputs. In the latter
phase, the adversarial network firstly updates its discriminative network to discriminate
the positive samples (generated using the prior distribution p(z)) from the negative samples
q(z). The generator of an AAE (which is also the encoder of AE) is updated to confuse the
discriminative network. Once the training procedure is complete, the decoder of the AE
will act as a generative model mapping the imposed prior p(z) to the data distribution.
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Figure 3. The architecture of an AAE [13]. The red rectangle is a standard AE with an encoder
and decoder to reconstruct an image x from a latent code z. The encoder of the AE q(z|x) is also
a generator of the adversarial network. The blue rectangle describes the discriminative network,
which is used to predict whether a sample arises from the hidden code of the AE or from a sampled
distribution p(z).

Variation and adversarial are the two key methods for regularizing the encoding
space. The AAE is similar to the VAE. The latter uses a KL divergence to impose a prior
distribution on the hidden code vector, while the former uses adversarial training to match
the aggregated posterior of the hidden code vector to an arbitrary prior. Compared with
the VAE, the AAE has the following characteristics. We must have access to the functional
form of the prior distribution p(z) to backprop through the KL divergence. While in
an AAE, we only need to be able to draw a sample from the prior to induce the latent
distribution to match the prior. Further, the adversarial method allows the encoder to be
more expressive than the variational method [88]. In Section 2.2.2, we analyzed the benefits
of the denoising criterion [96], but no corruption process was introduced for the AAE.
Hence, Ref. [87] combined regularization and denoising and used adversarial training
to shape the distribution of latent space. They incorporated denoising into the training
and sampling of an AAE, thus formulating two improved versions of the denoising AAE:
iDAAE and DAAE.

2.2.9. Sequence-to-Sequence Auto-Encoder

In the above sections, we described several types of regularized AEs. The input of
these AEs are vectors or 2D images. If our inputs are sequences, how can we complete the
task? A general framework has been proposed to encode a sequence using a sequence-to-
sequence auto-encoder (SA), in which a Recurrent Neural Network (RNN) is used to encode
the input sequence into a fixed-length representation and then another RNN to decode this
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representation out of that input sequence. This network is trained to minimize the root
mean squared error (RMSE) between the input sequence and the reconstruction [89]. In
Ref. [90], the authors proposed the use of a SA to represent variable-length audio segments
with vectors of fixed dimensionality. To learn more robust representations, they further
apply the denoising criterion to SA learning. The input acoustic feature sequence x is
randomly added with some noise to yield a corrupted version x̃. Here, the input to SA
is x̃, and SA is expected to generate the output y closest to the original x based on x̃. The
SA incorporated into this denoising criterion is referred to as the denoising sequence-to-
sequence auto-encoder (DSA).

Ref. [121] presented the AUDEEP, which is the first Python toolkit based on TensorFlow
for deep unsupervised representation learning from acoustic data. This toolkit used a
deep recurrent SA approach built of long short-term memory cells or gated recurrent
units. Further, Bowman et al. [122] drew the ideology of “variation” into the SA and
trained a sequence-to-sequence VAE successfully. This model can generate sentences from
a continuous latent space. When applying attention mechanisms [123] to sequence-to-
sequence VAE, however, “bypassing” has arisen. In Ref. [91], the authors proposed a
variational attention mechanism to address this problem. In the future, we can further
integrate other deep representation learning algorithms to extend SAs.

3. Analyses of AEs
3.1. Energy Perspective

AEs not only have a variety of forms but also can be analyzed and studied from
different perspectives. Now, we will analyze AEs from the energy point of view. What
does “energy” mean here? Ref. [124] proposed that the essence of the energy-based model
is to build a function that maps each point of an input space to a single scalar, which
is called “energy”. Many unsupervised models can be viewed as a scalar-valued energy
function E(X) that operates on input data vectors X [59]. As a kind of unsupervised learning
method, AEs also can be regarded as the energy function E(X). This function E(X) associates
low energies to input points X that are similar to training samples and high energies to
dissimilar points. AEs can extract representations Z (or codes) from which the training
samples can be reconstructed. In the energy function, Z can be seen as a deterministic latent
variable. From the perspective of energy, AEs can be seen as using an energy function of
the following form:

E(X) = min
Z∈ζ

E(X, Z) (23)

There are several common activation functions (sigmoid, hyperbolic tangent, linear
activation, square activation, rectified linear, and modulus activation) for AEs. According
to each activation function, Ref. [125] derived the respective energy functions.

3.2. Manifold Perspective

A manifold is a connected region. Mathematically, it is a set of points associated with a
neighborhood around each point. From any given point, the manifold locally appears to be
a Euclidean space [35]. Manifold learning is capable of finding a low-dimension basis for
describing high-dimension data. Additionally, it can uncover the intrinsic dimensionality
of high-dimension data. Many machine learning algorithms exploit the idea of a manifold.
As one of the machine learning algorithms, AEs are no exception. If you have an AE, it
will be trained in a manifold fashion such that similar input data results in output neuron
values that are at a low distance from each other. The space spanned by the output neuron
variables can be considered to be a learned manifold for the input data space.

Similar to the traditional AE, it takes an input and the input goes through an encoder,
which gives a low dimensional output y (more details can be found in Section 2.1). This
output y can be interpreted as coordinates of the manifold. How does y denote the coor-
dinates of a dimensional manifold? Ref. [81] introduces a sensitivity penalization term
in the objective function, measured as the Frobenius norm of Jacobian of the non-linear
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mapping of the inputs: ‖J f (x)‖2
F. The Jacobian J f (x) = ∂y

∂x (x) measures the sensitivity of y
locally around x. It encourages the model to be invariant to local changes in x, except for
the changes following tangent vectors. In practice, it is easier to train a DAE, which inserts
noise before the inputs are fed into the encoder. The corrupted inputs will be much more
likely to be outside and farther from the manifold than the uncorrupted ones, generally
on or near the manifold. The purpose of the DAE is that the stochastic operator p(x|x̃)
learns a map tending to go from lower probability points x̃ to high probability points x.
While x̃ is farther from this manifold, p(x|x̃) will learn to make bigger steps to reach the
manifold. That way, the DAE can learn features that are more robust to small perturbations
of the input.

Further, Ref. [126] has taken advantage of the manifold learning perspective of the VAE
to analyze brain MRI images. Different from other AEs, this proposed method inherently
has generative properties. The author has taken advantage of this capability to construct
brain images given manifold coordinates.

3.3. Information Theoretic Perspective

Despite the great success of DNNs in practical application, there is still a lack of
theoretical and systematic methods for their analysis. As a special type of DL architecture,
the idea of AEs is similar to the idea of encoding information in information theory [127].
In this section, we will illustrate an advanced information-theoretic methodology to under-
stand the design of AEs. In order to define a measure of the efficiency and reliability of the
signal, Shannon first invented information theory [128]. In this theory, Mutual Information
I and Kullback–Leibler (KL) divergence play a very important role. The former is used
to measure the information shared between two variables (the original message and the
received one) in the signal transmission case. The latter is used to evaluate the difference
between two different probability distributions. Ref. [96] provide a description of AEs from
the view of information theory. The authors observed that minimizing the expected recon-
struction error of an AE is equivalent to maximizing a lower bound on mutual information
I(x; y), where x, y denote the input and hidden representation, respectively. Equally, the
objective of the DAE is that y captures as much information about x as possible, even if x is
a result of corrupted input. As described in the last section, this output y lives in a manifold
embedded in a subspace of the input space x. The purpose of this projection from the input
dimension space to the hidden manifold is to preserve as much information as possible.

Additionally, we also can analyze the CAE from an information theory perspective. In
the case of a sigmoid nonlinearity, the penalty on the Jacobian norm can be expressed in
the following simple form:

‖J f (x)‖2
F =

d′

∑
i=1

(yi(1− yi))

2 d

∑
j=1

W2
ij (24)

We observe that the Froebenius norm is an approximation of the absolute value of the
determinant, and the CAE1 representation can be described as low entropy. Indeed, by
changing variables in Equation (24), in the case of a complete representation, the entropy of
the representation y is a linear function of the log-determinant of the Jacobian of W [129].
Meanwhile, Ref. [114] listed the core equation of the VAE (as shown in Equation (25)) and
gave the information-theoretic interpretation:

log p(x)− KL [q
(
z
∣∣x) || p(z|x)] = Ez∼q[logp(x

∣∣z)]− KL[q(z
∣∣x)∣∣∣∣p(z)] (25)

where p, q, x, and z have the same meaning as in Section 2.2.3. We can regard log p(x) as
the total number of bits required to construct x. Viewing the r.h.s of Equation (25), there
are two steps to construct x. In the first step, we use some bits to construct z. The bits
required to construct z are measured using a KL[q(z|x)||p(z)]. In the second step, we use
p(x|z) to measure the amount of information required to reconstruct x from z under an
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ideal encoding. Accordingly, the total number of bits (log p(x)) is the sum of these two steps
minus a penalty we pay for q being a sub-optimal encoding (KL[q(z|x)||p(z|x)]).

4. Relationships with Other Models

There is a connection between AEs and other machine learning algorithms. Here,
we will summarize the existing relationships by analyzing the relationship with shallow
models and deep models.

4.1. Relationship with Shallow Models

Until recently, shallow structured architectures have been exploited in many fields.
Examples of shallow architectures are linear or nonlinear dynamical systems, support
vector machine (SVM), logistic regression, principal components analysis (PCA), restricted
Boltzmann machine (RBM), independent component correlation algorithm (ICA), etc. In
this section, we will analyze the relationships between AEs and shallow architectures.

4.1.1. Relationships with PCA

In this subsection, we will present the connection between PCA and the traditional AE,
which is closely related to PCA but much more flexible. Early in 1982, Ref. [130] illustrated
the connection between PCA and neural network representations. They showed that a
simplified neural network with a linear activation function could be seen as a principal
component analyzer. PCA, formalized by Hotelling [131], is a traditional feature extraction
method. We can use PCA to learn a linear transformation h = f (x) = WTx + b of the original
data x ∈ Rdx, the matrix W (dx × dh) forms an orthogonal basis for the dh orthogonal
directions of greatest variance in the training data. These uncorrelated dh features are the
components of representation h.

We will analyze traditional AE and PCA from the following points. Firstly, like PCA,
traditional AE is also an unsupervised learning algorithm. Secondly, when used with linear
neurons and MSE, a narrow AE can learn the same subspace as PCA. This is also true
for another kind of narrow AE, which has a single sigmoidal hidden layer, linear output
neurons with squared loss, and untied weights [27,132]. Although these AEs will not learn
the exact same basis as PCA, their weight matrix W will span the same subspace. In 2006,
Ref. [6] described a nonlinear AE using an adaptive and multilayer encoder network to
learn a low-dimensional code and a similar decoder network to recover data from the code.
It is a nonlinear generalization of PCA that works much better than PCA. Additionally, this
nonlinear AE takes advantage of learning non-linear manifolds, while PCA only learns
a linear manifold in a higher-dimensional space. Thirdly, although PCA and the narrow
AE differ in the specifics of architecture, both of them can be viewed in light of the energy-
based framework. PCA is an encoder–decoder architecture that minimizes the energy
loss (mean square reconstruction error), without requiring an explicit contrastive term
to pull up the energies of unobserved patterns. The energy of the narrow AE is simply
described as E(x) = |Dec(Enc(x) − x)|2. Because of the limitation in the entropy of the
code, we can simply pull down on the energy of the training samples without having to
pull up on the unobserved points again [59]. Additionally, Ref. [133] and Ref. [134] further
used experiments to visualize the comparison results on reducing the dimensionality
between AE and PCA. Both PCA and AE mentioned above for dimensionality reduction
ignore considering any data relations. Hence, a Generalized Auto-encoder (GAE) has been
proposed, which extends the traditional AE to take full advantage of data relations and
uses the relations to pursue the manifold structure [135]. They also have derived a variant
called GAE-PCA, which is the formulation of traditional PCA with a zero mean.

Recently, many research teams have begun to use a combination of AEs and PCA for a
field of application. Ref. [136] has proposed a feature learning method that combines an
SAE with a CNN and multiple layers of PCA to form a hierarchical model for American
sign language (ASL) finger-spelling recognition. Ref. [137] investigated initializing deep
AEs using PCA and further studied the stability of the features. Experimental evaluations
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further shows the impact of PCA-based initialization for classification tasks. Additionally,
an SSAE-based network with SVM and PCA is proposed to improve the accuracy of fault
diagnosis in power systems [138].

4.1.2. Relationships with RBM

RBM was initially introduced as Harmonium by Paul Smolensky in 1986 [139]. It is a
variant of Boltzmann machines and can learn a probability distribution over a set of inputs,
which plays an important role in DL. It only has an input and hidden layer, as shown in
Figure 4. Due to this restriction, their neurons must form a bipartite graph: there are no
connections between nodes within the visible neurons or hidden neurons.
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There are some relationships between AE and RBM. The latter is an especially popular
AE in DL [140]. Overall, these two kind of models are identical because they learn a good
model based on the training data [125]. For an AE with sigmoid hidden units, the energy
function is identical to the free energy of an RBM. These two kinds of models are both
unsupervised learning methods. Both can be understood in terms of encoder and decoder
architectures but with different constraints on the code and learning algorithms. Ref. [35]
also analyzed the other existing connections between AE and RBM. When applying score
matching to RBM, its cost function is identical to the reconstruction error combined with a
regularization term, which is similar to the contractive penalty of the CAE. The authors
also have illustrated that the gradient in the reconstruction error used in training AEs
provides an approximation to the contrastive divergence training of RBMs. As a variant
of the AE, the DAE shares this property with RBMs, and they are closely related to each
other [141]. Firstly, the DAE is a simple and competitive alternative to the RBM used by
Hinton [6] for pre-training deep networks [104]. Secondly, using Gaussian noise and MSE
as the reconstruction cost to train a DAE (sigmoidal hidden units and linear reconstruction
units) is equivalent to training an RBM with Gaussian visible units [103]. Thirdly, with
denoising, the DAE features performed similarly or better than those of the RBM [27].

4.1.3. ICA

Independent component analysis (ICA) is a computational and statistical technique
used to reveal hidden factors that underlie sets of random variables, measurements, or
signals. It can be interpreted as a form of the feed-forward neural network [142]. Like
AE, ICA also can be used as a generative model for the observed multivariate data, which
are typically given as a large database of samples. In this generative model, it is assumed
that the data variables are linear mixtures of some unknown latent variables, which are
supposed non-Gaussian and mutually independent. They are also called the independent
components of the observed data [143]. Additionally, similar to AE, ICA and its variants
have also been successfully used for unsupervised feature learning. ICA is not only sensitive
to whitening but also difficult to learn an over-complete basis set. Ref. [144] proposed
Reconstruction ICA (RICA) that not only addresses these shortcomings but also reveals
strong connections with the AE. If adding a regularization term in the form ∑t ∑j g(Wjx(t))
to an AE (with a linear activation and tied weights), where g is a nonlinear convex function,
an efficient algorithm for learning RICA will be obtained.
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4.1.4. PSD

Predictive sparse decomposition (PSD) is a practically successful model that is a hybrid
of sparse coding and an AE [145]. When computing the learned features, PSD uses a fast
non-iterative approximation to replace costly and highly non-linear encoding steps in
sparse coding. PSD can also be seen as a kind of AE. This model consists of an encoder f (x)
and a decoder g(h) that are both parametric. The training process of PSD is to minimize:

‖x− g(h)‖2 + λ|h|1 + γ‖h− f (x)‖2 (26)

where h is controlled by the optimization algorithm. Meanwhile, the parametric encoder f
is used to compute the learned features, which is a differentiable parametric function. Like
the AE, PSD can be stacked and used to initialize a deep network [35]. Additionally, it is
also an unsupervised feature learning method, which can be applied to object recognition
in images and videos [146,147].

4.2. Relationship with Shallow Models

The stacked auto-encoder (SAE2), DBN, and CNN are the three main networks used
in DL [8]. These models have been applied to fields such as computer vision, automatic
speech recognition, natural language processing, bioinformatics, and audio recognition
where they have been proven to produce the most advanced results in a variety of tasks. In
this section, we will analyze the relationship between the SAE2, DBN, and CNN.

4.2.1. Relation to DBN

Lately, the RBM and AE have been largely used as building blocks in DL architectures
that are called DBN and SAE2, respectively. Prior to the introduction of DBN in 2006 [148],
deep models were considered too difficult to optimize. Refs. [8,148] introduced a greedy
layer-wise unsupervised training algorithm that can be applied to the DBN. This algorithm
can be simply described as follows [26]: Firstly, train the first layer as an RBM. Secondly, use
the first layer’s internal representation as input data for the second layer. Thirdly, iterate
the second step for the desired number of layers. Lastly, after adding a further layer (e.g., a
simple linear classifier), we can fine-tune all the parameters in the deep network using a
supervising training criterion.

Similar to the DBN, the layer-wise training criterion is also applicable to the SAE2.
After the first k layers are trained, we can use the internal representation of the k-th layer to
train the (k + 1)-th layer. Once all the layers are pre-trained, a classification layer is added,
and SAE2 can be fine-tuned using exactly the same method as for the DBN. Additionally,
both the DBN and SAE2 are unsupervised learning methods, and they both belong to the
generative model.

4.2.2. Relation to CNN

CNNs have achieved breakthrough performance in many computer vision and ma-
chine learning tasks. Many excellent papers [107,149–151] have been published on this
topic. In addition, many high-quality open-source CNN software packages have been made
available. In the following sections, we will discuss this powerful architecture in detail.

As shown in Figure 5, a CNN is typically composed of multiple alternating con-
volutional and pooling layers, followed by one or several fully connected layers. This
hierarchical structure allows the CNN to extract more and more abstract representations
from the lower layer to the higher layer. Convolution and pooling are the key components
of CNNs. Many researchers have added these two modules into an AE to construct the
CAE2 mentioned in Section 2.2.7. The type of CAE2 is not unique. Ref. [152] proposes a
CAE2 to support unsupervised image feature learning for lung nodules using unlabeled
data. This proposed structure adds a reconstruction input for the convolution operation.
The procedure of the convolutional conversion from the input on feature maps to the
output is called the convolutional decoder. Then, the output values are reconstructed using
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the inverse convolutional operation, which is called a convolutional encoder. Moreover,
using the standard unsupervised greedy training for AE, the parameters of the encoder
and decoder operation can be calculated. Refs. [84,119,153] also used this kind of CAE2

similar to [152].
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Figure 5. The typical architecture of a CNN.

Another mechanism for the CAE2 is to extract random image patches from input
images, and then use these patches to train an AE. Once the training is complete, we
can use the filters in a convolutional fashion to obtain representations of images. The
works [19,154,155] utilized this kind of architecture. As discussed in Ref. [67], the key
problem with this architecture is that if the receptive field selection is small, it will not be
able to capture relevant features (imagine the extreme of 1 × 1 patches). If we increase the
size of the receptive field, a very large number of features are needed to explain all the
position-specific variations within the receptive field.

4.3. Relationship with Matrix Factorization

In this section, the relationship between matrix factorization (MF) and AE will be
analyzed. Firstly, we will describe the relationship between the non-negative matrix
factorization (NMF) and AE. Secondly, the relationship between the truncated Singular
Value Decomposition (TSVD) and AE will be analyzed.

4.3.1. Relation to NMF

MF and AEs are among the most successful approaches to unsupervised learning [156].
The goal of MF is to decompose a matrix into several matrices. There are several matrix
factorization methods, such as triangular factorization, full rank factorization, QR factoriza-
tion, NMF, and singular value decomposition (SVD). Consider a data matrix V ∈ Rm×n

with only non-negative elements and m dimensions and n data points. If defining two
matrices, W ∈ Rm×r and H ∈ Rr×n, they also have only non-negative elements. NMF can
reduce the dimensionality of V using the approximation V ≈WH. r is a preset dimension
reduction parameter (m and n are much larger than r). A one-hidden layer AE can be used
to perform NMF. Both NMF and AE can produce a lower dimensional representation of
some input data [157]. Additionally, the authors of [157] have proposed an architecture
called PAE-NMF, which utilizes the ideas behind the VAE to perform NMF. The model pro-
posed in this paper provides advantages both to the VAE and NMF. For the VAE, by forcing
a non-negative latent space, many of the beneficial properties of NMF can be inherited. For
NMF, a probabilistic representation of the vectors h is used to model the uncertainty in the
parameters of the model due to the limited data.

4.3.2. Relation to tSVD

tSVD is another matrix factorization method that produces a low-rank approximation
to a matrix. We need to compute the SVD of the matrix A and then truncate the less-
significant singular values. The SVD of the matrix A is given by:

A = UDVT (27)
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Suppose that A is an m × n matrix. Then, U is defined to be an m × m unitary matrix
(i.e., UTU = I), D to be an m × n matrix, and VT to be an n × n unitary matrix (i.e., VTV = I).
Conventionally, the entries along the diagonal of D (the singular values) are sorted in
non-increasing order. Pick the k largest singular values and then define the tSVD matrix as:

Ã = UkDkVT
k (28)

where Uk(Vk
T) is the first k columns of U (VT) and Dk is our k by k matrix of top eigenvalues.

If xi (i = 1, 2, . . . , m) is a row of A, zi = xiVT
k can be deemed as the encoding of xi, and

x̃i = ziVk corresponds to the decoder function. Analyzing from this point, tSVD and a
traditional AE (with linear activation and only one hidden layer) are identical [158]. In
other words, the tSVD is a degenerate form or a special linear case of a traditional AE [159].

5. Application Domains

AEs are often used for effective encoding of the original data or learning a representa-
tion, in the form of input vectors, at the hidden layers. Additionally, AE is an unsupervised
feature extraction method. In this section, we will demonstrate a plethora of applications
for AEs in various real-world domains, such as computer vision, speech recognition, fault
diagnosis, anomaly detection, etc. To do so, Figure 6 summarizes the taxonomy of the
application domains of AEs, which will be described in this section.
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5.1. Computer Vision

Computer vision is the science and technology that makes computers accurately
understand and efficiently process visual data such as videos and images. As a scientific
discipline, computer vision is concerned with the theory for building artificial systems that
obtain information from real-world, high-dimensional data. The ultimate goal of computer
vision is to give machines the perceptual capability of humans [160]. In the following
section, we will provide a general review of several application domains of computer vision
for AEs including image processing, video processing, and the 3D model field.
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5.1.1. Image Processing

(1) Image classification

Image classification is one of the most important and widely used research directions
in the field of computer vision and AI. Its research goal is to classify images into different
pre-defined categories according to their attributes. Image representation is the basis of
image classification. In order to better represent images and realize automatic classification,
it is very important to extract a good feature description for the images. As AEs are effective
feature-learning methods, they are widely used in image classification. Ref. [133] used a
traditional AE with a single hidden layer to reduce the dimensionality and further used
it for the classification of the MNIST and Olivetti face datasets. Both these two datasets
contain gray-scale images. Because the traditional AE is a fully connected network, the
authors resized the images of the Olivetti face dataset from 64 × 64 to 28 × 28 (the same
size as MNIST) to reduce the computational complexity. As described before, an AE can be
stacked to build a deep network to obtain high-level features. Refs. [64,161] presented a
stacked SAE1 for the classification of nuclei patches in breast cancer histopathology. They
extracted two categories of 34× 34 patches from the histopathology images: nuclei and non-
nuclei patches. The authors used these two kinds of patches to construct the training set
and testing set. Similarly, Ref. [162] also used the stacked SAE1 to train with unsupervised
learning for extracting features of halftone images. The halftone image classification phase
consists of three modules: effective image patch extraction, feature extraction with a stacked
SAE1, and majority voting for halftone image classification. In order to reduce the run-time
of training and improve the image-correct classification rate, they proposed an effective
patch extraction method. Each halftone image in the training set is segmented sequentially
into patches with a size of 16 × 16. Another research team proposed a method called the
stacked DAE, which is a direct variant of the stacked basic AE [96]. Further, the stacked
DAE was tested on MINIST. Being similar to the method based on the stacked SAE, the
training and testing datasets fed into the models are relatively low in resolution, such as
small image patches and low-resolution images (e.g., hand-written digits). The AE, SAE,
and DAE used in papers [64,96,133,161] are common fully connected networks, which learn
features by first encoding the vector-form input data and then reconstructing it, and cannot
scale well to realistically sized high-dimensional inputs (e.g., 256 × 256 images) in terms of
computational complexity [84]. Additionally, they both ignore the 2D image structure.

To solve this problem, Ref. [163] proposed a kind of CAE2 that first extracted patches
from the input images and used patch-wise training to optimize the weights of a basic
SAE in place of convolutional training to learn weights. The weights are then reorganized
as convolutional kernels, which are used to convolve the RGB input images for more
abstract feature maps, thus still reserving the local relevance of images. At that time, this
research achieved state-of-the-art performance on benchmark datasets such as CIFAR-10
and NORB using only a single layer of features (73.4% and 97.2%, respectively). Ref. [35]
utilized this CAE2 with a single layer of features for natural scene classification. This idea
is analogous to Coates et al.’s work [163]. A similar method is used for remote sensing
image classification as reported in [19]. While these works [19,35,163] only adopted a single
layer of features, the authors of [154] stacked DAEs in a convolutional way to generate
a hierarchical model. This stacked convolutional DAE achieved superior classification
performance to state-of-the-art unsupervised networks. Due to the depth structure, this
model outperforms the single-layer model of [163] on the CIFAR-10 dataset (ranging from
73.4% to 80.4%).

In addition to using a single type of feature to classify image data mentioned above,
multiple features can be combined for more comprehensive information. Feature fusion
aims to combine the strengths of complementary cues such as local and holistic features,
which can be combined at the feature or rank level. These attempts can be used for both
natural images and medical images. Inspired by this, Ref. [164] extracted both holistic
architecture features and high-dimensional local appearance features from detected cells
using a stacked SAE1. Then, a graph-based, query-specific fusion approach was used to
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integrate the strengths of local or holistic features. This fusion of heterogeneous features
significantly improves the accuracy by around 10%, i.e., achieving 91.67% overall accuracy
on a histopathological image-guided diagnosis of intraductal breast lesions. Similarly,
considering that hyperspectral imagery (HSI) is intrinsically defined in both the spectral
and spatial domains, Ref. [165] further established two stacked SAE-based feature learning
approaches for sparse spectral feature learning and multi-scale spatial feature learning,
respectively. Compared to traditional handcraft features, this learned spectral–spatial
feature representation is highly discriminative and has more potential turns for HSI classi-
fication. Similar to Ref. [165], the method introduced by Ref. [166] also used spatial and
spectral information, which was merged using the SAE2. Unlike Ref. [165], this architecture
mixed the traditional feature extraction method and DL architecture. PCA is introduced to
condense the whole image, reduce the data dimension to a reasonable scale, and reserve
spatial information simultaneously. A series of SAE2s with different depths were trained,
which further proves that the depth of the features affects classification accuracies. There
are many studies [167–170] that have combined traditional feature extraction methods
(such as HOG, ICA, the Gobor filter, and so on) with the AE. At the same time, a growing
number of scholars have integrated other DL methods into AEs. In Ref. [171], the authors
proposed a novel approach based on convolutional features and SAE for scene-level land
use (LU) classification. This approach first generated an initial feature representation of the
scenes under analysis from a CNN, which was pre-learned on a large amount of labeled
data from an auxiliary domain. Then, these convolutional features are input into a SAE1

for learning a new suitable representation in an unsupervised manner. In another work, a
novel VAE was developed using the Deep Generative Deconvolutional Network (DGDN)
as a decoder of the latent image features and using a CNN as an image encoder. A CNN
was used to approximate a distribution for the latent DGDN features [172].

In addition to integrating the theories of CNNs into AEs, another branch of research
has emerged. Extreme Learning Machine (ELM) theories and learning mechanisms have
been used in more and more AE algorithms. Ref. [173] originally proposed the Extreme
Learning Machine Auto-encoder (ELM-AE) and Sparse Extreme Learning Machine Auto-
encoder (SELM-AE) with orthogonal and sparse random hidden neurons. Unlike the
tied weight auto-encoder (TAE), the hidden neurons in ELM-AE and SELM-AE do not
need to be tuned. Additionally, the input weights and biases in additive neurons are
initialized using orthogonal and sparse random weights, respectively, which were used to
retain the Euclidean information in the data of the hidden layer. Due to only calculating
output weights, the proposed linear and nonlinear ELM-AE and SELM-AE have lower
computational complexity. The performance comparison of classification on the USPS,
CIFAR-10, and NORB Datasets shows that ELM-AE and SELM-AE learn features that are
discriminative and sparse. In Ref. [174], the authors presented a method that used ELMs as a
stacked supervised AE. In the process of implementing the algorithm, the authors randomly
project the ‘label pixel’ outputs from an ELM module to an independent set of hidden units
in the next ELM module. Furthermore, the ELM is known to be relatively fast to train
compared to iterative training methods such as the AE. For the reasons above, this work
gained the best of both worlds: fast implementation and lower error rates. This method
used standard benchmark datasets for multi-class image classification (MNIST, CIFAR-
10, and SVHN). In the field of remote sensing image classification, Ref. [175] proposed
a method called SAE-ELM that was based on the ELM. Different from Ref. [173] and
Ref. [174], the authors chose ELM as a base classifier to improve the learning speed of
the algorithm. Finally, the Q statistic is adopted to determine the final ensemble-based
classifier. The common feature of these three papers is that they all take advantage of
the fast-learning speed of ELM. Different from the single-task AE listed above, Ref. [176]
developed a multi-task AE architecture consisting of three layers with multiple separated
outputs. Each output corresponds to one task. This multi-task AE can learn features that
are robust to the variability in real-world images, so it can be well generalized in various
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fields. Comparing the classification performance with several single-task AE models, this
multi-task AE provides better performance.

In this subsection, we have analyzed the literature based on AEs for image classifica-
tion (e.g., natural images, medical images, natural scene images, and remotely sensed scene
images). We can conclude the following rules:

1. Compared with traditional hand-crafted features, these networks based on AEs pro-
vide an automatic method to learn discriminative features from the image and over-
come the weaknesses of some traditional feature extraction methods.

2. A series of AE models with different depths have proved that the depth of the network
also plays an important role in classification accuracies.

3. The fusion of various features is widely used in image classification. Similarly, image
features extracted using AE models can not only be fused with those extracted using
traditional methods but also can be combined with those extracted using other DL
methods. Feature fusion can further improve the accuracy of image classification.

4. It is very important to study the architecture design of an AE according to different
classification tasks.

(2) Saliency detection

Traditional saliency detection methods, relying on contrast inference and hand-designed
features, have been categorized into two sub-fields: 1© eye fixation prediction and 2©
salient object detection [21]. Eye fixation prediction focuses on human fixation locations
compared to salient object detection, which tends to extract whole meaningful objects.
With the rise of DL, many novel frameworks have used deep networks to learn saliency
detection models from raw image data, and some of the works have used AEs. Ref. [21]
adapted the stacked denoising auto-encoder (SDAE) for learning both optimal features
and contrast inference mechanisms from image data to predict human eye fixations. In
the first learning stage, they developed a layer-wise unsupervised learning scheme to
train the SDAE for obtaining robust representative features. In the second learning stage,
the contrast inference component and contrast integration component were embedded in
another unified SDAE network, while these two components were processed separately in
the traditional methods. Ref. [21] focused on saliency fixation prediction. However, this
model cannot be directly applied to saliency object detection. Again, this research team
developed the SDAE for saliency object detection by first modeling the background and
then separating salient objects from the background [177]. Different from the previous
works focusing on the way to calculate the similarity or distinctiveness between a certain
image patch and the image boundary, this work pays more attention to exploring the
background prior using the SDAE. Rather than using the shallow reconstruction residual,
they used the deep reconstruction residual generated with the SDAE to measure the saliency.
The similarity between these two papers [21,177] is that the SDAE is used to learn optimal
image features rather than to design hand-crafted features. Additionally, the SDAE is not
only used for feature extraction but also for contrast inference, contrast integration, and the
background prior. Additionally, sparsity is considered when training SDAE models, and
the effectiveness of the KL divergence used in the sparsity constraint was also demonstrated
in [177]. Compared to Ref. [177], Ref. [178] developed two individual SAE2 models for
adaptive background search and foreground estimation, respectively. One model was called
the background search stacked auto-encoder (BS-SAE), which could adaptively extract the
rough background region of an image. Using the trained BS-SAE model, one can obtain
the feature representation of each image patch, and using softmax regression (SR), one can
measure the probability of each image patch being background. Hence, this trained BS-SAE
model can infer the background region from the holistic view rather than the regional
view or local view. Another model was described as the foreground estimation stacked AE
(FE-SAE), where the residual information was also inspired by [177]. This FE-SAE model
was constructed by the background superpixels, which had a low reconstruction residual,
while these belong to the background. Those belonging to the foreground would have
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a high reconstruction residual. Further, utilizing the capacity of data reconstruction for
AEs, the saliency map can be generated using this FE-SAE. In Ref. [20], the authors were
also inspired by the powerful data reconstruction ability and feature learning of the SAE2.
Hence, they constructed a stacked AE-based center–surround (C-S) inference network to
model the human visual perception process and to estimate bottom-up saliency.

To obtain a unified reconstruction pattern for the current image, this model was trained
with the data sampled randomly from the entire image to obtain a unified reconstruction
pattern. Because global competition in sampling and learning processes are integrated into
the nonlocal reconstruction and saliency estimation of each pixel, this model can achieve
better detection results in comparison to those models with separate consideration of local
and global rarity. This C-S inference network also used the relation between reconstruction
residual and saliency. Different from Refs. [21,177,178], an extra inference layer was added
on the top of the AE to provide ways to explore the C–S contrast relationship. Additionally,
the authors have trained RBMs to initialize this SAE2.

AEs can be used not only for conventional saliency detection but also for an interesting
and emerging topic, co-saliency detection. It aims at simultaneously extracting common
salient objects in multiple related images. The authors of Ref. [179] proposed a novel co-
saliency detection approach using two individual SDAE models. The SDAE not only has the
advantage of learning more abstract feature representations based on its deep architecture
but also has the advantage of out-of-distribution data for knowledge transferring. So,
one SDAE is built as a transfer learning framework, which can be effective for predicting
intrasaliency. They first attempted to leverage the deep reconstruction residual obtained in
the highest hidden layer of another SDAE to discover the deep intersaliency. Compared
with the previous works in this subsection, SDAEs used in this paper are not only for the
generation of the robust intrasaliency prior but also for mining deep intersaliency patterns.

In this subsection, we analyzed the literature based on AEs for image saliency detec-
tion. From these analyses, we can draw the following conclusions: 1. AEs have multiple
merits: the ability to learn more abstract feature representations with the deep architecture,
the ability of data reconstruction, and the advantage of out-of-distribution data for knowl-
edge transfer. Hence, they can be applied to the saliency detection model. 2. Multiple
independent AEs can be constituted into a whole saliency detection model. 3. In the process
of designing a saliency detection model, the reconstruction residual of AEs is an important
factor to be considered.

(3) Image restoration

Observed image signals are often corrupted by acquisition channels or artificial editing.
The goal of image restoration techniques is to restore the original image from a noisy version.
Image restoration is a well-studied problem in computer vision and image processing,
including image denoising, inpainting, super resolution, and so on. Image denoising
methods can be utilized for an image corrupted by additive white Gaussian noise, which
is a common result of many acquisition channels. When some pixel values are missing
or when we want to remove more sophisticated patterns, such as superimposed text or
other objects from an image, image inpainting methods can be put to use. In reference [39],
the authors took advantage of the DAE for image denoising and blind inpainting. They
proposed a new training scheme for the DAE, which improved the DAE performance
in the tasks of unsupervised feature learning. After training the first layer, the hidden
layer activations of both the clean input and the noisy input are calculated to serve as the
training data for the second layer. Compared to traditional linear sparse coding algorithms
on the denoising task additive white Gaussian noise, this non-linear method achieves
better performance. In addition, this approach is capable of tackling the complex blind
inpainting problem. Furthermore, the denoising performance can be improved by adding
more hidden layers of the DAE, especially when the level of noise is high. When there
is no prior information on the target image and only the noise image is available, a DAE
also can perform blind image denoising well [180]. Based on Ref. [39], Ref. [181] proposed
a simple sparsification of the latent representation found by the encoder. This proposed
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method gives the advantages of both denoising a small image patch and denoising a
larger image consisting of those patches. When test samples are corrupted with noise, this
method improves even the classification performance. Different from the Refs. [39,180,181]
listed above, Ref. [182] demonstrated that a convolutional denoising auto-encoder (CDAE)
could also be used for the efficient denoising of medical images. In Ref. [183], the authors
proposed a CAE2 for image restoration, which was unlike the network architecture of [182].
It is an encoding–decoding framework with symmetric convolutional–deconvolutional
layers. Considering that deeper networks tend to be more difficult to train, multiple skip-
layer connections were proposed to symmetrically link convolutional and deconvolutional
layers. Hence, the training converges became much faster, and better performance was
achieved. Compared with the previous works in this subsection, this work has more
powerful multi-functions. It achieved better performance than state-of-the-art methods
for image denoising, image super-resolution, JPEG deblocking, and image inpainting.
Ref. [184] argue that conventional neural networks do not consider that similar visual cues
in the human brain can stimulate the same neuron to induce similar neurological signals.
As a result, these models are unstable regarding their internal propagation. The stacked
non-local AE, which exploited self-similar information in natural images for stability, were
constructed. Further, this proposed model was applied to image denoising and image
super-resolution. Experiment results revealed that this model outperforms the plain SAE2.

(4) Image retrieval

Content-based image retrieval has been the subject of growing concern in the multime-
dia field for over two decades. The traditional image retrieval framework is involved with
multiple modules, including feature extraction, codebook learning, feature quantization,
image indexing, etc. Those modules are individually designed and independently opti-
mized for the retrieval task. Before image retrieval, users need to express their imaginary
intention into some concrete visual query. The quality of the query has a significant impact
on the retrieval results [185]. Generally, there are several kinds of query formation, such as
sketch map by query, example image by query, context map by query, color map by query,
etc. Ref. [186] proposed deep conditional generative models based on AAEs and VAEs
for the zero-shot sketch-based image retrieval task. The workflow of the network is first
taking the sketch feature vector as an input and then making full use of deep conditional
generative models to generate a number of possible image vectors by filling the missing
information stochastically. Lastly, they take advantage of these generated image feature
vectors to retrieve images from the database. In Ref. [186], the authors made full use of
the advantages of VAEs as a powerful generative model. However, the traditional VAEs
are prone to the phenomenon of “posterior collapse”. Hence, Ref. [187] studied the use
of the Vector-Quantized Variational Auto-encoder (VQ-VAE) for representation learning
in image retrieval. The VQ-VAE provides an unsupervised model for learning discrete
representations by combining vector quantization and the AE. They further modified the
VQ-VAE by introducing a product quantizer (PQ) into the bottleneck stage such that an
end-to-end unsupervised learning model could be formed for the image retrieval task. This
“end-to-end” mechanism is an improvement compared with the traditional image retrieval
framework. Compared with directly matching real-valued codes or pixel intensities, binary
codes had a lot of advantages for content-based image retrieval [188]. Hence, the authors
used very deep AEs initialized with DBNs to map small color images to short binary
codes. The above references focus on plain RGB images retrieval, an unsupervised feature
learning framework based on AE is proposed to learn sparse feature representations for
content-based remote-sensing imagery retrieval (CBRSIR) in [189]. Using the ReLU function
and the soft threshold function to realize sparsity, the authors argued that this proposed
framework requires fewer parameters than the SAE1. They also demonstrated that this
proposed framework was more effective than traditional BOVW using several performance
metrics. Both Refs. [188,189] utilized the basic AE. The authors of Ref. [190] proposed a
multiple input multiple task deep auto-encoder (MIMT-DAE), which was combined with
the wavelet transformation. For this proposed method, the image is first processed using
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wavelet transform and decomposed into wavelet coefficients. The wavelet coefficients
then become the input for the MIMT-DAE. The result of retrieval performance shows that
this combination of wavelet transformation and MIMT-DAE increases the performance
of image retrieval for shape and texture compared to a traditional single input single task
deep AE with far fewer training parameters required.

5.1.2. Video Process

In the field of computer vision, various AE models have been widely used in the video
field, including video classification, video object tracking, video abnormal detection, etc.
Table 2 lists the specific application field of AEs for video, the characters, and the areas for
improvement. With the rapid progress of storage devices, the internet, and social network,
a great deal of video data are generated. To bridge the semantic gap between low-level
features and high-level semantics, automatic video annotation and classification technology
have become an important technology to improve the efficiency of video retrieval [191].
In Ref. [192], the authors considered three modalities in videos, i.e., image, audio, and
text. Hence, they proposed a multimodal feature learning mechanism based on the stacked
CAE1 for video classification. One stacked CAE1 was built for each single modality, whose
outputs would be joint together and fed into another multimodal stacked CAE1. Compared
to other deep and shallow models, the experimental results showed multimodal integration
playing important role in video semantics classification. Similarly, Ref. [193] also com-
bined both audio and visual features and learned two separate models trained on audio
and visual data of the video. The difference is that three unsupervised feature learning
algorithms (RBM, ISA, and deep SAE1) have been used. A deep convolutional RBM was
used to model the audio data and a stacked ISA network was used to extract features from
visual data. Finally, they jointly trained audio and visual features using a deep-stacked
SAE1 with discriminative fine-tuning. This confirms the conclusion made in [192] that
combining multi-features can obtain better accuracy (97.22% with 40 training examples)
as compared to a single type of feature (92.65% with audio only and 88.86% with visual
feature only). Fusing multiple modalities also can be used for video event detection [194].
Further, the authors argued that the conventional video representation methods extracted
each modality ineffectively. Based on unconstrained minimization and using the conjugate
gradient method with a linear search for optimization, a regularized multi-modality AE
was developed for video event detection. The superiority of considering multi-modality
in the task of video event detection also exists. Compared with traditional reconstruct
Independent Components Analysis (RICA), this method is a significant improvement as it
captures the relationships between audio and visual modalities from the same category
of videos. Because modern editing software provides powerful and easy-to-use tools to
manipulate videos, video forgery detection is becoming an important issue in recent years.
In Ref. [195], the authors proposed a method to perform forgery detection using an AE and
RNN. In this work, the AE can be used not only for image-based salient object detection
(SOD) but also for video-based SOD. Ref. [196] considered some inherent correlations
between image-based and video-based SOD, and then proposed an unsupervised baseline
approach for video-based SOD using saliency guided stacked AEs. There are many forms of
feature information present in video data. Above, we discussed the image, text, and audio
features in video data. Beyond that, it also has object identity information which is largely
static across multiple video frames, object pose, and style information which continuously
transforms from frame to frame. Recently, there is a rising interest in disentangled represen-
tations. For video sequence modeling, an ideal disentangled representation would be able
to separate time-independent concepts (e.g., the identity of the object in the scene) from
dynamical information (e.g., the time-varying position and the orientation or pose of that
object). Hence, Ref. [197] leveraged a hierarchical VAE for disentangling the object identity
and pose information of unsupervised video data. Differing from the conventional VAE, a
prior over latent frame features was defined for entire frame sequences, not just individual
frames. This prior includes two parts: information that remains relatively constant in the
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whole video and information that changes temporally. This work could be extended to use
a prior with multiple factors, so each factor changes at varying rates from fast to slow to
static. Ref. [198] also argue that a VAE model can learn a latent representation of the data,
which is split into a static and dynamic part, allowing us to approximately disentangle fea-
ture representations. The previous approaches designed the probabilistic graphical model
carefully to achieve a disentangled representation. In Ref. [198], the authors explicitly used
a latent variable to represent the invariant information through the sequence and a series of
latent variables associated with each frame to represent dynamical information. A VAE was
used to focus on learning the distribution of the video content and dynamics to generate
future sequences without conditioning on the observed sequences. In this work, predicting
future frames without conditioning is also different from the traditional method.

There are some other researchers working hard on video object tracking. Visual track-
ing refers to the automatic estimation of the trajectory of an object as it moves around in
a video. Wang and Yeung used the merits of DAE that robust features are learned [199].
An SDAE was trained offline to learn generic image features from a large image dataset
as auxiliary data. The knowledge learned was transferred from the offline to the online
tracking process. During the online tracking process, adding an additional classification
layer to the encoder part of the trained SDAE resulted in a classification neural network.
This network achieved very encouraging results with low computational costs. However,
only a linear classifier for simplicity was utilized in this current tracker. As in other discrim-
inative trackers, classifiers can be extended to be more powerful for further performance
improvement. Inspired by the success of the SDAE and online AdaBoost, a novel object-
tracking approach was proposed by combining a family of DNN classifiers using online
AdaBoost [200]. Similar to [199], this work also used an SDAE to learn multi-level feature
descriptors from an auxiliary image dataset. The difference is that each layer of the SDAE
represents a different level of feature space, which is subsequently transformed into a
discriminative object/background DNN classifier by adding an additional classification
layer. Then, an online AdaBoost feature selection framework is proposed to combine these
layered classifiers for online updating to robustly distinguish the target from the back-
ground. This approach has two advantages. First, the SDAE is used to automatically learn
useful generic image features at different levels. Second, boosting further automatically
determined the most suitable level of features for appearance modeling.

Ref. [201] also presented an SAE2 to learn generic invariant features offline for visual
object tracking. In addition, a logistic regression classifier was used to distinguish the object
from the background. Unlike [199], this work adopted tracked image patches as training
data instead of an auxiliary image dataset. Different from the traditional SAE1, which
enforces sparsity in the hidden layer, this proposed SAE performed subspace pooling on
the hidden layer activations and enforced sparsity in the pooling layer, in a way identical
to ISA. Then, it trains a second AE with the convolved activations of the first AE just
mentioned to learn more complex invariance on larger image patches. Additionally, a
temporal slowness constraint is incorporated to the proposed AE for learning generic
invariant representations.

Different from those generic object trackers mentioned above, the authors considered
motion blur in real videos and proposed a blur invariant object tracker [202]. The SDAE
was adopted to learn a robust appearance model. However, compared with some real-
time trackers, it is still a bit slow, and there is still a large space to speed up the tracker
by optimizing the appearance model. Ref. [203] introduced a new tracking framework
based on a context-aware correlation filter. This tracker can achieve high computational
speed. The main contribution to high computational speed was the proposed deep feature
compression, which was achieved using multiple expert AEs. In the pre-training phase,
an expert AE was trained for each category. During the tracking phase, selecting the best
expert AE for a given target, only this AE was used. In order to obtain high tracking
performance, an external denoising process and a new orthogonality loss term for the
pre-training and fine-tuning of expert AEs were used. The framework not only achieved
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high computing speed but also could run in real-time with a fast speed of over 100 fps.
Additionally, this work also considered the solution to the blurriness problem. Generally
speaking, as an excellent unsupervised feature extraction model, the theory of the AE is
intuitive and graceful. Hence, it has been widely used in video processing and achieved
performance results.

Video abnormal detection is one of the key components in video surveillance appli-
cations. It has gained more and more attention and became an important research topic
in computer vision. The methods for abnormal detection can be divided into the unsu-
pervised method and the supervised method. Due to the lack of human supervision, it
is challenging to learn a normal distribution when only normal data samples are given
and then identify the samples that do not conform to the normal distribution as anoma-
lies. The AE is a powerful unsupervised learning tool due to its great fitting ability and
high-dimensional data modeling ability. It is widely used in video abnormal detection.
In [204], the optical flow of the original video sequence is firstly calculated and visualized
as an optical flow image, which is then fed into a deep AE. Then, the deep AE extracts
the features from the training samples and compresses them into three vectors, which are
drawn in a 3-dimension coordinate axis. Finally, the normal and abnormal samples are
collected, respectively, on this coordinate axis. Different from Ref. [204], Ref. [205] used a
different video reprocessing strategy that was used to generate cubic patches. This method
used different feature descriptors for local and global anomalies. They first generated local
descriptors and used sparse DAE for global descriptors. Gaussian classifiers were used
to classify the local and global descriptors separately, and a fusion technique was used to
aggregate the results of both. There is a criterion for AE to identify anomalies. The AE is
expected to produce higher reconstruction errors for the abnormal inputs than the normal
ones. However, this assumption is not always valid in practice because sometimes the AE
“generalizes” very well and can reconstruct the anomaly well, resulting in the omission of
anomaly detection.

To alleviate the disadvantage of anomaly detection based on AE, Ref. [206] have
developed an improved AE called memory-augmented AE (MemAE) by adding a storage
module to the original AE. Given an input, this suggested MemAE first used an encoder to
obtain the encoded representation and then used the encoding as a query to retrieve the
most relevant patterns in memory for reconstruction. Because of the memory training of
the typical normal mode, the normal sample could be reconstructed well, and the error in
the abnormal reconstruction could be increased, so that the reconstruction error could be
used as the standard of abnormal detection. Ref. [207] also agree that in the testing phase,
a well-trained AE has more reconstruction error on an anomaly patch than on a normal
patch. However, more than this, if a sparse AE is learned based on normal training patches,
it is expected that the representation of the given patch to the AE is sparse. If it is not sparse
enough, it is considered a good candidate for an exception. The authors took into account
two factors about the reconstruction error and sparse representation, and they introduced
two novel cubic patch-based anomaly detectors where one runs based on reconstituting an
input video patch and another one was based on the sparse representation of an input video
patch. In order to be faster, the two detectors are combined into a cascade classifier. Similar
to Ref. [207], Ref. [208] also trained multiple AEs for feature learning. One AE took the
cropped images containing objects as input, and it could inherently learn latent appearance
features. The other two AEs took the gradients as the input that capture how the object
moved before and after the detection moment, respectively. These AEs learn latent motion
features. Because most existing approaches lack prior information regarding abnormal
events, they are not fully equipped to differentiate between normal and abnormal events.
Different from these existing methods, this work formalized abnormal event detection as a
one-versus-rest binary classification problem. In the inference phase, each test sample x
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was classified with the k binary SVM models. The highest classification score was used as
the abnormality score s for the respective test sample x:

s(x) = −max
i
{gi(x)}, ∀i ∈ {1, 2, . . . , k} (29)

where gi(x) denoted the score of an independent binary classifier. Equally, Ref. [209] used
two Gaussian Mixture Fully Convolutional Variational Auto-encoders (GMFC-VAEs) to for-
mulate a two-stream network to combine the appearance and motion anomalies. They used
RGB frames for the appearance anomaly and dynamic flow images for the motion anomaly,
respectively. Different from those methods mentioned above, this network was trained
exclusively on the normal samples that could be associated with at least one Gaussian
component of the GMM. Then, if a test sample could not be associated with any Gaussian
component, it would be identified as anomaly. Their method was based on the Gaussian
Mixture VAE, which was a model for probabilistic clustering within the framework of the
VAE. Based on that, a fully convolutional network (FCN) without a fully connected layer
was used for the encoder–decoder structure. Therefore, the GMFC-VAE has been formed.
Both the qualitative and quantitative results on two challenging datasets showed the supe-
riority of this method. Ref. [210] also used multiple AEs and the idea of high reconstruction
error of abnormal patches. In the training phase, this method adaptively learnt multiple
AEs to reconstruct normal patterns at local regions. Given an unknown patch x in the test
phase, with the learned AEs M = {M1, . . . , MK}, the reconstruction errors with each model
in M were computed. If there existed a model Mi in the M fitted reconstruction error upper
bound, this patch x was regarded as normality. We have analyzed that AEs have been
widely used in video abnormal detection as described above. Multiple AEs can be used in
a framework to improve the detection performance. Additionally, we can carefully analyze
the characteristics of existing video anomaly detection methods to improve present AEs.

Table 2. Various AE models used in video field.

Reference Method Task Characters

Ref. [192] Stacked CAE2 Video classification Multimodal integration
Ref. [193] RBM, ISA, deep SAE1 Sport Video classification Combining multiple DL architectures
Ref. [194] Regularized multi-modality AE Video event detection Multimodal integration
Ref. [195] AE, RNN Video forgery detection Combination of AE and RNN
Ref. [196] Saliency guided SAE2 Video-based salient object detection A video-based SOD dataset was built

Ref. [197] Hierarchical VAE Disentangling space and time
in video

Using VAE to decompose the static and temporally
varying semantic information in video

Ref. [198] VAE, RNN Structured sequence modeling Using VAE for learning disentangled representations
of high-dimensional time series

Ref. [199] SDAE Video Object tracking Offline training+online tuning

Ref. [200] SDAE Video Object tracking Using an online AdaBoost feature selection framework
to update the ensemble of the DNN classifiers

Ref. [201] SAE, CAE2 Object tracking Temporal slowness constraint is incorporated to an AE
to facilitate representation learning

Ref. [202] SDAE Severely blurred object tracking Proposing a blur invariant object tracker without
deblurring image sequences

Ref. [203] AE Object tracking Utilizing multiple expert AEs
Ref. [204] Deep AE Abnormal detection Using optical flow and deep AE

Ref. [205] Sparse denoising AE Abnormal detection
1. Using the descriptors to model Gaussian classifiers
2. Using the Mahalanobis distance metric to learn the

minimum threshold to define abnormality
Ref. [206] Memory-augmented AE Abnormal detection Adding a storage module on the original AE
Ref. [207] AE, SAE1 Abnormal detection Presenting a cascade classifier with two stages

Ref. [208] Object-centric CAE2 Abnormal detection Formalizing abnormal event detection as a
multi-class problem

Ref. [209] Gaussian mixture VAE Anomaly Detection and
Localization

Building upon a two-stream network framework to
employ RGB frames and dynamic flows, respectively

Ref. [210] Adaptive multiple AE Anomaly Detection Adaptive multiple AE is used to handle the inter-class
variation in normal events
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5.1.3. The 3D Model Field

In computer vision and pattern recognition, sometimes we need to build and process
3D models. The AE and its variants, with various characters, also can be used in the 3D
model field. In Ref. [211], a novel 3D object retrieval method was proposed based on
the stacked local convolutional auto-encoder (SLCAE). This approach applied the greedy
layer-wise strategy to train SLCAE and used a gradient descent method for training each
layer. It only needed the depth image of 2D views projected from 3D objects. It was
view-based and shared the benefits of view-based 3D object analysis: flexible and easy
implemented. Ref. [15] proposed a new method to learn the DL representation for 3D
shape retrieval using a DBN-initialized AE. By combining the global DL representation
achieved with the AE with traditional local descriptor representation, this method obtained
state-of-the-art 3D shape retrieval performance. While Ref. [15] used feature fusion strategy,
Ref. [212] proposed a rapid 3D feature learning method named the convolutional auto-
encoder extreme learning machine (CAE-ELM), which combined the advantages of the
CNN, AE, and ELM. This designed architecture performed better and faster than other
methods. Complex geometric variations of 3D models often bring great challenges in 3D
shape retrieval. Ref. [213] developed a novel 3D shape feature learning method based on a
discriminative deep AE, which were insensitive to geometric deformations of shapes. The
Fisher discrimination criterion was utilized on the neurons in the hidden layer to develop
a deep discriminative AE. A multi-scale shape distribution was computed to input into
this network. Finally, concatenating the outputs from the hidden layers of the network
at different scales, a global shape descriptor for retrieval was formed. Differing from all
the methods stated above in terms of using the unsupervised property of the AE, a new
supervised deep AE for depth image-based 3D model retrieval was investigated [214]. This
supervised deep AE was achieved by combining the supervised classification information
with the reconstruction error for joint optimization. The objective function of this supervised
AE was defined as follows:

Es = αE1 + βE2 (30)

where the reconstruction error term E1 is the sigmoid cross entropy loss function from
the AE and the classification loss term E2 is the softmax loss function from the classifier.
Appropriate supervision in back-propagation provided by the AE can help the retrieval per-
formance. All the papers listed above in this subsection used the AE as a feature extraction
tool. Ref. [12] argued that the traditional feature aggregation algorithms (such as Bag-
of-Features [215], Locality-constrained Linear coding [216], or Fisher Vector coding [217])
were not necessarily optimal in terms of accuracy because their codebook learning and
the feature encoding steps were processed separately. Hence, they proposed two feature
aggregation algorithms based on k-Sparse AE: DkSA and PkSA. Multiple local features
and benchmark datasets were provided for 3D model retrieval to evaluate DkSA and PkSA
quantitatively. AEs also can be used for 3D face generation and reconstruction. The learned
3D representations of human faces are very useful for computer vision problems, such as
3D face tracking and reconstruction from images [218]. Traditional models use higher-order
tensor generalizations or linear subspaces to learn a latent representation of a face. Because
of this linearity, they are unable to capture extreme deformations and non-linear expres-
sions. To address this, Ref. [218] introduced convolutional Mesh AE (CoMA) combining
the convolutions and mesh sampling operations to learn a non-linear representation. The
experiments demonstrated that CoMA was significantly better than the latest model in
the application of 3D face reconstruction, and the model parameters used were reduced
by 75%. Because a 3D face provides more semantic information than a 2D image, 3D face
reconstruction from a 2D face image is of great significance for the applications of face
detection and recognition. Ref. [219] developed a deep learning framework for 3D face
reconstruction. A CAE adds smoothness to the original AE, which makes the learned
features robust to minor variations in data such as illumination changes and complex
surface shapes unrelated to salient facial features. The authors took advantage of this
advantage and stacked a CAE to form two deep AEs for learning the subspace from both
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the 2D image set and the 3D face set. Then, a one-layer neural network was exploited to
model the mapping from the 2D subspace to the 3D subspace. The experiments showed
that the proposed method yielded the best quantitative and qualitative results.

5.2. Recommender System

With more and more access to the internet, personalization trends, and changes in
computer users’ habits, recommender systems (RS) have became prevalent and effective
tools of information filtering [220]. They have been widely used to provide users with
personalized products and services. Although existing RSs can produce proper recom-
mendations successfully, they still face challenges when dealing with the complexity, huge
volume, and dynamics of information. In order to address the problem, many recent
researchers have improved RSs by integrating DL models. As a typical DL method, AEs
have been widely used for their excellent performance in data dimensionality reduction,
feature extraction, and data reconstruction. At the same time, integrating AEs into RSs can
understand the needs of users and the characteristics of the project better, so as to improve
the recommendation quality [221]. The growing number of studies on AE-based RSs shows
the important role about AEs in RS research. These existing studies can be mainly divided
into two categories: models that rely solely on AE and integration models. Integration
models can be further divided into two subcategories: integrated AEs with traditional RSs
and integrated AEs with other DL models. The former can be further divided into loosely
coupled models and tightly coupled models.

Following this classification scheme mentioned above, we have elaborated on some
important research prototypes of AE-based RSs and summarized their contributions
and characteristics.

• Models that rely solely on AEs. Ref. [222] proposed an Auto-encoder-based Collabo-
rative Filtering (ACF), which is the first collaborative recommendation model based
on an AE. Instead of directly using the original partially observed vector rui as input
data, rui is first converted into a vector only represented by 0 and 1, and then this
vector is used as input data. ACF uses RBM to pre-train the model to prevent local
optimum. However, there are some disadvantages to ACF. First, it is good at handling
integer ratings instead of non-integer ratings. Second, the decomposition of some
observed vectors increases the sparsity of input data, resulting in lower prediction
accuracy. Different from ACF, AutoRec [223] directly takes user rating vectors r(u) or
item rating vectors r(i) as input data to obtain the reconstructed rating at the output
layer. Because of two types of inputs, AutoRec has two types of variants: item-based
AutoRec (I-AutoRec) and user-based AutoRec (U-AutoRec). A partially observed vec-
tor r(i) = (R1i, . . . , Rmi) ∈ Rm denotes the ratings of item i given by users. Each user
u ∈ U = {1 . . . m} can be represented by a partially observed vector. AutoRec takes
each partially observed vector r(i) (or r(u)) as input, projects it into a low-dimensional
latent space, and then reconstructs r(i) (or r(u)) in the output space to predict missing
ratings for recommendations. The reconstruction of input is:

h(r(i); θ) = f (W·g (V·r(i) + µ) + b) (31)

where f (·) and g(·) are activation functions. θ = {W, V, µ, b} are the parameters of
the model. AutoRec has used an AE with a single, k-dimensional hidden layer. The
parameters θ are learned by optimizing the objective function (see Equation (32))
for I-AutoRec:

min
θ

n

∑
i=1
‖r(i) − h(ri − h(ri; θ))‖

2

2

+
λ

2
· (‖W‖2

F + ‖V‖
2
F) (32)

This objective function can be optimized by resilient propagation or L-BFGS. The
experiment further illustrated the impact of different combinations of activation functions
on the performance of AutoRec. Increasing the number of hidden neurons would improve
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the result. This is because expanding the dimension of the hidden layer allows this model
to have greater ability to simulate the input features [224]. Both these two models are
mainly used for rating and learning a non-linear representation of the user-item matrix, and
then reconstructed it by determining the missing values. Different from these two models,
Ref. [225] proposed collaborative DAE, which was mainly used for ranking prediction.
Similar to the standard DAE, the collaborative DAE consists of three layers: input layer,
hidden layer, and output layer. The input of collaborative DAE is a user partial observed
implicit feedback yu, where yu = {yu1, yu2, . . . yuI} is the I-dimensional feedback vector of
user u on all the item. The main difference between the collaborative DAE and standard
DAE is the user-specific input between the input layer and the hidden layer. This input
has been corrupted by Gaussian noise forming ỹu, and then collaborative DAE maps the
input into a latent representations zu. SGD is applied to learn the parameters of this model.
Different from the above three studies, Zhuang et al. [226] proposed the dual-AE, which is a
new representation learning framework. In this framework, the new hidden representations
of users and items are simultaneously learned using AEs. Additionally, the deviations in the
training data are minimized by the learned representations of users and items. Considering
that the optimization problem based on this framework is an unconstrained optimization,
a new gradient descent method was developed to learn hidden representations.

• Integrated AEs with traditional RSs. In order to improve the recommendation per-
formance, many researchers are trying to combine AEs with traditional RSs. In this
subsection, we will focus on analyzing several important research prototypes for
integrating AE with traditional recommendation models. There are many traditional
recommendation methods, such as MF, SVD, probability matrix factorization (PMF),
factorization machine (FM), and Latent Factor Model (LFM). MF is most widely used
in integration models therein. Ref. [227] proposed the Stacked Discriminative denois-
ing auto-encoder-based recommender system, which integrated the SDAE with an
MF-based recommender system to incorporate side information with rating infor-
mation effectively. The previous works have shown that by learning the corrupted
versions of training data, the SDAE can improve the performance of the models. The
authors of [228] have stacked multiple block models of marginalized DAEs to form
a DL architecture. Compared to the conventional DAE, the marginalized DAE has a
lower computational cost. A basic block model of this method consists of the input,
hidden and output layers, and the matrix factorization of the user-item matrix X.
This proposed method coupled the user latent factor matrix with the deepest hidden
layer in the marginalized DAE, thus it can correctly capture the complex relationships
between the selections made by social friends and those made by the user. Different
from Refs. [227,228], Ref. [229] used AE and PCA to extract potential contexts from
original data for a potential context-aware recommendation system. These explicit
contexts are then integrated into MF process to generate recommendations. Ref. [230]
combined an LFM and DAE to form a new architecture, which could recommend
multi-items more accurately than traditional methods. In this hybrid recommender
system, extended LFM and DAE were utilized to deal with user behavior features and
to process visual features, respectively. In addition, some researchers also combined
AEs with PMF for RSs [231–233].

• Integrated AE with other DL methods. The flexibility of the AE makes it possible
to combine multiple neural building blocks to form a more powerful hybrid model.
In Ref. [234], the authors proposed a Collaborative Knowledge Base Embedding
(CKE) model for jointly learning the latent representations in collaborative filtering
(CF) and the items’ semantic representations from the knowledge base. The textual
knowledge, structural knowledge, and visual knowledge in the knowledge base were
fully exploited. In this hybrid RS, the SDAE and SCAE were used to extract items’
textual representations and to find the latent representation from the visual knowledge,
respectively. Unlike Ref. [234], Ref. [235] utilized deep generative modeling (DGM) to
construct a new set of model-based CF. CF always faces sparse information because of
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the limited user responses and the vast combinations of users and items. Additionally,
VAE is known to find a richer representation, which can meaningfully improve the
performance on the task of CF with auxiliary information. They have applied VAE with
GAN-style learning and conditional VAE with the ladder structures for collaborative
filtering to deal with auxiliary information. This method shows that GAN-style
learning can be also applied to a CF field in addition to the image processing field.
There will be more possible combinations of AEs and other DL methods but not all
have been exploited.

AEs have a straightforward structure, and they are appropriate for feature engineering,
dimensionality reduction, and missing value estimation. Among all DL models, AEs are
more popular in RS, especially for handling with sparsity and scalability [236]. Based on
Ref. [237] and the above references in this subsection, we have summarized the architecture
of AE-based RSs, as shown in Figure 7.
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5.3. Pattern Recognition

Pattern recognition (PR) refers to the process of processing and analyzing various
forms of information, which is an important part of information science and AI. Patterns
can also be divided into abstract and concrete forms. The former belongs to the category
of concept recognition, such as consciousness, thought, and discussion. It is another
branch of AI. The latter is to classify and identify the specific pattern objects such as voice
waveform, seismic wave, EEG, ECG, photo, picture, text, symbol, and biological sensors.
With the rapid industrial development, ever increasing requirements on the capability of
information retrieval and processing has brought new challenges for PR. In recent years, the
development in DL architectures has provided novel approaches for solving the problems
of PR. In this subsection, we will mostly analyze how to apply AEs to solve the multiple
problems in PR field.

5.3.1. Face Recognition

In the face recognition community, one sample per person (OSPP) face recognition
is a challenging and opening problem. Because only one sample is available for each
subject, lacking samples is the key reason for the failure of most algorithms in OSPP. In
Ref. [238], Zhang et al. proposed a new algorithm based on deep AE to generalize intra-
class variations of multi-sample subjects to single-sample subjects and reconstructed new
samples. Specifically, a generalized deep AE (GDA) is first trained with all images in
the gallery, and then a class-specific deep AE (CDA) is fine-tuned for each single-sample
subject with its single sample. Samples of the multi-sample subject, which is most like the
single-sample subject, are input to the corresponding CDA to reconstruct new samples.
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Additionally, the minimum L2 distance, PCA, sparse represented-based classifier, and SR
are used for classification. Inspired by the DAE, Ref. [239] have proposed a supervised AE
to build the deep neural network for OSPP. The formulation about this supervised AE is
as follows:

min
W,b f ,bg

1
N ∑

i
(‖xi − g( f (x̃i))‖2

2 + λ‖ f (xi)− f (x̃i)‖2
2) + α(KL(ρx‖ρ0) + KL(ρx̃‖ρ0)) (33)

where x̃i and xi denote each probe image in this dataset and its corresponding gallery
image, respectively. Additionally,

ρx =
1
N ∑

i

1
2
( f (xi) + 1) (34)

ρx̃ =
1
N ∑

i

1
2
( f (x̃i) + 1) (35)

KL(ρ‖ρ0) = ∑
i
(ρ0 log(

ρ0
ρj

) + (1− ρ0) log(
1− ρ0
1− ρj

)) (36)

The activation functions utilized here are the hyperbolic tangent, i.e., h = f (x) = tanh(Wx + bf),
and g(h) = tanh(WTh + bg). Compared to the basic AE, there are two differences. First, all
the faces with variances are forced to be mapped with the canonical face of the person. This
strategy is conducive to remove the variances in face recognition. Second, the supervised
AE can impose the similarity preservation constraints on the extracted features. Hence,
the features corresponding to the same person are made to be similar. It can extract
more robust features for face representation. Based on Ref. [239], Ref. [240] has applied
the performance of stacked supervised AEs (SSAE) for OSPP from video sequences. In
this architecture, a single image sample or its descriptor in the gallery can represent
each enrolled person. Conversely, the probe may consist of multiple samples per person
(MSPP) collected along the video sequence. Compared to other OSPP methods, this
method combining SSAE and MSPP probes has better performance. In the face recognition
field, age-invariant face recognition is a challenge and difficult problem because a person
shows different appearances at different ages. At the same time, it has become more and
more important. It has a wide range of applications, such as finding missing children,
identifying criminals, and verifying passports. Based on the fact that age variation is
a non-linear but smooth transformation and the powerful ability of AE to learn latent
representation from input data, Ref. [241] proposed a new neural network called the
coupled AE network. This model has configured two identical AEs and two single-hidden-
layer neural networks as a bi-directional bridge. Given the training facial images of different
persons, T = {xi

1, xi
2}(xi

1, xi
2∈Rn, i = 1, 2, 3, . . . , N), N is the total number of training image

pairs. x1 and x2 represent the younger and older facial image inputs of the same person.
These two images were input to these two AEs, respectively. Then, two shallow neural
networks as a bridge were adopted to connect these two AEs. Because any neural network
with a single hidden layer can complete any complex smooth function, these two shallow
neural networks have been used to complete the aging and de-aging process. Further, a
nonlinear factor analysis method (see Equation (37)) is applied to the hidden layers:

x = σ(I, A, ξ) (37)

where x denotes inputs and σ(·) is a nonlinear function. The representation of a face image
can be decomposed into three components nonlinearly using Equation (37): I, A and ξ.
I denotes an age-invariant identity feature, A represents the identity-independent age
feature, and ξ represents noise which could be any factors deviate from this model. Using
this method, we can nonlinearly separate identity features to be age-invariant from one
given face image. The experimental results show that it can deal with the age-invariant
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face recognition effectively. The position variation in face recognition is mainly considered
and analyzed in Ref. [242]. The authors argue that the facial appearance variations caused
by poses are even larger than that caused by identities. Pose variation is one of the
largest challenges in face recognition. Similar to age variation, pose variations change
non-linearly but smoothly. Inspired by the impressive ability to handle the non-linearity
of AE, the authors proposed a progressive deep structure called the Stacked Progressive
Auto-Encoders (SPAE). Each shallow progressive AE in this stacked network is designed
to achieve part of the global non-linearity. To be specific, each shallow progressive AE is
expected to map the face images at large poses to a virtual view at smaller ones. At the
same time, these images are kept unchanged at smaller poses. Then, stacking multiple
shallow AEs can convert non-frontal face images to frontal ones progressively. This process
makes the pose variations narrow down to zero step by step. Finally, the outputs of the
topmost hidden layers in this stacked network are the pose-robust features, which contain
very small pose variations. These features can be combined with fisher linear discriminate
analysis for face recognition.

Based on the analysis of above the literature, it can be seen that: firstly, modules
different from the basic AE can be constructed. Then, these modules can be stacked to form
a depth network for face recognition. Secondly, this constructed depth network can aim at
one aspect of lighting, expression, disguise, and pose in face recognition only. Similarly,
these factors can also be considered comprehensively.

5.3.2. Speech Emotion Recognition

Automatic emotion recognition from speech is a typical problem of wide interest
with implications on understanding human behavior and interaction. A classical emotion
recognition system involves using high dimensional features on a dataset. These methods
have the disadvantages of a limited dataset and difficult analysis in the high dimensional
feature space. Ref. [243] solved these issues using the AAE framework. There are two
reasons why they used AAE. Firstly, the code vectors learned with AAE can be obtained in a
low-dimensional subspace. However, these code vectors do not lose the class discriminabil-
ity, which can be obtained in the higher dimensional feature space. Secondly, the method
using AAE to generate samples synthetically is proven to be promising for improving
the classification of data from the real world. Different from Ref. [243], which used AAE
to generate samples for the scarcity of emotional speech data, the authors of Ref. [244]
proposed another way to alleviate this issue. They used unsupervised feature learning
techniques, such as DAE, VAE, AAE, and AVB, to learn features from widely available
general speech and utilized these features to train emotion classifiers. These unsupervised
methods just mentioned can capture the intrinsic structure of the data distribution in the
learned feature representation. Hence, this work designed a CNN-based automatic speech
emotion recognition (SER) system. The authors first made the systematic exploration of
the four kinds of unsupervised learning techniques just mentioned to improve recognition
accuracy. Ref. [245] also focused on the problem of the relatively small emotional speech
datasets. They argued that prior works on representation learning for SER did not take
full advantage of additional unlabeled speech data and the merit of unsupervised learning
on the AE. A large dataset and integrating representations generated with an AE into a
CNN-based emotion classifier have improved the recognition accuracy of the presented
SER model. Although DL algorithms have the capability for more accurate predictions,
Ref. [246] argue that there are still two main problems. First, the labelled speech data is
scarce, as analyzed in the previous literature. Even if they contain the trustable labelled
speech utterance, there still exits some segments with strong emotion express in same
emotion utterance. Second is how to balance the short-term characterization at the frame
level and long-term aggregation at the utterance level. Inspired by the recent success of the
SAE structure with deep semi-supervised learning and the idea of attention mechanisms
in neural machine translation, the authors proposed an SAE with an attention mecha-
nism for speech emotion recognition. The purpose of this framework can benefit from
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labeled and unlabeled data with the SAE and apply the attention mechanism focusing on
speech frames with strong emotional information. Other speech frames without carrying
emotional content will be ignored. Hence, this SAE can reduce the required amount of
effective labeled data. Compared with existing speech emotion recognition algorithms, the
experimental results show that it can provide significantly higher accuracy in the prediction
of emotion status.

According to the analysis in this subsection, we can see that it is usually relatively
difficult to acquire the labeled data for an emotional speech database. Accordingly, we need
experts with psychological expertise to solve this problem. This will increase the difficulty
level in both expense and time consumption. In this situation, we can make full use of
the potential of AEs with unsupervised feature learning. Further, other machine learning
methods should be explored to combine existing AE models.

5.3.3. Facial Expression Recognition

Facial expression recognition (FER) is the most important way of human emotion
expression. In the past decades, it has been a very important research area in computer
vision and image recognition. The main goal of FER is to recognize the human emotional
state (such as anger, contempt, fear, disgust, sadness, happiness, and surprise) based on the
given facial images. However, it should be pointed out that FER with high accuracy is still
a challenging task. This is mainly related to different lights, postures, and environments.
In general, FER consists of three main steps. The first step is to use image processing
technology to detect a human face from the whole image. In the second step, key features
are extracted from the detected face. Finally, the machine learning model is used to classify
the images [247]. Recently, many types of DNN-related algorithms have been successfully
applied to facial expression recognition tasks. The traditional DNN has the problems of
learning difficulty and high computing complexity. However, the AE has the ability to
reconstruct data so that data could be better represented, which can improve the efficiency
of data learning. Additionally, enforcing sparsity to AE can reduce the computational
complexity. Ref. [248] proposed an SR-based deep sparse auto-encoder network to rec-
ognize facial expressions. Firstly, the regions of interest (such as eyebrows, eyes, and
mouth) are selected for extracting the facial expression image feature. Then, the greedy
pre-trained network produces the initial weights layer by layer. Next, it optimizes the
sparse parameters, the hidden layer nodes, and the number of hidden layers to determine
the best topology of the network. Finally, SR is used to classify expression feature. The
main feature of this reference is that the preliminary application experiments are applied in
the developing emotional social robot system (ESRS) with two mobile robots, which can
recognize emotions such as happiness and anger. Ref. [247] developed a state-of-the-art
face detection method for face detection and extraction. Histogram of oriented gradients
(HOG) features are computed from the cropped images. Then, the SAE2 is used to reduce
high-dimensional HOG features for lower dimensions. Finally, they applied SVM on these
lower dimension features to classify the facial expressions. In this work, the SAE2 is used
as a tool for feature dimension reduction. Similar work has been completed by Ref. [249].
Three different descriptors (HOG, local binary pattern (LBP), and a gray value) are utilized
for extracting features, respectively. Then, PCA is used to compress these local features
to make them practical and efficient to apply. Finally, the features compressed by PCA
are input to the deep SAE2. Similar to Ref. [247], Ref. [249] also used local descriptors to
extract features. The difference is that the role of the deep SAE2 here is feature encoding.
Another interesting work was performed by Ref. [250]. The authors follow the idea that
initializing a CNN with filters of a stacked CAE2 significantly improves the performance of
the CNN. As opposed to traditional CNN models, this method proposed here provides
better classification performance and has an additional advantage of learning relatively
fast. The analysis of references in this subsection demonstrates that AEs can be used for
feature extraction, reduction, and encoding in facial expression recognition. Due to the
structural characteristic of AEs, they also can be used for pre-training.
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5.4. Data Generation

In recent years, the development in DL has promoted the progress of generative
models, which can capture the distributions of high-dimensional datasets and generate
new samples. Ref. [251] proposed a method that uses a VAE as an encoder and deems GAN
as a high-quality generative model. In this model, the feature representations learned in
the GAN discriminator are used as basis for the VAE reconstruction objective. Compared
to element-wise errors used in the traditional VAE, feature-wise errors can capture the data
distribution better while offering invariance towards translation. Thereby, element-wise
errors are replaced with feature-wise errors. This method outperforms VAEs with element-
wise similarity measures in terms of visual fidelity. To make a VAE generate high quality
images, some approaches have been proposed to increase the network depth to improve
the capacity of decoder networks. However, deeper networks are difficult to optimize.
Thankfully, the deep residual blocks can solve this problem, allowing for increasing the
capacity of the decoder. Additionally, a VAE with residual blocks in the decoder network
can generate high quality images. However, it still suffers from the effect of L2 loss. In
Ref. [252], the authors proposed framework to generate high quality images. To make the
decoder generate better images, this multi-stage VAE concatenates the original decoder
network fθ1(·) with the residual block network fθ2(·) to increase the capacity of model. In
the first stage, fθ1(·) is computed with a CNN to generate a coarse image using a L2 loss
function. The subsequent stage uses fθ2(·) to take the generated blurry image as input and
forms a high-quality image. Because fθ2(·) is independent of the VAE model, it can use
other loss functions to solve the problem of the effect of L2 loss. fθ2(·) can be considered as
a super-resolution module.

5.5. Other Applications

In addition to the domains listed above, there exist substantial studies on other do-
mains, which also apply AEs and their variants. Ref. [117] take advantage of VAEs to
observe phase transitions. The weights and latent parameters of the VAE can store informa-
tion about macroscopic and microscopic properties of the underlying systems. Ref. [253]
proposed a natural language-based text-instruction intention understanding method using
the stacked DAE. A novel variable-wise weighted stacked auto-encoder (VW-SAE), pro-
posed by Ref. [254], exacts hierarchical output-related feature representation layer by layer
for soft sensing applications. Moreover, Ref. [255] use the CAE2 for page segmentation
of historical handwritten documents available as color images. In the text classification
domain, a semi-supervised sequential variational auto-encoder (SSVAE) has been proposed
for the semi-supervised text classification problem. Surprisingly, AEs can also be used for
modeling graphs [256]. As a part of the theoretical basis of machine learning and AI, the
research of AEs is of great significance. Furthermore, their applications in various fields
also have very important practical values. In addition, AEs are also applied to the parallel
basic research fields such as clustering. In the last two years, AEs have been applied to
some new research fields. Ref. [257] analyzed the flow-based characteristics of the network
traffic data and proposed a new intrusion detection method. This method leverages a deep
metric learning methodology that originally combines autoencoders and Triplet networks.
Ref. [258] proposed a Crystal Diffusion Variational Autoencoder (CDVAE) for the material
design community. The CDVAE can capture the physical inductive bias of material stability
to generate the periodic structure of stable materials.

6. Available Deep Learning Toolkits

From the analysis and description in Section 5, we can conclude that AEs can dominate
many applications of AI. At the same time, with the rapid development in academic
research, there are many DL open-source development toolkits. In this section, we will
list some popular DL toolkits which are available for AEs. The candidates are listed in
alphabetical order: Caffe, CNTK, Deeplearn4J, Keras, MXNet, Pytorch, PaddlePaddle,
TensorFlow, Theano, and Torch. It goes beyond the scope of this paper to discuss all these
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packages in detail. Hence, we only summarize these toolkits from different perspectives
(name, developer, language, supporting system, whether supporting multi-cards on single
machine, characteristics, and the literature on AEs using the corresponding framework) in
Table 3.

Table 3. Summary of deep learning toolkits for AEs.

Name Developer Language Platform Supporting
Multi_Card Key Features Website

Caffe
Berkeley Vision

and
Learning Center

C++,
Python, Matlab

Linux, Windows,
Mac OS X

√ Excellent convent
implementation;

adding many extensions

http://caffe.
berkeleyvision.org/
accessed on 2 April

2023

CNTK Microsoft
Research

C++, Python,
BrainScript Linux, Widows

√
Known in the speech

community;
not usable for a variety

of tasks

https://docs.
microsoft.com/en-

us/cognitive-toolkit/
accessed on 2 April

2023

Deeplearn-
ing4J Skymind Java, Scala,

Clojure

Linux, Windows
Mac OS X,
Android

√
Applicable to

distributed clusters;
providing

business support

https://
deeplearning4j.org/
accessed on 2 April

2023

Keras François Chollet
et al. Python Linux, Windows,

Mac OS X ×
User friendliness;

modularity;
easy extensibility

https://keras.io/
accessed on 2 April

2023

MXNet

Distributed
Machine
Learning

Community

C++, Python,
Matlab, Julia, Go,

R, Scala,
JavaScript

Linux, Windows,
Mac OS X

Android, iOS

√ Hybrid front-end;
distributed training;
8 language bindings

https://mxnet.io
accessed on 2 April

2023

PaddlePaddle Baidu C++, Python Linux, Windows,
Mac OS X

√ Agile framework;
support ultra-large-scale

training

https://www.
paddlepaddle.org.cn/

accessed on 2 April
2023

Pytorch Facebook Python Linux, Mac OS X
√

Scalable distributed
training;

well supported on major
cloud platforms

http://pytorch.org/
accessed on 2 April

2023

Tensorflow Google C\C++, Python,
Go, R

Linux, Windows,
Mac OS X

√ High degree of flexibility;
portability

https://www.
tensorflow.org

accessed on 2 April
2023

Theano University of
Montreal Python Linux, Windows,

Mac OS X ×

Tight integration
with NumPy;

speed and stability
optimizations

http://www.
deeplearning.net/
software/theano/

accessed on 2 April
2023

Torch

Ronan Collobert,
Soumith Chintala,
Clement Farabet,

Koray
Kavukcuoglu

Lua, LuaJIT, C
Linux, Windows,

Mac OS X,
Android, iOS

√

Amazing interface to C
via LuaJIT;

a powerful N-dimensional
array;

embeddable with ports to
iOS and

Android backends

https://torch.ch/
accessed on 2 April

2023

Matlab MathWorks Inc
C, FORTRAN,

C++, JAVA,
Python

Linux, Windows,
MacOS

√ Computational efficiency;
easy to use; widely used;

graphics processing

https:
//www.mathworks.

com/products/
matlab.html

accessed on 2 April
2023

OpenCV Gary Bradski

C++, Python,
Java, MATLAB,

OCTAVE, C#, Ch,
Ruby, GO

Linux, Windows,
Android, Mac OS,

iOS, Android

√ Cross-platform; free;
fast and easy to use

https://opencv.org/
accessed on 2 April

2023

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://deeplearning4j.org/
https://deeplearning4j.org/
https://keras.io/
https://mxnet.io
https://www.paddlepaddle.org.cn/
https://www.paddlepaddle.org.cn/
http://pytorch.org/
https://www.tensorflow.org
https://www.tensorflow.org
http://www.deeplearning.net/software/theano/
http://www.deeplearning.net/software/theano/
http://www.deeplearning.net/software/theano/
https://torch.ch/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://opencv.org/
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There is not a single criterion for determining the best toolkit for DL. Each toolkit was
designed and built to address the needs perceived by the developer(s) and also reflect their
skills and approaches to problems [259]. All of the DL toolkits are in development. We can
choose toolkits by comparing the current performance and function, but more importantly,
we can compare the development trend in these different toolkits. DL is currently in a
vigorous development stage, so we should pay more attention to the activeness of these
toolkits in the open source community to select toolkits [260]. Only the toolkits with high
community activity can keep up with the development speed of DL itself, so they will not
face the risk of being eliminated in the future. Figure 8 compares some indicators of the
activity in each of the DL frameworks listed above on GitHub as of March 2023. From
the figure, it can be seen that Tensorflow is far more active than other toolkits in terms
of the number for Star, Fork, and Watch. It can be seen that there are many people who
actually use this toolkit. This is thanks to the full support of a large number of developers
and Google.
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7. Future Trends

With the deepening in the era of big data, DL is more and more widely used in
academia and industry. As a typical model of unsupervised learning in DL, AEs can process
a large number of unlabeled data to save human and material resources and provide a
good feature learning ability. In this paper, we provide a comprehensive survey of the AE
and its variant models. We have mainly introduced the basic theory and features of these
various variant models, discussed AEs from different perspectives, and also presented
relationships with shallow models and deep models. In particular, we have compared the
available DL toolkits for AEs. The various applications show that the research on AEs
has become one of the current research hotspots. However, there is still a long way to go
in order to fully realize its potential while coping with many unsolved challenges. Now,
we will discuss several important open issues and point out the corresponding possible
directions for addressing them in the future.

• Constructing a hybrid model based on AEs

Based on the basic AE and its various variants, we can build different hybrid models
by combining AEs with other methods. Specifically, there are two main mixing methods.
First, the traditional shallow models are integrated with AEs. Although the traditional
shallow models depend on the artificial designing feature, they also have the advantages of
simplicity and strong interpretability. Therefore, the combination of AE models and these
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existing shallow models can integrate the advantages of these methods. Although there
have some relevant studies [261,262], this direction is still worth researcher’s attention.
Secondly, other excellent DL models can also be integrated with AEs, such as CNN [263]
and GAN [264]. This can improve the overall performance of the model.

• Integrating the attention mechanism into AEs

The human visual attention mechanism is a very important working mechanism in
the human visual system, which can greatly improve the working efficiency of the human
visual system by allocating different computing resources to different regions in the visual
scene [265]. Combining a visual attention mechanism with a DNN can form DL models
based on the attention mechanism. At present, the visual attention mechanism has been
applied to some DL models, such as RNN, MLP, CNN, etc. Among these models, the
RNN based on attention can better model the long-term memory in the sequence data, and
CNN based on attention can identify the most relevant information from the input data.
At present, integrating the attention mechanism into DL models has had great success in
natural language processing, computer vision, and other fields. Applying the attention
mechanism to AEs can help AEs learn the most informative features of the dataset. At
present, some researchers have applied the attention mechanism to AEs. Ref. [91] put
forward a variational attention mechanism for the variational encoder–decoder, where
the attention vector is also modeled as Gaussian distributed random variable. Ref. [196]
proposed an unsupervised baseline approach for video-based salient object detection using
saliency-guided stacked AEs. However, there are few related studies. Hence, more in-depth
and extensive studies are needed in the future.

• Integrating a supervised learning mechanism into AEs

AEs can reduce irrelevant and redundant data using unsupervised learning. In other
words, it can reduce the dimensions and better process the data with high dimensions.
Ref. [266] believes that the more information used in the model, generally speaking, the
better performance it can obtain. They found that the use of tag information was often
ignored in the frequently used DL methods at home and abroad. The authors have proposed
that supervised learning can effectively enhance the discriminability and performance of the
model on the basis of making full use of label information. It can obtain better results than
unsupervised learning. Ref. [267] constructed a new deep AE model based on supervised
learning for image reconstruction. Ref. [268] proposed supervised AE to improve the
generalization performance of the model. In order to make up for the limitations of
unsupervised learning on feature expression ability and make better use of the efficient
feature coding ability of AE, we can combine the advantages of supervised learning to
build a new AE model.

• Building AE structures fitting neuroscience and cognitive science

The AE is a kind of artificial neural network. Ref. [269] thinks that compared with the
ANN, the local error driven and associated biological realistic algorithm (Leabra) model
proposed by O’Reilly and Munakata is more in line with biological neurology. In the
Leabra model, the complex neurons make bidirectional connectivity, lateral connectivity,
and inhibition mechanisms better implement in one and the same nervous system. In the
collected references, there are only two papers [270,271] that use inhibition mechanism in
an AE. In the future, this neuroscientific AE will be a very worthy research direction. In
addition, in the field of cognitive science, we have seen some preliminary attempts. For
example, Ref. [82] proposed the stacked what and where AE. In this model, the filters can
focus on learning the shapes (i.e., “what”) because the location information (i.e., “where”)
is encoded into feature maps, which reduces the redundancy among the filters. Hence,
this model achieves better results in image classification. Ref. [272] propose that neural
computing science is a research method based on research results, hypotheses, or models
on neurophysiology and cognitive science. Using mathematical methods to study neural



Mathematics 2023, 11, 1777 44 of 54

information processing mode will have broad application prospects, so more research
content still needs to be further explored.

• Using a better optimization algorithm to adjust the parameters

The method to adjust the parameters in the machine learning field is a new topic
in computer science. There are a large number of parameters that need to be adjusted
in DNNs. At present, the setting of hyper parameters in AE models mainly depend on
manual parameter adjustment. It is necessary to adjust hyper-parameters using trial and
error to determine the network performance. When there are many hyper-parameters in
the model, the situation becomes more complex. When one single parameter achieves
the optimal effect, it cannot guarantee the optimal performance after the combination of
multiple parameters. Optimization methods, such as the PSO [273], are therefore required
to avoid this problem. According to the statistics of the existing references, only one uses
the optimization technique to learn the hyper-parameters automatically [274]. In the future,
we can combine the optimization algorithms with AE models to learn the hyper parameters
automatically for better performance.

8. Conclusions

This study is first to introduce the basic theory and features of various variant models
of AEs. We also provide insight on AEs from various perspectives, including the energy
perspective, manifold perspective, and information theoretic perspective. In particular, we
also have presented relationships with shallow models and deep models. Additionally, we
have summarized its application in various fields and compared available DL toolkits for
AEs. Finally, future trends in AEs are analyzed. We hope that this survey can provide a
good reference when using and designing AE models.
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