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ABSTRACT 
LANDA, E., KOSLOFF, D., KEYDAR, S., KOREN, Z. and RESHEF, M. 1988. A method for deter- 
mination of velocity and depth from seismic reflection data. Geophysical Prospecting 36, 223- 
243. 

The estimation of velocity and depth is an important stage in seismic data processing 
and interpretation. We present a method for velocity-depth model estimation from unstacked 
data. This method is formulated as an iterative algorithm producing a model which maxi- 
mizes some measure of coherency computed along traveltimes generated by tracing rays 
through the model. In the model the interfaces are represented as cubic splines and it is 
assumed that the velocity in each layer is constant. The inversion includes the determination 
of the velocities in all the layers and the location of the spline knots. 

The process input consists of unstacked seismic data and an initial velocity-depth model. 
This model is often based on nearby well information and an interpretation of the stacked 
section. 

Inversion is performed iteratively layer after layer; during each iteration synthetic travel- 
time curves are calculated for the interface under consideration. A functional characterizing 
the main correlation properties of the wavefield is then formed along the synthetic arrival 
times. It is assumed that the functional reaches a maximum value when the synthetic arrival 
time curves match the arrival times of the events on the field gathers. The maximum value of 
the functional is obtained by an effective algorithm of non-linear programming. 

The present inversion algorithm has the advantages that event picking on the unstacked 
data is not required and is not based on curve fitting of hyperbolic approximations of the 
arrival times. The method has been successfully applied to both synthetic and field data. 

1. INTRODUCTION 

The estimation of velocity and depth is an important stage in seismic data pro- 
cessing and interpretation. Depth is usually estimated by converting zero-offset 
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traveltimes interpreted from a stacked section to depth, using a velocity field 
obtained from a normal moveout (NMO) analysis. This method requires an accu- 
rate representation of the root-mean-square (RMS) velocity field. However, the 
stacking velocities used for such analyses can deviate significantly from RMS velo- 
cities, since analyses of stacking velocities assume that the medium is laterally 
invariant and that traveltime trajectories for reflection events in common depth 
point (CDP) gathers are hyperbolic. 

Estimation of reflector depth and interval velocity from seismic reflection data 
may be formulated as an inverse problem. Considerable work has been done recent- 
ly in full wavefield linearized inversion of multi-offset seismic data (Clayton and 
Stolt 1981 ; Berkhout 1984; Tarantola 1984a; Bleistein, Cohen and Magin 1985; 
Ikelle, Diet and Tarantola 1986). Non-linear inversion techniques (Tarantola 1984b, 
1986; McAulay 1985; Gauthier, Virieux and Tarantola 1986) show much promise, 
but they are still in the formulative stages. A more complete review of inversion of 
seismic data can be found by Stolt and Weglein (1985). 

Another approach to inversion of seismic data has been proposed by Goldin 
(1979), Gjoystdal and Ursin (1981) and Bishop et al. (1985). This method is called 
‘seismic tomography ’ and is formulated as an iterative algorithm producing a 
velocity-depth model which minimizes the difference between traveltimes generated 
by tracing rays through the model and traveltimes measured from the data. The 
input to this process consists of traveltimes measured from selected events on 
unstacked seismic data. The disadvantage of these methods is that with a small 
signal-to-noise ratio, event picking on unstacked data is not a reliable process and 
leads to the failure of the inverse procedure. 

We propose a new method for velocity-depth model estimation from unstacked 
seismic data, which has the advantage that it does not require event picking on 
unstacked data and it is not based on curve fitting or hyperbolic approximations of 
arrival times. The method is formulated as an optimization algorithm producing a 
velocity-depth model, which maximizes some measure of coherency computed for 
unstacked trace gathers in a time window along traveltime curves generated by ray 
tracing through the model. The inversion includes the determination of velocities in 
all the layers and the location of interfaces. 

The input includes unstacked seismic data (common midpoint (CMP) gathers or 
common shot gathers) and an initial velocity-depth model. This model is often 
based on nearby well information and an interpretation of the stacked section. 
Inversion is performed iteratively layer after layer and, during each iteration, syn- 
thetic traveltime curves are calculated for the interface under consideration. A func- 
tional characterizing the main correlation properties of the wavefield is then formed 
along the synthetic arrival times. It is assumed that this functional reaches a 
maximum value when the synthetic arrival time curves match the arrival times of 
the events on the field gathers. The maximum value of the functional is obtained by 
an algorithm of non-linear programming. Figure 1 shows the block scheme of the 
algorithm. A similar approach of maximization of some measure of coherency for 
velocity analysis without picking and statics estimation was suggested by Toldi 
(1985), Ronen and Claerbout (1985) and Rothman (1985). Their methods are based 
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FIG. 1. Scheme of the algorithm. 

essentially on the hyperbolic approximation of real CMP traveltime curves and on 
stack power. 

In practice the optimization algorithm depends on: (1) an interpretative model of 
the medium, (2) an algorithm of ray tracing, (3) the choice of an objective function, 
and (4) a method for finding the maximum of the objective function. We will discuss 
each of these factors separately. 

2. AN INTERPRETATIVE MODEL OF THE M E D I U M  

We assume that the real medium can be adequately modelled as a series of homoge- 
neous layers separated by interfaces across which the velocity can vary discontin- 
uously. Let X be the horizontal distance along the earth’s surface, Z the depth and 
N the number of layers (Fig. 2). The velocity U in each layer is assumed to be con- 
stant and the interfaces are represented as cubic splines which are determined by M 
nodepoints Z,(X, ) ,  Z,(X,),  . .., Z,(X,), n = 1, . .. , N .  For simplicity in the following 
discussion, we assume that the number of nodepoints is the same for each layer, 
although this is not essential. The assumption that the interval velocity does not 
change laterally within the layer does not hold in areas with complex geological 
structures and then we divide the region of interest into segments with constant 
interval velocities. The interpretative model can now be characterized by the vector 
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FIG. 2. Parameterization of the model. 

of parameters 8 : 

= {vl ,  v 2 ,  ...? z11z21,  . . .? z I N ,  Z 2 N ,  ...) zMN}, (1) 
where U, is the interval velocity in the nth layer, and Z,, the depth of the nth layer 
in the mth nodepoint with coordinate X .  

The dimension of the vector 8 should be sufficiently high to accurately describe 
the real earth; however, it should not be so high that the inversion problem 
becomes intractable or indeterminate. 

In addition to 8, which describes the model, we need to describe the inversion 
data set. The data consist of a wavefield registered in a time window around the 
synthetic traveltime curves computed for the model. Let there be I shots with a 
maximum of J geophones per shot and suppose that the arrival time of the nth 
reflected wave to the receiver j from the source i is qjn(8). The observed wavefield in 
discrete form is represented as U ,  ( t i j , , k ,  O), where k = 1, . . . , K ;  K At is a time 
window; At is a sample interval and zijn < tij,,k < zijn + K At. The total vector of the 
wavefield is called U@). 

3 .  R A Y  TRACING A L G O R I T H M  

The optimization approach requires a large number of calculations of the objective 
function which is based here on the computation of arrival time curves. Therefore, a 
fast and reliable ray tracing algorithm is crucial for the proposed inversion method. 
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Only ten rays were used for each layer. The + in Fig. 3a represents the exact 
solution obtained by two-point ray tracing. We had to shoot about 100 rays for 
each layer to  obtain efficient convergence to receiver location. 

4. OBJECTIVE FUNCTION 
Let there be some measure of coherency S which characterizes the main correlation 
properties of the wavefield. We propose the following criterion for a model estima- 
tion. For all shots (or midpoints) and reflectors, we can calculate the total measure 
of coherency along the traveltime trajectories generated by ray tracing. The larger 
this total sum of coherency, the better the model 8. 

Therefore, the purpose of inversion is to find a model for which this measure S 
will be at a maximum, i.e. the problem is to find the function 

4(8) = max S(8). 
0 

For computational reasons, it is more convenient to look for a minimum of the 
functional; therefore, we shall consider functions $(8) = - 4(8) and will call them 
‘ objective functions ’. 

Different measures of coherency can be taken as functional S .  We adopted the 
semblance function (Neidell and Taner 1971) to estimate the presence or absence of 
a correlated signal along a calculated traveltime curve. The coherency properties of 
the nth reflected wave can be written as follows (Kong, Phinney and Roy- 
Chowdhury 1985): 

One of the main problems in non-linear inversion is the existence of more than 
one minimum in an objective function. To illustrate the behaviour of functional (3) 
graphically, we calculated (3) for a simple model with one horizontal layer. In this 
case the vector 8 has only two parameters, 8 = { U ,  h) ,  where h is the thickness of the 
layer. 

Figure 4a shows contours of the objective function $ = -S(8) for different com- 
binations of parameters h and U ;  the true values were v = 2000 m/s and h = 250 m. 
In Fig. 4 the objective function has a simple character with a clear minimum which 
corresponds to the correct values of v and h. 

Let us look at the structure of the objective function in the vicinity of the 
minimum (on a small scale, Fig. 4b). The complexity of the function and existence of 
local minima can lead to a decrease in the estimation precision of the parameter 
vector 8. Local minima occur when we calculate the semblance functional (3) in the 
vicinity of the global minimum along traveltime curves which are parallel to ‘true ’ 
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FIG. 4b. Contours of the objective function (3): large scale. 
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FIG. 5. Contours of the objective function (4). 

\ 

traveltime curves. This undesirable phenomenon can be avoided by also considering 
the form of the wavelet. Let us change functional (3) in the following way: 

I 1 {F(k  At )  Ui,(zij,,(0) + k At)>z w))= c - f 
K At k = l  J U$(qj,,(0) + k At )  ' 

(4) 

where F(t)  is the known form of the signal. 
The plus sign in this expression is chosen where a product in the numerator is 

positive (i.e. when the form of the signal and the average value of the wavefield 
calculated along the traveltime curve z have the same sign at the sample k ) ;  where 
the reverse occurs, the minus sign is chosen. We can see that a product in the 
numerator expresses a simple weighting of the estimated signal when a form of the 
signal is taken as a weighting function. Numerical experiments show that the accu- 
racy of parameter estimation using the objective function (4) depends only on the 
frequency of the signal F(t) and not on its envelope. 

The contours of the objective function $' = - S  in the vicinity of the global 
minimum (on a small scale) are shown in Fig. 5. As we can see, local minima have 
disappeared. 

We use a combination of the two objective functions (3) and (4). The semblance 
functional (3) is found to be a good tool for the estimation of the presence or 
absence of a correlated signal on the record section; therefore, it is used in the first 
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stage of the minimum search. The model parameters obtained from this stage are 
used as input for the second stage where the objective function (4) is used. 

5 .  M I N I M I Z A T I O N  ALGORITHM 

The method of minimization of the objective function is an important stage of the 
inversion algorithm. Many algorithms have been proposed to solve this problem 
(Himmelblau 1972; Gill and Murray 1974; Gill, Murray and Wright 1981). 
However, none of these algorithms has proved to be a universal solution for non- 
linear programming problems. 

Numerical methods of optimization can be divided into two groups: 

5.1. Methods using derivatives 

One of these methods (the Gauss-Newton) has been used previously in geophysical 
applications (Bishop et al. 1985). In practice, the derivative-type methods have two 
main disadvantages. Firstly it is laborious, or sometimes impossible, to provide ana- 
lytical functions for the derivatives. Although evaluation of the derivatives by differ- 
ent schemes can be substituted for evaluation of the analytical derivatives, the 
numerical error is introduced. Secondly, optimization techniques based on the 
evaluation of derivatives require relatively much preparation by the user before the 
problem can be introduced into the algorithm. 

5.2. Minimization methods without using derivatives 

More commonly known as the search methods of optimization, in these methods 
the directions for minimization are determined only from successive evaluations of 
the objective function. Methods using derivatives generally converge faster than 
direct search methods. However, because of the difficulties described, search opti- 
mization algorithms have been devised which may, in practice, prove to give better 
convergence than methods using derivatives. 

To search for a parameter vector which minimizes the objective function we use 
an algorithm of flexible polyhedron search. This method was proposed by Nelder 
and Mead (Himmelblau 1972) to minimize a function of IZ independent variables 
using (n + 1) vertices of a flexible polyhedron in E .  (Regular polyhedrons in E are 
simplexes. For example: for two variables, the regular simplex is an equilateral tri- 
angle; for three variables, the regular simplex is a regular tetrahedron; etc.) This 
method can be briefly described as follows (Fig. 6 ) :  The vertex (point) which yields 
the highest value of the objective function is projected through the centre of gravity 
(centroid) of the remaining vertices. Improved (lower) values of the objective func- 
tion are found by successively replacing the point with the highest value of objective 
function by a better point, until the minimum function is found. (For details of the 
algorithm, see Appendix.) 
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FIG. 6. Regular SO2 simplex for two variables. 1 denotes the largest value of the objective func- 

tion; arrow pointing in the direction of function decrease. 

5.3. Local extrema 

In spite of our efforts to construct an objective function that contains only one 
minimum, the possibility remains that the optimization converges to a local 
minimum. Rothman (1985) developed a method of stack-power maximization by 
stochastic relaxation which has a high probability of finding the global maximum. 
An alternative approach is to run the program from random starting points. 

\ 

6. EXAMPLES 

We shall consider some examples illustrating the application of the inversion algo- 
rithm to synthetic and field data. 

Example 1 
Figure 7 shows the depth model with three layers. Velocities in the layers are V, = 
1500 m/s, V, = 1800 m/s and V, = 2100 m/s. The geometry of the reflection inter- 
faces is determined by cubic spline with nodes in the points X = 100 m, X = 400 m, 
X = 700 m, X = 1000 m (vertical lines on the figure). The computation of the syn- 
thetic CMP gathers for this model was performed using the well-known ray method. 

Input data for the inversion consists of twenty CMP gathers within the range 
10&1000 m with a significant amount of random noise. The estimated parameters 
include the interval velocities in all the layers and the depth in the spline knots. 
Inversion is performed layer after layer (five parameters for each layer). 

The initial model was constructed using first-guess velocities (dotted values on 
the figure) and zero-offset times, to obtained from CMP gathers. As we can see from 
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the figure, the difference between the true and initial models reaches 50 m in depth 
and 500 m/s in velocity (i.e. a deviation from the correct parameters of about 20%). 
The inversion algorithm converged to the solution after about 200 iterations for a 
layer. 

Example 2 
Let us now consider the application of the proposed inversion algorithm to a 
marine seismic line. 

Figure 8 shows part of a time section of the line. Four dominant events can be 
seen: the first at about 1.65 s is the sea-bottom reflection, the second reflection at 
about 2.1 s is the Upper Yafo Formation, the third reflection at about 2.55 s is the 
Lower Yafo Formation and the fourth reflector at about 3.0 s is the top of the salt. 
All the events appear to be more or less horizontal and constancy of stacking velo- 
cities along the line indicates the constancy of the interval velocities. Input data for 
the inversion consist of 25 common shot gathers with shots every two stations 
beginning at station 840. Every gather consists of 48 traces with a group interval of 
50 m and a minimum offset of 450 m. 

Examples of some common shot seismograms are shown in Fig. 9; the signal-to- 
noise ratio is high and all four dominant events can be seen clearly. In this example, 
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the first-guess model (broken lines on Fig. 10) was chosen to be significantly differ- 
ent from the model which can be obtained by applying the Dix formulae to to 
and stacking velocities. This was done to check the convergence of the algorithm. 
The inversion algorithm attempts to maximize the coherency measure which was 
computed along the theoretical times by modifying the velocities and depths of the 
model. 

Figure 10 shows the final velocity-depth model after about 200 iterations for 
each layer. Node points of the interfaces are depicted by black points in the figure. 
The differences between initial and final models reaches 25-30%. The results of 
inversion (interval velocities and thicknesses of the layer) are in good agreement 
with the results of conventional data interpretation (Mart and Ben Gai 1982). 



VELOCITY A N D  D E P T H  ESTIMATION 235 

X 
A 

? - R : 0 
r6 

R 4 

0 
N 



236 E. L A N D A  ET A L .  

STATIONS 

I 
890 885 880 875 870 865 860 855 850 845 x- ' 

I 1400 

Vq= 4 2 3 0 ~ / ~  2 600 

2800 

3000 

3200 

FIG. 10. Velocity-depth model ( ~ ) corresponds to time section on Fig. 8;  ( - - - ) the 
first-guess model. 

Example 3 
Figure 11 shows part of a time section of the seismic line. Three events can be 
clearly seen at about 1.61.7 s, 2.4-2.6 s and 2.8-3.0 s. In this example the first event 
is a strong reflection with a small dip, the second and third reflections have a pro- 
nounced anticlinal character. Input data for inversion consists of thirty-two 
common shot gathers. The first shot station number is 156 and the last 218. 

Figure 12 shows three common shot gathers. Each seismogram consists of 
twenty-four traces with a group interval of 70 m and a minimum offset of 245 m. 

Figure 13 illustrates the result of inversion procedure. The inversion includes the 
determination of interval velocities in three layers and z-coordinates of four node- 
points for each layer. The nodepoints determine the cubic splines which represent 
the interfaces. Dotted lines in the figure show the initial model which was con- 
structed using zero times for three major reflection events picked from the time 
section and stacking velocities. Solid lines in the figure show the final velocity-depth 
model which was obtained after about 200 iterations for each layer. Where the 
signal-to-noise ratio enables us to perform picking of the events, we can see that the 
traveltime curves derived from tracing rays through the final model practically coin- 
cide with those measured from common shot seismograms (Fig. 14). 
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R E M A R K S  
Several important questions remain to be answered: What value of coherency can 
be considered as a solution of the inversion algorithm? For a simple linear signal- 
noise model, the semblance coefficient is equal to a signal energy to total energy 
ratio (Neidell and Taner 1971). Therefore, the threshold value of coherency can be 
related to signal-to-noise ratio and, in practice, it is chosen empirically (as in velo- 
city analysis). Small variations of the threshold cause small changes in the final 
results. 

Another important question is that of computation efficiency. A good measure 
for this is the number of iterations. In our work ‘an iteration’ means one objective 
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function evaluation (one ray-tracing cycle), whereas in some papers employing 
derivative methods, each iteration step consists of a numerical evaluation of the 
objective function derivatives with respect to the unknown parameters. In a non- 
linear case, the number of iterations can be significantly large (see e.g. Rothman 
(1985) where 4000 iterations are required for stack power maximization). 

The number of iterations in non-linear methods depends on the minimization 
algorithm (the strategy of the search), the initial model and the termination cri- 
terion. Recent numerical experiments conducted after submission of this paper have 
successfully reduced the number of required iterations from about 200 to about 100 
for each layer, a reduction which was achieved only by changing the termination 
criterion in the Nelder and Mead algorithm (see Appendix). 

, 

CONCLUSIONS 
The proposed method of 'coherency ' inversion is intermediate between full wave- 
field and tomographic inversions. It uses an optimization technique to estimate 
velocities and depths from unstacked seismic data. The method attempts to produce 
a velocity-depth model which maximizes some measure of coherency computed 
along traveltime curves derived from tracing rays through the model. The maximi- 
zation is achieved using the Nelder and Mead method to modify an initial model 
and produce a number of model iterations. The initial model is constructed from 
well information or from results of conventional seismic processing. The proposed 
method has the advantage that picking times for selected reflectors on unstacked 
data is not required. The method has been successfully tested on synthetic data. The 
inversion was performed on two seismic lines and the estimated models agree well 
with known geological data. 
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APPENDIX 
FLEXIB L E  POLYHEDRON SE A R c H (Himmelblau, 1972) 

Let Xik)  = { ~ { t ) ,  .. ., $, . . ., xl;)]', i = 1, .. ., n + 1, be the ith vertex (point) in E" on 
the kth stage of the search, k = 0, 1, . . . and let the value of the objective function at 
Xik) be f ( X l k ) ) .  We also need to label X vectors in the polyhedron that give the 
maximum and minimum values off(X). We define 

f ( X i k ) )  = max {f(xik)), . . . , f(xiki ,)} 
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with the corresponding Xik) = Xik), and 

f(xLk)) = min { f(Xlk)), . . . , f(Xiki 1)) 

with the corresponding Xik) = XLk). Since the polyhedron in E“ comprises (n  + 1) 
vertices, XI, . . . , X,+ let X,, be the centroid of all the vertices excluding X ,  . The 
coordinates of the centroid are given by 

where the index j designates each coordinate direction. 
The initial polyhedron is usually selected to be a regular simplex (it does not 

have to be), with point S as the origin, or perhaps the centroid as the origin. The 
procedure of finding a vertex in E” at whichf(X) has a better value involves four 
operations : 

1. Reflection 

Reflect Xik) through the centroid by computing 

(A21 X(k) - X(k) 
n + 3 - n + 2 + a(Xikl 2 - xik’, 

where M > 0 is the reflection coefticient, X i k i 2  is the centroid computed by (Al), and 
Xik) is the vertex at which f ( X )  is the largest of ( n  + 1) values of f(X) on the kth 
stage. 

2. Expansion 

Iff(Xiki <f (Xkk) ) ,  expand the vector (Xiki - Xik; 2) by computing 

xLkl4 = + y(Xiki, - Xikl2), (A3) 
where y > 1 is the expansion coefficient. Iff(Xiki4) <f(X$)), replace Xik) by Xiki4 
and continue from step 1 with k = k + 1. Otherwise, replace Xik) by XLki3 and con- 
tinue from step 1 with k = k + 1. 

3. Contractions 

Iff(Xiki 3) > f(Xik)) for all i # h, contract the vector (Xik) - Xikl 2) by computing 

644) ( k )  - X(k) + p(X(k) - X(k) ) Xn+5 - n + 2  h n + 2  3 

where 0 < fi < 1 is the contraction coefficient. Replace Xik) by Xik15 and return to 
step 1 to continue the search on the (k + 1) stage. 
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4. Reduction 

Iff(Xl(tl.J >f(Xik)), reduce all the vectors (Xik) - Xp)), i = 1, . . . , n + 1,Jy one-half 
from Xp) by computing 

Xik) = Xp) + 0.5(Xik) - XP) i = 1, . . . , n + 1 

The criterion used by Nelder and Mead (Himmelblau 1972) to terminate the 

('45) 
and return to step 1 to continue the search on the ( k  + 1) stage. 

search was to test whether 
r I n + l  1112 

where E is an arbitrarily small number, and f(Xkki2) is the value of the objective 
function at the centroid XLki2. 

The reflection coefficient a is used to project the vertex with the largest value of 
f(X) through the centroid of the flexible polyhedron. The expansion coefficient y is 
used to elongate the search vector if the reflection has produced a vertex with a 
value of f(X) smaller than the smallest f(X) obtained prior to the reflection. The 
contraction coefficient p is used to reduce the search vector if the reflection has not 
produced a vertex with a value off(X) smaller than the second largest value off(X) 
obtained prior to the reflection. Therefore, by means of either expansions or con- 
tractions, the size and shape of the flexible polyhedron are scaled to fit into the 
topography of the problem being solved. Nelder and Mead (Himmelblau 1972) 
recommended the values of a = 1, /3 = 0.5 and y = 2 as being generally satisfactory 
for minimization. 
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