If we consider the score with the constant factor $\frac{1}{p}$ we have

$$\psi(W; \theta, \eta) := \frac{D(Y - g(0, X))}{p} - \frac{m(X)(1 - D)(Y - g(0, X))}{p(1 - m(X))} - \frac{D}{p}\theta$$
$$= \psi_a(W; \eta)\theta + \psi_b(W; \eta)$$

with $\eta = (g, m, p)$ and where the components of the linear score are

$$\psi_a(W; \eta) = -\frac{D}{p},$$

$$\psi_b(W; \eta) = \frac{D(Y - g(0, X))}{p} - \frac{m(X)(1 - D)(Y - g(0, X))}{p(1 - m(X))}.$$

If the score is linear in the parameter, we get for the asymptotic variance

$$\sigma^2 = J_0^{-2} \mathbb{E}(\psi^2(W; \theta_0, \eta_0)),$$

with $J_0 = \mathbb{E}(\psi_a(W; \eta_0))$. For the ATTE score we get

$$J_0 = \mathbb{E}(\psi_a(W; \eta_0)) = \mathbb{E}\left(-\frac{D}{p_0}\right) = -\frac{\mathbb{E}(D)}{p_0} = -\frac{p_0}{p_0} = -1.$$

Therefore, the variance simplifies to $\sigma^2 = \mathbb{E}(\psi^2(W; \theta_0, \eta_0))$. This is also mentioned in Chernozhukov et al. (2018) on page C35.

If we instead consider the score without the constant factor $\frac{1}{p}$ we get

$$\tilde{\psi}(W;\theta,\eta) := D(Y - g(0,X)) - \frac{m(X)(1-D)(Y - g(0,X))}{(1-m(X))} - D\theta$$
$$= \tilde{\psi}_a(W;\eta)\theta + \tilde{\psi}_b(W;\eta)$$

with $\eta = (g, m)$ and where the components of the linear score are

$$\psi_a(W; \eta) = -D,$$

$$\psi_b(W; \eta) = D(Y - g(0, X)) - \frac{m(X)(1 - D)(Y - g(0, X))}{(1 - m(X))}.$$

The two score functions are related via $\psi(W;\theta,\eta) = \frac{1}{p}\tilde{\psi}(W;\theta,\eta)$. We further get

$$\tilde{J}_0 = \mathbb{E}(\tilde{\psi}_a(W; \eta_0)) = \mathbb{E}(-D) = -p_0.$$

For the variance we therefore get

$$\tilde{\sigma}^2 = \tilde{J}_0^{-2} \mathbb{E}(\tilde{\psi}^2(W; \theta_0, \eta_0)) = \frac{\mathbb{E}(p_0^2 \psi^2(W; \theta_0, \eta_0))}{p_0^2} = \mathbb{E}(\psi^2(W; \theta_0, \eta_0)) = \sigma^2.$$

 \Longrightarrow So it basically does not matter whether one adds the constant factor $\frac{1}{p}$, but with the constant the formula of the variance simplifies to $\sigma^2 = \mathbb{E}(\psi^2(W; \theta_0, \eta_0))$.

References

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W. and Robins, J. (2018), Double/debiased machine learning for treatment and structural parameters. The Econometrics Journal, 21: C1-C68.