If we consider the score with the constant factor ;1) we have
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with n = (g, m, p) and where the components of the linear score are
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If the score is linear in the parameter, we get for the asymptotic variance
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with Jo = E(¢,(W;mn0)). For the ATTE score we get
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Therefore, the variance simplifies to 02 = E(*(W;6p,1)). This is also mentioned in
Chernozhukov et al. (2018) on page C35.

If we instead consider the score without the constant factor % we get
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with 7 = (g, m) and where the components of the linear score are
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The two score functions are related via (W5 6,n) = 2¢(W;0,n). We further get
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Jo = E(a(W;m0)) = E(=D) = —po.
For the variance we therefore get
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52 = J (0 (W 60,m0)) = — E(2(W: 60, m0)) = 0

— So it basically does not matter whether one adds the constant factor }17, but with the
constant the formula of the variance simplifies to o2 = E(*(W; 6, m0))-
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