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Abstract

This paper focuses on human activity recognition
(HAR) problem, in which inputs are multichannel
time series signals acquired from a set of body-
worn inertial sensors and outputs are predefined hu-
man activities. In this problem, extracting effec-
tive features for identifying activities is a critical
but challenging task. Most existing work relies on
heuristic hand-crafted feature design and shallow
feature learning architectures, which cannot find
those distinguishing features to accurately classify
different activities. In this paper, we propose a sys-
tematic feature learning method for HAR problem.
This method adopts a deep convolutional neural
networks (CNN) to automate feature learning from
the raw inputs in a systematic way. Through the
deep architecture, the learned features are deemed
as the higher level abstract representation of low
level raw time series signals. By leveraging the
labelled information via supervised learning, the
learned features are endowed with more discrimi-
native power. Unified in one model, feature learn-
ing and classification are mutually enhanced. All
these unique advantages of the CNN make it out-
perform other HAR algorithms, as verified in the
experiments on the Opportunity Activity Recogni-
tion Challenge and other benchmark datasets.

1 Introduction
Automatically recognizing human’s physical activities (a.k.a.
human activity recognition or HAR) has emerged as a key
problem to ubiquitous computing, human-computer interac-
tion and human behavior analysis [Bulling et al., 2014; Plätz
et al., 2012; Reddy et al., 2010]. In this problem, human’s
activity is recognized based upon the signals acquired (in real
time) from multiple body-worn (or body-embedded) inertial
sensors. For HAR, signals acquired by on-body sensors are
arguably favorable over the signals acquired by video cam-
eras, due to the following reasons: i) on-body sensors allevi-
ate the limitations of environment constraints and stationary
settings that cameras often suffer from [Bulling et al., 2014;
Ji et al., 2010; Le et al., 2011]; ii) multiple on-body sensors

allow more accurate and more effective deployment of sig-
nal acquisition on human body; iii) on-body sensors enjoy
the merits on information privacy, as their acquired signals
are target-specific while the signals acquired by camera may
also contain the information of other nontarget subjects in the
scene. In the past few years, body-worn based HAR made
promising applications, e.g. game consoles, personal fitness
training, medication intake and health monitoring. An excel-
lent survey on this topic can be found at [Bulling et al., 2014].

The key factor attributed to the success of a HAR system is
to find an effective representation of the time series collected
from the on-body sensors. Though considerable research ef-
forts have been made to investigate this issue, diminishing
returns occurred. Conventionally, the HAR problem is of-
ten taken as one of specific applications of time series anal-
ysis. The widely-used features in HAR include basis trans-
form coding (e.g. signals with wavelet transform and Fourier
transform) [Huynh and Schiele, 2005], statistics of raw sig-
nals (e.g, mean and variance of time sequences) [Bulling et
al., 2014] and symbolic representation [Lin et al., 2003]. Al-
though these features are widely used in many time series
problems, they are heuristic and not task-dependent. It is
worth noting that the HAR task has its own challenges, such
as intraclass variability, interclass similarity, the NULL-class
dominance, and complexness and diversity of physical activi-
ties [Bulling et al., 2014]. All these challenges make it highly
desirable to develop a systematical feature representation ap-
proach to effectively characterize the nature of signals relative
to the activity recognition task.

Recently, deep learning has emerged as a family of learning
models that aim to model high-level abstractions in data [Ben-
gio, 2009; Deng, 2014]. In deep learning, a deep architecture
with multiple layers is built up for automating feature design.
Specifically, each layer in deep architecture performs a non-
linear transformation on the outputs of the previous layer,
so that through the deep learning models the data are repre-
sented by a hierarchy of features from low-level to high-level.
The well-known deep learning models include convolutional
neural network, deep belief network and autoencoders. De-
pending on the usage of label information, the deep learning
models can be learned in either supervised or unsupervised
manner. Though deep learning models achieve remarkable
results in computer vision, natural language processing, and
speech recognition, it has not been fully exploited in the field
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of HAR.
In this paper, we tackle the HAR problem by adapting one

particular deep learning model —- the convolutional neural
networks (CNN). The key attribute of the CNN is conduct-
ing different processing units (e.g. convolution, pooling, sig-
moid/hyperbolic tangent squashing, rectifier and normaliza-
tion ) alternatively. Such a variety of processing units can
yield an effective representation of local salience of the sig-
nals. Then, the deep architecture allows multiple layers of
these processing units to be stacked, so that this deep learn-
ing model can characterize the salience of signals in differ-
ent scales. Therefore, the features extracted by the CNN are
task dependent and non-handcrafted. Moreover, these fea-
tures also own more discriminative power, since the CNN can
be learned under the supervision of output labels. All these
advantages of the CNN will be further elaborated in the fol-
lowing sections.

As detailed in the following sections, in the application on
HAR, the convolution and pooling filters in the CNN are ap-
plied along the temporal dimension for each sensor, and all
these feature maps for different sensors need to be unified
as a common input for the neural network classifier. There-
fore, a new architecture of the CNN is developed in this pa-
per. In the experiments, we performed an extensive study on
the comparison between the proposed method and the state-
of-the-art methods on benchmark datasets. The results show
that the proposed method is a very competitive algorithm for
the HAR problems. We also investigate the efficiency of the
CNN, and conclude that the CNN is fast enough for online
human activity recognition.

2 Motivations and Related Work
It is highly desired to develop a systematical and task-
dependent feature extraction approach for HAR. Though the
signals collected from wearable sensors are time series, they
are different from other time series like speech signals and
financial signals. Specifically, in HAR, only a few parts of
continuous signal stream are relevant to the concept of inter-
est (i.e. human activities), and the dominant irrelevant part
mostly corresponds to the Null activity. Furthermore, con-
sidering how human activity is performed in reality, we learn
that every activity is a combination of several basic contin-
uous movements. Typically, a human activity could last a
few seconds in practice, and within one second a few basic
movements could be involved. From the perspective of sensor
signals, the basic continuous movements are more likely to
correspond to the smooth signals, and the transitions among
different basic continuous movements may cause significant
change of signal values. These properties of signals in HAR
require the feature extraction method to be effective enough
to capture the nature of basic continuous movements as well
as the salience of the combination of basic movements.

As such, we are motivated to build a deep architecture of a
series of signal processing units for feature extraction. This
deep architecture consists of multiple shallow architectures,
and each shallow architecture is composed by a set of lin-
ear/nonlinear processing units on locally stationary signals.
When all shallow architectures are cascaded, the salience of

signals in different scales is captured. This deep architecture
is not only for decomposing a large and complex problem into
a series of small problems, but more importantly for obtain-
ing specific “variance” of signals at different scales. Here, the
“variances” of signals reflect the salient patterns of signals.
As stated in [Bengio, 2009], what matters for generalization
of a learning algorithm is the number of such “variance” of
signals we wish to obtain after learning.

By contrast, the traditional features extraction methods
such as basis transform coding (e.g. signals with wavelet
transform and Fourier transform) [Huynh and Schiele, 2005],
statistics of raw signals (e.g, mean and covariance of time
sequences) [Bulling et al., 2014] and symbolic representa-
tion [Lin et al., 2003] are deemed to play a comparable
role of transforming the data by one or a few of neurons
in one layer of a deep learning model. Another type of
deep learning models, called Deep Belief Network (DBN)
[Hinton and Osindero, 2006; Le Roux and Bengio, 2008;
Tieleman, 2008], was also investigated for HAR by [Plätz
et al., 2012]. However, this feature learning method does
not employ the effective signal processing units (like convo-
lution, pooling and rectifier) and also neglects the available
label information in feature extraction. The primary use of
the CNN mainly lies in 2D image [Krizhevsky et al., 2012;
Zeiler and Fergus, 2014], 3D videos [Ji et al., 2010] and
speech recognition [Deng et al., 2013]. However, in this pa-
per, we attempt to build a new architecture of the CNN to
handle the unique challenges existed in HAR. The most re-
lated work is [Zeng et al., 2014], in which a shallow CNN is
used and the HAR problem is restricted to the accelerometer
data.

3 Convolutional Neural Networks in HAR
Convolutional neural networks have great potential to iden-
tify the various salient patterns of HAR’s signals. Specif-
ically, the processing units in the lower layers obtain the
local salience of the signals (to characterize the nature of
each basic movement in a human activity). The processing
units in the higher layers obtain the salient patterns of sig-
nals at high-level representation (to characterize the salience
of a combination of several basic movements). Note that
each layer may have a number of convolution or pooling op-
erators (specified by different parameters) as described be-
low, so multiple salient patterns learned from different as-
pects are jointly considered in the CNN. When these opera-
tors with the same parameters are applied on local signals (or
their mapping) at different time segments, a form of transla-
tion invariance is obtained [Fukushima, 1980; Bengio, 2009;
Deng, 2014]. Consequently, what matters is only the salient
patterns of signals instead of their positions or scales. How-
ever, in HAR we confront with multiple channels of time se-
ries signals, in which the traditional CNN cannot be used di-
rectly. The challenges in our problem include (i) processing
units in CNN need applied along temporal dimension and (ii)
sharing or unifying the units in CNN among multiple sensors.
In what follows, we will define the convolution and pooling
operators along the temporal dimension, and then present the
entire architecture of the CNN used in HAR.
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Figure 1: Illustration of the CNN architecture used for a multi-sensor based human activity recognition problems. We use the
Opportunity Activity Recognition dataset presented in Section 4 as an illustrative example. The symbols “c”, “s”,“u”, “o” in
the parentheses of the layer tags refer to convolution, subsampling, unification and output operations respectively. The numbers
before and after “@” refer to the number of feature maps and the dimension of a feature map in this layer. Note that pooling,
ReLU and normalization layers are not showed due to the limitation of space.

We start with the notations used in the CNN. A sliding win-
dow strategy is adopted to segment the time series signal into
a collection of short pieces of signals. Specifically, an in-
stance used by the CNN is a two-dimensional matrix contain-
ing r raw samples (each sample with D attributes). Here, r is
chosen to be as the sampling rate (e.g. 30 and 32 used in the
experiments), and the step size of sliding a window is cho-
sen to be 3. One may choose smaller step size to increase the
amount of the instances while higher computational cost may
be incurred. For training data, the true label of the matrix in-
stance is determined by the most-frequently happened label
for r raw records. For the jth feature map in the ith layer of
the CNN, it is also a matrix, and the value at the xth row for
sensor d is denoted as vx,dij for convenience.

3.1 Temporal Convolution and Pooling
In the convolution layers, the previous layer’s feature maps
are convolved with several convolutional kernels (to be
learned in the training process). The output of the convo-
lution operators added by a bias (to be learned) is put through
the activation function to form the feature map for the next
layer. Formally, the value vx,dij is given by

vx,dij = tanh

(
bij +

∑
m

Pi−1∑
p=0

wpijmv
x+p,d
(i−1)m

)
,

∀d = 1, · · · , D

(1)

where tanh(·) is the hyperbolic tangent function, bij is the
bias for this feature map, m indexes over the set of feature
maps in the (i − 1)th layer connected to the current feature
map, wpijm is the value at the position p of the convolutional
kernel, and Pi is the length of the convolutional kernel.

In the pooling layers, the resolution of feature maps is re-
duced to increase the invariance of features to distortions on
the inputs. Specifically, feature maps in the previous layer
are pooled over local temporal neighborhood by either max
pooling function

vx,dij = max
1≤q≤Qi

(
vx+q,d(i−1)j

)
, ∀d = 1, · · · , D, (2)

or a sum pooling function

vx,dij =
1

Qi

∑
1≤q≤Qi

(
vx+q,d(i−1)j

)
, ∀d = 1, · · · , D. (3)

where Qi is the length of the pooling region.

3.2 Architecture
Based on the above introduced operators, we construct a CNN
shown in Figure 1. For convenience, all layers of the CNN
can be grouped into five sections as detailed below.

For the first two sections, each section is constituted by
(i) a convolution layer that convolves the input or the previ-
ous layer’s output with a set of kernels to be learned; (ii) a
rectified linear unit (ReLU) layer that maps the output of the
previous layer by the function relu(v) = max(v, 0); (iii) a
max pooling layer that finds the maximum feature map over a
range of local temporal neighborhood (a subsampling opera-
tor is often involved); (iv) a normalization layer that normal-
izes the values of different feature maps in the previous layer

vij = v(i−1)j

(
κ+ α

∑
t∈G(j) v

2
(i−1)t

)−β
, where κ, α, β are

hyper-parameters andG(j) is the set of feature maps involved
in the normalization.

For the third section, it is only constituted by a convolu-
tion layer, ReLU layer and a normalization layer, as after the
convolution layer the temporal dimension of an feature map
becomes one (noting that the size of a feature map output by
this layer is D × 1) so the pooling layer is avoided here.

For the fourth section, we aim to unify the feature maps
output by the third section among all D sensors. In-
stead of simply concatenating these feature maps, we de-
velop a fully connected layer to unify them to achieve the
parametric-concatenation in this layer. An illustrative dia-
gram is shown in Figure 2. Mathematically, the value of
the jth feature map in this layer is computed by vij =

tanh
(
bij +

∑
m

∑D
d=1 w

d
ijmv

d
(i−1)m

)
, and this unification

is also followed by the ReLU layer and normalization layer.
The fifth section is a fully-connected network layer. This

layer is same as a standard multilayer perceptron neural net-
work that maps the latent features into the output classes.
The output of this layer is governed by the softmax function
vij =

exp(v(i−1)j)∑C
j=1 exp(v(i−1)j)

, where C is the number of output

classes. This softmax function provides the posterior proba-
bility of the classification results. Then, an entropy cost func-
tion can be constituted based on the true labels of training
instances and probabilistic outputs of softmax function.
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Figure 2: Illustration of unification layer (i.e. the fourth sec-
tion in Figure 1).

To convert the matrix-level prediction given by the CNN
to originally-desired sample-level predictions, the following
two steps are used. First, all the samples in a matrix-level in-
stance are labeled by the same predicted label for this matrix-
level instance. Second, for a sample lying in the overlapped
matrix-level instances, a voting method is used to determine
the final predicted label of this sample.

Due to the temporal dependence of sensor signals, the la-
bels of instances often have a smooth trend, as mentioned in
Section 2. Recently, [Cao et al., 2012] has proposed a simple
but effective smoothing method to postprocess the predicted
labels so as to enhance the prediction performance. The idea
is to employ a low-pass filter to remove the impulse noise
(potential wrong prediction) and maintain the edges, i.e., the
position of activity transition. Specially, for the ith instance, a
smoothing filter with a predefined length ui is applied on the
sequence whose center is the ith instance. This filter finds the
most frequent label in this sequence and assign it to the ith in-
stance. We will investigate the prediction results with/without
this smoothing method in the experiments.

3.3 Analysis
Note that the ReLU and normalization layers are optional in
the first four layers of the CNN in Figure 1. In our experi-
ments, we found that incorporating these two layers can lead
to better results. Furthermore, to avoid the curse of dimen-
sionality, dropout operation and regularization method might
be employed in the CNN, though they are not used in our ex-
periments due to the resultant minor performance difference.
Remark 1. The conventional CNN [Krizhevsky et al., 2012;
Wan et al., 2014; Ji et al., 2010] used in the image/video case
does not have the unification layer shown in Figure 2, be-
cause the image/video signal is considered to come from a
single sensor channel. Thus, the proposed architecture of the
CNN is a generalization of the conventional CNN by consid-
ering multiple channels of data.

In the CNN, the parameters in all processing units and con-
nection weights are jointly learned through a global objec-
tive function (i.e. entropy cost function) that is a function
depending on all such unknown variables. This global ob-
jective function can be efficiently optimized by a so-called
back-propagation algorithm [LeCun et al., 1998].
Remark 2. The global objective function is related to the
training error that is computed based on the ground truth
labels as well as the outputs of the softmax function in the

last layer of the CNN. This function’s variables control the
various feature maps of the signals. Consequently, through
the optimization model, the two tasks of feature learning and
classification are mutually enhanced, and the learned fea-
tures by the CNN have more discriminative power w.r.t. the
ultimate classification task.

4 Experiments
4.1 Datasets
We consider two datasets for human activity recognition with
different focuses. The first dataset is related to the whole-
body’s movement while the second dataset particularly fo-
cuses on the hand’s movement.

Opportunity Activity Recognition The Opportunity Ac-
tivity Recognition dataset1 [Sagha, 2011; Roggen et al., 2010;
Cao et al., 2012] is about the human activities related to a
breakfast scenario. This dataset contains the data collected
from the sensors configured on three subjects who perform
Activities of Daily Living (ADL). There are 18 classes in this
activity recognition task2. The Null class refers to the either
non-relevant activities or non-activities. The used sensors in-
clude a wide variety of body-worn, object-based, and ambi-
ent sensors - in total, 72 sensors from 10 modalities- with
15 wireless and wired sensor network in home environment.
The sampling rate of the sensor signals is 30 per second. Each
record is comprised of 113 real valued sensory readings ex-
cluding the time information. With these sensors, each sub-
ject performed one drill session (Drill) which has 20 repeti-
tions of some pre-defined actions in one sequence of sensory
data, and five ADLs. Following [Cao et al., 2012], we use
Drill and first two sets of ADLs as the training data, and use
the third set of ADL as the testing data.

Hand Gesture The hand gesture dataset [Bulling et al.,
2014]3 is about different types of the human’s hand move-
ments. In this dataset, two subjects perform hand movements
with eight gestures in daily living and with three gestures in
playing tennis. In total, there are 12 classes in this hand ges-
ture recognition problem4. Similar to the first dataset, the
Null class refers to the periods with no specific activity. The
used body-worn sensors include a three axis accelerometer
and a two-axis gyroscope, and the sampling rate is 32 sam-
ples per second. Then, each record has 15 real valued sensor
readings in total. Every subject repeated all activities about

1The link is http://www.opportunity-project.eu/challenge.
2The 18 classes are Null, open door 1, open

door 2, close door 1, close door 2, open
fridge, close fridge, open dishwasher, close
dishwasher, open drawer 1, close drawer 1,
open drawer 2, close drawer 2, open drawer
3, close drawer 3, clean table, drink cup and
toggle switch.

3The link is https://github.com/andyknownasabu/ActRecTut/.
4The 12 classes are Null, open a window, close a

window, water a plant, turn book page, drink
from a bottle, cut with a knife, chop with a
knife, stir in a bowl, forehand, backhand and
smash.
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Subject 1 Subject 2 Subject 3
AF NF AC AF NF AC AF NF AC

Without smoothing
SVM (quoted from [Cao et al., 2012]) 45.6 83.4 83.8 44.4 75.6 79.4 32.1 76.8 78.1
1NN (quoted from [Cao et al., 2012]) 42.7 80.3 79.3 41.1 73.5 73.9 28.5 67.5 63.8

MV 54.2 83.9 83.7 50.8 74.6 74.3 48.6 80.9 80.7
DBN 14.3 75.0 80.0 7.0 66.7 74.1 20.0 73.4 79.3
CNN 55.5 86.4 87.0 57.1 79.5 82.5 55.8 84.0 85.8

With smoothing
SVM 48.6 84.7 85.9 43.8 75.9 80.4 27.6 76.7 79.2
1NN 53.9 84.1 84.6 53.2 78.2 79.8 34.0 71.8 69.7
MV 47.9 83.3 84.3 54.3 75.7 75.7 49.6 81.9 82.1

DBN 12.9 74.5 79.5 7.3 66.9 74.9 21.1 73.0 79.7
CNN 51.6 86.5 87.7 60.0 79.7 83.0 52.6 84.7 86.7

Table 1: The average F-measure (AF), normalized F-measure (NF) and Accuracy (AC) results of the proposed CNN method
and four baselines for the Opportunity Activity Recognition dataset. The best result for each metric is highlighted in bold.

26 times. We randomly select one repetition as the testing
data and the rest repetitions as the training data.

4.2 Experimental Settings
The architecture of the CNN used in Opportunity Activity
Recognition dataset is shown in Figure 1. The same archi-
tecture of the CNN is used for Hand Gesture dataset with
the only differences on the number of feature maps and the
sizes of convolution kernels, since the dimensions of the in-
put and output of the datasets are different. In the normal-
ization operator of the CNN, the parameters are chosen as
κ = 1, α = 2 × 10−4, β = 0.75 and the size of G(·) is 5 in
all experiments. We follow the rules of thumb shown in [Le-
Cun et al., 1998] to choose other parameters, as how to find
the optimal parameters in CNN is still an open question.

We compare the proposed method with the following four
baselines, namely SVM, KNN, MV and DBN. Among them,
the first two methods and the third method show the state-
of-the-arts results on the Opportunity Activity Recognition
dataset and Hand Gesture datasets respectively. The fourth
method is a recently-developed deep learning method for
HAR.

• SVM [Cao et al., 2012]. The support vector machine
(SVM) with radial basis function (RBF) kernel is used as
the classifier. In this baseline, the raw time series sam-
ples are directly used as the input of SVM. The cross
validation procedure is used to tune the parameters of
SVM.

• KNN [Cao et al., 2012]. [Keogh and Kasetty, 2002] per-
formed a comprehensive empirical evaluation on time
series classification problems. Interestingly, the simple
technique KNN (specifically, 1NN, i.e. classification
based on the top one nearest neighbor) with Euclidean
distance was shown to be the best technique. Therefore,
we incorporate the KNN with K = 1 as the classifier.
Same as the SVM baseline, the raw time series samples
are directly used as the input of KNN.

• Means and variance (MV) [Bulling et al., 2014] Same
as the proposed CNN method, the sliding window strat-

egy is used to generate a set of r × D matrix-level in-
stances first. Then the mean and the variance of the sig-
nals over the r samples in every r × D matrix are ex-
tracted to constitute the features of the input data for the
classifier. The classifier used is the KNN with K = 1.

• Deep belief network (DBN) [Plätz et al., 2012] Same
as the CNN and MV methods, a set of r × D matrix-
level instances are generated first. Then, the mean of
the signals over the r samples in every r × D matrix
is used as the input of the DBN5. The classifier used in
this method is chosen between KNN with K = 1 and a
multilayer perceptron neural network, and the one with
better performance is reported.

For MV and DBN methods, matrix-level predictions are
converted to the sample-level predictions based on the same
strategy used in the CNN method as introduced in Section
3.2. We evaluate all methods’ performance under the both
settings of with/without the smoothing method mentioned in
Section 3.2. As suggested in [Cao et al., 2012], the parameter
ui in the smoothing method is recommended to be chosen in
the range of [60, 100].

4.3 Experimental Results
The results of the proposed CNN method and the four base-
line methods on Opportunity Activity Recognition dataset
and Hand Gesture dataset are shown in Table 1 and Table 2
respectively. Following [Cao et al., 2012], average F-measure
(AF), normalized F-measure (NF) and Accuracy (AC) are
used to evaluate the performance of different methods in all
experiments. The best performance for each evaluation met-
ric is highlighted in bold.

From the results, we can see that the proposed CNN
method consistently performs better than all four baselines in
both settings of with/without the smoothing strategy on both
datasets in terms of all three evaluation metrics. Remarkably,
for Subject 3 in the first dataset and Subject 2 in the second

5The experiment of using the raw inputs as the features in DBN
is also performed, but the results are substantially worse than the
reported one.
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Figure 3: Confusion matrix yielded by the proposed CNN
method (without temporal smoothing) on the Opportunity
Activity Recognition dataset for Subject 1 (the larger the
value the darker the background).

dataset, the proposed method outperforms the best baseline
by 5% or so in terms of accuracy for both of with/without the
smoothing settings. When the smoothing strategy is used, the
performance of all methods generally is improved, but the
performance ranking of all methods almost keeps invariant.
The class imbalance issue is a main challenge for all meth-
ods. This can be seen from the confusion matrix generated
by the proposed CNN method shown in Figure 3. Due to
the dominant Null class, all signals samples, except for the
ones in class close drawer 2, tend to be classified into
the Null class. The similar phenomena caused by the class
imbalance issue exist in all methods but they are more severe
for other baseline methods.

The better performance of the CNN over DBN demon-
strates that the supervised deep learning outperforms the un-
supervised ones for HAR. This observation has also been
seen in other applications like image classification and speech
recognition. Note that SVM and KNN use the raw instances
in this paper while in [Plätz et al., 2012] they use the matrix-
level instances whose amount is smaller than that of the raw
instances. This may explain why DBN is a bit worse than
SVM and KNN in our experiments while it is slightly better
than SVM and KNN in the experiments shown in [Plätz et
al., 2012]. The evidence that the CNN has the better perfor-
mance than SVM, KNN and MV suggests that the CNN is
more close to find the nature of signals in feature represen-
tation than the methods with shallowing learning architecture
and heuristic feature design for the HAR problems.

We also conducted the experiments that the magnitudes of
Fourier Transform of the raw data are taken as the inputs for
all methods. However, no performance improvement can be
made. The similar observation has been observed in [Cao et
al., 2012].

All experiments are conducted on nonoptimized Matlab
codes on a PC, which has an Intel i5-2500 3.30 GHz CPU and
8 GB RAM. Due to the space limitation, we report the timing
results of the CNN on the Opportunity Activity Recognition
dataset for Subject 1 as this dataset is the largest one in all
experiments. The training and testing raw samples for this
dataset are 136,869 and 32,466 respectively, and the input di-

Subject 1 Subject 2
AF NF AC AF NF AC

Without smoothing
SVM 76.0 85.0 85.6 71.1 83.5 82.6
1NN 64.8 73.2 71.8 66.2 79.3 77.9
MV 87.5 91.3 91.2 84.1 90.1 89.3

DBN 71.8 82.1 82.8 69.0 81.4 80.1
CNN 89.2 92.0 92.2 90.7 95.0 95.0

With smoothing
SVM 85.1 89.2 89.6 86.0 89.3 88.5
1NN 92.2 93.3 93.2 86.1 89.8 89.2
MV 91.5 93.3 93.3 84.4 90.5 89.6

DBN 78.5 84.9 85.8 73.2 83.4 82.0
CNN 92.2 93.9 94.1 87.0 95.5 96.0

Table 2: The AF, NF and AC results of the proposed CNN
method and four baselines for the Hand Gesture dataset.

mension is 107. The training time of the CNN is around 1
hour, while the testing time is 8 minutes. On average, within
a second the CNN can predict 56 raw instances’ labels. Thus,
the efficiency of the CNN is good enough for the online HAR.
Note that the training and testing time can be significantly re-
duced when the parallel computation of the CNN [Jia et al.,
2014; Donahue et al., 2014] is implemented. This research
topic will be fully investigated in our future work.

5 Conclusions
In this paper, we proposed a new method to automate feature
extraction for the human activity recognition task. The pro-
posed method builds a new deep architecture for the CNN to
investigate the multichannel time series data. This deep archi-
tecture mainly employs the convolution and pooling opera-
tions to capture the salient patterns of the sensor signals at dif-
ferent time scales. All identified salient patterns are system-
atically unified among multiple channels and finally mapped
into the different classes of human activities. The key advan-
tages of the proposed method are: i) feature extraction is per-
formed in task dependent and non hand-crafted manners; ii)
extracted features have more discriminative power w.r.t. the
classes of human activities; iii) feature extraction and clas-
sification are unified in one model so their performances are
mutually enhanced. In the experiments, we demonstrate that
the proposed CNN method outperforms other state-of-the-art
methods, and we therefore believe that the proposed method
can serve as a competitive tool of feature learning and classi-
fication for the HAR problems.
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