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ABSTRACT
Human physical activity recognition based on wearable sen-
sors has applications relevant to our daily life such as health-
care. How to achieve high recognition accuracy with low
computational cost is an important issue in the ubiquitous
computing. Rather than exploring handcrafted features from
time-series sensor signals, we assemble signal sequences of
accelerometers and gyroscopes into a novel activity image,
which enables Deep Convolutional Neural Networks (DCNN)
to automatically learn the optimal features from the activ-
ity image for the activity recognition task. Our proposed
approach is evaluated on three public datasets and it out-
performs state-of-the-arts in terms of recognition accuracy
and computational cost.

Categories and Subject Descriptors
I.2 [Computing Methodologies ]: Artificial Intelligence;
F.1.1 [Theory of Computation]: Models of Computa-
tion—Self-modifying machines

Keywords
Wearable Computing, Activity Recognition, Deep Convolu-
tional Neural Networks, Activity Image.

1. INTRODUCTION
Human physical activity is defined by bodily states such

as walking and standing, the recognition of which can be ap-
plied to many application fields such as human-computer in-
teraction and surveillance [1][2]. Especially, activity recogni-
tion based on wearable sensors is directly related to our daily
lives such as healthcare and workout monitoring [3][4]. This
paper focuses on activity recognition using ubiquitous wear-
able devices (e.g., smart phones, smart watches and sport
bracelets) which embed accelerometers and gyroscopes.

1.1 Related Work
Generally, sensor-based activity recognition methods are

evaluated in two aspects: recognition accuracy and compu-
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Figure 1: Overview of recognizing query signals.

tational cost. To improve the accuracy, the pervious work
tried to extract effective handcrafted features from tri-axis
signals of accelerometers and gyroscopes [1] or explored dif-
ferent classifiers including Support Vector Machine [5], Ran-
dom Forest [6] and Hidden Markov Model [7]. To decrease
the computational cost, researchers performed feature selec-
tion [4], sensor selection [8], contextual prediction [9] and
sample frequency reduction [10].

However, in most cases, the improvement of accuracy is at
the expense of increasing the computational cost [11]. This
paper aims to develop an accurate and efficient approach for
activity recognition using wearable devices.

1.2 Our Proposal
In the previous work, features used for activity recogni-

tion are usually extracted independently from multiple time-
series sensor signals in a handcrafted way [1]. The correla-
tion among different signals are usually overlooked. We pro-
pose to transfer all time-series signals from the accelerome-
ter and gyroscope into a new activity image which contains
hidden relations between any pair of signals.

As one of the most effective deep learning models, Deep
Convolutional Neural Networks (DCNN) achieved the supe-
rior performance in speech recognition [12] and image classi-
fication [13]. Our novel 2D activity image enables DCNN to
automatically learn the best discriminative features suited
for activity recognition, rather than defining the features
manually. In the DCNN framework, low- and high-level fea-
tures are extracted from the newly-defined activity image,
providing extra contextual information between signals com-
pared with the statistics on the individual time-series signal.

1.3 Algorithm Overview
Fig.1 shows the flowchart to recognize query signals. With

the activity image generated from sensor signals as input,
DCNN outputs a probability distribution over activity cat-
egories, based on which the human activity is determined.

The paper is organized as follows. Section 2 and 3 in-
troduce the activity image and DCNN architecture, respec-
tively. Section 4 presents the complete activity recognition
procedure. Experimental results on three public datasets
are described in Section 5.
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Figure 2: Flowchart to generate an activity image.

2. ACTIVITY IMAGE
The Inertial Measurement Unit in wearable devices in-

cludes an accelerometer and a gyroscope, measuring the
strength of tri-axis acceleration and angular velocity, re-
spectively. The combination of accelerometer and gyroscope
achieves better results than accelerometer only [1]. Further-
more, the total acceleration can be separated into two com-
ponents: linear acceleration (body motion) and gravity.

We propose a novel activity image based on signals of gy-
roscope, total acceleration and linear acceleration. Firstly,
raw signals (Fig.2 (a)) are stacked row-by-row into a signal
image (Fig.2 (b)) based on Algorithm 1. In the signal image,
every signal sequence has the chance to be adjacent to ev-
ery other sequence, which enables DCNN to extract hidden
correlations between neighboring signals.

Then, 2D Discrete Fourier Transform (DFT) is applied
to the signal image and its magnitude is chosen as our ac-
tivity image (Fig.2 (c)). Fig.3 shows a few activity images
corresponding to different activities. The visual difference
in these activity images indicates their potential for DCNN
to extract discriminative image features for activity recog-
nition.

Figure 3: Samples of activity images.

Before introducing the DCNN architecture, we point out
some engineering details. Given 9 signal sequences, the size
of our signal image is 37×Ls based on Algorithm 1, where
Ls is the time length of signal sequences. Since different
devices may have different sampling rates, we interpolate all
raw signals in the same time length (e.g., 1 second) with
68 signal samples. Ls = 68 will facilitate the design of our
DCNN architecture. In addition, we delete the last row of
the signal image generated by Algorithm 1, so each signal
occurs four times in the revised signal image. The size of
our signal image and consequent activity image is finalized
as 36× 68.

3. DCNN ARCHITECTURE
The architecture of our proposed DCNN is summarized

in Fig.4. The first convolutional layer filters the 36×68 in-
put activity image with 5 kernels of size 5×5, followed by
4×4 subsampling. The second convolutional layer takes the
output of the first subsampling layer as input and filters it
with 10 kernels of size 5×5, followed by 2×2 subsampling.
The full connected layer vectorizes the output of the second
subsampling layer into a 120-dimensional feature vector.

Each convolutional layer performs 2D convolution on its
input maps. The output maps are generated as:

yj = (1 + exp(bj +
∑
i

kij ∗ xi))
−1 (1)

Algorithm 1 Raw Signals → Signal Image

Notations:
• Signal Image (SI): a 2D array to store permutated raw signals.
• Signal Index String (SIS): a string to store signal indices,
whose length is NSIS .

Intput: Ns signal sequences. // As shown in Fig.2(a), each
signal is label with a sequence number. The number of signal
sequences Ns = 9.

Loops:
i = 1; j = i+ 1;
SI is initialized to be the i-th signal sequence;
SIS is initialized to be ′i′; NSIS=1;
while i 6= j do

if j > Ns then
j = 1;

else if ′ij′ 6⊂ SIS && ′ji′ 6⊂ SIS then
Append the j-th signal sequence to the bottom of SI;
Append ′j′ to SIS; NSIS = NSIS + 1;
i = j; j = i+ 1;

else
j = j + 1;

end if
end while

Output: SI.
// The final SIS is ‘1234567891357924681471582593694837261’
with NSIS = 37, when Ns = 9.

Figure 4: The proposed DCNN architecture.

where ∗ denotes the convolutional operator. kij is the con-
volutional kernel on the i-th input map xi to generate the
j-th output map yj . bj a bias term.

Mean-pooling is adopted as the subsampling method. The
output map yi is achieved by computing mean values over
non-overlapping regions of the input map xi with a square
filter m×m:

yi(r, c) =

∑m
p=1

∑m
q=1 xi(r ·m + p, c ·m + q)

m2
(2)

where yi(r, c) denotes the pixel value of yi at location (r, c).
After fully connecting the output of the second subsam-

pling layer into a 1D feature vector fi, Na-way softmax func-
tion is applied to obtain a probability distribution over Na

classes, where Na denotes the number of activities to be
recognized:

p(s) =
gs∑Na
j=1 gj

, where gj = max(0,
∑
i

fi · wij + hj) (3)

where p(s) is the probability of an activity belonging to the
s-th class. wij and hj are coefficients in the softwmax func-
tion.

Fig.5 shows some output maps extracted by DCNN. From
the training data, deep learning is able to automatically
learn from low-level to high-level features as the layer goes
deeper. The parameters such as kij , bj , wij and hj are up-
dated by stochastic gradient descent where the gradient is
obtained by back-propagation.
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Figure 5: Examples of output maps in each layer. Maps in
red boxes are the output of the first subsampling layer and
maps in green boxes are the output of the second subsam-
pling layer.

4. ACTIVITY RECOGNITION
With the activity image built from raw sensor signals as

input, DCNN outputs a probability distribution over Na ac-
tivities. Fig.6 shows two distribution examples over Na ac-
tivities. In Fig.6(a), the probability of “Walking Downstairs
(W.D.)” is overwhelmingly higher than the others, thus it is
confident to determine the user’s activity is walking down-
stairs. However, in Fig.6(b), although the probability of
“Walking Downstairs” is still the highest, it’s close to “Walk-
ing” and “Standing”, thus the activity recognition is not con-
fident.

We train pair-wise SVM classifiers to mitigate the uncer-
tainty. For Na = 6, 15 bi-class SVM classifiers are trained
based on the statistic features from [1]. Then we compare
each two activities in the descending order of their proba-
bility values. As shown in Fig.6(a), the result is determined
by the activity with the highest probability, when the ratio
between the highest probability and the second highest is
higher than a threshold T

T =

∑Ntrain
i=1

1
var(pi(s),s∈[1,Na])

Ntrain
, (4)

which is the mean of the variance’s reciprocal. Ntrain is the
number of training cases. pi(s) denotes the probability of
the i-th training case’s activity belonging to the s-th class.

However, in Fig.6(b), the ratios are less than T in the first
two iterations, so bi-class SVM is applied to find the optimal
activities. In the third iteration, the ratio is larger than
T , so we consider the activity with the higher probability
as the final result. SVM is incorporated here because the
handcrafted features complement the automatically learned
features by DCNN and SVM has shown its effectiveness on
bi-class classification [14].

Figure 6: Two probability distribution examples by DCNN.

In summary, our activity recognition procedure consists
of three steps: (1) generate an activity image from raw sig-
nals; (2) apply DCNN to the activity image and produce the
probability distribution over all activities; and (3) if there is
a sharp peak in the distribution, the activity categorization
is confidently determined. Otherwise, bi-class SVM classifier
will be applied to classify uncertain classes.

5. EXPERIMENTAL RESULTS
We validate our method on three public datasets whose

information is summarized in Table 1. All our experiments
are conducted in Matlab 2014 on an ordinary computer with
a 2.6GHZ CPU and 8GB memory. Two quantitative met-
rics are used to evaluate different methods: (1) Accuracy,
which is defined as the correctly recognized samples divided
by the total number of testing samples and (2) Computa-
tional cost, which is defined as the average time used to
recognize each testing sample.

Table 1: DATASET INFORMATION

5.1 Evaluating the Design of Activity Image
Table 2 shows the accuracy of DCNN method with various

designs of input activity images. The proposed activity im-
age (Row 3) achieves the highest recognition accuracy. The
accuracy decreases when we use the signal image directly
(Row 1) or replace the Discrete Fourier Transform with the
wavelet transform (Row 2). DFT improves the recognition
performance because it increases the visual appearance dif-
ference of activity images (Fig.3), making it easier for DCNN
to learn discriminative features.

Table 2: DCNN ACCURACY vs. INPUT IMAGES ∗

∗Raw Signals (RS); Signal Image (SI); Activity Image (AI).

5.2 Evaluating the Design of DCNN Architec-
ture

Although it is infeasible to evaluate all possible DCNN ar-
chitectures, we compare four representative DCNN designs
with an increasing number of layers (Table 3). For our ac-
tivity recognition task, two convolutional layers combined
with two subsampling layers achieve the best accuracy. If
the convolutional neural network is too shallow, high-level
features are not be able to be learned. If the network is too
deep, useful features may be filtered out during the convo-
lutional and subsampling processes.

Table 3: DCNN ACCURACY vs. ARCHITECTURE ∗

∗“C” and “S” denote convolutional layer and subsampling
layer, respectively. The architecture is described as “{the
number of output maps}C{kernel size}-S{kernel size}”.
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5.3 Quantitative Comparison
We compare our proposed methods, DCNN and DCNN+

(the DCNN method with the aid from SVM for uncertain
cases), with two other state-of-the-arts: (1) SVM method
[1], which extracts 561 handcrafted features from signals of
accelerometers and gyroscopes and utilizes the SVM classi-
fier; (2) Feature selection method [4], the aim of which is to
reduce computational cost by selecting the most useful fea-
tures. In [4], the feature importance is estimated by random
forest which measures the increase of prediction error when
a feature is permuted out.

The quantitative comparison on three public datasets in
terms of recognition accuracy and computational cost is
summarized in Table 4. The threshold T in DCNN+ method
is computed by Eq.4, which is 43, 4, 2, respectively for the
three datasets. The proposed DCNN+ and DCNN meth-
ods achieve the best performance in accuracy and compu-
tational cost, respectively. The SVM method [1] gets the
second best accuracy but its computational cost is much
higher. In contrast, the feature selection method [4] has
the second lowest computational cost but its accuracy is the
lowest among the four methods. Thus, there is a trade-
off between accuracy and computational cost. Compared
with the methods proposed in [1] and [4], the DCNN+ and
DCNN methods achieve a good balance between accuracy
and efficiency (high accuracy and low computational cost).

Table 4: PERFORMANCE COMPARISON

5.4 Accuracy vs Computational Cost
Fig.7 shows the recognition accuracy and computational

cost on the testing datasets if we gradually increase the
threshold T in DCNN+ method. The green dots denote the
accuracy corresponding to the T set by Eq.4 and the red dots
denote the maximal accuracy achievable by DCNN+. They
are very close to each other, which means T learnt from the
training datasets by Eq.4 is effective on the testing datasets.
On the UCI dataset (Fig.7(a)), when T increases, SVM clas-
sifier can assist DCNN on some uncertain cases. The accu-
racy curve increases and then levels off when T = 50, which
means SVM cannot help solve uncertain cases anymore when
T > 50. On the USC dataset (Fig.7(b)), the accuracy curve
has the peak around T = 4, and then decreases a little bit.
It indicates that handcrafted features overall can aid auto-
matically learned feature for activity recognition, but there
is possibly a small percentage of cases which are correctly
recognized by DCNN while falsely classified by SVM if we
choose T larger than 4. Accuracy curve on the SHO dataset
(Fig.7(c)) is flat since our DCNN method only classifies 2
samples incorrectly out of total 2904 testing samples and
the SVM classifier cannot solve these two samples either.
Note that for all three datasets, time cost increases when
T increases because more bi-class SVM classifications are
applied when T increases.

6. CONCLUSION
This paper attacks the problem of accurate and efficient

human activity recognition based on wearable sensors. To

Figure 7: The recognition performance (accuracy and com-
putational cost) regarding to different confidence thresholds.
The green dots denote the accuracy corresponding to the T
set by Eq.4 and the red dots denote the maximal accuracy
achievable by DCNN+.

effectively learn discriminative features automatically, we
propose a novel activity image as the input of DCNN. Raw
sensor signals from accelerometers and gyroscopes are per-
mutated and stacked in a signal image, the Discrete Fourier
Transform of which is the newly-defined activity image. A
DCNN architecture is designed to learn low-level to high-
level features from the activity image for effective activity
recognition. We compared our method with state-of-the-
arts on three public datasets. The proposed two meth-
ods (DCNN+ and DCNN) achieve superior performance in
terms of recognition accuracy and computational cost.
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