
sensors

Article

Deep Convolutional and LSTM Recurrent
Neural Networks for Multimodal Wearable
Activity Recognition

Francisco Javier Ordóñez * and Daniel Roggen

Received: 30 November 2015; Accepted: 12 January 2016; Published: 18 January 2016
Academic Editors: Yun Liu, Wendong Xiao, Han-Chieh Chao and Pony Chu

Wearable Technologies, Sensor Technology Research Centre, University of Sussex, Brighton BN1 9RH, UK;
daniel.roggen@ieee.org
* Correspondence: F.Ordonez-Morales@sussex.ac.uk; Tel.: +44-1273-872-622

Abstract: Human activity recognition (HAR) tasks have traditionally been solved using engineered
features obtained by heuristic processes. Current research suggests that deep convolutional neural
networks are suited to automate feature extraction from raw sensor inputs. However, human activities
are made of complex sequences of motor movements, and capturing this temporal dynamics is
fundamental for successful HAR. Based on the recent success of recurrent neural networks for
time series domains, we propose a generic deep framework for activity recognition based on
convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii)
can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features;
and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework
on two datasets, one of which has been used in a public activity recognition challenge. Our results
show that our framework outperforms competing deep non-recurrent networks on the challenge
dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our
results show that the framework can be applied to homogeneous sensor modalities, but can also fuse
multimodal sensors to improve performance. We characterise key architectural hyperparameters’
influence on performance to provide insights about their optimisation.

Keywords: human activity recognition; wearable sensors; deep learning; machine learning; sensor
fusion; LSTM; neural network

1. Introduction

Recognizing human activities (e.g., from simple hand gestures to complex activities, such as
“cooking a meal”) and the context in which they occur from sensor data is at the core of smart
assistive technologies, such as in smart homes [1], in rehabilitation [2], in health support [3,4], in skill
assessment [5] or in industrial settings [6]. Some simple activity-aware systems are now commercial in
the form of fitness trackers or fall detection devices. However, many scenarios of high societal value
are still elusive, such as providing “memory prosthesis” to people with dementia, inserting subtle
cues in everyday life in the right context to support voluntary behaviour change (e.g., to fight obesity),
or enabling natural human-robot interaction in everyday settings. These scenarios require a minute
understanding of the activities of the person at home and out and about.

This work is motivated by two requirements of activity recognition: enhancing recognition
accuracy and decreasing reliance on engineered features to address increasingly complex recognition
problems. Human activity recognition is challenging due to the large variability in motor movements
employed for a given action. For example, the OPPORTUNITYchallenge that was run in 2011 aiming
at recognising activities in a home environment showed that contenders did not reach an accuracy

Sensors 2016, 16, 115; doi:10.3390/s16010115 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors
zhong
高亮
motivation

Sensors 2016, 16, 115 2 of 25

higher than 88% on the recognition of only 17 sporadic gestures [7]. Thus, addressing scenarios,
such as activity diarisation, will require further improving recognition performance for an even wider
set of activities.

Human activity recognition (HAR) is based on the assumption that specific body movements
translate into characteristic sensor signal patterns, which can be sensed and classified using machine
learning techniques. In this article, we are interested in wearable (on-body) sensing, as this allows
activity and context recognition regardless of the location of the user.

Wearable activity recognition relies on combinations of sensors, such as accelerometers,
gyroscopes or magnetic field sensors [8]. Patterns corresponding to activities are then detected within
the streaming sensor data using either feature extraction on sliding windows followed by classification,
template matching approaches [9] or hidden Markov modelling [10]. Sliding window approaches are
commonly used for static and periodic activities, while sporadic activities lend themselves to template
matching approaches or hidden Markov modelling [8,11].

Most recognition systems select features from a pool of “engineered” features [12].
Identifying relevant features is time consuming and also leads to a difficulty in “scaling up” activity
recognition to complex high level behaviours (e.g., hour-long, day-long or more), as engineered
features do not relate to “units of behaviour”, but are rather the result of convenient mathematical
operations. For instance, statistical and frequency features do not relate to semantically meaningful
aspects of human motion, such as “hand grasp”.

Deep learning refers broadly to neural networks that exploit many layers of non-linear information
processing for feature extraction and classification, organised hierarchically, with each layer processing
the outputs of the previous layer. Deep learning techniques have outperformed many conventional
methods in computer vision [13] and audio classification [14].

Convolutional neural networks (CNNs) [15] are a type of DNN (deep neural network) with the
ability to act as feature extractors, stacking several convolutional operators to create a hierarchy of
progressively more abstract features. Such models are able to learn multiple layers of feature hierarchies
automatically (also called “representation learning”). Long-short-term memory recurrent (LSTMs)
neural networks are recurrent networks that include a memory to model temporal dependencies in
time series problems. The combination of CNNs and LSTMs in a unified framework has already offered
state-of-the-art results in the speech recognition domain, where modelling temporal information is
required [16]. This kind of architecture is able to capture time dependencies on features extracted by
convolutional operations.

Deep learning techniques are promising to address the requirements of wearable activity
recognition. First, performance may chiefly be improved over existing recognition techniques.
Second, deep learning approaches may have the potential to uncover features that are tied to the
dynamics of human motion production, from simple motion encoding in lower layers to more complex
motion dynamics in upper layers. This may be useful to scaling up activity recognition to more
complex activities.

The contributions of this paper are the following:

• We present DeepConvLSTM: a deep learning framework composed of convolutional and LSTM
recurrent layers, that is capable of automatically learning feature representations and modelling
the temporal dependencies between their activation.

• We demonstrate that this framework is suitable for activity recognition from wearable sensor data
by using it on two families of human activity recognition problems, that of static/periodic activities
(modes of locomotion and postures) and that of sporadic activities (gestures).

• We show that the framework can be applied seamlessly to different sensor modalities individually
and that it can also fuse them to improve performance. We demonstrate this on accelerometers,
gyroscopes and combinations thereof.

• We show that the system works directly on the raw sensor data with minimal pre-processing,
which makes it particularly general and minimises engineering bias.

zhong
高亮
why use on-body sensor

zhong
高亮
most har public databases are consisting of static and periodic activitiesfor professional actions, like nursing care, the situation is different

zhong
高亮
borrow the idea from speech recognition domain

zhong
高亮
compare the performance with different sensor modalities or their combination

zhong
高亮
compare the performance when using data with preprocessing or raw data

Sensors 2016, 16, 115 3 of 25

• We compare the performance of our approach to that reported by contestants participating to a
recognised activity recognition challenge (OPPORTUNITY) and to another open dataset (Skoda).

• We show that the proposed architecture outperforms published results obtained on the
OPPORTUNITY challenge, including a deep CNN, which had already offered state-of-the-art
results in previous studies [17].

• We discuss the results, including the characterisation of key parameters’ influence on performance,
and outline venues for future research towards taking additional advantages of the characteristics
of the deep architecture.

2. State of the Art

Neural networks are powerful for pattern classification and are at the base of deep learning
techniques. We introduce the fundamentals of shallow recurrent networks in Section 2.1, in
particular those built on LSTM units, which are well suited to model temporal dynamics.
In Section 2.2, we review the use of deep networks for feature learning, in particular convolutional
networks. In Section 2.3, we review the use of neural networks in deep architectures and their
applications to domains related to human activity recognition.

2.1. From Feedforward to Recurrent Networks

A feedforward neural network, or multi-layer perceptron (MLP), is a computational model that
processes information through a series of interconnected computational nodes. These computational
nodes are grouped into layers and are associated with one another using weighted connections. The
nodes of the layers are called units (or neurons) and transform the data by means of non-linear
operations to create a decision boundary for the input by projecting it into a space where it becomes
linearly separable.

MLPs have been successfully applied to classification problems by training them in a supervised
manner. Every neuron can be viewed as a computational unit that behaves as a logistic regression
classifier (see Figure 1a). Formally, units are defined in terms of the following function:

apl`1q “ σpW lal ` blq (1)

where al denotes the level of response (or activation value) for the units in layer l (al
i is the activation for

the unit i in layer l), W is a weight matrix, where W l
ij represents the parameter (or weight) associated

with the connection between unit j in layer l, and unit i in layer l ` 1, bl is the bias associated with
units in layer l and σ is the activation function (or non-linearity). For l “ 1, we use ap1q “ x, denoting
the input data of the network (the sensor signal in our problem). The output of an MLP architecture
is defined by the activations of the units in the deepest layer. MLPs use a fully-connected (or dense)
topology, in which each unit in layer pl ` 1q is connected with every unit in layer l.

A limitation of the MLP architecture is that it assumes that all inputs and outputs are independent
of each other. In order for an MLP to model a time series (such as a sensor signal), it is necessary to
include some temporal information in the input data. Recurrent neural networks (RNNs) are neural
networks specifically designed to tackle this problem, making use of a recurrent connection in every
unit. The activation of a neuron is fed back to itself with a weight and a unit time delay, which provides
it with a memory (hidden value) of past activations, which allows it to learn the temporal dynamics of
sequential data. A representation of a single recurrent unit is shown in Figure 1b.

Sensors 2016, 16, 115 4 of 25

(a) (b)

(c)

Figure 1. Different types of units in neural networks. (a) MLP with three dense layers; (b) recurrent
neural network (RNN) with two dense layers. The activation and hidden value of the unit in layer
pl ` 1q are computed in the same time step t; (c) The recurrent LSTM cell is an extension of RNNs,
where the internal memory can be updated, erased or read out.

Given a temporal input sequence al “ pal
1, . . . , al

Tq of length T (being al
t,i the activation

of the unit i in hidden layer l at time t), an RNN maps it to a sequence of hidden values
hl “ phl

1, . . . , hl
Tq and outputs a sequence of activations apl`1q “ papl`1q

1 , . . . , apl`1q
T q by iterating the

following recursive equation:
hl

t “ σpW l
xhal

t ` hl
t´1W l

hh ` bl
hq (2)

where σ is the non-linear activation function, bl
h is the hidden bias vector and W terms denote weight

matrices, W l
xh being the input-hidden weight matrix and W l

hh the hidden-hidden weight matrix.
The activation for these recurrent units is defined by:

apl`1q
t “ hl

tW
l
ha ` bl

a (3)

where W l
ha denotes the hidden-activation weight matrix and the bl

a terms denote the activation bias
vector. Notice that the weight matrix W l defined for the MLP is equivalent to the W l

xh matrix in
Equation (2).

These types of networks have Turing capabilities [18] and, thus, are in principle suited for
learning sequences. However, their memory mechanism makes learning challenging when dealing
with real-world sequence processing [19].

LSTMs extend RNN with memory cells, instead of recurrent units, to store and output information,
easing the learning of temporal relationships on long time scales. LSTMs make use of the concept
of gating: a mechanism based on component-wise multiplication of the input, which defines the
behaviour of each individual memory cell. The LSTM updates its cell state, according to the
activation of the gates. The input provided to an LSTM is fed into different gates that control
which operation is performed on the cell memory: write (input gate), read (output gate) or reset

Sensors 2016, 16, 115 5 of 25

(forget gate). The activation of the LSTM units is calculated as in the RNNs (see Equation (2)).
The computation of the hidden value ht of an LSTM cell is updated at every time step t. The vectorial
representation (vectors denoting all units in a layer) of the update of an LSTM layer is as follows:

it “ σipWaiat `Whiht´1 `Wcict´1 ` biq (4)

ft “ σf pWa f at `Wh f ht´1 `Wc f ct´1 ` b f q (5)

ct “ ftct´1 ` itσcpWacat `Whcht´1 ` bcq (6)

ot “ σopWaoat `Whoht´1 `Wcoct ` boq (7)

ht “ otσhpctq (8)

where i, f, o and c are respectively the input gate, forget gate, output gate and cell activation
vectors, all of which are the same size as vector h defining the hidden value. Terms σ

represent non-linear functions. The term at is the input to the memory cell layer at time
t. Wai, Whi, Wci, Wa f , Wh f , Wc f , Wac, Whc, Wao, Who and Wco are weight matrices, with subscripts
representing from-to relationships (Wai being the input-input gate matrix, Whi the hidden-input
gate matrix, and so on). bi, b f , bc and bo are bias vectors. Layers’ notation has been omitted for clarity.

Networks using LSTM cells have offered better performance than standard recurrent units in
speech recognition, where they gave state-of-the-art results in phoneme recognition [20].

2.2. Feature Learning with Convolutional Networks

Neural networks, whether recurrent or feedforward, can receive as input raw sensor signals.
However, applying them to features derived from the raw sensor signals often leads to higher
performance [21]. Discovering adequate features requires expert knowledge, which necessarily limits a
systematic exploration of the feature space [12]. Convolutional networks (CNNs) have been suggested
to address this [17]. A CNN with a single layer extracts features from the input signal through a
convolution operation of the signal with a filter (or kernel). In a CNN, the activation of a unit represents
the result of the convolution of the kernel with the input signal. By computing the activation of a
unit on different regions of the same input (using a convolutional operation), it is possible to detect
patterns captured by the kernels, regardless of where the pattern occurs. In CNNs, the kernels are
optimised as part of the supervised training process, in an attempt to maximize the activation level of
kernels for subsets of classes. A feature map is an array of units (or layer) whose units share the same
parameterization (weight vector and bias). Their activation yields the result of the convolution of the
kernel across the entire input data.

The application of the convolution operator depends on the input dimensionality. With a
temporal sequence of 2D images (e.g., a video), often 2D kernels are used in a 2D spatial
convolution [22]. With a one-dimensional temporal sequence (e.g., a sensor signal), often a 1D
kernel is used in a temporal convolution [23]. In the 1D domain, a kernel can be viewed as a filter,
capable of removing outliers, filtering the data or acting as a feature detector, defined to respond
maximally to specific temporal sequences within the timespan of the kernel. Formally, extracting a
feature map using a one-dimensional convolution operation is given by:

apl`1q
j pτq “ σ

¨

˝bl
j `

Fl
ÿ

f“1

Kl
j f pτq˚ al

f pτq

˛

‚“ σ

¨

˝bl
j `

Fl
ÿ

f“1

„ Pl
ÿ

p“1

Kl
j f ppqa

l
f pτ´ pq

˛

‚ (9)

where al
jpτq denotes the feature map j in layer l, σ is a non-linear function, Fl is the number of feature

maps in layer l, Kl
j f is the kernel convolved over feature map f in layer l to create the feature map j in

layer pl ` 1q, Pl is the length of kernels in layer l and bl is a bias vector. When processing sensor data,
this computation is applied to each sensor channel at the input independently, as shown in Figure 2;

Sensors 2016, 16, 115 6 of 25

hence, the number of feature maps at the input level is F1 “ 1. In subsequent layers, the number of
feature maps will be defined by the number of kernels within that layer (see Figure 2).

Figure 2. Representation of a temporal convolution over a single sensor channel in a three-layer
convolutional neural network (CNN). Layer pl ´ 1q defines the sensor data at the input. The next
layer (l) is composed of two feature maps (al

1pτq and al
2pτq) extracted by two different kernels (Kpl´1q

11

and Kpl´1q
21). The deepest layer (layer pl ` 1q) is composed by a single feature map, resulting from

temporal convolution in layer l of a two-dimensional kernel Kl
1. The time axis (which is convolved

over) is horizontal.

A kernel whose weights would be able to capture a specific salient pattern of a gesture would
act as a feature detector. A model with several convolutional layers, in a stacked configuration
where the output of layer l ´ 1 is the input for the upper layer l, may be able to learn a hierarchical
representation of the data, where deeper layers progressively represent the inputs in a more abstract way.
Deep CNNs have had a major impact on fields, like content recommendation [24], speech
recognition [25] and in computer vision [26–28], where they have become the de facto standard approach.

2.3. Application of Deep Networks for HAR

Deep networks are able to compute more complex transformations of the input than those
networks defined by a small number or just a single hidden layer (shallow networks), offering a higher
representational power.

DNNs have been applied to the wearable HAR domain, using network architectures where
convolutional and non-recurrent layers are combined [17,23]. Raw signals obtained from wearable
sensors were processed by convolutional layers to capture features, which were unified by dense layers
to obtain a probability distribution over different human activities. Experiments on several benchmark
datasets (the OPPORTUNITY, Skoda and Actitracker datasets) proved convolutional operators capable
of capturing temporal signal structure within the kernel window. Results showed that these network
architectures offer a model with more discriminative power, outperforming state-of-the-art approaches.

Further improvements in terms of time series classification have been obtained in the speech
recognition domain, by combining convolutional and recurrent layers in a unified deep framework,
which contains either standard recurrent units [29] or LSTM cells [16]. Results on different

Sensors 2016, 16, 115 7 of 25

datasets, such as the TIMITphone recognition database, proved these architectures to offer a feature
representation that is more easily separable and able to capture information even at different
data resolutions.

The case of activity recognition in video is one of the closest problems to the HAR scenario
addressed in this paper, since video data analysis can be seen as time series modelling. In the
video domain, CNNs and LSTMs were shown to be suitable to combine temporal information in
subsequent video frames to enable better video classification. Results of a comparative analysis on the
Sports-1Mand UCF-101 datasets showed that LSTM cells were necessary to take full advantage of the
motion information contained in the video and yielded the highest reported performance [30].

Several deep recurrent approaches for video gesture recognition were compared on the
Montalbano dataset [22]. Models that included recurrence and convolutions improved frame-wise
gesture recognition significantly. Results proved how recurrent approaches are able to capture temporal
information, which provides a more discriminative data representation. It allowed outperforming
non-recurrent networks and segmenting more accurately the beginning and ending frames of gestures.

Other network topologies, such as the deep belief networks (DBN), have been also applied to the
activity recognition domain. DBNs are a form of generative deep learning networks, whose hidden
layers are trained in a greedy layer-wise fashion. They can be used to extract a deep hierarchical
representation of the training data [31]. Results on three wearable HAR datasets (OPPORTUNITY,
Skoda and Darmstadt Daily Routines datasets) show how they offer a feature extraction framework
with general applicability in HAR applications [32].

These related work illustrate the potential of using deep CNNs to learn features in time series
and also show that LSTMs are suitable to learn temporal dynamics in sensor signals. While some
work applied CNNs to activity recognition, the effective combination of convolutional and recurrent
layers, which has already offered state-of-the-art results in other time series domains, such as speech
recognition, has not yet been investigated in the HAR domain.

3. Architecture

We introduce a new DNN framework for wearable activity recognition, which we refer to as
DeepConvLSTM. This architecture combines convolutional and recurrent layers. The convolutional
layers act as feature extractors and provide abstract representations of the input sensor data in feature
maps. The recurrent layers model the temporal dynamics of the activation of the feature maps. In this
framework, convolutional layers do not include a pooling operation (see Section 5.4 for a discussion
of this choice). In order to characterise the benefits brought about by DeepConvLSTM, we compare
it to a “baseline” non-recurrent deep CNN. Both approaches are defined according to the network
structure depicted in Figure 3. For comparison purposes, they share the same architecture, with
four convolutional layers and three dense layers. The input is processed in a layer-wise format,
where each layer provides the representation of the input that will be used as data for the next layer.
The number of kernels in the convolutional layers and the processing units in the dense layers is
the same for both cases. The main difference between DeepConvLSTM and the baseline CNN is
the topology of the dense layers. In the case of DeepConvLSTM, the units of these layers are LSTM
recurrent cells, and in the case of the baseline model, the units are non-recurrent and fully connected.
Therefore, performance differences between the models are a product of the architectural differences
and not due to better optimisation, preprocessing or ad hoc customisation.

The input to the network consists of a data sequence. The sequence is a short time series extracted
from the sensor data using a sliding window approach (see Section 4.2 for details) composed of several
sensor channels. The number of sensor channels is denoted as D. Within that sequence, all channels
have the same number of samples S1. The length of feature maps Sl varies in different convolutional
layers. The convolution is only computed where the input and the kernel fully overlap. Thus, the
length of a feature map is defined by:

zhong
高亮
it works on orther field

zhong
高亮

zhong
高亮
why not rnn?

zhong
高亮
how to compare to model which can show the advantage was not resulted by better optimization

Sensors 2016, 16, 115 8 of 25

Spl`1q “ Sl ´ Pl ` 1 (10)

where Pl is the length of kernels in layer l. The length of the kernels is the same for every convolutional
layer, being defined as Pl “ 5,@l “ 2, . . . , 5.

Figure 3. Architecture of the DeepConvLSTM (Conv, convolutional) framework for activity recognition.
From the left, the signals coming from the wearable sensors are processed by four convolutional
layers, which allow learning features from the data. Two dense layers then perform a non-linear
transformation, which yields the classification outcome with a softmax logistic regression output layer
on the right. Input at Layer 1 corresponds to sensor data of size Dˆ S1, where D denotes the number
of sensor channels and Sl the length of features maps in layer l. Layers 2–5 are convolutional layers. Kl

denotes the kernels in layer l (depicted as red squares). Fl denotes the number of feature maps in layer
l. In convolutional layers, al

i denotes the activation that defines the feature map i in layer l. Layers 6
and 7 are dense layers. In dense layers, al

t,i denotes the activation of the unit i in hidden layer l at time
t. The time axis is vertical.

3.1. DeepConvLSTM

DeepConvLSTM is a DNN, which comprises convolutional, recurrent and softmax layers.
Firstly, sensor data are transformed through four convolutional operations, as defined in Equation (9).
Convolutional layers process the input only along the axis representing time. The number of
sensor channels is the same for every feature map in all layers. In Figure 3, convolution operators
are displayed as ‘˚’, which is applied to a kernel whose size is delineated by the red rectangles.
These convolutional layers employ rectified linear units (ReLUs) to compute the feature maps, whose
non-linear function in Equation (9) is defined as σpxq “ maxp0, xq. Layers 6 and 7 are recurrent dense
layers. The choice of the number of recurrent layers is made following the results presented in [33],
where the authors showed that a depth of at least two recurrent layers is beneficial when processing
sequential data. Recurrent dense layers adapt their internal state after each time step. Here, the inputs
of Layer 6 at time t are the elements of all of the feature maps at Layer 5 at time t, with t “ 1 . . . T and
T “ S5. The activation of the recurrent units is computed using the hyperbolic tangent function. The
output of the model is obtained from a softmax layer (a dense layer with a softmax activation function),
yielding a class probability distribution for every single time step t. Following the notation in [22], the
shorthand description of this model is: Cp64q ´ Cp64q ´ Cp64q ´ Cp64q ´ Rp128q ´ Rp128q ´ Sm, where
CpFlq denotes a convolutional layer l with Fl feature maps, Rpnlq a recurrent LSTM layer with nl cells
and Sm a softmax classifier.

3.2. Baseline Deep CNN

The baseline model is a deep CNN, which comprises convolutional, non-recurrent and softmax
layers. This approach shares the convolutional layers of DeepConvLSTM. It receives the same
input, a D ˆ S1 sensor data sequence, and the features maps are extracted in the same way as in
the DeepConvLSTM architecture. In this model, Layers 6 and 7 are non-recurrent dense layers,

zhong
高亮

Sensors 2016, 16, 115 9 of 25

identical to those employed in MLPs. The activation of each unit in the first dense layer is computed
using all of the feature maps from the last convolutional layer, with Equation (1). The units in the
dense layers are ReLUs, with σpxq “ maxp0, xq. The output of the model is obtained from a softmax
layer (a dense layer with a softmax activation function), yielding a probability distribution over classes.
For this model, the shorthand description is: Cp64q ´ Cp64q ´ Cp64q ´ Cp64q ´Dp128q ´Dp128q ´ Sm,
where CpFlq denotes a convolutional layer l with Fl feature maps, Dpnlq a dense layer with nl units
and Sm a softmax classifier.

3.3. Model Implementation and Training

The neural networks here described are implemented in Theano using Lasagne [34], a lightweight
library to build and train neural networks. The model training and classification are run on a GPU
with 1664 cores, 1050 MHz clock speed and 4 GB RAM.

Models are trained in a fully-supervised way, backpropagating the gradients from the softmax
layer through to the convolutional layers. The network parameters are optimized by minimizing
the cross-entropy loss function using mini-batch gradient descent with the RMSProp update
rule [35]. After experimenting with multiple per-parameter learning rate updates, we found that
RMSProp consistently offered the best results with the widest tolerance to the learning rate setting.
The number of parameters to optimize in a DNN varies according to the type of layers it comprises
and has great impact in the time and computer power required to train the networks. The number and
size of the parameters in the networks presented in Sections 3.1 and 3.2 are detailed in Table 1.

Table 1. Number and size of parameters for the DeepConvLSTM architecture and for the baseline
model. The final number of parameters depends on the number of classes in the classification task,
denoted as nc.

Layer DeepConvLSTM Baseline CNN

Size Per Parameter Size Per Layer Size Per Parameter Size Per Layer

2 K: 64ˆ 5 384 K: 64ˆ 5 384b: 64 b: 64

3–5 K: 64ˆ 64ˆ 5 20,544 K: 64ˆ 64ˆ 5 20,544b: 64 b: 64

6

Wai , Wa f , Wac, Wao : 7232ˆ 128

942,592

W: 57, 856ˆ 128

7,405,696

Whi , Wh f , Whc, Who : 128ˆ 128 b: 128
bi , b f , bc, bo : 128
Wci , Wc f , Wco : 128
c: 128
h: 128

7

Wai , Wa f , Wac, Wao : 128ˆ 128

33,280

W: 128ˆ 128

16,512

Whi , Wh f , Whc, Who : 128ˆ 128 b: 128
bi , b f , bc, bo : 128
Wci , Wc f , Wco : 128
c: 128
h: 128

8 W: 128ˆ nc
p128ˆ ncq ` nc

W: 128ˆ nc
p128ˆ ncq ` ncb: nc b: nc

Total 996,800 `p128ˆ ncq ` nc 7, 443, 136` p128ˆ ncq ` nc

For the sake of efficiency, when training and testing, data are segmented on mini-batches of a
size of 100 data segments. Using this configuration, an accumulated gradient for the parameters is
computed after every mini-batch. Both models are trained with a learning rate of 10e´3 and a decay
factor of ρ “ 0.9. Weights are randomly orthogonally initialized. We introduce a drop-out operator
on the inputs of every dense layer, as a form of regularization. This operator sets the activation of
randomly-selected units during training to zero with probability p “ 0.5.

zhong
高亮

zhong
高亮
add drop-out to do regularization	how about batch norm?

Sensors 2016, 16, 115 10 of 25

4. Experimental Setup

We evaluate DeepConvLSTM on two human activity recognition datasets and compare the
performance against the baseline CNN, which provides a performance reference for deep networks,
and against results reported in the literature on these datasets using other machine learning techniques.

4.1. Benchmark Datasets

Human activities can be defined as periodic, such as walking and bicycling, static, such as being
seated and standing still, or sporadic, such as goal-oriented gestures (e.g., drinking from a cup) [8].
Benchmarking of activity recognition must be conducted on datasets comprising a variety of these
types of activities. Furthermore, human activities (i.e., goal-oriented gestures, such as “fetching a cup”)
are often embedded in a large Null class (the Null class corresponds to the time spans that do not
cover “interesting” activities, such as, e.g., when a user is not engaging in one of the activities that
is relevant to the scenario at hand). The recognition of activities embedded in a Null class tends to
be more challenging, as the recognition system must implicitly identify the start and end point of
data comprising a gesture and then classify it. A number of datasets have been published for activity
recognition, including the OPPORTUNITY [36], PAMAP [37], Skoda [38] and mHealth [39] datasets.
In this paper, we selected two datasets for the evaluation of our approach based on the variety and
variability of activities and their presence in the HAR literature.

4.1.1. The OpportunityDataset

The OPPORTUNITY dataset [36] comprises a set of complex naturalistic activities collected in
a sensor-rich environment. Overall, it contains recordings of four subjects in a daily living scenario
performing morning activities, with sensors of different modalities integrated in the environment,
in objects and on the body. During the recordings, each subject performed a session five times with
activities of daily living (ADL) and one drill session. During each ADL session, subjects perform the
activities without any restriction, by following a loose description of the overall actions to perform (i.e.,
checking ingredients and utensils in the kitchen, preparing and drinking a coffee, preparing and eating
a sandwich, cleaning up). During the drill sessions, subjects performed 20 repetitions of a predefined
sorted set of 17 activities. The dataset contains about 6 hours of recordings in total.

The OPPORTUNITY dataset comprises both static/periodic and sporadic activities. It is available
on the UCIMachine Learning repository and has been used by numerous third party publications
(e.g., [23,32,40]). Most importantly, it has been used in an open activity recognition challenge where
participants (listed in Table 3) competed to achieve the highest performance on the recognition of
modes of locomotion, as well as sporadic gestures [7]. This dataset is publicly available and can be
downloaded from [41].

For this paper, we have used the same subset employed in the OPPORTUNITY challenge to
train and test our models. We train the models on the data of all ADL and drill sessions for the
first subject and on ADL1, ADL2 and drill sessions for Subjects 2 and 3. We report classification
performance on a testing set composed of ADL4 and ADL5 for Subjects 2 and 3. ADL3 datasets for
Subjects 2 and 3 were left for validation.

In terms of the sensor setting, we follow the OPPORTUNITY challenge guidelines, taking into
account only the on-body sensors. This includes 5 commercial RS485-networked XSense inertial
measurement units (IMU) included in a custom-made motion jacket, 2 commercial InertiaCube3
inertial sensors located on each foot (Figure 4, left) and 12 Bluetooth acceleration sensors on the limbs
(Figure 4, right). Each IMU is composed of a 3D accelerometer, a 3D gyroscope and a 3D magnetic
sensor, offering multimodal sensor information. Each sensor axis is treated as an individual channel
yielding an input space with a dimension of 113 channels. The sample rate of these sensors is 30 Hz.

Sensors 2016, 16, 115 11 of 25

Figure 4. Placement of on-body sensors used in the OPPORTUNITYdataset (left: inertial measurements
units; right: 3-axis accelerometers) [7].

In this study, sensor data were pre-processed to fill in missing values using linear interpolation
and to do a per channel normalization to interval [0,1].

The OPPORTUNITY dataset includes several annotations of gestures and modes of
locomotion/postures. In this paper, we have focused the models on two tasks defined in the
OPPORTUNITY challenge:

• Task A: recognition modes of locomotion and postures. The goal of this task is to classify modes of
locomotion from the full set of body-worn sensors. This is a 5-class segmentation and classification
problem.

• Task B: recognition of sporadic gestures. This task concerns recognition of the different right-arm
gestures. This is an 18-class segmentation and classification problem.

The activities included in the dataset for each task are summarised in Table 2.

Table 2. Class labels for the OPPORTUNITY and Skoda datasets. The OPPORTUNITY dataset is
divided into activities belonging to Task A (modes of locomotion) and Task B (gesture recognition). For
each class, we report the number of times an activity is performed and the number of instances obtained
by the sliding window (all subjects combined). The Null class corresponds to the time intervals where
there are no activities of interest.

OPPORTUNITY Skoda

Gestures Modes of Locomotion

Name # of Repetitions # of Instances Name # of Repetitions # of Instances Name # of Repetitions # of Instances

Open Door 1 94 1583 Stand 1267 38,429 Write on Notepad 58 20,874
Open Door 2 92 1685 Walk 1291 22,522 Open Hood 68 24,444
Close Door 1 89 1497 Sit 124 16,162 Close Hood 66 23,530
Close Door 2 90 1588 Lie 30 2866 Check Gaps Door 67 16,961
Open Fridge 157 196 Null 283 16,688 Open Door 69 10,410
Close Fridge 159 1728 Check Steering Wheel 69 12,994
Open Dishwasher 102 1314 Open and Close Trunk 63 23,061
Close Dishwasher 99 1214 Close both Doors 69 18,039
Open Drawer 1 96 897 Close Door 70 9783
Close Drawer 1 95 781 Check Trunk 64 19,757
Open Drawer 2 91 861
Close Drawer 2 90 754
Open Drawer 3 102 1082
Close Drawer 3 103 1070
Clean Table 79 1717
Drink from Cup 213 6115
Toggle Switch 156 1257
Null 1605 69,558

4.1.2. The Skoda Dataset

The Skoda Mini Checkpoint dataset [38] describes the activities of assembly-line workers in a
car production environment. These gestures are similar to those performed at the quality assurance
checkpoint of a production plant and are listed in Table 2.

zhong
高亮
our dataset also have missing data, which need to be filled by linear interpolation

Sensors 2016, 16, 115 12 of 25

In the study, one subject wore 20 3D accelerometers on both arms. We restrict our experiments
to the 10 sensors placed on the right arm. The original sample rate of this dataset was 98 Hz, but
it was decimated to 30 Hz for comparison purposes with the OPPORTUNITY dataset. The dataset
contains 10 manipulative gestures. The recording is about 3 h long, comprising about 70 repetitions
per gesture. This dataset is publicly available and can be downloaded from [42]. The Skoda dataset
has been employed to evaluate decision fusion techniques in sensor networks [38] and deep learning
techniques [23,43], which makes it a suitable dataset to evaluate our proposed solution.

4.2. Performance Measure

The OPPORTUNITY and Skoda datasets were recorded continuously. We use a sliding window
of fixed length to segment the data. We refer to each window as a “sequence”, which is the input of
the network. Following the OPPORTUNITY challenge experimental setup, the length of the window
is 500 ms, with a step size of 250 ms. The number of instances (segments) obtained after using this
sliding window configuration is detailed per dataset in Table 2.

The class associated with each segment corresponds to the gesture that has been observed during
that interval. Given a sliding window of length T, we choose the class of the sequence as the label at
t “ T, or in other words, the label of the last sample in the window, as depicted in Figure 5.

Figure 5. Sequence labelling after segmenting the data with a sliding window. The sensor signals
are segmented by a jumping window. The activity class within each sequence is considered to be the
ground truth label annotated at the sample T of that window.

As stated in Section 3, DeepConvLSTM outputs a class probability distribution for every single
time step t in the sequence (i.e., the 500-ms window of the sensor signal). However, we are interested
in the class probability distribution once DeepConvLSTM has observed the entire 500-ms sequence.
Several approaches exist for this [30]: (1) using the prediction at the last time step T; (2) max-pooling
the predictions over the sequence; (3) summing all of the sequence predictions over time and returning
the most frequent. Since the memory of LSTM units tends to become progressively more informed
as a function of the number of samples they have seen, DeepConvLSTM returns the class probability
distribution only at the last time step T, when the full sequence has been observed. Thus, at the time
of each sample of the original sensor signal, DeepConvLSTM provides a class probability distribution
inferred from processing a 500-ms extract of the sensor signal prior to that time, as illustrated in Figure
6. In terms of comparison, that value is also the most relevant, given that the sample at time T is the
one defining the label of the sequence in the ground truth.

zhong
高亮

zhong
高亮
The method we are using now

zhong
高亮

zhong
高亮
The method we are using now

zhong
高亮

Sensors 2016, 16, 115 13 of 25

Figure 6. Output class probabilities for a ~25 s-long fragment of sensor signals in the test set of the
OPPORTUNITY dataset, which comprises 10 annotated gestures. Each point in the plot represents
the class probabilities obtained from processing the data within a sequence of 500 ms obtained from a
sliding window ending at that point. The dashed line represents the Null class. DeepConvLSTM offers
a better performance identifying the start and ending of gestures.

Naturalistic human activity datasets are often highly unbalanced. Class imbalance occurs when
some classes are represented by a large number of examples while others are represented by only
a few [44]. The gesture recognition task of the OPPORTUNITY dataset is extremely imbalanced, as
the Null class represents more than 75% of the recorded data (76%, 82% and 76% for Subjects 1–3,
respectively). The overall classification accuracy is not an appropriate measure of performance, since a
trivial classifier that predicted every instance as the majority class could achieve very high accuracy.
Therefore, we evaluate the models using the F-measure (F1), a measure that considers the correct
classification of each class equally important. The F1 score combines two measures defined in terms of
the total number of correctly-recognized samples and which are known in the information retrieval
community as precision and recall. Precision is defined as TP

TP`FP , and recall corresponds to TP
TP`FN ,

where TP, FP are the number of true and false positives, respectively, and FN corresponds to the
number of false negatives. Class imbalance is countered by weighting classes according to their
sample proportion:

F1 “
ÿ

i

2 ˚wi
precisioni ¨ recalli
precisioni ` recalli

(11)

where i is the class index and wi “ ni{N is the proportion of samples of class i, with ni being the
number of samples of the i-th class and N being the total number of samples.

5. Results and Discussion

In this section, we present the results and discuss the outcome. We show the performance of
the approaches and also evaluate some of their key parameters to obtain some insights about the
suitability of these approaches for the domain.

5.1. Performance Comparison

The results of the proposed deep methods on the OPPORTUNITY dataset and the Skoda dataset
are shown in Tables 4 and 9, respectively. In the case of the OPPORTUNITY dataset, we report here the
classification performance either including or ignoring the Null class. Including the Null class may
lead to an overestimation of the performance given its large prevalence. By providing both results, we
get better insights about the type of errors made by the models.

Table 3 includes a comprehensive list of past published classification techniques employed on the
datasets. The techniques competing in the OPPORTUNITY challenge were sliding window based and
only differ in the classifier and features extracted.

zhong
高亮
the nursing care activity database we will build is class balance

zhong
高亮

Sensors 2016, 16, 115 14 of 25

Table 3. Baseline classifiers included in the datasets’ comparative evaluation.

OPPORTUNITY Dataset

Challenge Submissions [7]

Method Description

LDA Linear discriminant analysis. Gaussian classifier that classifies on the assumption that the
features are normally distributed and all classes have the same covariance matrix.

QDA Quadratic discriminant analysis. Similar to the LDA, this technique also assumes a normal
distribution for the features, but the class covariances may differ.

NCC Nearest centroid classifier. The Euclidean distance between the test sample and the centroid
for each class of samples is used for the classification.

1NN k nearest neighbour algorithm. Lazy algorithm where the Euclidean distances between a test
sample and the training samples are computed and the most frequently-occurring label of the
k-closest samples is the output.

3NN See 1NN. Using 3 neighbours.
UP Submission to the OPPORTUNITY challenge from U. of Parma. Pattern comparison using

mean, variance, maximum and minimum values.
NStar Submission to the OPPORTUNITY challenge from U. of Singapore. kNN algorithm

using a single neighbour and normalized data.
SStar Submission to the OPPORTUNITY challenge from U. of Singapore. Support vector machine

algorithm using scaled data.
CStar Submission to the OPPORTUNITY challenge from U. of Singapore. Fusion of a kNN algorithm

using the closest neighbour and a support vector machine.
NU Submission to the OPPORTUNITY challenge from U. of Nagoya. C4.5 decision tree algorithm

using mean, variance and energy.
MU Submission to the OPPORTUNITY challenge from U. of Monash. Decision tree

grafting algorithm.

Deep approaches

Method Description

CNN [17] Results reported by Yang et. al. , in [17]. The value is computed using the average performance
for Subjects 1, 2 and 3.

Skoda dataset

Deep approaches

Method Description

CNN [23] Results reported by Ming Zeng et. al. , in [23]. Performance computed using one accelerometer
on the right arm to identify all activities.

CNN [43] Results reported by Alsheikh et. al. , in [43]. Performance computed using one accelerometer
node (id #16) to identify all activities.

Table 4. F1 score performance on OPPORTUNITY dataset for the gestures and modes of locomotion
recognition tasks, either including or ignoring the Null class. The best results are highlighted in bold.

Method Modes of Locomotion Modes of Locomotion Gesture Recognition Gesture Recognition
(No Null Class) (No Null Class)

OPPORTUNITY Challenge Submissions
LDA 0.64 0.59 0.25 0.69
QDA 0.77 0.68 0.24 0.53
NCC 0.60 0.54 0.19 0.51
1 NN 0.85 0.84 0.55 0.87
3 NN 0.85 0.85 0.56 0.85

UP 0.84 0.60 0.22 0.64
NStar 0.86 0.61 0.65 0.84
SStar 0.86 0.64 0.70 0.86
CStar 0.87 0.63 0.77 0.88
NU 0.75 0.53
MU 0.87 0.62

Deep architectures
CNN [17] 0.851

Baseline CNN 0.912 0.878 0.783 0.883
DeepConvLSTM 0.930 0.895 0.866 0.915

From the results in Table 4, we can see that DeepConvLSTM consistently outperforms baselines
on both tasks. When compared to the best submissions of the OPPORTUNITY challenge, it

Sensors 2016, 16, 115 15 of 25

improves the performance by 6% on average. For some specific tasks, it can be noticed how
DeepConvLSTM offers a striking performance improvement: there is more than a 9% improvement
in the gesture recognition task without the Null class when compared to the OPPORTUNITY
challenge models. DeepConvLSTM also improves by 6% over results previously reported by
Yang et. al. [17] using a CNN.

The baseline CNN also offers better results than the OPPORTUNITY submissions in the
recognition of models of locomotion. However, in the case of gesture recognition, it obtains a similar
recognition performance as the ensemble approach named CStar. These results of the baseline CNN
are consistent with those obtained previously by Yang et. al. in [17] using a CNN on raw signal data.
Among deep architectures, DeepConvLSTM systematically performs better than the CNNs, improving
the performance by 5% on average on the OPPORTUNITY dataset.

In Figure 6, we illustrate the differences in the output predictions of the different architectures on
the OPPORTUNITY dataset. One of the main challenges in this domain is the automatic segmentation
of the activities. The baseline CNN approach tends to make more mistakes and has difficulties making
crisp decisions about the boundaries of the gestures. It has troubles defining where the gesture starts
or ends.

The confusion matrices on the OPPORTUNITY dataset for the gesture recognition task are
illustrated in Tables 5 and 7 for the DeepConvLSTM approach and in Tables 6 and 8 for the baseline
CNN. The confusion matrices contain information about actual and predicted gesture classifications
done by the system, to identify the nature of the classification errors, as well as their quantities.
Each cell in the confusion matrix represents the number of times that the gesture in the row is classified
as the gesture in the column. Given the class imbalance in the data due to the presence of the dominant
Null class, we report confusion matrices including and ignoring the Null class, in order to get better
insights on the actual system performance.

When the Null class is included in the recognition task (see Tables 5 and 6), most classification
errors, both false positives and false negatives, are related to this class. This is the most realistic setup,
where almost 75% of the data (see Table 2) processed is not considered as an activity of interest.

When the Null class is removed from the classification task (see Tables 7 and 8), both approaches
tend to misclassify gestures that are relatively similar, such as “Open Door 2”-“Close Door 2” or “Open
Fridge”-“Close Fridge”. This may be because these gestures involve the activation of the same type of
sensors, but with a different sequentiality. In the case of gestures “Open Door 2”-“Close Door 2”, one
is misclassified as the other 44 times by the baseline CNN, while DeepConvLSTM made only 14 errors.
Similarly, for gestures “Open Drawer 3”-“Close Drawer 3”, the baseline CNN made 33 errors, while
DeepConvLSTM misclassified only 14 sequences. The better performance of DeepConvLSTM for these
similar gestures may be explained by the ability of LSTM cells to capture temporal dynamics within
the data sequence processed. On the other hand, the baseline CNN is only capable of modelling time
sequences up to the length of the kernels.

Sensors 2016, 16, 115 16 of 25

Table 5. Confusion matrix for OPPORTUNITY dataset using DeepConvLSTM.

Predicted Gesture

Null Open Door 1 Open Door 2 Close Door 1 Close Door 2 Open Fridge Close Fridge Open Dishwasher Close Dishwasher Open Drawer 1 Close Drawer 1 Open Drawer 2 Close Drawer 2 Open Drawer 3 Close Drawer 3 Clean Table Drink from Cup Toggle Switch

A
ct

ua
lG

es
tu

re

Null 13,532 16 5 15 13 54 35 35 72 10 13 5 4 22 39 7 158 29
Open Door 1 10 76 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Open Door 2 7 0 155 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
Close Door 1 8 15 0 78 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Close Door 2 10 0 0 0 130 0 0 0 0 0 0 0 0 0 0 0 0 0
Open Fridge 111 0 0 0 0 253 22 2 0 0 0 0 0 0 0 0 0 1
Close Fridge 41 0 0 0 0 19 210 0 1 0 0 0 0 0 0 0 0 0

Open Dishwasher 61 0 0 0 0 6 0 99 4 1 0 0 0 0 0 0 0 0
Close Dishwasher 43 0 0 0 0 2 0 10 79 0 0 0 1 0 0 0 0 0

Open Drawer 1 10 0 0 0 0 0 0 3 1 38 6 2 1 3 1 0 0 1
Close Drawer 1 20 0 0 0 0 1 0 0 0 8 46 0 0 0 0 0 0 0
Open Drawer 2 13 0 0 0 0 0 0 0 1 18 2 29 6 1 0 0 0 1
Close Drawer 2 5 0 0 0 0 0 0 0 2 1 5 4 25 0 3 0 0 0
Open Drawer 3 14 0 0 0 0 0 0 0 0 0 0 8 0 88 3 0 0 0
Close Drawer 3 6 0 0 0 0 0 0 0 0 0 0 2 9 5 80 0 0 0

Clean Table 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 81 2 0
Drink from Cup 143 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 397 0
Toggle Switch 57 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0 122

Table 6. Confusion matrix for OPPORTUNITY dataset using the baseline CNN.

Predicted Gesture

Null Open Door 1 Open Door 2 Close Door 1 Close Door 2 Open Fridge Close Fridge Open Dishwasher Close Dishwasher Open Drawer 1 Close Drawer 1 Open Drawer 2 Close Drawer 2 Open Drawer 3 Close Drawer 3 Clean Table Drink from Cup Toggle Switch

A
ct

ua
lG

es
tu

re

Null 13,752 5 8 6 5 39 18 14 29 2 0 1 1 40 20 2 114 8
Open Door 1 17 51 0 28 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Open Door 2 15 0 111 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0
Close Door 1 10 22 0 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Close Door 2 9 0 7 0 124 0 0 0 0 0 0 0 0 0 0 0 0 0
Open Fridge 130 0 0 0 0 220 34 4 1 0 0 0 0 0 0 0 0 0
Close Fridge 49 0 0 0 0 76 146 0 0 0 0 0 0 0 0 0 0 0

Open Dishwasher 108 0 0 0 0 4 0 45 14 0 0 0 0 0 0 0 0 0
Close Dishwasher 75 0 0 0 0 4 0 30 26 0 0 0 0 0 0 0 0 0

Open Drawer 1 31 0 0 0 0 0 0 0 0 27 5 0 0 2 0 0 0 1
Close Drawer 1 40 0 0 0 0 0 0 0 0 19 16 0 0 0 0 0 0 0
Open Drawer 2 36 0 0 0 0 0 0 0 0 9 1 18 1 6 0 0 0 0
Close Drawer 2 14 0 0 0 0 0 0 0 0 3 1 13 5 9 0 0 0 0
Open Drawer 3 29 0 0 0 0 0 0 0 0 0 0 0 0 56 28 0 0 0
Close Drawer 3 9 0 0 0 0 0 0 0 0 0 0 0 0 51 42 0 0 0

Clean Table 98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 73 0 0
Drink from Cup 194 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 349 0
Toggle Switch 99 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 82

Sensors 2016, 16, 115 17 of 25

Table 7. Confusion matrix for OPPORTUNITY dataset using DeepConvLSTM (without the Null class).

Predicted Gesture

Open Door 1 Open Door 2 Close Door 1 Close Door 2 Open Fridge Close Fridge Open Dishwasher Close Dishwasher Open Drawer 1 Close Drawer 1 Open Drawer 2 Close Drawer 2 Open Drawer 3 Close Drawer 3 Clean Table Drink from Cup Toggle Switch

A
ct

ua
lG

es
tu

re

Open Door 1 81 0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Open Door 2 0 149 1 12 0 0 0 0 0 0 0 0 0 0 0 0 0
Close Door 1 15 0 73 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Close Door 2 0 2 1 124 0 0 0 0 0 0 0 0 0 0 0 0 0
Open Fridge 1 1 0 0 342 29 11 2 0 1 0 0 0 0 1 1 2
Close Fridge 0 0 0 0 10 258 0 1 1 2 0 0 0 0 0 1 1

Open Dishwasher 0 0 0 0 4 0 151 5 1 0 0 0 0 2 0 2 2
Close Dishwasher 0 0 0 0 4 0 15 107 0 0 0 2 0 6 0 1 2

Open Drawer 1 0 0 0 0 0 0 1 2 36 17 0 1 0 2 0 0 8
Close Drawer 1 0 1 0 0 1 0 0 0 5 66 1 0 0 0 0 0 0
Open Drawer 2 0 0 0 0 1 0 1 0 13 8 35 3 1 0 0 0 5
Close Drawer 2 0 0 0 0 1 0 0 4 2 10 3 26 1 0 0 0 0
Open Drawer 3 0 0 0 0 0 0 5 0 2 0 7 4 87 7 0 0 1
Close Drawer 3 0 0 0 0 0 0 0 1 0 0 0 27 7 66 0 0 0

Clean Table 0 0 0 0 2 1 3 0 0 0 0 0 0 0 147 17 0
Drink from Cup 1 1 2 1 0 0 24 1 0 0 0 0 0 0 1 515 0
Toggle Switch 0 0 1 0 1 0 0 0 3 3 0 0 0 0 1 1 161

Table 8. Confusion matrix for OPPORTUNITY dataset using the baseline CNN (without the Null class).

Predicted Gesture

Open Door 1 Open Door 2 Close Door 1 Close Door 2 Open Fridge Close Fridge Open Dishwasher Close Dishwasher Open Drawer 1 Close Drawer 1 Open Drawer 2 Close Drawer 2 Open Drawer 3 Close Drawer 3 Clean Table Drink from Cup Toggle Switch

A
ct

ua
lG

es
tu

re

Open Door 1 73 0 23 0 0 0 0 0 0 0 0 0 0 0 1 0 1
Open Door 2 0 111 0 43 0 2 0 1 0 0 0 0 0 0 1 0 4
Close Door 1 22 0 63 2 0 0 0 0 0 0 0 0 0 0 0 0 1
Close Door 2 2 4 1 118 0 0 0 0 0 0 0 0 0 0 1 0 1
Open Fridge 1 1 0 0 304 59 17 1 4 0 0 0 1 0 1 0 2
Close Fridge 0 0 0 0 20 243 5 2 2 1 0 0 0 0 0 1 0

Open Dishwasher 0 0 0 0 15 1 121 11 5 0 0 0 6 4 0 1 3
Close Dishwasher 0 0 0 0 7 11 19 90 1 0 3 1 0 4 1 0 0

Open Drawer 1 0 0 0 0 3 0 2 3 35 12 6 0 1 1 0 0 4
Close Drawer 1 0 0 0 0 0 1 1 0 16 51 3 0 0 0 0 2 0
Open Drawer 2 0 0 0 0 4 0 2 0 19 3 31 5 2 0 0 0 1
Close Drawer 2 0 0 0 0 0 0 1 1 4 1 15 18 1 6 0 0 0
Open Drawer 3 0 0 0 0 1 0 6 1 3 0 9 0 62 29 1 0 1
Close Drawer 3 0 0 0 0 0 0 0 2 0 0 0 1 14 84 0 0 0

Clean Table 1 0 2 0 9 11 0 1 0 0 0 0 0 0 134 12 0
Drink from Cup 3 1 4 1 4 6 9 14 0 0 3 0 0 0 2 499 0
Toggle Switch 0 1 1 0 0 4 0 0 15 1 0 0 0 0 0 0 149

Sensors 2016, 16, 115 18 of 25

From the results in Table 9, we can see that DeepConvLSTM outperforms other deep non-recurrent
approaches on the Skoda dataset, improving the best reported result by 6%. The Skoda dataset has
some specific characteristics: the gestures are long on average; it does not contain a Null class; and
unlike the OPPORTUNITY dataset, it is quite well balanced. The greater length of the gestures does
not diminish the performance of the model. These results corroborate our findings, supporting that
the use of LSTM brings a significant advantage across very different scenarios.

Table 9. F1 score performance on the Skoda dataset.

Method

CNN [23] 0.861
CNN [43] 0.893

Baseline CNN 0.884
DeepConvLSTM 0.958

5.2. Multimodal Fusion Analysis

Wearable activity recognition can make use of a variety of sensors. While accelerometers tend
to be extremely small and low power, inertial measurement units are more complex (combining
accelerometers, gyroscopes and magnetic sensors), but can provide accurate limb orientation. It is
therefore important for an activity recognition framework to be applicable to a wide range of
commonly-used sensor modalities to accommodate for the various size and power trade-offs.

We evaluate how the automated feature extraction provided by the kernels in convolutional
layers is suitable to deal with signals of sensors of different modalities. In Table 10, we show the
performance of DeepConvLSTM at recognizing gestures on the OPPORTUNITY dataset (without the
Null class) for different selections of sensors. It can be noticed how,without any specific preprocessing,
convolution operations can be interchangeably applied to individual sensor modalities. Starting from
a 69% F1 score using only the accelerometers on the dataset, the performance improves on average
by 15% fusing accelerometers and gyroscopes and by 20% when fusing accelerometers, gyroscopes
and magnetic sensors. As the number of sensor channels is increased, the performance of the model
is consistently improved, regardless of the modalities of the sensors. These results demonstrate
that the convolutional layers can extract features from sensor signals of different modalities without
ad hoc preprocessing.

Table 10. Performance using different sensor modalities.

Accelerometers Gyroscopes
Accelerometers Accelerometers Opportunity
+ Gyroscopes + Gyroscopes Sensors Set

+ Magnetic

of sensors channels 15 15 30 45 113
F1 score 0.689 0.611 0.745 0.839 0.864

5.3. Hyperparameters Evaluation

We characterise the influence of the key hyperparameters of the system. We evaluate the influence
of two key architectural parameters: the sequence length processed by the network and the number of
convolutional layers.

As previously stated, the input of the recurrent model is composed of a 500-ms data sequence.
Therefore, the gradient signal is unable to notice time dependencies longer than the length of this
sequence. Firstly we want to evaluate the influence of this parameter in the recognition performance
of gestures with different durations, in particular if the gestures are significantly longer or shorter than
the sequence duration.

The F1 score on individual gestures of the dataset are shown in Figure 7. This figure displays
performance at recognizing individual gestures as a function of the ratio between the gesture length

Sensors 2016, 16, 115 19 of 25

and the sequence length. Ratios under one represent performance for gestures whose durations are
shorter than the sequence duration and, thus, that can be fully observed by the network before it
provides an output prediction. Besides 500 ms, we carried out experiments with sequences of lengths
of 400 ms, 1400 ms and 2750 ms. For most gestures, there are no significant performance changes when
modifying the length of the sequence, although shorter gestures seem to benefit from being completely
included in the sequence observed by the model. That is the case for several short gestures (“Open
Drawer 1”, “Close Drawer 1”, “Open Drawer 2”, “Close Drawer 2”) when their ratio is under one.
When the gesture duration is longer than the sequence duration, DeepConvLSTM can only come up
with a classification result based on a partial view of the temporal unfolding of the features within the
sequence. However, results show that DeepConvLSTM can nevertheless obtain good performance.
For example, the gesture “drink from cup”, which is 10-times longer than the sequence in one of
the experiments, on average achieves a 0.9 F1 score. We speculate that this is due to the fact that
longer gestures (as “clean table” or “drink from cup” in this dataset) may be made of several shorter
characteristic patterns, which allows DeepConvLSTM to spot and classify the gesture even without a
complete view of it.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11

F1
 s

co
re

Ratio gesture length/sequence length

Open Door 1

Open Door 2

Close Door 1

Close Door 2

Open Fridge

Close Fridge

Open Dishwasher

Close Dishwasher

Open Drawer 1

Close Drawer 1

Open Drawer 2

Close Drawer 2

Open Drawer 3

Close Drawer 3

Clean Table

Drink from Cup

Toggle Switch

Figure 7. F1 score performance of DeepConvLSTM on the OPPORTUNITY dataset. Classification
performance is displayed individually per gesture, for different lengths of the input sensor data
segments. Experiments carried out with sequences of length of 400 ms, 500 ms, 1400 ms and 2750 ms.
The horizontal axis represents the ratio between the gesture length and the sequence length (ratios
under one represent performance for gestures whose durations are shorter than the sequence duration).

We characterised the effect of the number of convolutional layers employed to automatically
learn feature representations. Figure 8 shows that increasing the number of convolutional layers tends
to increase the performance for the OPPORTUNITY dataset, improving by 1% when a new layer is
added. Performance changes are not significant in the case of the Skoda dataset, showing a plateau.
Results for the OPPORTUNITY dataset show that performance may be further improved if the number
of convolution operations are increased.

Sensors 2016, 16, 115 20 of 25

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

1 2 3 4

F1
 s

co
re

Number of convolutional layers

Opportunity Skoda

Figure 8. Performance of Skoda and OPPORTUNITY (recognizing gestures and with the Null class)
datasets with different numbers of convolutional layers.

5.4. Discussion

The main findings from the direct comparison of our novel DeepConvLSTM against the
baseline model using standard feedforward units in the dense layer is that: (i) DeepConvLSTM
reaches a higher F1 score; (ii) it offers better segmentation characteristics illustrated by clearer
cut decision boundaries between activities; (iii) it is significantly better able to disambiguate
closely-related activities, which tend to differ only by the ordering of the time series (e.g., “Open/Close
Door 2” or “Open/Close Drawer 3”); and (iv) it is applicable even if the gestures are longer than
the observation window. These findings support the hypothesis that the LSTM-based model takes
advantage of learning the temporal feature activation dynamics, which the baseline model is not
capable of modelling.

DeepConvLSTM is and eight-layer deep network. Other publications showed much deeper
networks, such as “GoogLeNet”, which is a 27-layer deep neural network applied to image
classification [45]. Indeed, findings illustrated in Figure 8 show that increasing further the number of
layers may be beneficial, especially for the OPPORTUNITY dataset. Training time, however, increases
with the number of layers, and depending on computational resources available, future work may
consider how to find trade-offs between system performance and training time. This is especially
important as a deep learning approach tends to be more suitable for training on a “cloud” infrastructure,
possibly using data contributed by individual wearables (e.g., as in [46]). Therefore, the choice of the
number of layers is not solely a function of the desired performance, but also of the computational
budget available.

In the literature, CNN frameworks often include convolutional and pooling layers successively, as
a measure to reduce data complexity and introduce translation invariant features. Nevertheless, such
an approach is not strictly part of the architecture, and in the time series domain, we can see some
examples of CNNs where not every convolutional layer is followed by a pooling operation [16].
DeepConvLSTM does not include pooling operations because the input of the network is constrained
by the sliding window mechanism defined by the OPPORTUNITY challenge, and this fact limits
the possibility of downsampling the data, given that DeepConvLSTM requires a data sequence to
be processed by the recurrent layers. However, without the sliding window requirement, a pooling

Sensors 2016, 16, 115 21 of 25

mechanism could be useful to cover different sensor data time scales at deeper layers. With the
introduction of pooling layers, it would be possible to have different convolutional layers operating on
sensor data sequences downsampled at different levels.

As general guidelines, we would recommend to focus the main effort on optimizing
hyperparameters related to the network architecture, which have the major influence on performance.
Indeed, parameters related to the learning and regularization processes seem to have less overall
influence on the performance. For instance, we tested higher drop-out rates (p ą 0.5) with no difference
in terms of performance. These results are consistent with those presented in [23]. Nevertheless, there
is a power-performance trade-off, and stacking more layers to augment the hierarchic representation
of the features may not be relevant if one factors computational aspects.

We show how convolution operations are robust enough to be directly applied to raw sensor data,
to learn features (salient patterns) that, within a deep framework, successfully outperformed previous
results on the problem. A main benefit of using CNNs is that hand-crafted or heuristic features can
be avoided, thus minimising engineering bias. This is particularly important, as activity recognition
techniques are applied to domains that include more complex activities or open-ended scenarios,
where classifiers must adaptively model a varying number of classes.

It is also noticeable, in terms of data, how the recurrent model is capable of obtaining a very
good performance with relatively small datasets, since the largest training dataset used during the
experiments (the one corresponding to the OPPORTUNITY dataset) is composed of ~80 k sensor
samples, corresponding to 6 h of recordings. This seems to indicate that although deep learning
techniques are often employed with large amounts of data, (e.g., millions of frames in computer
vision [22]), they may actually be applicable to problem domains where acquiring annotated data is
very costly, such as in supervised activity recognition.

Although LSTM cells are composed of a much higher number of parameters per cell, the
overall number of parameter values is significantly larger for the baseline CNN model than for
DeepConvLSTM. For the specific case of the OPPORTUNITY dataset with a Null class and following
the equation in Table 1, the parameters of DeepConvLSTM are composed of 999,122 values, while the
baseline CNN parameters contain 7,445,458 values; this represents an increase of 600%. As illustrated
in Table 1, this difference in size is due to the type of connection between the convolutional and dense
layers (Layers 5 and 6). In the fully-connected architecture, the units in the dense layer (Layer 6) have to
be connected with every value of the last feature map (Layer 5), needing a very large weight matrix to
parametrize this connection. On the other hand, the recurrent model processes the feature map sample
by sample, thus requiring a much reduced number of parameter values. Although DeepConvLSTM is
a more complex approach, it is composed of much smaller parameters, and this has a direct beneficial
effect in the memory and computational efforts required to use this approach.

However, in terms of training and classification time, there is not such a significant difference
between the two models, despite the more complex computational units included in the dense layers
of DeepConvLSTM. Training DeepConvLSTM on the OPPORTUNITY dataset requires 340.3 min to
converge, while the baseline CNN requires 282.2 min. The classification time of the baseline CNN is
5.43 s, while DeepConvLSTM needs 6.68 s to classify the whole dataset. On average, within a second,
DeepConvLSTM can classify almost 15 min of data. Thus, this implementation is suitable for online
HAR on the GPU used in this work.

We have not yet implemented DeepConvLSTM on a wearable device. The GPU used in this work
clearly outperforms the computational power available today even in a high-end wearable system (e.g.,
a multicore smartphone). However, DeepConvLSTM achieves a recognition speed of 900ˆ real-time
using 1664 GPU cores at 1050 MHz. High-end mobile platforms already contain GPUs that can be
used for general purpose processing [47]. A mobile processor, such as the Qualcomm Snapdragon
820, comprises 256 GPU cores running at 650 MHz and supports OpenCL profiles for general purpose
GPU computing. While cores differ in capabilities, the available computational power may well be

zhong
高亮

zhong
高亮
Recurrent model is capable of obtaining a very good performance with relatively small datasets

zhong
高亮
training and test time cost

Sensors 2016, 16, 115 22 of 25

sufficient for real-time recognition in upcoming mobile devices. Training, however, is best envisioned
server-side (e.g., as in [46]).

Removing the dependency on engineered features by exploiting convolutional layers is
particularly important if the set of activities to recognise is changing over time, for instance as
additional labelled data become available (e.g., through crowd-sourcing [48]). In such an “open-ended”
learning scenario, where the number of classes could be increased after the system is initially deployed,
backpropagation of the gradient to the convolutional layer could be used to incrementally adapt the
kernels according to the new data at runtime. Future work may consider the representational limits of
such networks for open-ended learning and investigate rules to increase network size (e.g., adding
new kernels) to maintain a desired representational power.

6. Conclusions

In this paper, we demonstrated the advantages of a deep architecture based on the combination of
convolutional and LSTM recurrent layers to perform activity recognition from wearable sensors. This
new framework outperformed previous results in the OPPORTUNITY dataset of everyday activities
by 4% on average and by 9% in an 18-class gesture recognition task. For the Skoda car manufacturing
activity dataset, it outperformed previous deep non-recurrent approaches, improving the best reported
scores by 6%. This extends the known domain of applicability for this unified framework of
convolutional and recurrent units, which has never been reported on wearable sensor data.

In terms of time requirements, the recurrent architecture offers a very good trade-off between
performance and training/recognition time when compared to a standard CNN. Indeed, the increase
in training and recognition time for the recurrent architecture is only 20%.

We demonstrated that the recurrent LSTM cells are fundamental to allow one to distinguish
gestures of a similar kind (e.g., “Open/Close Door 2” or “Open/Close Drawer 3”), which differ only
by the ordering of the sensor samples. The baseline CNN model in comparison provided much
worse performance on activities such as “Open/Close Door 2” or “Open/Close Drawer 3”, where it
made 2–3-times more errors. Convolution kernels are only able to capture temporal dynamics within
the duration of the kernel. In comparison, the recurrent LSTM cells do not have this limitation and
can learn the temporal dynamics on various (potentially much longer) time scales depending on
their learned parameters. Furthermore, when directly compared, we have showed how a recurrent
architecture offers better segmentation characteristics than a standard CNN, being capable of defining
the boundaries of activities much more precisely. These findings support the hypothesis that the
LSTM-based model takes advantage of learning the temporal feature activation dynamics, which
CNNs are not fully capable of modelling.

From the results, we can also see how the model is able to learn from signals obtained from
accelerometers, gyroscopes and magnetometers, fusing them without requiring any specific
preprocessing. The model offers a 0.69 F1 score performance using only accelerometers. This
performance improves on average by 15% when fusing accelerometers and gyroscopes and by 20%
when fusing accelerometers, gyroscopes and magnetic sensors. This offers a trade-off for applications
where sensor data from different sources must be automatically processed.

As future work, we will investigate a transfer learning approach based on these models to perform
activity recognition on large-scale data. We propose to reuse kernels trained on the benchmark datasets
for feature extraction. This potential transfer of features will ease the deployment of activity recognizers
on cloud infrastructures.

The code and model parameters of DeepConvLSTM are available at [49].

Acknowledgments: This work was partly funded by the Google Faculty Research Award grant “Is deep learning
useful for wearable activity recognition?” and the U.K. EPSRCFirst Grant EP/N007816/1 “Lifelearn: Unbounded
activity and context awareness”. This publication is supported by multiple datasets, which are openly available at
locations cited in the reference section.

zhong
高亮

zhong
高亮

zhong
高亮
our database's actions are more similar

Sensors 2016, 16, 115 23 of 25

Author Contributions: Francisco Javier Ordóñez conceptualized and implemented the deep frameworks,
executed the experimental work, analysed the results, drafted the initial manuscript and revised the manuscript.
Daniel Roggen conceptualized the deep frameworks, analysed the results, provided feedback, revised the
manuscript and approved the final manuscript as submitted.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rashidi, P.; Cook, D.J. The resident in the loop: Adapting the smart home to the user. IEEE Trans. Syst. Man.
Cybern. J. Part A 2009, 39, 949–959.

2. Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with
application in rehabilitation. J. NeuroEng. Rehabil. 2012, 9, doi:10.1186/1743-0003-9-21.

3. Avci, A.; Bosch, S.; Marin-Perianu, M.; Marin-Perianu, R.; Havinga, P. Activity Recognition Using
Inertial Sensing for Healthcare, Wellbeing and Sports Applications: A Survey. In Proceedings of the
23rd International Conference on Architecture of Computing Systems (ARCS), Hannover, Germany, 22–23
Febuary 2010; pp. 1–10.

4. Mazilu, S.; Blanke, U.; Hardegger, M.; Tröster, G.; Gazit, E.; Hausdorff, J.M. GaitAssist: A Daily-Life
Support and Training System for Parkinson’s Disease Patients with Freezing of Gait. In Proceedings
of the ACM Conference on Human Factors in Computing Systems (SIGCHI), Toronto, ON, Canada,
26 April–1 May 2014.

5. Kranz, M.; Möller, A.; Hammerla, N.; Diewald, S.; Plötz, T.; Olivier, P.; Roalter, L. The mobile fitness coach:
Towards individualized skill assessment using personalized mobile devices. Perv. Mob. Comput. 2013,
9, 203–215.

6. Stiefmeier, T.; Roggen, D.; Ogris, G.; Lukowicz, P.; Tröster, G. Wearable Activity Tracking in Car
Manufacturing. IEEE Perv. Comput. Mag. 2008, 7, 42–50.

7. Chavarriaga, R.; Sagha, H.; Calatroni, A.; Digumarti, S.; Millán, J.; Roggen, D.; Tröster, G. The Opportunity
challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 2013,
34, 2033–2042.

8. Bulling, A.; Blanke, U.; Schiele, B. A Tutorial on Human Activity Recognition Using Body-worn Inertial
Sensors. ACM Comput. Surv. 2014, 46, 1–33.

9. Roggen, D.; Cuspinera, L.P.; Pombo, G.; Ali, F.; Nguyen-Dinh, L. Limited-Memory Warping LCSS for
Real-Time Low-Power Pattern Recognition in Wireless Nodes. In Proceedings of the 12th European
Conference Wireless Sensor Networks (EWSN), Porto, Portugal, 9–11 February 2015; pp. 151–167.

10. Ordonez, F.J.; Englebienne, G.; de Toledo, P.; van Kasteren, T.; Sanchis, A.; Krose, B. In-Home Activity
Recognition: Bayesian Inference for Hidden Markov Models. Perv. Comput. IEEE 2014, 13, 67–75.

11. Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.J.; Howard, D.; Meijer, K.; Crompton, R. Activity identification
using body-mounted sensors: A review of classification techniques. Physiol. Meas. 2009, 30, 21–27.

12. Figo, D.; Diniz, P.C.; Ferreira, D.R.; Cardoso, J.M.P. Preprocessing techniques for context recognition from
accelerometer data. Perv. Mob. Comput. 2010, 14, 645–662.

13. Lee, H.; Grosse, R.; Ranganath, R.; Ng, A.Y. Convolutional Deep Belief Networks for Scalable Unsupervised
Learning of Hierarchical Representations. In Proceedings of the 26th Annual International Conference on
Machine Learning (ICML), Montreal, QC, Canada, 14–18 June 2009; pp. 609–616.

14. Lee, H.; Pham, P.; Largman, Y.; Ng, A. Unsupervised feature learning for audio classification using
convolutional deep belief networks. In Proceedings of the 22th Annual Conference on Advances in Neural
Information Processing Systems (NIPS), Vancouver, BC, Canada, 8–10 December 2008; pp. 1096–1104.

15. LeCun, Y.; Bengio, Y. Chapter Convolutional Networks for Images, Speech, and Time Series. In The Handbook
of Brain Theory and Neural Networks; MIT Press: Cambridge, MA, USA, 1998; pp. 255–258.

16. Sainath, T.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, Long Short-Term Memory, fully connected Deep
Neural Networks. In Proceedings of the 40th International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Brisbane, Australia, 19–24 April 2015; pp. 4580–4584.

17. Yang, J.B.; Nguyen, M.N.; San, P.P.; Li, X.L.; Krishnaswamy, S. Deep Convolutional Neural Networks On
Multichannel Time Series For Human Activity Recognition. In Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina, 25–31 July 2015; pp. 3995–4001.

18. Siegelmann, H.T.; Sontag, E.D. Turing computability with neural nets. Appl. Math. Lett. 1991, 4, 77–80.

Sensors 2016, 16, 115 24 of 25

19. Gers, F.A.; Schraudolph, N.N.; Schmidhuber, J. Learning precise timing with LSTM recurrent networks.
J. Mach. Learn. Res. 2003, 3, 115–143.

20. Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In
Proceeedings of the 38th International Conference on Acoustics, Speech and Signal Processing, Vancouver,
BC, USA, 26–31 May 2013; pp. 6645–6649.

21. Palaz, D.; Magimai.-Doss, M.; Collobert, R. Analysis of CNN-based Speech Recognition System using Raw
Speech as Input. In Proceedings of the 16th Annual Conference of International Speech Communication
Association (Interspeech), Dresden, Germany, 6–10 September 2015; pp. 11–15.

22. Pigou, L.; Oord, A.V.D.; Dieleman, S.; van Herreweghe, M.; Dambre, J. Beyond Temporal Pooling: Recurrence
and Temporal Convolutions for Gesture Recognition in Video. arXiv Preprint 2015, arXiv:1506.01911.

23. Zeng, M.; Nguyen, L.T.; Yu, B.; Mengshoel, O.J.; Zhu, J.; Wu, P.; Zhang, J. Convolutional Neural Networks for
human activity recognition using mobile sensors. In Proceedings of the 6th IEEE International Conference
on Mobile Computing, Applications and Services (MobiCASE), Austin, TX, USA, 6–7 November 2014;
pp. 197–205.

24. Oord, A.V.D.; Dieleman, S.; Schrauwen, B. Deep content-based music recommendation. In Proeedings of the
Neural Information Processing Systems, Lake Tahoe, NE, USA, 5–10 December 2013; pp. 2643–2651.

25. Sainath, T.N.; Kingsbury, B.; Saon, G.; Soltau, H.; Mohamed, A.R.; Dahl, G.; Ramabhadran, B. Deep
convolutional neural networks for large-scale speech tasks. Neural Netw. 2015, 64, 39–48.

26. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the 25th Conference on Advances in Neural Information Processing Systems (NIPS), Lake
Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105.

27. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition,
localization and detection using convolutional networks. Cornell Univ. Lib. 2013, arXiv:1312.6229.

28. Toshev, A.; Szegedy, C. Deeppose: Human pose estimation via deep neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Zurich, Switzerland, 6–12 September
2014; pp. 1653–1660.

29. Deng, L.; Platt, J.C. Ensemble deep learning for speech recognition. In Proceedings of the 15th
Annual Conference of International Speech Communication Association (Interspeech), Singapore, 14–18
September 2014; pp. 1915–1919.

30. Ng, J.Y.H.; Hausknecht, M.; Vijayanarasimhan, S.; Vinyals, O.; Monga, R.; Toderici, G. Beyond short snippets:
Deep networks for video classification. Cornell Univ. Lab. 2015, arXiv:1503.08909.

31. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006,
313, 504–507.

32. Plötz, T.; Hammerla, N.Y.; Olivier, P. Feature Learning for Activity Recognition in Ubiquitous Computing.
In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain,
16–22 July 2011; pp. 1729–1734.

33. Karpathy, A.; Johnson, J.; Li, F.F. Visualizing and understanding recurrent networks. Cornell Univ. Lab. 2015,
arXiv:1506.02078.

34. Dieleman, S.; Schlüter, J.; Raffel, C.; Olson, E.; Sønderby, S.K.; Nouri, D.; Maturana, D.; Thoma, M.; Battenberg,
E.; Kelly, J.; et al. Lasagne: First Release; Zenodo: Geneva, Switzerland, 2015.

35. Dauphin, Y.N.; de Vries, H.; Chung, J.; Bengio, Y. RMSProp and equilibrated adaptive learning rates for
non-convex optimization. arXiv 2015, arXiv:1502.04390

36. Roggen, D.; Calatroni, A.; Rossi, M.; Holleczek, T.; Förster, K.; Tröster, G.; Lukowicz, P.; Bannach, D.; Pirkl, G.;
Ferscha, A.; et al. Collecting complex activity data sets in highly rich networked sensor environments.
In Proceedings of the 7th IEEE International Conference on Networked Sensing Systems (INSS), Kassel,
Germany, 15–18 June 2010; pp. 233–240.

37. Reiss, A.; Stricker, D. Introducing a New Benchmarked Dataset for Activity Monitoring. In Proceedings
of the 16th International Symposium on Wearable Computers (ISWC), Newcastle, UK, 18–22 June 2012;
pp. 108–109.

38. Zappi, P.; Lombriser, C.; Farella, E.; Roggen, D.; Benini, L.; Tröster, G. Activity recognition from on-body
sensors: accuracy-power trade-off by dynamic sensor selection. In Proceedings of the 5th European
Conference on Wireless Sensor Networks (EWSN), Bologna, Italy, 30 January–1 February 2008; pp. 17–33.

Sensors 2016, 16, 115 25 of 25

39. Banos, O.; Garcia, R.; Holgado, J.A.; Damas, M.; Pomares, H.; Rojas, I.; Saez, A.; Villalonga, C. mHealthDroid:
a novel framework for agile development of mobile health applications. In Proceedings of the 6th
International Work-conference on Ambient Assisted Living an Active Ageing, Belfast, UK, 2–5 December
2014; pp. 91–98.

40. Gordon, D.; Czerny, J.; Beigl, M. Activity recognition for creatures of habit. Pers. Ubiquitous Comput. 2014,
18, 205–221.

41. Opportunity Dataset. 2012. Available online: https://archive.ics.uci.edu/ml/datasets/OPPORTUNITY
+Activity+Recognition (accessed on 19 November 2015).

42. Skoda Dataset. 2008. Available online: http://www.ife.ee.ethz.ch/research/groups/Dataset (accessed on 19
November 2015).

43. Alsheikh, M.A.; Selim, A.; Niyato, D.; Doyle, L.; Lin, S.; Tan, H.P. Deep Activity Recognition Models with
Triaxial Accelerometers. arXiv preprint 2015, arXiv:1511.04664.

44. Japkowicz, N.; Stephen, S. The class imbalance problem: A systematic study. Intell. Data Anal. 2002,
6, 429–449.

45. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going Deeper With Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9.

46. Berchtold, M.; Budde, M.; Gordon, D.; Schmidtke, H.R.; Beigl, M. Actiserv: Activity recognition service for
mobile phones. In Proceedings of the International Symposium on Wearable Computers (ISWC), Seoul,
Korea, 10–13 October 2010; pp. 1–8.

47. Cheng, K.T.; Wang, Y.C. Using mobile GPU for general-purpose computing: A case study of face recognition
on smartphones. In Proceedings of the International Symposium on VLSI Design, Automation and Test
(VLSI-DAT), Hsinchu, Taiwan, 25–28 April 2011; pp. 1–4.

48. Welbourne, E.; Tapia, E.M. CrowdSignals: A call to crowdfund the community’s largest mobile dataset.
In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing,
ACM, Seattle, WA, USA, 13–17 September 2014; pp. 873–877.

49. Ordonez, F.J.; Roggen, D. DeepConvLSTM. Available online: https://github.com/sussexwearlab/
DeepConvLSTM (accessed on 23 December 2015).

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	State of the Art
	From Feedforward to Recurrent Networks
	Feature Learning with Convolutional Networks
	Application of Deep Networks for HAR

	Architecture
	DeepConvLSTM
	Baseline Deep CNN
	Model Implementation and Training

	Experimental Setup
	Benchmark Datasets
	The OpportunityDataset
	The Skoda Dataset

	Performance Measure

	Results and Discussion
	Performance Comparison
	Multimodal Fusion Analysis
	Hyperparameters Evaluation
	Discussion

	Conclusions

