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Human activity recognition (HAR) has become a popular topic in research because of its wide application. With the development
of deep learning, new ideas have appeared to address HAR problems. Here, a deep network architectureusing residual bidirectional
long short-term memory (LSTM) is proposed. The advantages of the new network include that a bidirectional connection
can concatenate the positive time direction (forward state) and the negative time direction (backward state). Second, residual
connections between stacked cells act as shortcut for gradients, effectively avoiding the gradient vanishing problem. Generally,
the proposed network shows improvements on both the temporal (using bidirectional cells) and the spatial (residual connections
stacked) dimensions, aiming to enhance the recognition rate. When testing with the Opportunity dataset and the public domain
UCI dataset, the accuracy is significantly improved compared with previous results.

1. Introduction

In real life, many problems can be described as time series
problems. Indeed, human activity recognition (HAR) is of
value in both theoretical research and actual practice. It can
be used widely, including health monitoring [1, 2], smart
homes [3, 4], and human–computer interactions [5, 6]. For
example, long short-term memory (LSTM) networks are a
good choice for solving HAR problems. Unlike traditional
algorithms, LSTM is able to catch relationship in data on the
temporal dimension without mixing the time steps together
as convolutional neural network (CNN). As more of what is
commonly called “big data” emerges, LSTM network offers
great performance and many potential applications.

More specifically, HAR is a process of obtaining action
data with sensors. It symbolizes action information and
then allows understanding and extraction of the motion
characteristics, which is what activity recognition refers to.
Because of the spatial complexity and temporal divergence
of behavior, there is no unified recognition method. A
public domain benchmark of HAR has been introduced, and

different methods of recognition have been analyzed [7].
The results showed that the K-nearest neighbor (KNN) algo-
rithm outperformed other algorithms in most recognition
tasks. Support vector machine (SVM) is another outstanding
algorithm. A multiclass hardware-friendly support vector
machine (MC-HF-SVM), which uses fixed-point arithmetic
for HAR instead of the typical floating-point arithmetic, has
been proposed for sensor data [8]. Unlike themanual filtering
features in previous algorithms, a systematic feature learning
method that combines feature extraction with CNN has also
been proposed [9]. Subsequently, Deep ConvLSTM networks
outperformed previous algorithms in the Opportunity Chal-
lenge by an average of 4% of the F1 score [10].

Although researchers have made great strides in HAR,
room for improvement remains. Inspired by previous neural
networks, we describe a novel deep residual bidirectional
long short-term memory LSTM (Res-Bidir-LSTM) network.
The deep architecture has improved learning ability and,
despite the time required to reach maximum accuracy, shows
good accuracy early in training. It is especially suitable for
complex, large-scale HAR problems where sensor fusion is
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Figure 1: The unfolded structure of one-layer baseline LSTM is shown. Baseline LSTM structure operating through the time axis, from left
to right.

required. Residual connections and bidirectional communi-
cation through time are available to ensure the integrity of
information flowing deeply through the neural network.

In recent years, deep learning has shown applicability to
many fields, such as image processing [11, 12], speech recog-
nition [13–15], and natural language processing [16, 17]. In
ILSVRC 2012, AlexNet, proposed by Krizhevsky [18], took
the first place. Since then, deep learning has been considered
to be applicable to solving real problems and has done so
with impressive accuracy. Indeed, deep learning has become
a popular area for scientists and engineers.

Another event in 2016 that drew considerable attention
was the century man–machine war at the end of the game
in which AlphaGo achieved victory. This event also demon-
strated that deep learning, based on big data, is a feasible way
to solve the nondeterministic polynomial problem.

LSTM netowrk, first proposed by Juergen Schmidhuber
in 1997 [19], is variants of recurrent neural networks (RNNs).
It has special inner gates that allow for consistently better
performance than RNN for time series. Compared with
other networks, such as CNN, restricted Boltzmann machine
(RBM), and auto-encoder (AE), the structure of the LSTM
renders it especially good at solving problems involving time
series, such as those related to natural language processing,
speech recognition, and weather prediction, because its
design enables gradients to flow through time readily.

Section 2 presents the theory of baseline LSTM, Bidir-
LSTM, and residual networks. In Section 3, we provide an
explicit introduction to the preprocessing in HAR and de-
scribe Res-Bidir-LSTM. Several experiments are performed

with HAR benchmarks: the public domain UCI dataset and
the Opportunity dataset. We compare the accuracy of recog-
nition of our algorithm with those of other algorithm. Finally,
we summarize the research and discuss our future work.

2. Background

2.1. Baseline LSTM. LSTM [18] is an extension of recurrent
neural networks. Due to its special architecture, which
combats the vanishing and exploding gradient problems, it is
good at handling time series problems up to a certain depth.

In Figure 1, we define the input set as {𝑥0, 𝑥1, . . .,𝑥𝑡, 𝑥𝑡+1, . . .}, the output set as {𝑦0, 𝑦1, . . . , 𝑦𝑡, 𝑦𝑡+1, . . .}, and
hidden layers as {ℎ0, ℎ1, . . . , ℎ𝑡, ℎ𝑡+1, . . .}. Then, 𝑈,𝑊,𝑉
denote weight metrics from the input layer to the hidden
layer, from the hidden layer to the hidden layer, and from
the hidden layer to the output layer, respectively. The transfer
process of the network can be described as follows: the input
tensor is transformed, along with the tensor of the hidden
layer (at the last stage), to the hidden layer by a matrix
transformation. Then, the output of the hidden layer passes
through an activation function to the final value of the output
layer.

Formally, outputs of the hidden layer and output layer can
be defined as follows:

ℎ𝑖 = {𝑔 (𝑈𝑥𝑖 + 𝑏ℎ𝑖 ) 𝑖 = 0
𝑔 (𝑈𝑥𝑖 +𝑊ℎ𝑖−1 + 𝑏ℎ𝑖 ) 𝑖 = 1, 2, . . .

𝑦𝑖 = 𝑔 (𝑉ℎ𝑖 + 𝑏𝑦𝑖 ) 𝑖 = 0, 1, . . .
(1)

where 𝑔(⋅) represents tanh function.
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Figure 2: Comparison between a RNN and a LSTM cell. Notations are operators and arrows are information flows. The three 𝜎 operators
from left to right are forget gate, input gate, and output gate, respectively. All the three gates have the same operator in form and the same
inputs. But they have different weights and biases, which also leads to different values of forgot information 𝑓𝑡, input information 𝑖𝑡, and
output information 𝑜𝑡. More details are described in text and (2).

In theory, RNN can estimate the output of current time
based on past information. However, Bengio [20] found that
RNN could remember the information for only a short time,
because of the vanishing and exploding gradient problems.
When backpropagation with a deep network is used, gradi-
ents will vanish rapidly if preventative measures that permit
gradients to flow deeply are not taken. Compared with the
simple input concatenation and activation used in RNNs,
LSTM has a particular structure for remembering informa-
tion for a longer time as an input gate and a forget gate
control how to overwrite the information by comparing the
inner memory with the new information arriving. It enables
gradients to flow through time easily.

As shown in Figure 2, the input gate, the forget gate, and
the output gate of LSTM are designed to control what infor-
mation should be forgotten, remembered, and updated. Gat-
ing is a method to selectively pass the information that is
needed. It consists of a sigmoid function and an element-wise
multiplication function. The output value is within [0, 1] to
allow the multiplication to then happen to let information
flow or not. It is considered good practice to initialize these
gates to a value of 1, or close to 1, so as to not impair training
at the beginning.

In the LSTM cell, each parameter at moment 𝑡 can be
defined as follows:

𝑓𝑡 = 𝜎 (𝑊𝑓 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)
𝑖𝑡 = 𝜎 (𝑊𝑖 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)
𝐶𝑡 = tanh (𝑊𝑐 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)
𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶𝑡

𝑜𝑡 = 𝜎 (𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)
ℎ𝑡 = 𝑜𝑡 tanh (𝐶𝑡)

(2)
The information process of LSTM cell is described in

(2). First, there is a need to forget old information, which
involves the forget gate. The next step is to determine what
new information needs to keep inmemorywith an input gate.
From that, it is possible to update the old cell state,𝐶𝑡−1, to the
new cell state,𝐶𝑡 . Finally, it decideswhich information should
be output to the layer above with an output gate.

2.2. Bidirectional LSTM. In real life, human trajectories are
continuous. Baseline LSTM cells predict the current status
based only on former information. It is clear that some
important information may not be captured properly by the
cell if it runs in only one direction.

The improvement in bidirectional LSTM is that the
current output is not only related to previous information
but also related to subsequent information. For example, it
is appropriate to predict a missing word based on context.
Bidirectional LSTM [21] is made up of two LSTM cells, and
the output is determined by the two together.

In Figure 3, there are forward sequences
→
ℎ and backward

sequences
←
ℎ in the hidden layer. For the moment 𝑡(𝑡 =0, 1, 2 . . .), the hidden layer and the input layer can be defined

as follows: →ℎ 𝑡 = 𝑔 (𝑈→
ℎ
𝑥𝑡 +𝑊→ℎ→ℎ 𝑡−1 + 𝑏→

ℎ
)

←ℎ 𝑡 = 𝑔 (𝑈←
ℎ
𝑥𝑡 +𝑊←ℎ←ℎ 𝑡−1 + 𝑏←

ℎ
)

𝑦𝑡 = 𝑔 (𝑉→
ℎ

→ℎ 𝑡 +𝑉←ℎ←ℎ 𝑡 + 𝑏𝑦)
(3)
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Figure 3: Standard bidirectional LSTM structure. For a bidirectional layer, it gets information from vertical direction (lower layer) and
horizontal direction (past and future) and finally outputs the processed information for the upper layer.

Our bidirectional LSTM cell differs slightly from this.
We concatenate the results of the two ℎ𝑡 to then reduce
the number of features in half with a ReLU fully connected
hidden layer as follows:

𝑦𝑡 = 𝑅𝑒𝐿𝑈(𝑊 ∗ 𝑐𝑜𝑛𝑐𝑎𝑡 (→ℎ 𝑡,←ℎ 𝑡) + 𝑏) , (4)

where 𝑐𝑜𝑛𝑐𝑎𝑡(⋅)means concatenating sequences.

2.3. Residual Network. TheMicrosoft research Asia (MSRA)
team built a 152-layer network, which is about eight times that
of the VGG network [22]. Due to its excellent performance,
they took first place in the 2015 ILSVRCcompetition owing to
an absolute advantage in image classification, image location,
and image detection.

As the network deepens, the research emphasis shifts to
how to overcome the obstruction of information and gradient
transmission. The MSRA uses residual networks. The main
idea is that it is easier to optimize the residual mapping than
to optimize the original, unreferenced mapping. Compared
to highway network [23], residual network has no gates but
residual connections. So the network is parameter-free and
the shortcut will never close. In addition, all information is
always passed through with additional residual functions to
be learned.

An important advantage of residual networks is that they
are much easier to train because the gradients can be passed
through the layers more directly with the addition operator
that enables them to bypass some layers that would have

otherwise been restrictive. It enables both better training
and a deeper network, because residual connections do not
impede gradients and still contribute to refining the output of
several stacked layers composed of such residual connections.
On top of a collection of residual connections is a bottleneck
where the next layers stop being residual and where batch
normalization is generally applied to normalize and restrict
the usage of the feature space represented by the layer [24].

A residual network is shown in Figure 4.The lower infor-
mation can transmit to upper layer directly through shortcut
connection, which increases the freedom of the information
flowing. The shortcut connects many supplementary 𝑛(𝑛 =0, 1, 2, . . .) layers in height before the bottleneck. When 𝑛
equals 0, there is no residual connection: it becomes like the
baseline deep-stacked LSTMs layers. In Figure 4, 𝑛 is 0, and
the output of the hidden layer 𝑖(𝑖 = 1, 2, . . . , L) can be defined
as follows:

ℎ1 = 𝜎 (𝑊1𝑥 + 𝑏1) 𝑖 = 1
ℎ𝑖 = 𝜎 (𝑊𝑖ℎ𝑖−1 + 𝑏𝑖) + ℎ𝑖−2 𝑖 = 2, 3, . . . , 𝐿 − 1
𝑦 = 𝜎 (𝑊𝑦ℎ𝑖 + 𝑏𝑦) + ℎ𝑖−1 𝑖 = 𝐿

(5)

In the code implementation, indexing in the configura-
tion file starts at 1 rather than 0, because we include the
count of the first layer that acts as a basis before the residual
cells.The same counting rule applies for indicating howmany
blocks of residual connection stacked one on top of the other.
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Figure 4: Isolated residual neural network.

3. Our Model: Deep Residual
Bidir-LSTM Network

3.1. Process Pipeline for HAR. The process pipeline of HAR
can be divided into three parts: preprocessing, training, and
testing. In our case, testing is modified in parallel with
training. First, testers perform activities of daily living with
wearable sensors and gathered information to form the raw
dataset. The missing data is interpolated and normalized to a
mean of zero and standard deviation of 0.5. We then reshape
the data to fit the designed network, with windows of 128
time steps. The dataset is split into training and testing data-
sets.

Second, a training tensor is added to the designed net-
work so it could output a prediction. The difference between
the predicted value and the real value is compared with a
sigmoid cross entropy loss with L2 weight decay to backprop-
agate errors backward into the network layer by layer with
the Adam optimizer [25]. Thus, we could adjust the hyper-
parameters in networks, such as the learning rate and L2
weight decay, to reduce the difference.

Finally, during testing, we add the testing tensor to the
neural network without affecting the learned parameters, so
as to not corrupt the test. Testing does not affect the training.
Predictions obtained from the neural network are compared
with the real values. The metrics of accuracy and of the F1
score of HAR are calculated throughout learning. Both the

best in-training metrics and the final metrics obtained are
kept for comparison.

3.2. Architecture of Deep Res-Bidir-LSTM Network. Inspired
by the networks in Section 2, we propose theRes-Bidir-LSTM
to deal with HAR. Although residual connections for CNN
have been used [22], the methodology is also available for
LSTM.

Similar to building blocks, we select modules and com-
bine them to build a network based on ourmission.The input
of HAR should be a time series, and the basic structure of the
LSTM guarantees that it can preserve the characteristics on
the temporal dimension.

Additionally, a large network can be optimized correctly
for a problemwith sufficient regularization, such as L2weight
decay and dropout. However, if no regularization is used,
results trend to overfitting and bad operations on the test set.
Complexity is good but only if countered with regularization.
Toomany layers and cells per layer will increase the computa-
tional complexity and waste computational resources. When
the layer number and cell number reach a certain scale, the
recognition accuracy will remain at a certain scale instead
of increasing. By adding more depth, regularization is then
needed to avoid overfitting while still improving accuracy.

Our deep LSTM neural network is limited in terms
of how many data points it can access: it has access to
only 128 time steps when making its predictions. Especially
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when deepened, the next forward/backward duo will see
output from the other pass “in advance”, because, logically,
a backward pass for our bidirectional LSTM reverses the
input and the output before the concatenation. Thus, the
Bidir-LSTM has the same input and output shape as the
baseline LSTM. But at a given time step, it has access
to more information in advance because of the backward
passes.

In general, gradient vanishing is awidespread problem for
deep networks.The residual, bidirectional, and stacked layers
(hence, the name “Deep Residual Bidir-LSTM”) help counter
this problem, because some bottom layers would otherwise
be too hard to optimize when using backpropagation. Com-
bined with batch normalization on the top of each residual
layer, residual connections act as shortcut for gradients. It
prevents restrictions in the hidden layer feature space from
being too complex and avoids outlier values at test time,
against overfitting.

In Figure 5, the information flows in the horizontal
direction (temporal dimension) and in the vertical direction
(depth dimension). With the exception of the input and
output layers, there are 2 hidden layers which have residual
connection inside (hence, called “residual layer”). Moreover,
each residual layer contains 2 bidirectional layers. The net-
work in Figure 5 has 2 × 2 architecture, which can also be
thought of as 8 LSTM cells in sum. In our network, the
activity function is unified with ReLU, because it always
outperforms tanh with deep networks to counter gradient
vanishing. Although the output is a tensor for a given time
window 𝑇, the time axis has been crunched by the neural
network. That is, we need only the last element of the output
and can discard the others. Thus, only the gradient from the
prediction at the last time step is applied. This also causes
a LSTM cell to be unnecessary: the uppermost backward
LSTM in the bidirectional pass. Hopefully, this is not of
great concern because TensorFlow should evaluate what to
compute and what not to compute. Additionally, the training
dataset should be shuffled during the training process. The
state of the neural network is reset at each new window for
each new prediction.

3.3. Tricks for Optimization. Our Res-Bidir-LSTM for HAR
makes it possible to see that the accuracy during testing is
much worse than that during training. Overfitting is likely
to occur, and balancing the regularization hyper-parameters
becomes difficult because they are so numerous.TheL2 norm
of the weights for weight decay is added in the loss func-
tion.

Also, dropout is applied between each layer on the depth
axis or, sometimes, just at the output, depending on what is
specified in the configuration file, which is another hyper-
parameter. Dropout refers to the fact that parts of tensors
that are output by the hidden layer are shut down to a zero
value to a certain probability for each value in each training
epoch, while other values scale up accordingly to keep the
same geometric norm of the tensor’s values. The inoperative
nodes can be regarded as dead nodes (or neurons) that are
temporarily not in the network, whichmeans that the weights
and biases behind these dead notes temporarily neither learns

nor contributes to the predictions during that training step for
a batch. The weights are kept intact.

To avoid a sudden leveling off in the accuracy during
learning, gradient clipping [24] is added with a maximal gra-
dient step normof 15.The threshold, V(V > 0), for the gradient
helps not to overshoot the weight update during training due
to having sharp cliffs in the weight space, a characteristic of
RNNs:

if 𝑔 > V 𝑔 ← 𝑔V𝑔 , (6)

where 𝑔 is the gradient and ‖𝑔‖ is normed gradient.
Batch normalization [26] can also be useful in training

residual connections. The fundamental idea of batch nor-
malization is that layers are simply normalized by mean and
variance such that they have a mean of zero and a standard
deviation of 1 over the whole batch. One big rescaling factor
multiplies the whole batch, and one big bias is also added.The
result is then normalized and offset in a linear fashion. The
scaling multiplier 𝛼 and the offset parameter 𝛽 are learned to
rescale inputs in a custom way, and 𝛽 is initialized to 1, as is
commonly done. The formula can be defined as follows:

𝑥(𝑘) = 𝑥(𝑘) − 𝐸 [𝑥(𝑘)]
√var [𝑥(𝑘)]

𝑦(𝑘) = 𝛼(𝑘)𝑥(𝑘) + 𝛽(𝑘),
(7)

where 𝑥(𝑘) means the 𝑘𝑡ℎ parameter in the parameters vector
and 𝑦(𝑘) is normed value of 𝑥(𝑘).

We add many tricks to the network to provide better
results. Generally, L2 norm for weight decay and dropout
are used to prevent overfitting, and gradient clipping and
batch normalization are used to prevent gradient vanishing
or explosion as well as overshooting the learning updates.

4. Experiments

We test the Res-Bidir-LSTM network with the public domain
UCI dataset [27] and the Opportunity dataset [7]. It also
compares with the outcome of other methods. The computer
for testing has an i7 CPU with 8 GB RAM as well as an
NVIDIA GTX 960m GPU. The GPU and CPU are used
alternatively depending on the size of the neural network,
which sometimes exceeded the available amount of memory
on the graphics card during training.

4.1. Datasets. The research objects of recognition are activi-
ties in daily life. The benchmark for HAR should meet two
conditions. First, it should contain most behavioral classes
to reflect real life. Second, it should abstract features and
labels for modeling and calculations. Human actions can be
divided into several layers in terms of granularity, such as the
gesture layer (including left-arm lift, trunk-back), the action
layer (including jumping, running, sitting), and the behavior
layer (such as drinking water, typing, and sleeping). A good
HAR benchmark should include a clear understanding of
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Figure 5: Unfold Res-Bidir-LSTM network architecture. “ReLU” represents the full connection layer and a ReLU function followed. And
“BN” is short for batch normalization.

the hierarchy. There are several open datasets that can be
benchmarked, such as the public domain UCI [27], the
Opportunity [7], and the KTH datasets [28]. Many studies
have used these benchmarks. We choose the public domain

UCI and the Opportunity datasets for our experiments. The
neural network should be readily adaptable to a new dataset
with an architecture module and a changeable configuration
file that also loads the dataset.
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Public Domain UCI Dataset. Experiments are carried out
with a group of 30 volunteers aged 19–48 years. Each person
performs six activities (WALKING, WALKING UPSTAIRS,
WALKING DOWNSTAIRS, SITTING, STANDING, and
LAYING DOWN) wearing a smart phone (Samsung Galaxy
S II) on the waist. Using its embedded accelerometer and
gyroscope, we are able to make three-axial linear acceleration
and three-axial angular velocity available at a constant rate of
50 Hz and trim into windows of 128 time steps for a 2.56-
second window. It is enough to capture two steps, in the case
of walking, for the classification. The experiments are video-
recorded to label the data manually and obtain balanced
classes.The dataset obtained is partitioned randomly into two
sets: 70% of the volunteers are selected for generating the
training data, and the others are selected for generating the
testing data. Each sample has 561 linear (time-independent)
hand-made, preprocessed features from signal analysis (e.g.,
window’s peak frequency), but only nine features are used in
our study: triaxial gravity acceleration from the accelerometer
(from a 0.3 Hz Butterworth low-pass filter) and triaxial
body acceleration and triaxial angular velocity from the
gyroscope.These are raw signals with a time component. The
sensor data are preprocessed by applying denoising median
filters, clipping the approximately 20 Hz mark. They are then
sampled in fixed-width sliding window of 2.56 seconds. The
window is provided with an overlap of 50% to ease training.
Additionally, all features are prenormalized and boundwithin[−1, 1].
Opportunity Dataset. The Opportunity dataset for human
activity recognition from wearable, object, and ambient
sensors is a dataset devised to benchmark human activity
recognition algorithms. A subset of this dataset is used for
the “OPPORTUNITYActivity Recognition Challenge”. From
then on, the subset has been used by numerous third party
publications [29–31]. In order to compare with benchmark
methods, we use the same subset, which has 3 subjects and
6 runs per subject. The testing set is composed of Run 4
and Run 5 for Subjects 2 and 3, and the others are left
for training set. The activities of the user in the scenario
were annotated on different levels. Notably, among others,
17 mid-level gesture classes are identified and used for our
predictions; this group included the “NULL” class, which is
common, for a total of 18 classes. Due to the use of wireless
sensors to transfer data, there may be missing data. We use
linear interpolation to fill in the missing data. Also, the data
is provided with a custom scale and different value ranges and
resolutions for each feature.There are sometimes magnitudes
of difference according to the cell used. Our architecture use
mean and variance (standard deviation) normalization on the
z-score scale with a standard deviation of 0.5. Such a small
standard deviation is often useful in deep learning [32]. The
transition function was defined as follows:

𝑥∗ = 𝑥 − 𝜇𝜎 , (8)

where 𝜇 is mean value and 𝜎 is the standard deviation.
To summarize, we use only a subset of the full dataset to

simulate the conditions of the competition, using 113 sensor

channels and classifying the 17 categories of output (and the
NULL class). Our LSTM’s inner representation is always reset
to 0 between series. We usemean and variance normalization
rather than min-to-max rescaling.

Because of class imbalance in theOpportunity dataset, we
use F1 score as a measurement of recognition. The F1 score is
defined as follows:

𝐹1 = 2∑
𝑐

𝑁𝑐𝑁𝑡𝑜𝑡𝑎𝑙
𝑝𝑟𝑒𝑐 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐 + 𝑟𝑒𝑐𝑎𝑙𝑙 , (9)

where 𝑝𝑟𝑒𝑐 and 𝑟𝑒𝑐𝑎𝑙𝑙 indicate precision and recall, respec-
tively. 𝑁𝑐 is the sample count of class 𝑐, and 𝑁𝑡𝑜𝑡𝑎𝑙 is the total
sample count of the dataset.

4.2. Hyper-Parameters Setting. The hyper-parameters in the
Res-Bidir-LSTM network affect the final result. Generally
used methods of tuning parameters include experimental
methods, grid searches [33], genetic algorithm (GA) [34], and
particle swarm optimization (PSO) [35, 36]. As experimental
methods involve approximating the value by running many
experiments, these methods are time consuming. GA and
PSO are heuristic algorithms, and they are limited to dealing
with large-scale network. We use grid search, which involved
dividing hyper-parameter values into several steps to create
a grid of a certain range and then traversing all points of the
grid to find the best values for these parameters.

Our LSTM’s inner representation is always reset to 0
between series. As shown in Figure 6, for n channels’ data,
a new sample consisted of a window length series of T. Then,
T is moved with a step size to form the next sample, using
50% overlap, which adds some redundancy during training
and testing. Repeating the operation above yields a dataset
suitable for training. Missing values between labels refer to
the Null class. The last moment of the time window is chosen
as a label for each sample’s classification. Thus, if the class
changes throughout the series, only the last time step will
account for the classification for training and testing, and the
50% overlap account for learning some of the label changes.
The label of the last moment is better at reflecting the intent as
well as the possibly current behavior.Through a slide window
process, the shape of the dataset 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑁𝑢𝑚 × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠
is converted to 𝑠𝑎𝑚𝑝𝑙𝑒𝑁𝑢𝑚 × 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 × 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 with
overlap.

4.3. Results. MultiClass Hardware Friendly SVM (MC-HF-
SVM) was proposed by Davide Anguita [8]. It allows better
preservation of the life of a smart phone battery than the
conventional floating-point-based formulation while main-
taining comparable system accuracy levels.Theperformances
of Bidir-LSTM and Res-LSTM are almost the same, both
better than baseline LSTM. A brief explanation is that Bidir-
LSTM can get information in both forward and backward
passes, and Res-LSTM uses shortcut to transmit information
directly. Among the algorithms in Table 1, Res-Bidir-LSTM
achieves the best F1 score, 93.5%, because of residual and
bidirectional connections. The accuracy and F1 score are
almost the same for eachmodel. It seems that class imbalance
makes little difference with the dataset. Res-Bidir-LSTM is
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Figure 6: Sliding window. The ground truth represents labels for the classification.

Table 1: Accuracy and F1 score for each algorithm with the public domain UCI dataset.The best result in each column is highlighted in bold.

Algorithm Accuracy F1 score
MC-HF-SVM 89.3% -
Baseline LSTM 90.8% 90.8%
Bidir-LSTM 91.1% 91.1%
Res-LSTM 91.6% 91.5%
Res-Bidir-LSTM 93.6% 93.5%

Table 2: Matrix confusion on test dataset using Dee-Res-Bidir-LSTM. WK, WU, WD, ST, SD, and LD for the public domain UCI
dataset (representing WALKING, WALKING UPSTAIRS, WALKING DOWNSTAIRS, SITTING, STANDING, and LAYING DOWN,
respectively).

WL WU WD ST SD LD Recall
WL 476 1 20 0 0 0 95.8%
WU 20 429 21 0 0 0 91.3%
WD 14 8 398 0 0 0 94.8%
ST 0 5 0 426 33 4 91.1%
SD 0 0 0 62 473 0 88.4%
LD 0 0 0 0 0 537 100%
Precision 93.3% 96.8% 90.7% 87.3% 93.5% 99.5% 93.6%

fine-tuned with 3 layers, 28 units/layer, and dropout is set
as 0.8. The best hyper-parameter combination is chosen by
grid search. We also test Res-Bidir-LSTM without dropout. It
shows that the best F1 score is 92.8% and always gets at early
epoch.

Table 2 shows the confusion matrix of Res-Bidir-LSTM
with testing data. The values of prediction in six classes are in
the range of 87.3% to 99.3%, and the values of recall are in the
range of 88.4% to 100%.The integral accuracy reached 93.6%.
An intuitive confusion matrix is shown in Figure 7.The color
from blue to red represents the increasing percentage. It can
be seen that the LAYING DOWN class is recognized best,

likely because triaxial acceleration and triaxial angular veloc-
ity are quite different from the values in other classes. Stand-
ing and sitting are sometimes misrecognized as each other;
both involve static behavior. In fact, they are seemingly almost
the same from the point of viewof a device placed on the belly,
which is how the dataset is gathered. Similarly, WALKING,
WALKING UPSTAIRS, and WALKING DOWNSTAIRS all
involve dynamic behavior, and there is some confusion
among them. However, it is still possible to see a little
clustering among these three classes in the matrix.

In Table 3, we compare proposed model with previous
model and variants of LSTM.Thebest result iswritten in bold,
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Figure 7: Normalized-to-percent matrix confusion on the test dataset using Dee-Res-Bidir-LSTM for the public domain UCI dataset. The
columns represent the predicted classes, and the rows represent the actual classes.

Table 3: F1 score with the NULL class of each algorithm with the Opportunity dataset.

Algorithm F1 score
1NN [7] 87%
CNN [9] 85.1%
Baseline LSTM 88.2%
Bidir-LSTM 89.2%
Res-LSTM 90.2%
Res-Bidir-LSTM 90.5%

which achieves 90.5%. Generally speaking, LSTM models
outperform others in the experiment. It is because LSTM
is good at dealing with time series. It keeps the relation of
input sequence while the other models do not. Among LSTM
models, both Res-LSTM and Bidir-LSTM are better than the
vanilla one. As for the Res-Bidir-LSTM, it performs like an
ensemble method lead to the best result. The model has 3
layers, 128 units/layer, and dropout is set as 0.6. We find that
dropout seems to benefit little improvement, but the number
of layer plays an import role. No matter layers increased or
decreased, the F1 score will sharply decrease.

Figure 8 shows the F1 score trend with the training data
and testing data for each model. Generally, when training is
finished, both the training and testing results oscillate around
a fixed value. Moreover, the results in the four groups are
convergent. The amplitude of baseline LSTM is significantly
higher than those of the others. Res-Bidir-LSTM achieves the
best F1 score, ∼0.9. Convergence rate can be arranged from
slow to fast as baseline LSTM, Bidir-LSTM, Res-Bidir-LSTM,

and Res-LSTM. However, the difference between Res-Bidir-
LSTM and Res-LSTM is very small, and both are obviously
different from the others. The results also show that residual
connection is outstanding in convergence.

5. Conclusions

In this paper, the significance of HAR research is analyzed,
and an overview of emerging methods in the field is provided.
LSTM networks have been used in many innovations in
natural language processing, speech recognition, andweather
prediction. The technology is adapted to the HAR task.
We propose the novel framework of the Res-Bidir-LSTM
network. The deep network can enhance learning ability for
faster learning in early training. It also guarantees the validity
of information transmission through residual connections
(on the depth dimension) and bidirectional cells (on the
temporal dimension). In our experiments, the proposed
network is able to improve the accuracy, by 4.8%, for the
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Figure 8: F1 score trends of algorithms for the Opportunity dataset. The blue line shows test data, and the red one indicates training data.
(a)–(d) show baseline LSTM, Bidir-LSTM, Res-LSTM, and Res-Bidir-LSTM, respectively.

public domainUCI dataset and increase the F1 score, by 3.7%,
for the Opportunity dataset in comparison with previous
work.

We also find that window size is a key parameter. Too
small window does not guarantee continuity of information,
and too largewindow causes classification errors. Usually, 500
ms to 5000mswill be appropriate for thewindow size.During
model training, the architecture of the network, such as the
layers and the cells in each layer, should be determined first,
followed by the optimization of hyper-parameters, such as
learning rate and the L2 weight decay multiplier. The values
of hyper-parameters should be determined according to the
specific architecture. For example, 28 cells are sufficient for
the public domain UCI dataset, but 128 cells are better for the

Opportunity dataset because it has more features and labels
and, thus, increased overall complexity.

Future work will explore a more efficient way to tune
parameters. Although the grid search is workable, the search-
ing range must be changed manually, and the values are
always fixed. It will be important to find an adaptive way
to automatically adjust the searching process and also make
the neural network’s architecture evolve, such as by automat-
ically reshaping, adding, and removing various layers. Also,
exploring the effect of mixing 1D time-based convolution at
one or some points in the LSTM cells might improve results.
Finally, applying the Res-Bidir-LSTM network to other fields
could be revealing. A good model should have outstanding
generalization. Indeed, focusing on time series prediction
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problems has value. Problems such as stock prediction and
trajectory prediction may be explored.
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