View Edit History Attach Print Logout

College of Engineering

CS261

UNIVERSITY

Programming Assignment 5

Heap Implementation of a ToDo List []

CS261 Home
Schedule
In this assignment, you implement a To-Do List application with a Heap-based Assignments
Priority Queue. Resources
The application allows its users to manage their prioritized to-do lists using console Policies
commands for operations such as adding new tasks, retrieving, or removing the Grades
highest priority task. Additionally, users can save the list to a file or load the list admin |
from a file. edit SideBar

To complete the assignment, you must first complete the heap implementation of
the priority queue interface. We will approach this new interface as we have
approached previous interfaces such as stack, bag, and queue. In particular, we
will simply add the priority queue operations to the dynamic array implementation.
In addition, you'll use the 'compare' function for comparisons, as we did in the
previous assignment (BST).

We have provided the functions to save and load the todo list to and from a file.
These functions are in the toDoList.[h,c] files.

You must complete the buildHeap() and sortHeap() functions to implement
the heap sort algorithm in the dynArray.c file.

Refer to Worksheets 33 and 34 for more details regarding the heap
implementation of the priority queue interface and the heapsort algorithm.

The provided files are described as below:

e dynArray.c: Implementation of dynamic array and heap-based priority
queue. You will finish the functions for a heap-based priority queue in this
file.

e dynArray.h: Header for dynArray.c. This file should not be changed.
e toDolList.c: Implementation of functions specialized for a to-do list application.

NOTE: You'll need to use the strcpy(...) function to copy the description into
your task structure.

e toDolist.h: Header for toDoList.c. This file should not be changed.
e type.h: Header file for Task structure. This file should not be changed.

e main.c: Implementation of the main () function, which controls the
interactions between the user and the program. This file should not be
changed. You can use it to test your functions.

o Makefile: The program's makefile.

o todo.txt: An example of a file storing a to-do list saved by function
saveList (). Your saveList () function should generate a to-do list file
with the same format. You can also use this file to test your loadList ()
function.

e program_demo.txt: Examples of command lines showing how a user can
interact with the program. This file is provided for your reference.

e main2.c: Test file for the heap sort algorithm. You will need to change the
Makefile and function names in main.c and main2.c accordingly to
switch between testing the to-do list application and testing the heap sort
algorithm.

CHALLENGE YOURSELF (AND EARN A FEW EXTRA POINTS!)

Challenge 1 - Generalize

The dynArray is restrictive in that it holds TYPE which is defined as a description

and task. If we want to change what we store in the dynArr, we must modify TYPE
and recompile. An alternative would be to make the dynArray store *void as we

did with the BST in the last assignment.

For this challenge, generalize the dynArray implementation such that it can store
any type (ie. *void) . You'll want to create a structs.h file where, as the user,
you define what you want to put in the dynArray (in this case a Task).

Challenge 2 - Duplicate Priorities

For this challenge, imagine adding 10 tasks to the priority queue, all having the
same priority value, say 1. Simulate this by hand. What order are they removed
when you call removeMinHeap 10 times? Is this what you would expect? If not,

modify your implementation to produce a more appropriate result when duplicate
tasks are added.

RUBRIC

1. _adjustHeap 10
2. addHeap 10
3. getMinHeap 5
4. removeMinHeap 5
5. createTask 5
6. buildHeap 3

7. heapSort 3

8. smallerIndex 5
9. Compile/Style 20

WHAT TO SUBMIT

Note: All files with XC in the name are only necessary if you choose to address the
posed Challenges.

dynArray.c
toDolList.c
dynArrayXC.c
dynArrayXC.h
typeXC.h

LAl S

All Recent Changes

