Oregon State

College of Engineering

CS261

UNIVERSITY

Programming Assignment 6

Hash Table Implementation of a Concordance []

CS261 Home
In this assignment there will be a programming portion and a written portion. Schedule
Assignments
PROGRAMMING Resources
For this assignment, you will complete the hash-map with chaining as specified by Z(:!j:
the provided header file. Chapter 12 and worksheet 38 will be good resources for
completing this assignment. After completing the hash-map implementation you admin |
will write a concordance program in your main.c. A concordance counts the number edit SideBar
of occurrences of each word in a document. For this assignment, we will work with
text files.

There are three files to work with for the programming portion:

e main.c is where you will write the concordance code.

e hashMap.h the header file which defines structs and public functions for your
hash table and, explains the purpose of each function. Notice that there is a
variable HASHING_FUNCTION which determines which hashing function
should be used in hashMap.c Your code should check this value to determine
which hashing function to use. HASHING_FUNCTION==1 means use
stringHash1l and HASHING_FUNCTION==2 means use stringHash?2.

e hashMap.c a mostly empty implementation file which you will fill in with your
code.

e Makefile Remember to rename this from Makefile.txt to makefile when you
'save as'

You will be making changes to main.c and hashMap.c. Do not make changes to
hashMap.h

There are three functions provided to you:

e getWord(FILE*) will parse out the next word from the file for you. Read
the description of the function in the comments inside main.c for more
information.

e stringHashl (char¥*) is the first function you will use for converting a key
into an integer hash index. This function is located in the provided hashMap.c.
e stringHash2 (char¥*) is the second function for computing an integer hash

index, part of your job will be to explain why stringHash2 is better then
stringHash1. This function is located in the provided hashMap.c.

There is some code in the main function for giving you timing information as well.
You should not need to change anything in order to use it. The purpose of the
timing information will be made clear in the questions section.

The worksheets and the function explanations should provide the information
needed to complete this assignment, except for some more details on what a
concordance is.

Concordance

The job of the concordance is to count how many times each word occurs in a
document. You will implement a concordance using a hash table implementation of
the Map interface. In this implementation, the hash table will store hashLinks which
consist of a key, value, and pointer to the next link in the chain. The keys are the
words and the values are the number of occurrences of each word.

You are provided with a function to retrieve words from a FILE pointer. It is your
job to open this file (fopen()) and close this file (fclose()) but the reading of the file
will be handled for you inside of getWord. For help with fopen() and fclose() see
the slides posted on the schedule for the recitation day.

Your concordance will run a loop until the end of the file is reached. In the loop,
you will:

1. Read in a word with getWord().

2. If the word is already in your hash table then increment it's number of
occurrences.

3. If the word is not in your hash table then insert it with an occurrence count of
1.

After processing the text file into your concordance you will print all the words in
your hash table. Please print the words in the following form with only one word on
each line:

for the input file of: It was the best of times, It was the worst of

times.
best: 1
It: 2
was: 2
the: 2
of: 2
worst: 1
times: 2

You may choose any order in which to print the words.

Challenge

There are a lot of uses for a hashMap, and one of them is for implementing a
spell-checker. All you need to get started is a dictionary.

Dictionary
spellcheck.c

Inside spellcheck.c you will find some code to get you started, but it should look
very much like main.c

Written Questions

Your written questions will be handed in electronically, preferably as comments on
the TEACH turn-in page, just cut and paste from your preferred editor.

1. Give an example of two words that would hash to the same value using
stringHashl () but would not using stringHash2().

2. Why does the above make stringHash2 () superior to stringHashl()?

3. When you run your program on the same input file but one run using
stringHashl () and on the other run using stringHash2 (). Is it possible
for your size () function to return different values?

4. When you run your program on the same input file using stringHashl ()
on one run and using stringHash2 () on another, is it possible for your
tableLoad () function to return different values?

5. When you run your program on the same input file with one run using
stringHashl () and the other run using stringHash2 (), is it possible for
your emptyBuckets () function to return different values?

6. Is there any difference in the number of 'empty buckets' when you change
the table size from an even number, like 1000 to a prime like 997 ?

7. Using the timing code provided to you. Run you code on different size hash
tables. How does affecting the hash table size change your performance?

What to submit

main.c

hashMap.c

spellcheck.c

The answers to the written questions as either a teach comment or .pdf

L

Copyright ©2012

Oregon State University

Disclaimer

Page last modified on March 17, 2012, at 02:05 PM
All Recent Changes

