
Notes on WarpX Fluids

Grant R Johnson

October 12, 2023

1 Introduction
1 The fluid timeloop is embedded inside the standard PIC timeloop. Before the loop begins, it is
assumed that the program is in the state where fields E and B are available at the half timestep
of the fluids. The fluids themselves are described by arrays on our nodal grid of the density and
momentum density, Q ≡ {N,NUx, NUy, NUz}. These quantities are then pushed one time-step
at a time via the fluid loop, see figure 1. Implementation details of each step are described below,
but to outline the fluid loop procedure we compute: 1. H&C push the momentum, 2. Non-inertial
(momentum source) terms Communications 3. Apply BC and and exchange boundary data. 4.
MUSCL scheme for advection terms 5. Current and Charge Deposition.

Figure 1: The fluid evolution loop. Fields at the beginning of this loop are pushed to time tn+dt/2
and interpolated to nodal locations to match the fluid locations.

1.1 Governing equations
In the cold limit (zero internal pressure) of a relativistic plasma, our system of equations governing
the plasma evolution is governed by the Maxwell-Fluid system. The fluid equations are given by,

∂Ns

∂t
+∇ · (NsVs) = 0

∂(NU)s
∂t

+∇ · ((NU)sVs) =
qsNs

ms
(Es +Vs ×Bs).

(1)

1The fluid algorithm in WarpX can be found in the github PR: Johnson452/WarpX.

1

Where the fields are updated via SI versions of Maxwell’s equations 2

∇ ·E =
ρ

ε0
∇ ·B = 0

∇×E = −∂B

∂t
∇×B = µ0J+ µ0ε0

∂E

∂t

The fluids are coupled to the fields via,

ρ = ρptcl +
∑
s

qsNs J = Jptcl +
∑
s

qsNsVs

Vs =
(NU)s√

N2
s + (NU)2s/c

2
(NU)s = NsUs

where the particle quantities are calculated by the PIC algorithm. Therefore, the fluids and
particles only couple through Maxwell’s equations.3

1.2 Space Discretization
The Yee grid stores quantities for the current density, electric field, and magnetic field (and charge
at the nodal points, but it is only used for diagnostics). All fluid quantities, Q, exist at the nodal
points. This choice is made for the momentum source terms which requires all the fluid elements
to exist at the same location. This co-location also allows us to transform without interpolation
between Q variables and {N,V,U,Jfluid}.

Figure 2: Yee and fluid grid quantity locations.

1.3 Operator Splitting
Discretely, Maxwell’s Equations are updated via the Yee (FDTD) algorithm. Jptcl and ρptcl are
update and interpolated within the WarpX PIC loop. (For our test-cases so far, we do not have
any particles, just fluids.) For discretely solving the fluid equations, we employ operator splitting
on equations 1. In general, we use first-order Strang splitting to separate these operations. More
explicitly, we take a full time step for the quantity X we wish to update with a single operator,
then compute the next operation using the result of the first. Once we have completed all the
operations which make up our system, have have completed our fluid timeloop. We split the fluid
equations into operators L1 and L2,

∂Ns

∂t
+∇ · (NsVs)︸ ︷︷ ︸

L1

= 0

∂(NU)s
∂t

+∇ · ((NU)sVs)︸ ︷︷ ︸
L1

=
qsNs

ms
(Es +Vs ×Bs)︸ ︷︷ ︸

L2

.

2In WarpX all quantities are in SI units, including under-the-hood.
3We have no fluid self-injection model for the fluids in WFA, explicitly, we do not exchange fluid elements with

particles or vis versa.

2

Updating L2 from tn → tn + dt via,

∂Ns

∂t
= 0

∂(NU)s
∂t

=
qsNs

ms
(Es +Vs ×Bs).

Which can be simplified using the time-independence of the density too Lorentz’s equation,

∂Us

∂t
=

qs
ms

(Es +Vs ×Bs). (2)

Next, updating L1, we employ the MUSCL scheme described in the subsection MUSCL Advec-
tion.

∂Ns

∂t
+∇ · (NsVs) = 0

∂(NU)s
∂t

+∇ · ((NU)sVs) = 0.

(3)

In Cartesian cases we only have two operators L1 and L2 but we need to split L1 further in
RZ for non-inertial terms; see Momentum Source, Non-Inertial Terms in RZ section for the third
operator.

1.4 Momentum Source, H&C Push
First we split our saved variables Q into {N,U}. This splitting is exact since all our fluid quantities
exist at the same location. Next we interpolate our fields (using the WarpX default which is
linear interpolation) to convert EY ee and BY ee to ENodal and BNodal. Using the Higeura and
Cary algorithm [HC17], we push our fluid momentum U, Equation 2, by one timestep. We then
recombine the updated U with the unchanged N back into Q.

1.5 Momentum Source, Non-Inertial Terms in RZ
Not used at the moment...

1.6 Boundary Conditions and Communications
Non-periodic boundaries with perfect electric conductor boundary conditions use copy boundaries
for the fluids. With some index i defining a boundary cell in the same direction, the ghost cell i−1
is updated using the quantity i+1 adjacent to the boundary inside the valid domain. In equation
form we copy our vector Q to the ghost cell via (dropping the species subscript),

Q|ibounds−1 = Q|ibounds+1. (4)

Interior MPI boundaries and periodic directions are then copied for the field and fluid elements
(handled by AMReX using FillBoundary()) to their ghost cell counterparts.

1.7 MUSCL Advection
We update equation 3 by one timestep with the MUSCL scheme. We begin by rewriting the
equation 3 in terms of Q and F(Q) ≡ QV,

∂Q

∂t
+∇ · (F(Q)) = 0

which we can re-write in a Quasi-linear form (in Cartesian coordinates) as,

∂Q

∂t
+

Ndim∑
m=1

∂Fm(Q)

∂Q

∂Q

∂xm
= 0. (5)

where we define the Flux-Jacobian in each direction as,
←→
A m ≡ ∂Fm(Q)

∂Q where Fm ≡ QVm.
Before we continue, let me introduce some helpful operators and shorthand. ∆{L,I,R},m is

an operator which takes the index m ∈ {1, 2, 3} mapping to {i, j, k} which are the discrete x, y, z

3

dimension indices, and either subtracts 1 (∆L), returns the same value (∆I), or adds on to the
index (∆R). An example calculation would be, ∆L,2Qi,j,k = Qi,j,k−1. Another shorthand to note
is the use of (...)i,j,k which means all discrete quantities in the parenthesis inherit the subscript.
For example, (NV)i,j,k = Ni,j,kVi,j,k. Lastly, the flux surface areas an volumes have been defined
as dS{R,L},m,i,j,k, and dVi,j,k respectively. For Cartesian cases these are simple, for instance in the
x-direction (m = 1) for 3D, then we have for all R,L, i, j, k, dS = dydz and dV = dxdydz. The
R,L are referring to which flux surface we are discussing. In general, R means the surface to the
right on a positively oriented direction, e.g. i+1 rather than i. This is then sufficiently general to
apply to the 1D, 2D, 3D, and RZ configurations we simulate.

Our MUSCL scheme and flux limit then occur in the following order starting with Q at timestep
tn

4:

1. Compute the flux Jacobians
←→
A m at each cell {i, j, k} (see Appendix A) via,

←→
A m,i,j,k =

(
∂Fm(Q)

∂Q

)
i,j,k

.

2. Compute the cell-slopes using shifting operators (see subsection 1.9),

dQm,i,j,k = ave(∆I,mQi,j,k −∆L,mQi,j,k,∆R,mQi,j,k −∆I,mQi,j,k).

3. Predict Q̃, which is Q at tn + dt/2 using the grid spacing in each dimension, dxm, (note this
is a matrix multiplication between

←→
A m and dQm),

Q̃i,j,k = Qi,j,k −

(
dt

2

Ndim∑
m=1

←→
A mdQm

dxm

)
i,j,k

.

4. Compute the values at the cell edges and half timestep,

Q̃±
edges,m,i,j,k = Q̃i,j,k ∓ dQm,i,j,k/2.

5. Positivity limiter, if Ñ±
edges,m,i,j,k < 0 then set dQm,i,j,k = 0 (hence only the direction which

positivity is violated) and recomputes steps 3-4 with this updated slope.

6. Compute the fluxes at the boundaries (see subsection 1.10),

FR,m,i,j,k = Fluxm(∆I,mQ̃−
edges,m,i,j,k,∆R,mQ̃+

edges,m,i,j,k).

FL,m,i,j,k = Fluxm(∆L,mQ̃−
edges,m,i,j,k,∆I,mQ̃+

edges,m,i,j,k).

7. We update Q to the next timestep,

Qn+1
i,j,k = Qn

i,j,k −

(
dt

dV

Ndim∑
m=1

(FR,m × dSR,m − FL,m × dSL,m)

)
i,j,k

.

Steps 1-5 happen in a single loop over the entire grid, updating each quantity cell by cell and
saving the result, Q̃±

edges,m,i,j,k, on the grid, including the ghost cells. Including the ghost cells
means we have some redundant computations where overlaps occur, but this saves us from an
expensive MPI communication at this point. We then preform a second iteration over just the
valid indices of our domain, completing steps 6-7. Details on these specific implementations such
as ave() and Flux() are presented in subsequent sections.

4The time index is a suppressed superscript in steps 1-6 except in step 7.

4

1.8 Primitive Variable Half-Step
Using the conserved variables Q to reconstruct our solution at the half step (see 1.7) introduced
unacceptable noise into the solutions. We found the better choice was to reconstruct these solutions
using the primitive variables, U = {N,Ux, Uy, Uz}. Rewriting the fluid-advective equations we get,

∂U

∂t
+

Ndim∑
m=1

←→
J m

∂U

∂xm
= 0. (6)

where the matrices,
←→
J m, are written in the appendix A. These are simpler than their conservative-

form counter parts to compute. Using U and equation 6 we replace steps 1-5 with:

1. Compute the matrices
←→
J m at each cell {i, j, k} (see Appendix A).

2. Compute the cell-slopes using shifting operators (see subsection 1.9),

dUm,i,j,k = ave(∆I,mUi,j,k −∆L,mUi,j,k,∆R,mUi,j,k −∆I,mUi,j,k).

3. Predict Ũ, which is U at tn + dt/2 using the grid spacing in each dimension, dxm, (note this
is a matrix multiplication between

←→
J m and dUm),

Ũi,j,k = Ui,j,k −

(
dt

2

Ndim∑
m=1

←→
J mdUm

dxm

)
i,j,k

.

4. Compute the values at the cell edges and half timestep,

Ũ±
edges,m,i,j,k = Ũi,j,k ∓ dUm,i,j,k/2.

5. Positivity limiter, if Ñ±
edges,m,i,j,k < 0 then set dUm,i,j,k = 0 (hence only the direction which

positivity is violated) and recomputes steps 3-4 with this updated slope.

6. Reconstruct Q̃±
edges,m,i,j,k using U in each cell. Then proceede with section 1.7 steps 6 & 7.

1.9 The ave() function
The ave() function is interchangeable with a several limiters available. These can further be applied
to specific components of the slope. For instance, we can compute avesuperbee() for momentum
density slopes and aveminmod() for the density slope. The default choice for all slopes is the
low-diffusion minmod:

avelow−diff,minmod(a, b) =

{
minmod((a+ b)/2, 2a, 2b) ab > 0
0 ab ≤ 0

(7)

where our other choices are

avesuperbee(a, b) =

{
minmod(maxmod(a, b),minmod(2a, 2b)) ab > 0
0 ab ≤ 0

(8)

avehigh−diff,minmod(a, b) =

{
minmod((a+ b)/2, a, b) ab > 0
0 ab ≤ 0

(9)

avefirst−order(a, b) = 0 (10)

which can be used interchangeably by changing the function associated with computing each
quantity. Superbee, and minmod are all total variation diminishing (TVD) to reduce spurious
oscillations. As a note, the total variation of a discretized quantity, u, is defined as,

TV (un) =
∑
j

|un
j+1 − un

j |. (11)

where TVD is defined as TV (un+1) ≤ TV (un).

5

1.10 The Flux() function
We implemented the Rusanov Flux,

Fluxm(QL,QR) =
1

2
(Vm(QR)QR + Vm(QL)QL)−

cm(QR,QL)

2
(QR −QL) (12)

where the function c(QR,QL) is defined by the maximum of the absolute value of the set of all
the eigenvalues from both the Flux Jacobians computed using QR, and QL,

cm(QR,QL) ≡ max{|Vm(QR)|, |Vm(QL)|}. (13)

Using Maxima, it can be shown that there are four repeated eigenvalues for our equations which are
the velocity in the direction we compute the Flux Jacobian. Finally, he velocity is reconstructed
from Q via,

Vm(Q) =
Qm√

Q2
0 + (Q2

1 +Q2
2 +Q2

3)/c
2
. (14)

1.11 Current and Charge Deposition
We do linear interpolation to deposit current and rho to the total values. This is a change between
Nodal and cell-centered values.

2 Laser Envelope
In order to avoid high-frequency noise introduced by the laser, we approximate the laser with the
pondermotive force term in our fluid momentum equation.

dp

dt
= q(Es + v ×Bs)−

q2

2γm
∇
〈
A2

env

〉
(15)

This replaces out the high-frequency laser into a slow moving envelope, and can be seamlessly
integrated into our Higuera and Cary [HC17] push by rewriting this term as an externally applied
electric field. Equating Aenv = (mc/q)aenv,

〈
A2

env

〉
= 0.5

∣∣A2
env

∣∣, and from the gaussian laser pulse

aenv = a0 exp
−(z−ct−z0)2

c2τ2 , we can come up with an expression for our effective electric field,

Eext = −
q

4γm
∇
∣∣A2

env

∣∣
Ez,ext = −

mc2

4γq
∂z

(
a20 exp

−2(z−ct−z0)2

c2τ2

)
= −mc2

4γq

(−4(z − ct− z0))

c2τ2

(
a20 exp

−2(z−ct−z0)2

c2τ2

)
=

m

γq

((z − ct− z0))

τ2
a2env.

The x and y-components of the external fields are zero. We also note that γ is defined as
γ =

√
1 + (p2 + q2 ⟨A2

env⟩)/(mc)2 and simplify by assuming p2 = 0 to γ ≈
√

1 + 0.5a2env. So our
final result of the effective electric field which approximates our pondermotive force due to the
laser is,

Ez,ext =
m((z − ct− z0))

qτ2
√

1 + 0.5a2env
a2env. (16)

6

A Appendix A: The Flux Jacobians
In the x-direction, the Flux Jacobian computed with Maxima is,

←→
A 1 =

(UxU

2
z+UxU

2
y+U3

x)γ

a

(U2
z+U2

y+1)γ

a −UxUy

γ3 −UxUz

γ3

−U2
x

γ3

(2UxU
2
z+2UxU

2
y+U3

x+2Ux)γ

a −U2
xUy

γ3 −U2
xUz

γ3

−UxUy

γ3

(UyU
2
z+U3

y+Uy)γ

a
(UxU

2
z+U3

x+Ux)γ
a −UxUyUz

γ3

−UxUz

γ3

(U3
z+(U2

y+1)Uz)γ

a −UxUyUz

γ3

(UxU
2
y+U3

x+Ux)γ

a

 (17)

←→
A 2 =

(UyU

2
z+U3

y+U2
xUy)γ

a −UxUy

γ3

(U2
z+U2

x+1)γ
a −UyUz

γ3

−UxUy

γ3

(UyU
2
z+U3

y+Uy)γ

a
(UxU

2
z+U3

x+Ux)γ
a −UxUyUz

γ3

−U2
y

γ3 −UxU
2
y

γ3

(2UyU
2
z+U3

y+(2U2
x+2)Uy)γ

a −U2
yUz

γ3

−UyUz

γ3 −UxUyUz

γ3

(U3
z+(U2

x+1)Uz)γ
a

(U3
y+(U2

x+1)Uy)γ

a

 (18)

←→
A 3 =

(U3

z+(U2
y+U2

x)Uz)γ

a −UxUz

γ3 −UyUz

γ3

(U2
y+U2

x+1)γ

a

−UxUz

γ3

(U3
z+(U2

y+1)Uz)γ

a −UxUyUz

γ3

(UxU
2
y+U3

x+Ux)γ

a

−UyUz

γ3 −UxUyUz

γ3

(U3
z+(U2

x+1)Uz)γ
a

(U3
y+(U2

x+1)Uy)γ

a

−U2
z

γ3 −UxU
2
z

γ3 −UyU
2
z

γ3

(U3
z+(2U2

y+2U2
x+2)Uz)γ

a

 (19)

where a ≡ c2γ3, and γ =
√
1 +U2/c2. The eigenvalues of λA1 = Vx with multiplicity four,

and similarly for λA2
= Vy, λA3

= Vz also both with multiplicity four.
In terms of primative variables, rather than conserved variables

←→
J 1 =

Vx

N
γ

(
1− V x2

c2

)
−NUxUy

a
−NUxUz

a

0 Vx 0 0
0 0 Vx 0
0 0 0 Vx

 (20)

←→
J 2 =

Vy

−NUxUy

a
N
γ

(
1− V y2

c2

)
−NUyUz

a

0 Vy 0 0
0 0 Vy 0
0 0 0 Vy

 (21)

←→
J 3 =

Vz

−NUxUz

a
−NUyUz

a
N
γ

(
1− V z2

c2

)
0 Vz 0 0
0 0 Vz 0
0 0 0 Vz

 (22)

References
[HC17] Adam V Higuera and John R Cary. Structure-preserving second-order integration of rel-

ativistic charged particle trajectories in electromagnetic fields. Physics of Plasmas, 24(5),
2017.

7

	Introduction
	Governing equations
	Space Discretization
	Operator Splitting
	Momentum Source, H&C Push
	Momentum Source, Non-Inertial Terms in RZ
	Boundary Conditions and Communications
	MUSCL Advection
	Primitive Variable Half-Step
	The ave() function
	The Flux() function
	Current and Charge Deposition

	Laser Envelope
	Appendix A: The Flux Jacobians

