
Analysis of Bancor Equations Supporting REX

Dan Larimer1 and Khaled A. Al-Hassanieh2

1CTO, Block.one
2Senior Software Engineer, Block.one

Introduction

In this document, we describe the Bancor equations used in REX, and the
reasoning behind setting the REX initial state and any possible constraints
on the system. We first present the relevant REX pool balances. These
balances are represented both by their C++ smart contract variable names
and by the mathematical variables used in the presented equations. If not
shown explicitly, the unit of all balances, paid fees and staked resources is
the blockchain core token SYS. The balances are

• total unlent represents the SYS balance that is available for renting. In
the following we use u to represent this balance, i.e., u = total unlent.

• total lent represents the total rented SYS balance. At any point in
time, total lent is the sum of tokens staked in all currently open loans.
In the following we use l = total lent.

• total rent is a virtual balance. The initial value of this balance must
be strictly positive as discussed below. The balances total rent and
total unlent are the two connectors of the Bancor algorithm which
determines CPU and Network renting prices. In the following we use
f = total rent.

For a detailed description of the REX smart contact, see Ref [1].

1



REX Loan Calculations

Upon renting CPU or Network resources, the amount staked to those resources
for 30 days is calculated as a function of the loan fee, ∆f , and the REX pool
balances u = total unlent and f = total rent, using Bancor equation. For a
given loan with id i, the equation is

∆u(i) = ∆f (i) u

f + ∆f (i)
. (1)

For example, if at a given point in time, u = 5× 107, and f = 3× 104, a loan
fee ∆f (i) = 1 results in renting ∆u(i) = 1666.6111 SYS worth of resources.
That is, the renting cost rate for this loan is ∆f (i)/∆u(i) ≈ 0.06%. In general,
the REX pool balances are large compared to the fee of a given loan, then
the renting cost rate can be estimated as

r ≈ f/u. (2)

When the loan described above is created, the REX pool balances are
updated as follows: u → u−∆u(i), l → l + ∆u(i), f → f + ∆f (i). In other
words, the staked amount ∆u(i) is moved from u to l, i.e., from total unlent
to total lent. In addition, the paid fee is added to total unlent. The overall
set of updates is

u → u−∆u(i) + ∆f (i),

l → l + ∆u(i),

f → f + ∆f (i).

Note that f is a virtual balance and there is no double spending by adding
∆f (i) to both u and f .

Initializing REX Pool

Initially, the REX pool is empty (u = l = 0). As lenders buy REX (lend SYS
tokens), u increases. On the other hand, the balance f is virtual and needs
to be initialized to some value f0. It is important to note that f0 must not
be zero; otherwise, the first loan will deplete the entire u balance no matter
how small the paid fee is. This can be easily verified by setting f = 0 in Eq 1
which results in ∆u = u for any ∆f > 0. Seeing that we must have f0 > 0,

2



the next step is to decide a practical value of f0. The REX pool balance u is
expected to reach tens of millions of SYS tokens rather quickly. We will use
the estimate u0 = 2× 107 as a reference value. A small f0 causes a problem
similar to the one caused by f0 = 0. For example, if f0 = 100, a payment
∆f = 100 gives a rented stake of ∆u = 1 × 107, which is half of the entire
pool. The same can be repeated and most of the pool can be rented using
only a small sum of fee payments. Following the first few loans, renting cost
increases rapidly and becomes too high.

On the other hand, setting f0 to a large value would lead to a prohibitively
high renting cost. By setting a target initial renting cost rate r0 ≈ 0.1%, and
using the u0 reference balance, Eq 2 gives f0 = 2× 104, which is the initial
value we choose for total rent.

Loan Expiration

When loan i expires, the corresponding rented resources, ∆u(i), are released,
i.e., moved from total lent back to total unlent. The balance f is updated
by subtracting the output of the inverse equation

∆f ′(i) = ∆u(i)
f ′

u′ + ∆u(i)
, (3)

where ∆u(i) was calculated using Eq 1, and u′ and f ′ are the values at loan
expiration. Since these values are in general different from the values at loan
creation, f ′ 6= f and u′ 6= u, we have ∆f ′(i) 6= ∆f (i). That is, the output
of Eq 3 is different from the fee paid at loan creation. To summarize, the
updates are

u′ → u′ + ∆u(i),

l′ → l′ −∆u(i),

f ′ → f ′ −∆f ′(i). (4)

Looking at Eq 3, we notice that if, at the time of expiration, total unlent
happens to be zero (u′ = 0), the equation gives ∆f ′(i) = f ′. And following
the update given by Eq 4, we get f ′ = 0 after the loan expires. As described
above, this leaves the market in an unstable state. One scenario that can
lead to this state is as follows: while there is at least one outstanding loan,
one or more REX owners may sell enough REX to cause total unlent to drop
to u′ = 0. Following that, one or more loans can expire resulting in f ′ = 0.

3



In order to prevent the system from reaching that state, we impose a
dynamic lower bound on u which we describe in the following section.

Unlent Balance Lower Bound

Let ulb be the dynamic lower bound of u, which means that at any point
in time we have u ≥ ulb. We must define ulb such that ulb > 0 as long as
there are outstanding loans, and ulb = 0 when all loans have expired. The
second condition allows REX owners to sell all their REX. Setting ulb to be a
fraction of l, i.e., ulb = α × l, where 0 < α < 1, satisfies both requirements.
In addition, we want a reasonably low ulb so that it does not routinely cause
selling orders to be queued and renting actions to fail. We set α = 0.2, i.e.,
ulb = 0.2× l.

Note that we chose to calculate ulb as a function of l instead of f for two
reasons. Fist, u is expected to be of a different order of magnitude than f
which makes the comparison impractical, and second, the value of f cannot
be used to determine whether there are outstanding loans.

Adjusting REX Pool Virtual Balance

We provide a backup solution that can be invoked in case REX initial condition
is out of balance. This can happen, for example, if after a period of time,
total unlent remains well below the reference value of u0 = 2× 107 described
above. It means that the initial renting cost rate is well above target value
r0 ≈ 0.1%, or the target rate determined by similar resource renting markets.

The action setrex allows producers to set the balance f to a predetermined
value calculated using Eq 2 as f0 ≈ r0 × u, where u is the current value of
total unlent and r0 is the target renting cost rate.

Derivation of the Equations

Bancor protocol [2] allows for instant liquidity by connecting a currency
reserve to a smart token. It defines the fractional reserve ratio as

F =
R

SP
,

4



where R is the current value of the currency reserve, S is the smart token
current supply, and P is the current token price relative to the reserve currency.
The protocol posits that F is always constant and is set to a predetermined
value which dictates the price behavior as a function of supply.

One of the results of the protocol is an equation that determines the
amount to be paid in return for a given number of tokens:

∆R = R0

[(
1 +

∆S

S0

) 1
F

− 1

]
, (5)

where R0 is the initial reserve value, S0 is the initial smart token supply, and
∆S is the number of issued tokens.

The inverse equation,

∆S = S0

[(
1 +

∆R

R0

)F

− 1

]
, (6)

determines the number of smart tokens issued in return for a given payment.
After the tokens are issued, the supply is updated to S = S0 + ∆S and the
reserve to R = R0 + ∆R.

Now consider a smart token that is connected to two reserves R(1) and
R(2), and assume that the fractional reserve ratio of the smart token is the
same for both reserves. A payment ∆R(1) results in ∆S issued tokens given
by Eq 6 applied to R(1):

∆S = S0

[(
1 +

∆R(1)

R
(1)
0

)F

− 1

]
=⇒ S0 + ∆S

S0

=

(
R

(1)
0 + ∆R(1)

R
(1)
0

)F

. (7)

If these tokens are then sold (equivalent to adding −∆S to the smart token
supply) in exchange for the second reserve currency, we obtain

∆R(2) = R
(2)
0

[(
1− ∆S

S

) 1
F

− 1

]
= R

(2)
0

[(
S0

S0 + ∆S

) 1
F

− 1

]
. (8)

Replacing Eq 7 in Eq 8 results in

∆R(2) = −R(2)
0

∆R(1)

R
(1)
0 + ∆R(1)

.

Note that ∆R(2) and ∆R(1) have opposite signs. In REX equations shown
above, the two reserves are f ≡ R(1) and u ≡ R(2).

5



References

[1] REX Implementation. https://github.com/EOSIO/eosio.contracts/
issues/117

[2] Eyal Hertzog, Guy Benartzi, and Galia Benartzi. Bancor Protocol White
Paper. https://storage.googleapis.com/website-bancor/2018/04/
01ba8253-bancor_protocol_whitepaper_en.pdf

All product and company names are trademarksTM or registered® trademarks
of their respective holders. Use of them does not imply any affiliation with or
endorsement by them.

Disclaimer: Block.one makes its contribution on a voluntary basis as a
member of the EOSIO community and is not responsible for ensuring the
overall performance of the software or any related applications. We make no
representation, warranty, guarantee or undertaking in respect of the releases
described here, the related GitHub release, the EOSIO software or any related
documentation, whether expressed or implied, including but not limited to
the warranties or merchantability, fitness for a particular purpose and nonin-
fringement. In no event shall we be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out
of or in connection with the software or documentation or the use or other
dealings in the software or documentation. Any test results or performance
figures are indicative and will not reflect performance under all conditions.
Any reference to any third party or third-party product, resource or service is
not an endorsement or recommendation by Block.one. We are not responsible,
and disclaim any and all responsibility and liability, for your use of or reliance
on any of these resources. Third-party resources may be updated, changed
or terminated at any time, so the information here may be out of date or
inaccurate.

6

https://github.com/EOSIO/eosio.contracts/issues/117
https://github.com/EOSIO/eosio.contracts/issues/117
https://storage.googleapis.com/website-bancor/2018/04/01ba8253-bancor_protocol_whitepaper_en.pdf
https://storage.googleapis.com/website-bancor/2018/04/01ba8253-bancor_protocol_whitepaper_en.pdf

