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Abstract

Control problems involving dynamical systems are ubiquitous in today’s products and
systems. A general tool to solve them optimally is Model Predictive Control (MPC). How-
ever, large amounts of resources and expert knowledge are required to realize MPC algo-
rithms such that they can run in real-time on control hardware, giving the approach lim-
ited success. In this thesis, a novel method is proposed and implemented to make MPC
and especially nonlinear MPC more viable, by using diffusion maps, a manifold learning
method.

Inspired by previous successes approximating MPC optimization functionality with
small sets of heuristics, the method works by finding low-dimensional nonlinear para-
metrizations of the dynamics of the controlled system, following a method by Dietrich
et al. [1] called closed observables. The key idea is to generate large numbers of state tra-
jectories and, through diffusion maps, find their low-dimensional coordinates. They are
utilized to produce functions interpolating the dynamics of the calculated control. This
allows one to create a controller similar to the heuristics-based ones, but fully automati-
cally generated. As this can fulfil the real-time requirements even for a large, complicated
nonlinear system, this opens the door for fully automated MPC integration, e.g. starting
directly from engineering models, without requiring excessive expert knowledge.

In order to generate data for the method, a general nonlinear MPC framework is devel-
oped. We test this for a simplified nonlinear system of a vehicle driving energy-efficiently
along a hilly road, using real-world height data. The proposed method is applied to the
generated control data and a controller based on the parametrizations is created. The per-
formance is compared to that of MPC. We conclude the thesis by looking at potential im-
provements to performance and usability.
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1. Introduction

Throughout the years, there have been many attempts to solve control problems optimally.
Taking a formal point of view, they can be reduced to a mathematical optimization prob-
lem: find a control function u such that u minimizes cost under condition of these con-
straints. This control function can take many forms — a set of parameters for a mechanical
device, an electronic programmable signal, or an ideal setpoint for a system. This is then
implemented in a control system.

As there are so many processes that use digital control, there is an enormous amount to
gain from developing better controllers. For example, in most cases, economical gains can
be made by steering machinery in factories to operate in a coordinated fashion and require
less energy or produce more. Environmental gains may be significant when controlling
processes such as chemical plants not to release harmful chemicals. Additionally, there
might even be some types of processes that are not possible without using very complex
control, be it moon landings, advanced chemical reactions or self-driving cars.

One general algorithm for solving these types of control problems involving dynamical
systems — systems that evolve with time — is Model Predictive Control [2], also known
as Receding Horizon Control. With Model Predictive Control, the problem is solved up
to a set time horizon, and the state of the system is predicted within this interval using a
model of the system, to find the control values that makes the system fulfil the constraints
while minimizing the cost. The first part of this optimal control is then implemented, and
the problem is again solved after observing how the system evolved during that time,
shifting the interval that is solved for forward (the horizon ”recedes”). Many different
flavours of Model Predictive Control have been developed over the years, and are suitable
for different types of applications, as can be seen in the comparison in table 1.1.

Setting up a mathematical optimisation problem is not always easy. First, we need to
understand the controlled system in more or less depth, and build up the model for how
it works. This also includes finding all the physical and non-physical parameters that
govern the system. In many cases, this knowledge is however already made available
from the design and engineering process. For using this knowledge to calculate the best
way of controlling it, we may then additionally require large amounts of analytical and
computational work. And when finally implementing the control system, there might
be things that are impossible to take into account on beforehand, such as discrepancies
between the model and the actual system, external disturbances during operation, or goals
and objectives that change in real-time. This is most often solved by performing online
optimization, (re-)computing parts of the solution as it is running, mostly using feedback
from the system.

This solution is very versatile, but requires computational power as the system is run-
ning, and that the solution is available fast enough to implement in real-time. If the opti-
mization algorithm is complex or requires very many computations, we thus require very
much computational power. This poses a problem, as we might not always have a super-
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Figure 1.1.: Potential fuel savings from truck improvements, according to [3]. The auto-
matic speed control Predictive Powertrain Control (PPC), can give large fuel sav-
ings for relatively small additional installation costs. A video explaining PPC
can be found at https://www.youtube.com/watch?v=8Z62SCSaJhQ.

computer available nearby,1 or the money required for one. Additionally, there needs to be
someone that can convert the understanding into a working control system — an expert
or a team of experts, which often is scarce at hand.

In today’s industry, this problem is solved in different ways. In most cases, one uses
a simpler controller, such as the industry standard PID-controller. For some systems, it
may be sufficient to solve a simplified problem, for example by linearization. For example,
linear Model Predictive Control has had enormous success in the industry over the last
decades, and is used for many systems that are not linear, where it most often produces a
suboptimal solution. Another solution is ignoring how the problem changes over time, by
solving a static problem. Both of these approaches may be simple enough that a solution
can be implemented on less advanced controllers. Often, no model is even required, as the
parameters necessary for tuning the control can be readily identified from the system. This
is another reason why these approaches are popular. An example which can be solved by
PID-controllers is a car speedometer, or cruise control, where the controller increases or
reduces motor throttle until the car has the desired speed.

A more involved approach to retain the advantages of the optimal solution is also to try
and calculate the optimal solutions, then try and find patterns in them to replace them with
something implementable. Although this requires extensive analysis and expert knowl-
edge, it might still be worthwhile. In some cases, with few enough variables, linear Model
Predictive Control can be approximated this way. The solution is then calculated explicitly
— the name is therefore explicit Model Predictive Control — and is only calculated once,
and is reused in each control step, which makes it incredibly fast.

Another approach, that has been tried by several truck companies have in the last years,

1Certainly true at least if one’s standards with regards to supercomputers are not from the ’90s, at which time
the supercomputers were about as powerful as today’s smartphones. Luckily for us, the supercomputer
standards have improved since then.
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Linear MPC

Nonlinear MPC

Explicit MPC

Solution time + - - ++
Guaranteed solution + - +
Complexity of cases - ++ - -

Optimality + ++ +
Model availability + - - -

Table 1.1.: A comparison of some of the different flavours of Model Predictive Control
(MPC).

involves approximate the optimal control patterns with simpler heuristics. There, they im-
plemented predictive cruise control, where height data from the road ahead of the truck is
used to calculate optimal speeds (and gear changes) for trucks. By analysing the optimal
control strategies calculated off-line, fuel-saving patterns2 have been identified and im-
plemented using simpler control heuristics.3 Thus, the knowledge of the optimal control
can be used without having to calculate it during operation. This is a crucial factor for
real-time control, where time or computational resources might not always be available.
The numbers quoted in how much fuel this saves vary, but usually lie in the 3–6% range.
As this is a very large saving for a relatively small implementational cost, the approach
has gained in popularity, and is now implemented by a variety of truck manufacturers. A
comparison on fuel savings and installation costs in different areas, which can be seen in
figure 1.1, clearly shows the potential gains.

One approach to try to understand or model a system is using statistical methods and
the relatives of them commonly referred to as machine learning, by the virtue of that pat-
terns and implications in data are found using the power of machine algorithms. Machine
learning is already used in several control applications:4 both as a modelling tool, to pro-
duce a model of a system in order to simulate and choose optimal control for it, and as an
optimisation tool, for example training a robot to coordinate its different leg actuators to
take a step.

Often, machine learning is mentioned in the same breath as another popular term, big
data, as the methods tend to rely on very large datasets. For the problem of control, this
can pose a problem, as data might be hard to obtain. In some cases, measurements are
needed where it is impossible or infeasible to place a sensor. For industry, the data might
be unavailable intellectual property. In addition, during stages of rapid development, it
might not be viable to wait a long time to gather enough data before the control can be
used — the system might not even be built yet.

Fortunately, data might not always need to come from the real world. Using the design
and engineering models from development of a product, many systems can be simulated

2Such as, decreasing the speed on the top of a hill and letting gravity do the work of regaining speed.
3Such as, ”if there is hilltop with enough downhill afterwards, then reduce gas before hilltop”.
4Other than the control strategies in trying to beat humans in all kinds of games; Google’s AlphaGo that beat

the reigning Go master was heavily trained using Reinforcement Learning, and research is currently being
done in developing Artificial Intelligence by making computers understand computer games.
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1. Introduction

to generate data. The amount of simulations needed for the optimization tools of machine
learning, often complicated and sometimes still not completely understood, might how-
ever still be inhibitory. Instead, with the models available, one can take a shortcut of using
machine learning to approximate another model-based optimisation algorithm — such as
Model Predictive Control.

In several cases, researchers have been able to accomplish exactly this: using the univer-
sal approximator property of neural networks to simulate the output of linearized Model
Predictive Control, without needing to solve its equations [4, 5]. This provides a solution
similar to explicit Model Predictive Control, but is more versatile, as it can be used in more
cases. However, training a neural network is not always a simple task, and may produce
varying results. Therefore, methods that are more predictable or easier to understand are
sometimes preferred.

Diffusion maps [6] is another type of machine learning based on manifold learning,
which uses the structure of data to build a good representation of it. By using a measure
of similarity between points (e.g. distance), a type of diffusion operator is created. The
key part of the method is that the eigenvectors of this diffusion operator form an intrinsic
parametrization of the underlying geometry, analogously to how the eigenfunctions of a
heat- or diffusion operator produce a basis for the geometry on which they operate. For
data with very many dimensions, but lying along a lower-dimensional space in the high-
dimensional space, diffusion happens only along the manifold, and therefore is oblivious
to the extra data dimensions. By choosing the most relevant eigenvectors, one obtains a
nonlinear low-dimensional approximation of the data. This approximation can be visu-
alized and interpreted as the low-dimensional manifold of the data, or used directly as a
basis for functions along the manifold.

As the state of a dynamical system moves along a low-dimensional manifold in a high-
dimensional state space, diffusion maps are a good candidate to use to build up a model of
a dynamical processes. The method of closed observables [1], additionally uses time-series
of the state variables of interest, to build up interpolated functions for the dynamics. Thus,
patterns in time and whole dynamic relationships can be encoded, making it particularly
suitable for approximation of a dynamic state, or a function of it. We can therefore use
closed observables to encode the effect of Model Predictive Control — going from state to
the optimal controls.

With these low-dimensional representations of optimal control inputs, we may then fi-
nally construct a controller that utilizes them to control the system. This control then shares
the benefits of Model Predictive Control’s good performance, but is much simpler to cal-
culate, as it is just a low-dimensional interpolation. This allows for using any model of the
system, such as complex engineering models from production, that with the aid of for ex-
ample Model Order Reduction [7] can be directly utilized for nonlinear Model Predictive
Control.

To summarize; in this thesis, an alternative way of combining Model Predictive Control
and machine learning is proposed, using diffusion maps. Using control data from offline
simulations with Model Predictive Control in different scenarios for a system, a diffusion
maps model for the control can be built. This is then used as the control strategy in a
controller, that can provide control for a real system. This can give the performance and
optimality of nonlinear Model Predictive Control, but at a fraction of the time, and provide
an approximate solution where a solver might fail to converge. Then, using data collected
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Figure 1.2.: A proposed control system for using Model Predictive Control to provide op-
timal control approximated by the machine learning method Diffusion Maps.
Offline simulations provide data for approximation of optimal control. The
control system can provide the control performance of nonlinear Model Pre-
dictive Control, without needing to solve complicated nonlinear optimization
problems during the online phase. This allows real-time implementation of
complex controllers.

in the real case, the model and the control can also be improved. The proposed system can
be seen in figure 1.2.

Similar to above, the goal of this thesis is to describe and show the feasibility of ap-
proximating nonlinear Model Predictive Control. This will be using the machine learning
methodology of diffusion maps with closed observables, to allow to automatically derive
a controller with the same optimality, but with much lower computational effort in appli-
cation. This will allow fully nonlinear Model Predictive Control to become an as useful
and applicable industry tool as its linear counterpart, and possibly even more accessible.
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2. Model Predictive Control

A control problem may be solved with many approaches, with the unifying goal that one
wishes to manipulate a system in order to minimize a cost. Common examples include
minimizing a difference between the system state and some ideal state, or a penalty on
some system variable, or them both combined, but the cost could be any abstract function
of the system. In an open-loop control scenario, we do this by calculating the best possible
strategy beforehand, based on how we know the system reacts, and then executing it on
our system. However, if there are some unknown disturbances or discrepancies in the
model, this might lead to bad results. It is therefore advantageous to use the current state
of the system for calculating the control response, for feedback or closed-loop control. For this,
a well-known example is the PID-controller, which outputs a control signal that has parts
that are Proportional to its input, and parts that scale with the Integral and the Derivative
of the input as well. However, such simple controllers can mostly still only act reactively,
since they only take into account information from the past. This limits the optimisation
that could be done when also including known information about the future.

A Model Predictive Controller (MPC controller) on the other hand, contains a model of the
controlled system, and uses this in optimisation to choose the best control strategy based
both on the current state and the predicted future state when following the control. In the
optimization, the optimizer thus chooses not only the very next control strategy to apply,
but also during a whole prediction horizon. In that way, strategies that are better in the
longer run are followed, and for example longer-term instabilities or infeasibilities may be
completely avoided.

However, every model has uncertainties, which is why an MPC controller only executes
the first part of its strategy, and then recomputes the optimal control based on newer mea-
surements of the state. This allows the system to be flexible and react also to unexpected
events, as long as the model is not too far from reality. This whole process is illustrated in
figure 2.1.

Typically, to reduce computational efforts, the prediction horizon is chosen to have a
finite length, as long as needed to give stability and predictive power, but as short as
possible to reduce excess calculations. To deal with stability issues, a terminal cost term
may also otherwise be added in the cost function, which represents the cost of instabilities
or other effects after the end of the horizon.

2.1. Control problem

As the field of optimization is broad and well-studied, let us start with some relevant and
necessary concepts and definitions.

9
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t0 

Thor 

u(t) 

x(t) 

t 
t1 

ΔTc 

Thor 

t2 
Figure 2.1.: An illustrative sketch for the MPC optimization method for the one-

dimensional state x(t) and control u(t). Based on the known data for x and
u at t0 (black solid lines) and the dynamics ẋ = f(x, u) of the system, a cost
functional C [x(·), u(·)] (not shown) is minimized for the prediction horizon
t ∈ [t0, t0 + Thor). The resulting optimal control values for u and correspond-
ing predicted states x (black dashed lines) are then used for the next ∆Tc until
t1, at which point the procedure is repeated for the interval t ∈ [t1, t1 + Thor),
resulting in new state and control values (blue). Note that the predictions need
not always be correct, in case of uncertainties (x, blue curve, leftmost solid
part).
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2.1. Control problem

2.1.1. Dynamical system

To begin with, we need to define what we mean with a dynamical system, in particular a
controllable dynamical system. We follow [8], and define it as a tuple of:

• a time t ∈ R

• a state variable x ∈ Rdx

• parameters of the system p ∈ Rdp

• control variables u ∈ Rdu , a vector of all system variables that we can manually
control

• a model for the dynamics of the system:

f : R× Rdx × Rdu × Rdp → Rdx

ẋ = f (t,x,u,p)

2.1.2. Optimal control problem

Additionally, we might have some parameters that we would like to control for. For our
optimal control problem, we may also have:

• constraint functions governing constraints for inequalities d : R×Rdx×Rdu×Rdp →
Rdd and equalities r : R× Rdx × Rdu × Rdp → Rdr

0 ≥ d (t,x,u,p)

0 = r (t,x,u,p)

• a (scalar) cost or optimality criterion Φ(t,x,u,p) (possibly also containing integrals
over time) which we want to keep as low as possible.

Thus, the optimal control problem is defined as finding the control functions u∗ that make
the system follow its bounds while operating with the minimal cost:

Find u∗(t) s.t.:
u∗ = argmin

u
Φ (t,x,u,p)

ẋ = f (t,x,u,p)

0 ≥ d (t,x,u,p)

0 = r (t,x,u,p)

11



2. Model Predictive Control

2.2. Model Predictive Control

Model Predictive Control (MPC) is well-established as a relatively general, easy-to-grasp
and practically applicable control method for when a model of a system is known. There
are therefore a variety of textbooks available for many different types and applications
of MPC. Camacho and Bordons’s book [2] is for example a popular, application-oriented
start, whereas Grüne and Pannek’s book [9] provides a more theoretical foundation for
nonlinear MPC. For this thesis at hand, a general outlook on optimal control and MPC
will be most appropriate. We will follow the notation and definitions of another good
introduction, the Ph.D. thesis of Frasch [8]. Below, we will start with a some necessary
definitions before going on to discuss the MPC problem itself and the way we can solve it.

To get one step closer to a solution, we parametrize our control problem by introducing
a basis for our control functions, depending on some finite set of control parameters {qk},
such that u = u({qk}). This makes the problem discrete, which allows for solution by di-
rect methods. In figure 2.1, this parametrization simply corresponds to the constant value
of the (here one-dimensional) control function during a time interval, a common choice
for simplicity known in control engineering as zero-order hold. Again, we may however use
any parametrization we would like, such as a piecewise linear basis function parametriza-
tion or splines. The problem now looks as follows:

Find {q∗k} s.t.:
{q∗k} = argmin

{qk}
Φ (t,x,u ({qk}) ,p)

ẋ = f (t,x,u ({qk}) ,p)

0 ≥ d (t,x,u ({qk}) ,p)

0 = r (t,x,u ({qk}) ,p)

(MPC-cont)

2.2.1. Solution methods for the Model Predictive Control problem

Throughout the years, many different solution approaches have been explored in order to
solve the MPC problem for very many different applications.

For a start, it is possible to integrate and solve the ordinary differential equation (ODE) of
the state analytically or include the exact integrals in the formulation (for example using
the maximum principle [10, 11] and then solving the resulting boundary-value problem). How-
ever, this is in most cases a hard task, and typically requires a different approach for each
model. Although this might be feasible in some cases, the more common approach is to
first discretize the ODE along the (finite) time horizon, resulting in (in general) a finite-
dimensional nonlinear programming (NLP) problem. This class of problems is well-studied
in mathematics, and has a range of different approaches for efficient solution.

In MPC’s history, the most widely used approach has been linear MPC, where one as-
sumes (or approximates) that the dynamics f , as well as the constraints d and r are linear,
and the cost Φ at most quadratic, in the state x and the control u. In this case, the prob-
lem is reduced to a quadratic programming (QP) problem, which can be solved by Active Set
methods, Feasible Direction methods or Pivoting to name a few. If one further restricts the
cost to 1-norm–type functions, that is, using absolute values of combinations of states and

12



2.2. Model Predictive Control

controls, then the problem can even be cast as a linear programming problem, which has
even more efficient solution [2].

Explicit MPC [12] is an adaptation of linear MPC developed for situations where the
computational resources are more restricted than what linear MPC typically allows for. In
the developing work, Bemporad et al. proved that the solution to the MPC problem with
constraints in some cases could be approximated by a piecewise linear function of state
and control. This means, that to access the online solution to the control problem, one
only requires very fast linear function evaluations, making the access of the optimal con-
trol orders of magnitude faster. The computational cost of optimisation is instead mainly
contained in one offline solution of a multiparametric QP problem, in order to find the coef-
ficients for the function, as well as the domains for each piecewise approximation. Using
this method, MPC is made available also in systems requiring very fast response times or
with very limited computational resources. Given the system equations and constraints,
explicit MPC can be implemented easily by available software, such as MATLAB® Pre-
dictive Control Toolbox™ [13] and its graphical programming environment Simulink®

[14].

In this work, we would however also like to include non-linear processes. For this more
general case, solution methods also exist, but the problem is a much harder one. Firstly,
since the problem no longer is quadratic, the same linearizations can no longer be made,
making other iterative solutions necessary. Also, in the general case, the optimisation prob-
lem that has to be solved also becomes non-convex. This means that problems can now
arise from being stuck in local optima, and the initialisation of the method can become
much more important. The constraints may also create regions which are locally infeasi-
ble, even for problems that have a feasible solution.

The solution methods for the general NLP problem can be classified into different cate-
gories, and are in general solved by iterative sequences of QP problems, which are getting
closer and closer to a solution. Typically, the gradients and sometimes Hessians (the ma-
trix of second derivatives) are needed. There are however also cases of NLPs that some or
most methods have problems finding solutions to, or where very many iterations and thus
computation time is needed. This lack of theoretical or practical bound on the time to solu-
tion is one major reason why the fully nonlinear MPC is not used as much as linearized or
approximated linear MPC. Another reason is the difficulty of obtaining or approximating
nonlinear models of the state of a system, which however is too large a field to be in the
scope of this thesis. For an overview, we refer to the one given in [8].

Many commercial and open-source solvers are available to solve optimisation problems,
from linear to nonlinear and nonconvex. Examples of open-source ones are Ipopt [15],
described in section 2.2.2 below, for nonlinear programming, and the GNU Linear Pro-
gramming Kit [16], for linear programming. Proprietary ones include AMPL [17], which
is both a nonconvex-capable solver and a mathematical language for formulating opti-
mization problems, that also other solvers use, CPLEX [18], which also is for both linear
and quadratic nonconvex problems, and Gurobi [19], for linear and mixed-integer pro-
gramming. The tools Mathematica, MAPLE and MATLAB® also all provide optimisation
toolboxes or frameworks for many different cases. A much more comprehensive list can
be found in [20].

13



2. Model Predictive Control

2.2.2. Ipopt and pyomo

In order to build a model of a problem in a both general and applicable way, the usage of a
modelling language is helpful. It typically provides tools for defining the necessary math-
ematical parts of an optimization problem such as objectives, constraints and variables,
and sometimes more advanced like expressions and set relations.

The python module pyomo [21] provides an algebraic modeling language in a software
package designed for solving most types of optimization problems. Due to its integration
in python, it allows for advanced high-level scripting using all of python’s capabilities
as a full-fledged programming language, such as defining functions for constraints and
objectives dynamically, and handling input and output of data on-the-fly.

To solve the optimization problem itself, pyomo utilizes a user-specified optimization
solver such as Ipopt [15] or Bonmin, and translates the optimization problem formulation
into the modeling language of the solver. This allows for an advanced, general, high-level
model description, while at the same time using the highly performant, low-level solvers
available and appropriate for the user’s need. Interior Point Optimizer (Ipopt) uses an in-
terior point line search filter method to solve general nonlinear programming problems.
Both pyomo and Ipopt are open source and freely available online, and are therefore excel-
lent options to use.

A recent addition to pyomo was pyomo.dae, the pyomo differential and algebraic equa-
tion toolbox [22], which extends pyomo with support for optimization using differential
equation and integral constraints and objectives. This makes pyomo.dae one of the few
open-source, freely available frameworks that can model and optimize most classes of
differential equations, especially without having to turn them into canonical forms. In
pyomo.dae, standard discretization schemes such as backward, forward and central finite
difference schemes for differentials and trapezoidal quadrature for integrals are provided,
as are extension capabilities for easy integration of own discretization schemes.

In fact, a nonlinear MPC software has already been implemented in pyomo, and is pos-
sibly going to be released as an official extension [23].1

2.3. Model scenario

Our primary test case, illustrated in figure 2.2, is that of a motorized vehicle driving on
a hilly road, trying to keep a set velocity on average, but occasionally going above and
below this velocity to save fuel. One example for this is rolling without gas over hilltops
and using downhill slopes to gain momentum for coming uphills. To add some nonlinear-
ities, we may also put in constraints, for example that the motor temperature must not get
too high. This is a typical predictive control scenario, as the amount of gas given depends
on the future (predicted) slope of the road, and is similar to that for which several truck
companies sell their products, advertised under names such as Predictive Powertrain Con-
trol (from Daimler [24]), Active Prediction (from Scania [25]), I-See (from Volvo [26]) and
EfficientCruise® (from MAN [27], using Continental’s eHorizon system [28]).

1Although attempts to contact the creators of the software have been made, in order to provide a comparison,
no reply was received by the time of completion of this thesis.
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h(x) 

v 

Fgrav 

Fmotor 

Fair 

Froll 

x 

Figure 2.2.: A sketch of the primary model scenario used in this thesis. A motorized vehi-
cle drives on a hilly road, affected by various forces, controlling its trajectory
through by the thrust of its motor (Fmotor). Various parameters affect the dy-
namics, summarized in table 2.1, together with the relevant dynamic equations
and variables.

2.3.1. State and control variables

For our model scenario, we have a the following state variables:

• The one-dimensional position along the road x, with derivatives velocity ẋ and ac-
celeration ẍ

• The motor temperature T

We also have control variables:

• The motor thrust or force Fmotor

• The braking force Fbrake

Using the distance along the road rather than horizontal distance, we keep our problem
one-dimensional.

2.3.2. Physical laws and constraints

In addition, we then have a set of physical laws, or constraints, that govern the dynamics
of the system:

• A set of external forces (see figure 2.2) on the vehicle:

– Air resistance Fair = −cair |ẋ| ẋ
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2. Model Predictive Control

Variable name Symbol Equivalent expression
Time t
Distance along road x x(t)

Velocity v ẋ(t), dx
dt (t)

Acceleration ẍ v̇(t), d2x
dt2 (t)

Height h h(x)

Slope s dh
dx(x)

Motor temperature T Tmotor, Tmotor(t)
Motor thrust force Fmotor Fmotor(t)
Braking force Fbrake Fbrake(t)
Air resistance Fair −cair |ẋ| ẋ
Effective gravitational force Fgrav −mcargs(x)
Rolling resistance Froll − sgn (ẋ) crollmcarg (1− |s(x)|)
Motor waste heat power Pheat (1− η)|ẋFmotor|
Air cooling power Pcool −kcool|ẋ|(T − Tair)
Radiative cooling power Prad −krad(T − Tair)

(a) The relevant variables for the physical test case scenario.
Description Constraint expres-

sion
Force balance mcarẍ =

Fmotor + Fbrake +
Fair + Fgrav + Froll

Heat energy bal-
ance

CmotorṪ = Pheat +
Pcool + Prad

Velocity limits vlow ≤ ẋ ≤ vhigh
Motor temperature
limits

(Tlow ≤) Tmotor ≤
Thigh

Motor thrust limits Fmotor, low ≤
Fmotor ≤ Fmotor, high

Braking limits Fbrake, low ≤
Fbrake ≤ Fbrake, high

(b) The constraints for the physical test case
scenario.

Objective Expression
Motor energy

∫ tend
t0

Fmotor(t
′)ẋ(t′) dt′

Keeping velocity
∫ tend
t0
|vdev(ẋ(t′))|2 dt′

Acceleration com-
fort

∫ tend
t0
|...x(t′)|2 dt′

Thrust smoothness
∫ tend
t0

∣∣∣F̈motor(t
′)
∣∣∣2 +∣∣∣F̈brake(t′)

∣∣∣2 dt′

(c) The objective terms in the cost function
for the physical test case scenario.

Table 2.1.: A summary of the relevant variables, constraints and parameters in the physical
test case scenario.
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2.3. Model scenario

– Work against gravity, Fgrav = −mcargs(x), where mcar is the mass of the car, g is
the acceleration of gravity (≈ 9.8ms−2), and s(x) = dh

dx is the slope of the road
at distance x,2 with h(x) being the height.

– Rolling resistance, Froll = − sgn (ẋ) crollFnormal = − sgn (ẋ) crollmcarg (1− |s(x)|)

which summarizes to a total force determining the acceleration of the car according
to Newton’s second law:

mcarẍ =Ftot

=Fmotor + Fbrake + Fair + Fgrav + Froll
(Force Bal.)

• Laws governing the evolution of the temperature of the motor, modeled with the
following energetical components:

– Heating from waste heat, proportional to the motor power times the efficiency
(η) inverted: Pheat = (1− η)|ẋFmotor|

– Cooling from the cooling system, roughly proportional to the velocity and the
temperature difference to the air: Pcool = −kcool|ẋ|(T − Tair)

– Cooling due to passive radiation of heat, roughly proportional to the tempera-
ture difference between the motor and the outside: Prad = −krad(T − Tair)

Thus, a very rough energetical model of the engine temperature could be summa-
rized as:

CmotorṪ =Pexchange (Temp. energy bal.)

=Pheat + Pcool + Prad (2.1)

where Cmotor is the thermal capacity of the motor.

Whereas these nonlinear differential equations will be imposed as constraints based on
physics, we might also have a set of upper and lower bounds on variables that we want
to impose due to economy, comfort or durability of the materials. In our case, these might
be:

• Upper (and lower) bounds for the motor temperature to ensure optimal performance
and long life (Tlow ≤) Tmotor ≤ Thigh

• Upper and lower bounds for the velocity, to keep in pace with traffic, to hold comfort
and to reach a destination in time vlow ≤ ẋ(t) ≤ vhigh, where the bounds vlow and vhigh
may also be varying (due to traffic, or to slow down in curves)

• Upper and lower bounds on motor power, similarly.

2The slope s is thus defined as the height gained per distance travelled along the road, which simplifies the
expression, and limits s to the interval (−1, 1).
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2. Model Predictive Control

2.3.3. Costs and objectives

Finally, we may decide on objectives, which are the functions to be optimized for, for
example:

• Energy consumption by the motor, the integral of power over time:

Φmotor =

∫ tend

t0

Pmotor(t
′)dt′

=

∫ tend

t0

Fmotor(t
′)ẋ(t′)dt′

(En. cost)

• Deviations from the desired velocity band, such that this is only left when enough
energy is saved:

Φvel =

∫ tend

t0

∣∣vdev(ẋ(t′))
∣∣2 dt′ (Vel. cost)

where

vdev(ẋ) =


ẋ− v+band, if ẋ > v+band

v−band − ẋ, if ẋ < v−band

0, otherwise.

• Passenger comfort; punishing the first or second derivatives of acceleration and mo-
tor/braking force, in order to avoid too violent acceleration (also keeping the control
variable smooth):

Φacc =

∫ tend

t0

∣∣...x(t′)
∣∣2 dt′ (Acc. cost)

Φforce =

∫ tend

t0

∣∣∣F̈motor(t
′)
∣∣∣2 +

∣∣∣F̈brake(t′)
∣∣∣2 dt′ (Mot. cost)

• We may also wish to use several of those in combination, for example through such
as a weighted sum:

Φ = wmotorΦmotor + wvelΦvel + waccΦacc + wforceΦforce

Using the energy consumption cost, even if together with the velocity deviation cost, typi-
cally shifts the observed velocities downwards. To compensate for this, we may introduce
another cost term to the energy integrand, such as−α(ẋ−vset +C)2, where α and C are ap-
propriately scaled constants. To then set an equilibrium velocity for a constant, flat height
profile, one can find the minimum of the resulting cost integrand with respect to velocity
(by differentiating) and set α and C such that the minimum of the cost is at the desired
velocity value.
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Figure 2.3.: Illustration of possible consequences of fixing the endpoint in time rather than
in space.

2.4. Distance reparametrization

In most cases, such as above, the parametrization of dynamical systems is most natu-
rally done by time; most equations defining the dynamics are usually described with time
derivatives, for example Newton’s second law md2x

dt2 = F , defining the linear relationship
between the second time derivative of an object’s position and the net force applied to it.
Additionally, some of the integral terms of the cost function, such as the net acceleration
experienced by a passenger, are inherently easiest to express relative to time.

However, when discretizing the MPC problem in equation (MPC-cont) with the scenario
of section 2.3 with respect to time, one encounters other problems. For the first, the descrip-
tion of some other variables may be trickier to express in a straightforward fashion with re-
spect to time. In our case, this becomes evident for the height variable, that is interpolated
from tabulated values with respect to distance, and thus also for its distance derivative,
defining the slope. As the position at a certain discretization timepoint then is strongly
coupled to velocity and position at neighbouring points, and thus indirectly through them
to all points, the problem becomes very strongly coupled and possibly harder to solve, as
each slope value contributes in the force balance equation (see equation (Force Bal.) in
section 2.3.1) through gravity.

Additionally, we need to take care how to define our prediction horizon. If we define
it to have a fixed length of time, the calculated solution also only needs to take this time
into account, and thus only the stretch of road travelled during this time. Since some of
the parameters that influence the cost of the problem — the height profile of the road, or
the corresponding slope — are functions of distance only, this means that, by controlling
such that high-cost (i.e. steep uphill) parts are not within the prediction horizon, the cost
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2. Model Predictive Control

is lowered. In terms of the car, illustrated in figure 2.3, this means that it is locally more
optimal to slow down, such that the hill only comes after the prediction horizon. However,
if letting the prediction horizon be until the car has passed the high-cost part, this might
be a suboptimal strategy.

To combat such problems, where a more optimal state of the current optimisation iter-
ation influences the next one negatively, there are various strategies. One can put con-
straints on the ending state, such that stability, feasibility or some kind of minimal re-
quirement is fulfilled, or add a terminal cost for the final state, which reflects the possible
disadvantage to the next iteration. However, these measures need to be cleverly designed,
in order to actually achieve the desired affect, while still allowing the optimisation freedom
to explore and find the optimal control solution.

In our case, we can follow the simpler approach of letting the prediction horizon have
a spatial length rather than a temporal length, that is, we optimize until a certain distance
point. This is possible using cut-off terms in the cost integral, to make the cost go to zero
for anything past the horizon, and adding relaxation terms to our constraints and dynam-
ical equations to make them automatically fulfilled once past the horizon. However, these
terms would be highly nonsmooth and incredibly nonlinear, and therefore harder to opti-
mize for.

The even simpler approach is therefore to discretize our domain with respect to distance
instead of time. Since there are strictly positive lower bounds on velocity v = ẋ = dx

dt > 0,
we have that distance (time) is a strictly increasing, bijective, function of time (distance),
and both variables can equally well be used to describe the system. Since the system does
not explicitly depend on time (but does on distance), no parametrization problems such
as those of the height variables in the time–parametrized system appear,3 eliminating one
more problem.

In order to transform the system, one thus only need to reparametrize all variables with
respect to distance instead of time, and also transform all time–dependent derivatives and
integrals to distance integrals. The resulting equations corresponding to the ones in sec-
tion 2.3 are slightly more nonlinear (see below) in terms of the discretization variable, but
this is more than outweighed by the constant values for beginning and end of the predic-
tion horizon in terms of difficulty of solution.

2.4.1. Distance-parametrized system equations

When changing to the distance parametrization, most expressions stay the same. However,
those including a time derivative or integral will change. Through the transformations

d
dt

= v(x)
d

dx
, dt =

dx
v(x)

3This is of course not the case anymore if also regarding traffic; this is however far beyond the scope of this
thesis.
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the need for t as an optimization variable is eliminated. This transforms equations (Force
Bal.) and (Temp. energy bal.) into

mcarv
dv
dx

= Ftot (Dist. force bal.)

Cmotorv
dT
dx

= Pexchange (Dist. temp. energy bal.)

and, with x0 and xend replacing t0 and tend, transforms the cost expressions (En. cost), (Vel.
cost), (Acc. cost) and (Mot. cost) into

Φmotor =

∫ tend

x0

dPmotor(x
′)

v
dx′ (Dist. en. cost)

=

∫ xend

x0

Fmotor(x
′) dx′

Φvel =

∫ xend

x0

|vdev(v(x′))|2

v(x′)
dx′ (Dist. vel. cost)

Φacc =

∫ xend

x0

∣∣∣v(x) d
dx

(
v(x)dv(x)

dx

)∣∣∣2
v(x)

dx′ (Dist. acc. cost)

=

∫ xend

x0

v(x)

∣∣∣∣∣(dv(x)

dx
)2 + v(x)

d2v

dx2

∣∣∣∣∣
2

dx′ (since v > 0)

Φforce =

∫ xend

x0

∣∣∣F̈motor(x
′)
∣∣∣2 +

∣∣∣F̈brake(x′)
∣∣∣2 dt′. (Dist. mot. cost)

As these new equations contain enough nonlinearities on their own, it was decided to
simplify the overall system and remove the temperature variable, as well as its equations,
to first focus on the most basic properties of the system. In addition, to keep the Φforce cost
term simple, it was decided to simply replace the time derivatives with distance deriva-
tives, which although not exactly equivalent is not much different for (relatively) slowly
changing velocities changing in a smaller range well away from zero. The effect remains
the same; the force values are smooth.4

Similarly to in for the time-discretized version of the energy cost Φmotor, the distance-
descretized cost also requires an extra compensating term in order to control the equilib-
rium point. In order to affect the cost for velocities lower than the set point less (thus still
promoting saving energy by accelerating over the set point through gravity), an asym-
metrical term −α

v was added, where α = 2cairv
3
set for an equilibrium velocity of vset on a

completely flat road.

2.5. External parameters and data

In order to generate scenarios similar to the real world, example height data along roads
may by downloaded using the Google Maps Elevation API [29], which allow downloading

4This is a requirement for the coming steps of approximation with diffusion maps, as elaborated upon in
section 3.2.
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of their data (albeit not using it in commercial products or abusing it in publication) with a
free license. A smooth height function h that can be differentiated to form the slope s = dh

dx
can then be formed for example by fitting of smooth functions. One good example would
be splines such as B–splines or fitting with Fourier polynomials. In practice, implementing
splines in pyomo does not come as naturally as Fourier approximations, as the expression
for a spline changes across the domain, which is harder to build into the optimisation
framework.

In practice, for the implementation of a controller, height data over the prediction hori-
zon could be retrieved for a big enough area using services similar to the Google Maps El-
evation API. With a current position localization through a GPS navigation system, height
data for the upcoming road section could then be extracted for use in the controller.
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For those with the right tools, there are vast amounts of information to unlock in data –
through analysis, pattern finding, approximation and much more. In this chapter, a broad
introduction is given to the fields relevant for this thesis, in order introduce and clearly
define the position of the methods used in relation with other ones in literature.

3.1. Approximation of Model Predictive Control as a function

Summarizing, the MPC method described in section 2.2 is essentially a function, which
takes data (e.g. a system state and some external information about the future) and re-
turns an output (e.g. values for applying a control strategy). Although this is a highly
complex and nonlinear function, we can still hope to approximate it with the tools avail-
able. With the increase in data available in all areas of society in the latest years, these
tools have become more and more important for both academia and business analysis,
and much research has gone into developing both new tools and theory about them, in the
area nowadays known as Machine Learning.

For the MPC method, approximating the solution of the whole problem is highly de-
sired. The reasons for this are numerous: for example, to avoid long computation times
that are undesirable in real-time settings by using something simpler to compute, or to pro-
vide a solution where an optimization solver might fail or get stuck in a local optimum.
There are also many examples where such things have been tried. One successful one is
Explicit MPC [12], where piecewise linear approximations are made from sampled solu-
tions. More complex ones include using neural networks to approximate the input-output
behaviour [4, 5].

3.2. Representation learning

Representation learning, as the name implies, is a subset of machine learning where the
task is to learn a different representation of the data. There are several reasons to do so,
which is usually reflected in what kind of representation we would want. The simplest
one could for example be compression, where we are interested in an as small or compact
representation of the data as possible, but many others include that we would addition-
ally want to extract some relevant features or structure, that could aid in the understanding
of the data. The differently represented data would then be subject to further analysis,
and not uncommonly fed to another supervised or unsupervised machine learning al-
gorithm, which would benefit from the new representation, for example because of the
smaller amount of data to process, or more exposed relevant details.

However, in all cases we would want to preserve as much (relevant) information as
possible in the data, while being as general as possible about what this information could
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contain, since in many cases we might not know what qualities of the data we are looking
for. What properties are then common to most data that we can use in finding the new
representation? Following Bengio et al. in [30], we here list some:

• Smoothness. If two points are similar or close according to some measure for the orig-
inal data, this relationship should be preserved in the representation, in order to aid
our understanding. This allows us to extract manifold-like structures, or to find natural
clusterings of the data.

• Multiple explanatory factors. There is often not only one factor explaining variation
of data, and the behaviour of this factor for one part of the data often generalizes to
the rest, so disentangling these can lead to a good representation. However, they can
still often be sparse, meaning that only few of them are active at one data sample.
Often, the factors can show spatial or temporal coherence on different scales, such fast
fluctuations in a stock price around a longer-time trend, or be hierarchical, with many
simple factors building up a hierarchy of more abstract ones, where the relations be-
tween the abstract ones might be simpler to describe. An example there could be the
movement of motor parts in a moving car with respect to the outside world, which
might be very complicated, but readily lets itself be decomposed in the translation
of the vehicle, which is a common factor for the whole car, and in the working of the
motor, which is much simpler to understand without the exterior movement. The
movement of the motor part can then easily be described as ”the car movement + the
movement within the motor”, which is a simple additive relationship, instead of a
complex curve through space, a feature common in many other laws of physics.

Because we often do not know exactly what we are looking for in a representation, repre-
sentation learning is usually unsupervised, that is, no correct examples or targets are pro-
vided to the method. Instead, as mentioned above, another supervised or unsupervised
machine learning algorithm may be run on top of the new representation. If in this case
another representation is obtained, that then is used as input for another layer of learning,
with arbitrary numbers of repetitions, the model and the learning method is called deep,
as in deep learning. There is a multitude of different methods available for representation
learning, both single-layer and deep, and to give an extensive recount is unfortunately
outside the scope of this thesis. However, to provide a sense of how the methods pre-
sented below are located within the field, the three categories outlined in [30] provide a
good basis:

• Probabilistic Models. Here, the problem is posed as finding a set of latent random vari-
ables that describe the underlying distribution of data in an as likely but sparse way
as possible, finding it by (approximately) maximising the posterior probability of the
latent variables given the data. Examples include the popular restricted Boltzmann ma-
chine[31, 32] and other Markov random field and Boltzmann machine models, and
(debateably, see [30, p. 1805]) sparse coding.

• Direct Representation Parametrizers. In contrast to probabilistic models, where the rep-
resentation is in underlying variables that represent the data, the function that is
learnt here directly encodes the representation of the data. Most methods do this
by constructing a parametrized encoding–decoding scheme, and then minimize the
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reconstruction error, that is, find the parameters that make the representation lose as
little information as possible. Of course, in order to make the representation different
from the original data, some structure has to be enforced upon the encoder (and de-
coder), such as lower output dimension or sparsity for the representation. Examples
include all kinds of autoencoders, and other related methods such as Predictive Sparse
Decomposition [33].

• Manifold–based Models. In manifold–based models, the data is expected to lie only
on or close to a manifold (or several) with (much) lower dimension than the original
data representation. The problem is then often posed as finding out the geometry of
this manifold, and then describing it in an appropriate manner. Examples include
t-SNE [34], and, described below, diffusion maps. In addition, some autoencoders
might also be interpreted as describing a manifold (again, [30]).

Before we start describing diffusion maps, it might be helpful to give a very simple exam-
ple of a technique which is used for the same purposes as many representation learning
methods, Principal Component Analysis (PCA), for which an excellent tutorial picture is
given in [35]. In PCA, we solve an eigenproblem to obtain a linear representation of the
data, and as such, we also get a direct representation encoding, as eigenvectors allow us
to extract the representation of any datapoint. The eigenvectors also span a (linear) man-
ifold. From a probabilistic perspective, the eigenvectors are also related to the leading
eigenvalues of the covariance matrix of a multivariate Gaussian distribution.

The method PCA is extremely useful for dimensionality reduction, which is at the heart
of what we aim to achieve by finding a good representation. However, since it can only
extract linear relationships, it is too limited for our purposes. For finding a non-linear
low-dimensional manifold reduction, we therefore need to turn to other techniques.

3.3. Diffusion maps

Diffusion maps [36] are a data analysis tool for parametrizing lower-dimensional mani-
folds embedded in higher dimensions. The method is based upon distances between near
neighbours, measured according to some kernel and metric, and as such. The idea is,
that for points sampled in an underlying manifold, the distance to these closest ones in
the high-dimensional space should approximately be the same as the distance in or along
the manifold. This is used for a type of diffusion operator between the points, which can
be normalized to produce an approximation of the real diffusion operator on the mani-
fold, and in the limit of unlimited data also converge to the continuous Laplace-Beltrami
operator[37]. As the eigenvectors or eigenfunctions of this continous operator provides
useful parameterizations of the underlying manifold [38], the key idea is the discrete eigen-
vectors should do this as well. These parametrizations have been constructed synthetic
and experimental data with success [6, 39, 40]. A sketched illustration of a parametriza-
tion is shown in figure 3.1.

What these results show, is that the eigenvector values can be interpreted as coordinates
in the most significant directions, or the directions the have most contribution to the dis-
tance within this manifold. This is illustrated in the results of figures 3.2 and 3.3. In the
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Figure 3.1.: Sketch of the parametrization by the diffusion maps method. For a set of data
in a high number of dimensions (in the case, three: x0, x1 and x2), the method
parametrizes the datapoints by two component directions (ψ0 and ψ1), such as
to faithfully represent distances along the data. These directions can be seen as
similar to the principal components extracted in PCA, but are typically nonlin-
ear.
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3.3. Diffusion maps

Figure 3.2.: A parametrization of a 2D surface in 3D. The surface is colored according to
the first diffusion map coordinate. Picture from [41].

figure 3.2, a classical example, a curled-up two-dimensional manifold embedded in three-
dimensional space is shown. The manifold is coloured according to the first eigendirection
obtained by diffusion maps. It has captured a main feature of the data: the coordinate
along the spiral.

In figure 3.3, the method was instead applied to a set of points uniformly distributed
inside the logo of the Technical University of Munich. Again, the first eigendirection cap-
tures something essential; the length along the continuous, thick curve making up the
logo. In addition, some other eigendirections are shown: the second eigendirection shows
a repetition of the first one, folded over itself. This reflects the nature of diffusion maps
as eigenmodes of the heat operator, whose eigenfunctions are oscillating functions over
the manifold, with increasing frequency with increasing eigenvalue. However, we also see
a second unique eigendirection: along the height of the logo. As this direction is shorter
than the length of the curve, its eigendirection has a lower eigenvalue, and therefore comes
later.

As eigenvectors, the eigendirections also form an orthogonal basis of the space of func-
tions on the data, giving a method to parametrize other functions through them as well.
This is also the basis for interpolating and extending functions through Geometric Harmon-
ics [42] (see section 3.4.3).

3.3.1. Method

To understand how it works, we will go through the diffusion maps method for a data
domain D, with some measure dµ. In this setting, the data can be interpereted both as
a point density over continuous space (for example dµ (x) = p (x) dx) and as as discrete
points in space (with dµ preferably being the counting metric, which integrates to the
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Figure 3.3.: A diffusion maps parametrization of the logo of the Technical University of
Munich. Three eigenmodes are shown. Top-left, the first eigendirection is
shown, which parametrizes the length along the logo. Top-right, the eigen-
mode parametrizing the height of the logo is seen. As the logo is longer than it
is wide, this mode has a higher frequency and therefore comes later in the or-
der. Another mode, which corresponds to the first eigendirection but doubled
in frequency, can be seen in the bottom-right.
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3.3. Diffusion maps

number of points in the domain of integration). We will use L2 (D,dµ) as the space of
square-integrable functions on the data with respect to the metric dµ.

In the discrete case, functions and operators will in most cases naturally correspond to
vectors and matrices. This simplifies integrals and operator applications to matrix and vec-
tor operations, and turns the eigenproblem into a symmetric matrix eigenvalue problem,
for which there are many algorithms available. This makes the method highly practically
implementable for discrete data.

Following, we look at the steps of the method.

• Choose a metric and a kernel for distances between datapoints: a scalar, symmetric,
positive semi-definite function k that associates a real value to each pair of data-
points.

k : D ×D → R
k (x,y) = k (y,x)∫

D

∫
D
f(x)f(y)k (x,y) dµ(x)dµ(y) ≥ 0,∀f ∈ L2 (D,dµ)

A common choice is to take an isotropic kernel that has rotational invariance, i.e.
k (x,y) = h (‖x− y‖), with the most common one being the Gaussian kernel

k (x,y) = exp

ñ
−‖x− y‖

2

ε2

ô
.

This metric is used to build a kernel operator K : L2 (D,dµ) → L2 (D,dµ), which
takes a function and convolutes it according to the kernel, thus sampling it according
the the distribution of the data.

Kf =

∫
D
f
(
y′
)
k
(
· ,y′

)
dµ(y′)

• In order for the method to approximate only the geometry of the data, and not
be influenced by the density of the samples, an extra normalization step is carried
through. That is, we put less weight on regions with high density, such that their
contribution is averaged over the neighbours in the same area. Through creating a
measure for the local density using the kernel, ρ(x) =

∫
D k (x,y′) dµ(y′), and using

it to weight the kernel operator, we create a normalized kernel.

knorm (x,y) =
k (x,y)

ρ(x)ρ(y)
(DM-norm)

• In order to make it a diffusion operator over the data, we need to create an operator
that describes a probability to diffuse to other points in the data space. This means
the operator must be stochastic, i.e. must conserve probability, which is done by using
another normalization. Since k̃ (x,y) defines the transition probability from x to
y, we want that the total probability of diffusing to any other point in the domain
should be 1. We thus let

k̃ (x,y) =
knorm (x,y)∫

D knorm (x,y′) dµ(y′)
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giving that

∫
D
k̃
(
x, z′

)
dµ(z′) =

∫
D knorm (x, z′) dµ(z′)∫
D knorm (x,y′) dµ(y′)

= 1 (∀x ∈ D)

That is, the new kernel applied to a distribution of data, will ”diffuse” it in space, but
still keep the total amount constant.

• Find the eigenvectors and eigenvalues of the operator K̃, by transforming it to the
similar, symmetric problem, with v(x) =

∫
D k (x,y′) dµ(y′) (so that k̃ (x,y) = k(x,y)

v(x) )

kS (x,y) = k̃ (x,y)

√
v(x)

v(y)

=
k (x,y)»
v(x)v(y)

so that kS is symmetric, and the eigenvalue problem turns into

KSψS = λSψS(
=

∫
D

k ( · ,y′)»
v( · )v(y′)

ψS( · ) dµ(y′)

)

=
(
v

1
2 K̃v−

1
2

)
ψS

and by right-multiplying with v−
1
2 , we get

K̃
(
v−

1
2ψS

)
= λS

(
v−

1
2ψS

)
so that for every eigenpair (λS, ψS) of KS, we have

(
λS, v

− 1
2ψS

)
as an eigenpair of K̃.

The resulting eigenfunctions can then be used as quantifiers of relevant coordinates on the
manifold.

The normalization step in equation (DM-norm) allow the eigenfunctions of the kernel
operator to exactly approximate those of the Laplace-Beltrami operator (sum of the sec-
ond partial derivatives, ∆ =

∑
i
∂2

∂x2i
) on the manifold [37]. Recalling that these eigen-

functions for a rectangular domains are a product of sines and cosines along the principal
dimensions of the rectangle, we can now begin to understand why this should give a good
parametrization. Since our diffusion is limited to within the data, we have correspond-
ingly Neumann boundary conditions on our domain. Thus, the first eigenfunction should
be constant, and the following ones should be sines along the ”longest” directions of the
manifold.
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3.3. Diffusion maps

3.3.2. For discrete datapoints

If we want to use discrete datapoints in the above method, we might recall that the individ-
ual datapoints are in fact samples of the underlying distribution of the data. Therefore, the
values we obtain from the diffusion maps method for discrete data are also only samples
of the values of the underlying parametrization. This means that one does not explicitly
obtain an expression of the underlying low-dimensional approximations, but only sam-
ples of them at the points of the data, i.e. if our eigenvector of choice for example describes
the length along the TUM-logo, as in figure 3.3, the resulting eigenvectors gives the value
of that length variable for each datapoint that was input to the method. This means that, if
we want to know the value of the parametrization at a point that was not included in the
original diffusion maps calculation, we need to use other methods, such as interpolation.

3.3.3. Repeated eigendirections

As seen in figure 3.3, one can have the problem that some of the directions are repeated.
As already mentioned, his since the method is based on the eigenvectors of the diffusion
operator, which are infinite in number and repeated in each dimension. To recover the
most parsimonious directions, a method was developed by Dsilva et al. [40], going succes-
sively through the directions with highest weight, and trying to recreate the coordinates
as local linear combinations of the previous ones. The method then rates the directions
based on leave-one-out–cross-validation error of this fit. A higher error means the direc-
tion could not be build from the previous ones, and thus that it is a new direction, rather
than a repetition of a previous one.

3.3.4. Diffusion maps for dynamical systems

A popular application using the relevance–extracting capabilities of diffusion maps has
been trying to extract the overarching macroscopic variables of large dynamical systems. In
the spirit of using good representations, in many places in engineering and the natural
sciences, properties a system which is very complicated on the small scale (from interac-
tions between millions of atoms) can be described well in terms of larger–scale quantities
(pressure, temperature). For example, these applications have been used to extract un-
derlying parameters in dynamical processes, such as identifying frequencies in pixel data
from videos and tones in digital music [43–45], or exploring energy surfaces for configura-
tions of large molecules [46].

The knowledge that the system is governed by differential equations, and thus smoothly
temporally coherent, is incorporated in different ways in the methods. In [43, 44], the metric
is built up through explicitly coding temporal correlations into the distance metric. In
[45], a linear contracting observer, related to the Koopman Operator [47–50] is constructed to
reconstruct the dynamics on the diffusion maps coordinates. In [46], the diffusion maps
coordinates are used to explore parameter sets related to timesteps that take much longer
to simulate.
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3. Learning Control Heuristics

Figure 3.4.: An illustration of the time-lagged or time-delayed variables. Each datapoint
is concatenated with the consecutive ones in its time series, here illustrated
drawn dotted lines grouping together triples of points. The aggregated dis-
tances between triples are then used as the pairwise distances needed for dif-
fusion maps.

3.3.5. Closed observables

Another way of incorporating the dynamics is by expanding each datapoint through the
time-delay-embedding, that is, incorporating a whole time-series as one datapoint. This way,
the distance metric compares differences between whole trajectories rather than single
points in time. The theorem behind this, Taken’s theorem [51, 52], states that observations
of a dynamical system are enough to reconstruct the dynamics of it. Berry et al., in [53],
demonstrated the efficiency of using diffusion maps exactly for extracting macroscopic
variables of dynamical systems. In a paper by Dietrich et al. [1], this was used to build an
approximate, low-dimensional version of the dynamics, with the low-dimensional approx-
imate dynamic variables referred to as closed observables, as they should be approximated
using so much dynamic information that the system is closed on the manifold.

The closed observables are constructed in a three-step process:

• Prerequisites. We assume that we have some type of dynamical system (such as de-
scribed in section 2.1.1), of which we can gather observations y(t) at times {t}. These
can be state or control variable values, or functions thereof. We also have a set of
starting variable values {x0}, and a set of parameters {p}, which can be system dy-
namic parameters, or information about future events. We gather data from the sys-
tem, so that we have series of observation values yk(p), for different parameters p at
a series of timepoints tk. The tk are taken to be equidistant and in increasing order,
for simplicity.

• Construction of the time-lagged manifold. For each starting point and each parameter
value, we construct time-lagged variables hk(p) by concatenating weighted observa-
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3.3. Diffusion maps

Figure 3.5.: Utilization of the diffusion maps coordinates. To utilize the diffusion maps
coordinates in the closed observables framework, three interpolations are nec-
essary. First, one needs to interpolate from the original coordinates and param-
eters (xi) to the diffusion maps coordinates (ψi). Then, in order to approximate
the dynamics, one interpolates the function going from one datapoint’s dif-
fusion maps coordinate to the subsequent one (following the arrows). Lastly,
values of the functions or variables that are desired are interpolated from the
diffusion maps coordinates (f(ψ)).

tions e−iκyk+i(p) for T consecutive timepoints (see figure 3.4)

hk(p) =
¶
yk(p), e−κyk+1(p), e−2κyk+2(p), . . . , e−(T−1)κyk+T−1(p)

©
T is chosen large enough to capture the dynamics of the system by Taken’s theorem,
and κ ≥ 0 is chosen appropriately small enough to weigh the more current observa-
tions higher, but large enough to not cut off the last values, such that enough points
are included. From each starting point and parameter combination, we can thus con-
struct multiple hk(p), as long as T < max

k
tk (or�), as the points are equidistant, i.e.,

tk+1 can be seen as a starting point for another T values with the same spacing in t.

• Construction of the closed observables. The closed observables are constructed as the
condensed representation of the time-lagged variables hk(p), by using the diffusion
maps method (see section 3.3.1 above for the method). Using the euclidean metric
distance between points, the trajectories are then compared, which by diffusion maps
should extract the underlying variables of the dynamics (optimally, as shown in [53]).

• Dynamics estimation. By a three-step interpolation, the dimension-reduced variables
ψi from diffusion maps can be used to approximate the dynamics of the system.
Firstly, the relation between starting values and parameters with the diffusion maps
coordinates ψ(x0,p) is interpolated through a function ψI(x0,p). Secondly, the dy-
namics in the low-dimensional coordinates G(ψk) = ψk+1 −ψk is interpolated by a
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functionGI . Finally, the outputs yk(p) are interpolated by a function yI(ψk). This is
illustrated in figure 3.5.

So what is the benefit of this process and three-step interpolation compared with for ex-
ample interpolating the dynamics on the original variables? As shown in [1], as long as
the dimension of the system in the diffusion maps coordinates is lower than that of the
original data, the storage requirements for interpolants is heavily reduced. A factor in the
order of 105, or approximately ”the difference between the memory of a smartphone and
a supercomputer”, is mentioned for an example in the paper.

3.4. Mathematical and computational methods

In the framework of diffusion maps and closed observables, there are many ways to im-
plement several of the parts, and some require special consideration.

3.4.1. Parameter reduction

In order to be able to use the Closed observables algorithm for predicting control outputs,
we need to do create the function ψI(x0,p) to interpolate from our state variables to the
diffusion map coordinates. However, as with much regression, having too many inputs
that are not relevant makes our interpolation likely to overfit to irrelevant data. Also, in-
cluding irrelevant parameters reduces performance with unnecessary calculations, as the
volume of our space we are interpolating from grows exponentially the dimension of our
input. Thus, it is necessary to reduce the dimensionality of our input by finding the rele-
vant state variables. Of course, we could try and mitigate this problem by sampling clev-
erly, using for example sparse grids [54] (described below), but this would require setting
up a sampling grid for maximal efficiency.

This is the classical problem of feature selection and feature extraction. Since we expect
the diffusion maps manifold to be highly nonlinear, we can forgo the classical approaches
extracting linear features such as PCA. A simple method that however finds locally linear
features is local regression [55], which allows us to fit for example a linear function locally,
and allow it to change over the dataset. By greedily selecting the features with most ex-
planatory power, or deselecting those which produces the least error when removed, we
can obtain the ”best” state variables using this.

3.4.2. Sampling

Since we we calculate the diffusion maps coordinates with sampled data, the resulting
eigenfunctions and parametrisations we obtain from the method are also only available to
us as the values sampled at the same points. In order to have a representation that we can
also use for new, unsampled starting and intermediate points, we need to interpolate the
results between the samples.

Additionally, whenever we want to use the result from the diffusion maps method, such
as when simulating the reduced dynamics and obtaining outputs in the Closed Observ-
ables method, we only have this at sampled points as well. If we want this at unsampled
points, we need to interpolate again.
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3.4. Mathematical and computational methods

Regardless of the way we interpolate and sample, unless we have very specific knowl-
edge of the problem at hand, the interpolation becomes harder the more parameters, or
dimensions, that can influence the result. This is referred to as the curse of dimensionality.

The same thing applies to our problem of interpolating a (multivariable) smooth func-
tion from a multidimensional input space. There are however many ways of mitigating
this problem. For example, there are several ways to sample the input domain, where we
might be interested in some areas more than others. For the first, areas we have already
sampled are unnecessary to sample more (unless there is also uncertainty which needs to
be sampled), and there might be some combinations of inputs that are invalid or unreach-
able in our scenarios, which we thus do not need to sample.

In our test case of approximating the dynamics of the MPC problem in section 2.3.1, the
most naive way of sampling would be to simply let the MPC implementation run along the
gathered parameter (height) data, and hope that this would adequately sample the whole
relevant input space. Since we can control the starting points for the MPC implementation,
we could however try different strategies to gain efficiency.

For example, we could try and analyse the space of input parameters, and uniformly
sample this space, eliminating the many doubled configurations where the inputs are very
similar to each other. Additionally, to make sure we would sample the whole relevant
space, we could systematically sample the relevant configurations of the dynamic vari-
ables, without having to rely on the dynamics to explore them for us.

An interesting approach for this was explored in [46], where diffusion maps were uti-
lized to find the relevant parameters to the dynamics, and after a run, the parameter sets
lying closest to the boundary of the approximated manifold were found, and extrapolated
”outwards” using local PCA.

Another method that allows sampling the whole space without having to sample all
dimensions fully is using sparse grids [54], that build a structured grid that allow for less
sampled points, while retaining information for interpolating the solution. This allows, for
the same level of error, to have O(N (logN)p−1) sampled points, where N is the number
of sample points along each dimension, and p the dimension, instead of O(Np) points for
a full grid.

3.4.3. Interpolation methods

As we need to use interpolation for the closed observables method, we go through a few
methods that could be used.

Nearest-neighbour interpolation approximates the value at a point by, as the name im-
plies, the value of the nearest neighbour. Although this is very simple to implement and to
calculate, it only gives piecewise constant approximations, that thus do not use any of the
regularity of the solution. The accuracy of the method roughly corresponds with distance
between points, so the error for the simple method scales as O(N

−1/p
tot ).

Linear interpolation approximates the value at a point x = (x0, x1, ...) by a, usually only
piecewise, linear function whose parameters are decided by the sampled points. The most
common approach is to sample the points on a full Cartesian grid, and then weight the con-
tribution of each point based on the position of the point within the grid cell of the point.
However, linear interpolation can be applied on any type of grid with some modifications
to get the best approximation on that type of grid.
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Sparse grids can for example be used for linear interpolation with a hierarchical com-
bination of basis, and other piecewise linear approximations may be done that use the
regularity of the function to approximate better. For example, local PCA might provide
better approximations of linear models valid for a small region, for example providing a
linear model based on the k nearest neighbours, or points within some close region, based
on another measure.

Various other variants of interpolation also use the nearest neighbours, but then inter-
polate based on some other criterion, as ”local” variants of the algorithms.

Geometric harmonics [42] is an extension method closely related to diffusion maps, which
extends functions defined on a setD to a larger domain D̄ ⊃ D, using parts of the diffusion
maps framework. This setting is typical for the diffusion maps setting, where D would be
the sampled datapoints and D̄ could be the manifold it is sampled from, or a superset of
it.

First, the diffusion maps eigenfunctions ψi are extended to D̄ by letting their value be
an average of that of the nearby data, weighted by the diffusion maps kernel,

ψ̄i(x̄) =
1

λi

∫
D
k(x̄,y)ψ(y) dµ(y)

with ψ̄i, x̄ ∈ D̄. Then, the function is built up using the same coefficients as on the diffusion
maps eigenfunctions on the original data, but on the extended basis functions

f(x̄) =
∑
i

〈f |ψi〉 ψ̄i(x)

where 〈 · | · 〉 is the standard inner product on D, 〈f |g〉 =
∫
D f(x)g(x) dµ(x).

3.4.4. Large eigenvalue computations

As part of the diffusion maps process, an eigenproblem needs to be solved. For a very large
amount of datapoints, such as might be needed to fully approximate the whole nonlinear
dynamical system, this eigenvalue computation might be too large to be handled by a
naive eigenvalue solution. As computing eigenvalues and eigenvectors of an n× n matrix
is typically an O(n3) process, there might be some necessary steps to take in order to be
able to calculate the solution for large n.

For the first, we realize that the eigenvalue problem can be solved by calculating the
eigenvalues of a symmetric matrix (see section 3.3.1).

For the second, while calculating the distances between datapoints, there should be
enough points that we deem to far away from each other to directly influence each other in
the computation (such that there is no chance for the diffusion process to diffuse between
these points). If we set the distance between them to infinity, or respectively the chance
to diffuse between the points to zero, the diffusion matrix should turn sparse, if we truly
have a low-dimensional manifold in a high-dimensional space, and we have chosen our
diffusion length right. Thus, we might be able to use algorithms for finding eigenvalues of
symmetric sparse matrices.

In addition, in the case of diffusion maps, we are only interested in the eigenvectors
which carry the most significance, which can be found among those with the largest eigen-
value magnitudes. This means we can reduce our search to finding the k largest eigenval-
ues, where k � n.
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3.4. Mathematical and computational methods

One such algorithm that can do this efficiently is the Lanczos algorithm [56], which iter-
atively builds up a Krylov subspace of a random starting vector, and finds the approxi-
mate eigenvectors within. It relies on matrix–vector multiplications to build up the sub-
space, and requires significantly less computation, for most practical cases O(kn2). It has
many variations. There exist many software libraries that implement these, for example
the ARnoldi PACKage (ARPACK) [57], and its recent continuation with parallel extensions.
ARPACK is included in for example MATLAB, where it is used in the eigenvalue solving
function eigs.
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4. Algorithm Overview

Just as the theory behind this thesis spans several fields, the implementation of the meth-
ods described in Part I also spans several separate parts. So, in order to not lose track of
the big picture, we here introduce the whole algorithm in an overview.

4.1. Schematic diagram

Starting from a scenario such as that in section 2.3, we create a dynamical model of the
system that encompasses the necessary features. Following the notation in section 2.3.1,
we identify the dynamics ẋ = f (x,u) of the system, and the constraints r and d, and a
set of parameters p. With this, we proceed to choose a cost function C and optimize for
this according to Model Predictive Control, described in section 2.2, choosing necessary
discretization parameters and prediction horizon lengths. The time-series data generated
for states and optimal controls here is then passed on for analysis by diffusion maps, de-
scribed in section 3.3. An approximation of the optimal controls is calculated, using the
underlying low-dimensional representation of the dynamics obtained. The representation
is then used to generate a low-dimensional controller by interpolative methods. Finally,
the efficiency of this controller is then validated in the validation framework described in
chapter 7.

This overview is summarized in figure 4.1 with references in table 4.1, with a more
graphical exposition sketched in figure 4.2. The following chapters will go into more detail
on the process. Source code can be found in Appendix C.
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Modelling 
Model 

Predictive 
Control 

Diffusion Maps Validation Scenario 

In section 2.3
(chapter 7)

In section 2.3
(chapter 7)

In section 2.2,
chapter 5, refs.

[8, 22, 58]

In section 3.3,
chapter 6, ref.

[36]

In chapter 7

Figure 4.1.: An overview flowchart of the algorithmic process described by this thesis. See
text and table 4.1 for more details.

Table 4.1.: The algorithm–relevant subparts of this thesis. See text and figure 4.1 for an
overview of the algorithm.

Theory Implementation References
Scenario and Model Section 2.3 Chapters 5 and 7
MPC Section 2.2 Chapter 5 [8, 22, 58]
Diffusion maps Section 3.3 Chapter 6 [36]
Validation (Chapter 7) Chapter 7
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4.1. Schematic diagram

t0 
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u(t) 
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Thor 
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(a) The scenario of choice is modelled, and op-
timised control values are calculated using
Model Predictive Control (section 2.2).

(b) The high-dimensional MPC control tra-
jectories are parameterized on a lower-
dimensional manifold by the using diffu-
sion maps, resulting in sampled values for
diffusion map coordinates ψ0 and ψ1 (sec-
tion 3.3.1).

(c) Functions between system variables and dif-
fusion maps coordinates as well as describ-
ing the diffusion maps coordinates’ dynam-
ics are interpolated to non-sampled points to
create functions approximating the optimal
control (section 3.4.3).

(d) The interpolated approximative functions
(f(·)) are used to construct a controller that
controls the system optimally. The con-
troller is validated in the validation frame-
work (chapter 7).

Figure 4.2.: Illustration of the steps in the algorithm.
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5. Practical Model Predictive Control

Just like with any algorithm, the implementation of MPC requires special considerations.
In this chapter, the measures taken and the specific implementation of the theory de-
scribed in chapter 2 are described and discussed. The relevant source code is found in
Appendix C.1.

5.1. Height data acquisition

In order to be able to generate realistic scenarios for our model system, we need data from
the real world. For the variation of height along a road, there are data to be downloaded
from the internet, with varying limitations on its use. For the purposes of this thesis, height
data from the Google Maps Elevation API [29] was deemed most useful, since the data is
accurate enough, has very good coverage, and above all, is free to use for research and
development purposes. In addition, it has a useful API for scripted downloading of data.

The routes that were chosen as scenarios were taken between appropriately situated
cities in Germany, Austria, Switzerland and Italy (see table 5.1), with both hillier and flatter
parts. The elevation data was then gathered at GPS locations for the roads retrieved from
Google’s navigation services, split up to provide desired resolution among the points.

A limitation of this approach was that the elevation retrieved ignores the existence of
tunnels through for example mountains, instead producing values for the ground level
vertically above the tunnel. For roads in many mountainous parts, the end results are thus
mostly relatively smooth height profiles, suitable for motorized vehicles, interspersed with
parts of extreme height differences up mountain sides. As such height profiles might be
infeasible to drive over at all, and also are not relevant for real scenarios, roads with too
extreme slope data were filtered out not to be used for simulation.

Destination cities
Berlin Frankfurt Konstanz Salzburg (Austria)

Cologne Freiburg Munich Bolzano (Italy)
Dresden Hamburg Stuttgart Lugano (Switzerland)

Erfurt Hanover Innsbruck (Austria) Zürich (Switzerland)

Table 5.1.: The different cities between which routes were selected as input to the MPC
algorithm. Routes including unrealistically high slopes were excluded.
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5. Practical Model Predictive Control

5.2. Model Predictive Control in pyomo

The module pyomo, as described previously in section 2.2.2, is highly versatile and flexible
for defining optimization models. The building blocks of a pyomo model are the same as
those used in mathematical language, including sets, parameters, variables, expressions,
constraints and objectives, and allowing us to translate the MPC problem of our test case
(see section 2.3) with relative ease into something that pyomo can use. They are defined as
python classes, allowing the use of python’s powerful capacities for data input/output
and processing.

The module pyomo is available through the python package index, for example using
the tool pip [59]. Version 5.2 of pyomo was used during development with python ver-
sion 3.5.2, as well as numerical library numpy, version 1.1.1 and scientific library scipy,
version 0.17.0.

As mentioned in section 2.2.2, pyomo interfaces with a back-end solver to solve the op-
timization problems, providing an interface for solver options. For Ipopt, the data transfer
proceeds through an intermediate file in the .nl format. To the untrained eye, this looks
mainly like assembler code, but it allows for limited amounts of proofreading, in addition
to pyomo’s own functions.

5.3. Model Predictive Control code organization

The code run the MPC algorithm with pyomo is split up into functional parts, each sep-
arated into a python class to facilitate modular decoupling and allow easy extendibility
and reusability. The parts consist roughly as follows: a model utility class VehicleModel,
in which the model is defined and the interactions with the pyomo model are centralized;
a parameter class Params, in which parameters are read and processed; a solver util-
ity class SolverUtil, handling the interaction with the solver; an output class interface
OutputInterface, from which subclasses can handle specific desired outputs and plots;
and a runner class SimulationManager, which coordinates the simulation and handles
initialization and stopping.

The main algorithm, as handled by SimulationManager, can be found in run.py.
An outline is given as follows, followed up with a closer explanation of what is going on
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5.3. Model Predictive Control code organization

in each part.

Algorithm 1: Optimal control strategy generation with MPC
input : Simulation parameters; Height data tabulated with distance
output: Time-series data of a system controlled with MPC

(1) build up and discretize model; initialise values;
(2) fix initial conditions;

// Main loop

while distance < end distance do
if not first iteration then

increase global distance counter by ∆Xc;
(3) shift previous solution by ∆Xc to provide initial guess for next solution;

end

(4) load and fix height data for current distance grid points;
(5) initialise derivative variables to their current values;

(6) solve optimisation problem for all variables;

foreach output object in registered outputs do
(7) save or print data from current state;

end
end

foreach output object in registered outputs do
(8) do final output;

end

Lines 1 and 2, Initialization: The parameters, from a command-line specified .json pa-
rameter file, are loaded and used to initialize the parameter class Params. From these
parameter values, accessed through Params, the main model class VehicleModel (sub-
classing BaseModel, which has basic functionality for extension) is initialized. Vehicle
Model wraps the pyomo model, and initializes all the pyomo model components: sets, pa-
rameters, variables, expressions, (differential equation-) constraints, integrals and objec-
tives (classes Set, Param, Var, Expression, Constraint and Objective of the mod-
ule pyomo.core.base and Integral and DerivativeVar of module pyomo.dae re-
spectively). This is done through specalized BaseModelmethods, named create variables
and similarly.

The discretization is done through the pyomo.dae module.

Lines 3 to 5, (Re-)Setting up: Before solving, the appropriate height values must always
be loaded to the model. This is done through methods on the Params class, which in-
terpolate and optionally smoothen the height data based on the neighbouring distance–
tabulated height values from the height file specified in the parameter file.

After all state variables are initialized, their distance derivatives are also initialized con-
sistently, so that the differential constraints are not violated already at the beginning, thus
making the initial guess closer to a correct solution.
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5. Practical Model Predictive Control

Because MPC iteratively solves the same problem with slightly different parameters,
it is also very beneficial to keep parts of the old solution as an initial guess to the next.
To do this, not only the boundary conditions (at the beginning distance boundary) are
shifted with the horizon, but also all the variable values. Since we define our grid to
be equidistant, this corresponds to simply letting every variable a[i] = a[i+∆], for a
variable a indexed by i, where ∆ is the number of distance grid intervals corresponding
to the distance shift. The last variable values of course have to be initialized to something
else, for example the values at the very last grid point in the old solution.

Line 6, Solving: To solve the optimization problem, the class SolverUtil wraps the
pyomo solver interface.

Lines 7 and 8, Saving and printing output: The interface OutputInterface roughly
follows the observer in the Model-View-Controller pattern, in the sense that it provides a
method to be notified by the controller SimulationManager when there is new data in
the model ModelUtil. Provided are two implementations which register to Simulation
Manager, SimpleOutputUtilwhich prints running status messages, and SavingOutput
Util which saves timeseries data and plots or writes it to file after simulation.

5.4. Parameter and method choices

For many of the expressions and equations in section 2.3, parameter values need to be sup-
plied. For some, such as vehicle weight, air drag coefficient, maximum thrust produced
by the motor etc., physical justifications or approximations might suffice. For others, such
as horizon length, coarseness of discretization and cost weights, physical parameters may
provide guidance, but will require careful testing to turn the system into one producing in-
teresting behaviour. In order to provide a uniform sample for comparison, all simulations
were done with the same parameter set, which can be found in table A.1 of Appendix A.

For the derivative discretization, a forward finite difference scheme was used, as this
turned out to give the fastest convergence with the same accuracy as other schemes. The
horizon length and discretization step numbers were found by setting them low enough
that it allowed a quick solution, but high enough to be accurate. This was determined by
comparing with results from choosing a doubly large horizon length or twice the number
of discretization steps.

For the cost function, a weighted sum of the costs presented in section 2.4.1 was cho-
sen, balancing the weights such that the optimal behaviour similar to the heuristics would
show, but velocity would not plummet for every uphill, and accelerations would be smooth,
but not completely flat.

Some example results are shown in figures 5.1 and 5.2, both along height profiles that
are computer-generated (figure 5.1) and from real height data (figure 5.2). There, some
examples where MPC produces significantly predictive behaviour can be seen.
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Figure 5.1.: The system’s response to two successive hills made up by Gaussian curves of
standard deviation 1000 and height 200, with centres 3000 apart.
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(a) An example where predictions can save energy. Even before the peak (at approximate distance
32000), the motor force is dropped, resulting in a lower velocity. Velocity is regained as the
vehicle rolls down the slope, the motor only reactivating when the slope is too flat to keep the
vehicle going at the desired speed. Additionally, no braking is needed to stay below the upper
velocity threshold.
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(b) More example output where the predictive power can save energy. Map data ©2017 GeoBasis-
DE/BKG (©2009), Google.

Figure 5.2.: MPC results for the distance between Stuttgart and Zürich. Map data ©2017
GeoBasis-DE/BKG (©2009), Google.
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In order to apply the diffusion maps method described in section 3.3.1, there are several
practical considerations that need to be made. This is the case whether one chooses to
use the diffusion maps framework directly to interpolate function values, as described in
section 3.4.3, or when using the closed observables framework described in section 3.3.5.
Firstly, as with most data analysis, the results are much improved by some pre- and post-
processing of the data, such as reducing data to the most relevant input. Secondly, the
diffusion maps algorithm itself leaves several different implementation options, for exam-
ple the choice of similarity metric and kernel scale. Finally, there is much to consider in
the numerical parts of the algorithms themselves. Below, we will try to cover each of these
areas and more, that was important in implementing the diffusion maps algorithm. Source
code can be found in Appendix C.2.

6.1. Overview of implementation

We start with a condensed overview, roughly following figure 6.1:

• Prerequisites. Simulation data with the desired dynamics, i.e. controlled optimally by
MPC, organized so that it is retrievable in a) contiguous time series and b) according
to the values of scenario parameters.

• Closed variables. From the chosen output/control variable(s), closed observables are
constructed as described in section 3.3.5.

– First, time-lagged variables are created by concatenating temporally subsequent
values for each datapoint.

– Then, the standard diffusion maps algorithm is run on the time-lagged variables
as described in section 3.3.1.

– The variables most relevant for tracking the diffusion maps coordinates are se-
lected, as outlined in section 3.4.1.

– Three different interpolating functions are created: one interpolating from the
original datapoints with the relevant parameters to diffusion maps coordinates,
one forming the dynamics by interpolating from the diffusion maps coordinates
of each datapoint to that of the next, and one that interpolates from the resulting
diffusion maps coordinates to the relevant output.

6.2. Preprocessing

In the scenarios run using the MPC algorithm described in chapter 5, some states and
behaviours were sampled more than others, as expected for real data. For example, there
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Figure 6.1.: An overview of the algorithmic framework for approximation of the MPC re-
sults using diffusion maps.

is more road corresponding to flat or only negligibly inclined distances than every different
kind of hill. Thus, the different types of desired behaviours were very unevenly sampled.

As the diffusion maps algorithm relies on parameterizing the differences between the
behaviours, it does not behave optimally when most data is the same, even when normal-
ized for sampling density. In many cases, an extreme behaviour may be seen so different
from the rest that the diffusion maps coordinates only characterize this one behaviour. This
isolation of a behaviour can be partly alleviated by making the diffusion maps kernel size
bigger, as this scales down the distances between points. The downside to this treatment is
that it also makes the other points seem more similar, and the method might therefore not
be able to discern between different behaviours among close points. A promising solution
to this may be variable-width kernels [60], where the kernel size is varied depending on the
sampling density, in an iterative process. This results in wide kernels where the sampling
density is low, and narrow kernels where the sampling density is high. Thus, both pat-
terns giving rise to large and small differences may be parametrized. This approach will
be target for future work.

A part solution to this overprioritization of extreme points is to filter out the possible
extremes, in our physical scenario characterized by trajectories including extreme slope
values. However, here one needs to be careful; we also want to keep as much informa-
tion as possible, and filtering out unusual behaviour reduces the difference in the cases
included.

Another issue caused by the concentration of similar datapoints together is that the pro-
cessing of the large amounts of data needed to sample the space starts requiring more
memory than that of a standard computer. With datasets of roads being up to 1000km
long, and datapoints being spaced at under 50m, one easily has 20000 datapoints just for
a single dataset. A similarity matrix between these points then already has 4 ∗ 108 entries,
which for double precision (standard in many MATLAB algorithms) corresponds to 3.2GB
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memory. This rises quadratically with number of datapoints, so combining all the avail-
able data becomes trickier. Although one may assume that many entries in a similarity
matrix should be close to zero (for points dissimilar to each other) and thus ignored, this
might not always be the case if the kernel size is big, for example due to the reasons above.

As overly subsampling the data may lead to low-density–region datapoints being too
far away from each other, another approach was used, iteratively removing the datapoints
having closest neighbours, thus deemed least important for the overall structure, with the
motivation of this allowing to keep points in low-density regions while still subsampling
the regions where the datapoints are much the same, for an overall more uniform den-
sity. The algorithm, found in the function prune closer points in prune output
matrices.py proceeds as follows:

Algorithm 2: Greedy datapoint subsampling
input : an array of datapoints; a similarity measure
output: selection with specified number of subsampled points

while selected number of points > required do
find one datapoint with smallest neighbour distance to a still selected point;
remove this datapoint from selection;

The specific implementation uses a python Priority Queue to keep a list of the entries
with the smallest neighbour distances, updating them lazily when the neighbour with the
closest distance is already removed from selection.

6.3. Code structure

The implementation of the diffusion maps algorithm was done in MATLAB for fast proto-
typing and visualisation purposes.

The main diffusion maps algorithm is found in two versions, one using a single, contigu-
ous time series from one simulation run (dmapsTesting.m), the other preprocessed, fil-
tered and merged time-lagged points (see section 6.2) from multiple runs (dmapsTesting
timlag.m). Below follows the outline for the single-file version, with file names of func-
tions in comments.

Algorithm 3: Diffusion maps with closed observables
input : Time-series data
output: Diffusion maps eigenvalues and eigenvectors

// Here starts the main algorithm

construct time-lagged manifold; // constructTimeLagged.m

compute pairwise distances between trajectories; // makeDistMatrix.m

compute kernel width from nearest neighbour distances;
construct kernel matrix; // constructKernelMat.m

normalize kernel matrix; // normalizeKernel.m

calculate diffusion maps eigenpairs; // constructDMaps.m

To construct the interpolating functions of the closed observables framework, MAT-
LAB built-in functions scatteredInterpolant and fitwere used, since these allowed
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quick prototyping and implementation. With scatteredInterpolant, one can interpo-
late from up to three-dimensional data, using natural neighbour interpolation, which is G1

smooth. With fit, one can also fit output with smoothening using e.g. LOESS [55], which
is beneficial for us when points near each other have differing values. The fit function
however only accepts two-dimensional input, which again limits its usability.

We will then use our three selected state variables and use scatteredInterpolant
to interpolate a function from them to the diffusion maps coordinates. We then interpolate
the dynamics on the manifold, if it seems two-dimensional using fit with LOESS, if it
seems tree-dimensional with scatteredInterpolant. We then use the same method to
calculate the output control variable.

Putting these three interpolation functions after another gives us the required controller,
i.e. we can use it to find the upcoming control value using the current state. The results
from this can be found in chapter 8.
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In order to validate the results of the MPC framework described in chapter 5, as well
as those for the diffusion maps approximation described in chapter 6, a framework was
developed in Matlab to independently simulate the scenario using the obtained control
values and compare the results.

7.1. Matlab implementation

Using the same equations, the test case scenario of a car on a hilly road, as described in
section 2.3.1, was implemented in MATLAB. To make the validation closer to a real-world
scenario, the MATLAB simulation uses a more accurate integrator, the standard ode45,
which uses an adaptive step-size explicit Runge-Kutta method of 4th order to integrate
the system of ODEs.

In order to incorporate the control calculated by the MPC framework, the saved control
values are loaded and used for the simulation, such that when the ODE is integrated in the
distance interval [xi, xi+1) corresponding to one control value Fi, that same value for Fi is
used, thereby tabulating the control F as a function of distance x.

As a naive reference controller, simple hand-tuned PID-controllers were used. The sce-
narios used for calculating the MPC controls were simulated for these controllers as well,
and the total cost over the distances were compared. Some results from this comparison
can be seen in table 8.1, with the full results in Appendix B.

In addition, controllers created using the diffusion maps with closed observables frame-
work were compared with the MPC- and PID- controllers.

A drawback from the comparison in MATLAB is that the derivatives required for the
acceleration and motor thrust smoothness costs are harder to evaluate. Thus, they were
ignored for the sake of comparison.
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Figure 7.1.: A schematic diagram of the validation framework. The framework is designed
such that different control schemes can be used for the same scenario, in order
to compare things such as runtime and performance metrics.

56



Part III.

Conclusion

57





8. Results and Discussion

In this chapter, we look at and discuss the results obtained from the different parts.

8.1. Model Predictive Control results

The MPC algorithm controls were compared with those of a simple hand-tuned PID con-
troller. As can be seen in table 8.1, the total integrated cost was significantly lower for the
MPC controller, especially for those roads that are expected to contain hillier parts. This
shows the cost benefits of the MPC algorithm managed to more cleverly plan for changes
in load due to inclination, as seen in figures 5.1 and 5.2.

8.2. Diffusion maps results and discussion

Plotting the diffusion maps coordinates against each other, one can see patterns in the
dynamics. In figures 8.1a and 8.1b, arrow plots of the gradients were made, colored and
sized by magnitude, and one can see a clear spiraling pattern. The pattern is not entirely
contained in two dimensions, but might be possible to use for control after smoothing.
In figure 8.4, a diffusion maps controller was implemented, and was able to steer along a
height curve consisting of five sinusoidals with semi-random coefficients, showing similar
energy–saving behaviours to the MPC controller.

To see if this was generalizable to real data, a similar controller was generated from
diffusion maps eigenvectors based on the data between Konstanz and Innsbruck. The
controller was then tested on the distance between Konstanz and Innsbruck, which has
the first few hundred meters in common with the previous road, but is then different. A
small stretch of the simulation can be seen in figure 8.5a, where energy–saving patterns
similar to the ones from MPC are seen. Looking at table 8.2, we can see that the cost ob-
tained was actually lower than that of MPC, which can have a number of explanations, the
main one most likely being the influence of the acceleration- and motor thrust smoothing
costs present in the MPC optimisation but unaccounted for in the tables above. The same
controller on an artificial sinusoidal curve performs much worse, as seen in section 8.2.

The worse performance on other types of curves also indicates that the features used
to interpolate to the diffusion maps coordinates might not be optimal. In order to find
better ones, we might either need to use more variables, or combine the features in an-
other way, i.e. use other types of interpolation. As the current implementation is limited
by MATLAB’s scatteredInterpolant and fit functions, with 3 and 2 number of fea-
tures maximum respectively, we conclude that switching to other methods, such as those
outlined in section 3.4.3 might improve performance.

One can also see that the training data heavily influences the results, since the controller
trained on the road between Bolzano and Innsbruck performs worse.
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(a) Diffusion maps coordinates for a height profile of two harmonically related sinusoidals (3λ1 =
4λ2). As is seen in the figure, the simple periodic height curve is easily parameterized by two
circles. The color indicates the speed along the manifold, from blue (slow) to yellow (fast).
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(b) Diffusion maps coordinates for a height profile of three nonharmonic sinusoidals(3λ1 = 4λ2 =
πλ3). The curves no longer overlap, and the space covered by the dynamics is larger. The
multiple crossings of curves with different directions indicate that the dynamics might not be
two-dimensional anymore.

Figure 8.1.
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Figure 8.2.: The same data as in figure 8.1b, but with the 13th eigenvector added to the
z-axis. Although it is hard to see in the two-dimensional image, the curves
no longer overlap; the curves of the dynamic are disentangled. As the height
parameter is three-dimensional, it would be expected that three dimensions
can describe the manifold.
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Cities Distance (km) PID cost/m MPC cost/m Height gain/loss (m)
Berlin to Hanover 284 0.85862 0.84902 +1365/-1347

Bolzano to Innsbruck 120 1.4062 0.88573 +2741/-2437
Bolzano to Salzburg 295 1.1547 0.86064 +4709/-4549

Dresden to Berlin 190 0.85634 0.8441 +781/-863
Innsbruck to Zuerich 81 1.1084 0.99943 +6201/-6370

Konstanz to Innsbruck 235 1.1455 0.97851 +5250/-5089
Konstanz to Salzburg 364 0.94662 0.84886 +3447/-3431
Konstanz to Stuttgart 171 0.98086 0.84570 +2068/-2234
Konstanz to Zuerich 68 0.8956 0.85265 +602/-607

Munich to Berlin 574 0.96322 0.84062 +5940/-6420
Munich to Bolzano 273 0.69066 0.84531 +3863/-4115
Munich to Salzburg 142 0.89217 0.8422 +1189/-1274
Munich to Stuttgart 231 0.91683 0.83792 +1907/-2174

Table 8.1.: Samples of the results comparing the MPC controller to a PID controller, using
a cost balancing energy usage and keeping the velocity. Worth noting is that the
improvement for the MPC controller is higher for roads that could be expected
to be more mountainous. For example, the controllers perform almost equally
well between Berlin and Hanover, whereas the comparable distance between
Bolzano and Salzburg gives the MPC controller much better performance. All
results can be seen in table B.1 of Appendix B.

Figure 8.3.: The parameterized diffusion maps manifold for a combination of 4 different
simulations using different real height data. Here, the periodic structure is not
so clear anymore. One can see a concentration of datapoints in some areas of
the manifold, even though most in the high-density areas have been filtered
away. However, there is a clear pattern of circling around an attractor around
the darker blue (slower) areas of higher concentration.
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Figure 8.4.: Simulation using a diffusion maps controller as outlined in this thesis. The
diffusion maps coordinates of the first, second, and eighth eigendirections are
interpolated from the state variables of velocity, slope 250m ahead, and slope
650m ahead. One can see behaviours similar to those of the MPC control, let-
ting velocity increase when going downhill.
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(a) Simulation using a diffusion maps controller as outlined in this thesis. The diffusion maps
coordinates of the first and second eigendirections are interpolated from the state variables of
motor thrust, slope 295m ahead, and slope 500m ahead. Again, one can see the energy–saving
behaviours of MPC being approximated. The controller was built from data generated between
Konstanz and Zürich, and used on the road between Konstanz and Innsbruck. This shows that
the controller generalizes knowledge trained on other data. Map data ©2017 GeoBasis-DE/BKG
(©2009), Google.
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(b) The same controller on a different height curve, this time an artificial sinusoidal curve with
amplitude 65m and wavelength 2600m. The controller fails to control this adequately, and per-
forms almost twice as bad as the PID controller (table 8.2). To improve robustness, one could
therefore consider combining the diffusion maps controller with a PID.

Figure 8.5.
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Road Training data PID cost/m MPC cost/m DM cost/m
Konstanz to Zuerich Konstanz to Innsbruck 0.89563 0.85266 0.82671
Konstanz to Zuerich Bolzano to Innsbruck 0.89563 0.85266 1.18159

65 cos 2πx
2600 Konstanz to Innsbruck 1.0047 0.9853 2.3191

Table 8.2.: Some results for using the diffusion maps-based controller. As can be seen, the
results are highly sensitive to the training data. Some types of roads, which the
controller has not seen before, may result in degraded performance, even simple
cases of sinusoids.

8.3. Outlook on further work

There are several improvements to be done on the different interpolations used, especially
to able to interpolate using more variables. One improvement would be implementing
efficient datastructures for nearest-neighbour search, which could much help local higher-
dimensional interpolating algorithms. Examples of these include ball-trees [61] and kD-
trees [62], which both work on dividing the space hierarchically to eliminate the most and
biggest branches of the trees, and therefore as many candidates as possible, with the fewest
comparisons.

Another improvement would be using better smoothing interpolation or fitting. As
there are numbers of outliers in the data which cannot easily be filtered away automat-
ically, it would be beneficial to have interpolation methods that are robust to this type of
noise, and still be able to operate in more than two dimensions.

To be able to include more data, and obtain more robust control patterns, other eigen-
value solvers could be used, that are more applicable for larger-scale problems. The basic
MATLAB implementation is restricted to single-core usage. Parallelizing over several ma-
chines would also give the benefit of providing more memory for a bigger kernel matrix.

8.4. Conclusion

In this thesis, a novel method of generating approximations of Model Predictive Control
(MPC) using diffusion maps with closed observables was proposed and implemented.
For this, an MPC framework was developed using the python module pyomo. Another
framework was developed to implement the diffusion maps method and convert the ap-
proximations into a controller. Finally, the controllers from both frameworks were com-
pared and validated for a test scenario of a car on a hilly road. Comparisons were made
both against each other and against a simpler PID-controller.

The MPC framework was shown to perform better than a simple PID-controller in all
cases, as seen in table B.1. The results for the proposed method are also promising, with
similar-looking optimizing behaviours as those for MPC seen in the diffusion maps con-
troller, for example in figure 8.5a. In one instance, the overall results were even better than
MPC, seen in table 8.2. However, the controller is highly sensitive to which training data
is used, and what features are selected for interpolating the control. In order to produce a
robust controller, more development is needed, and other methods, such as using variable
bandwidth kernels in diffusion maps, and refining the MATLAB interpolation algorithms,

65



8. Results and Discussion

are needed.
Nonetheless, the method already has several benefits compared with similar existing

methods. In contrast with explicit MPC [12], the method works well for nonlinear cases,
with many variables. Compared with using neural networks to approximate MPC [4,
5], the method is much more interpretable, visualizable, and the sampling error is more
controllable. If there are unsampled regions, one can look at the diffusion maps embedding
generated, see where the ”holes” are, and try to generate more data there.

Towards the overall goal of generating usable optimal control from engineering models,
this thesis therefore provides a first step and proof-of-concept. Diffusion maps with closed
observables is a promising way to generate approximations of optimal control from MPC,
however, more work needs to be done before the method is mature and robust.

66



Appendix

67





A. Parameter Values

This chapter contains the parameter values used in the algorithms in chapter 5.

Parameter name Symbol Value
Gravitational acceleration g 9.82ms−2

Vehicle mass mcar 1000kg
Air drag coefficient cair 0.5kgm−1

Rolling resistance coefficient croll 0.005
Velocity limits {vlow, vhigh} {25, 50}ms−1

Motor power limits {Fmotor, low, Fmotor, high} {0, 2946}N
Braking limits {Fbrake, low, Fbrake, high} {−2946, 0}N

Horizon length xend − x0 5000m
Discretization steps - 506
Iteration step length ∆Xp 500m

Energy cost coefficient wmotor 0.001
Velocity cost coefficient wvel 0.001

Acceleration cost coefficient wacc 0.001
Thrust smoothness coefficient wforce 0.1

Table A.1.: The parameters for the MPC simulations.
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B. Model Predictive Control Results

This chapter contains results for the simulations using the Model Predictive Control frame-
work in chapter 5.

Table B.1.: Results for the MPC simulations

Cities Distance (km) PID cost/m MPC cost/m Altitude gained/lost (m)

Berlin to Hamburg 287 0.85689 0.84740 +1072/-1103
Berlin to Hanover 284 0.85862 0.84902 +1365/-1347
Berlin to Salzburg 719 1.0004 0.85521 +8533/-8139
Berlin to Zuerich 820 1.072 0.85590 +11981/-11609
Bolzano to Innsbruck 120 1.4062 0.88573 +2741/-2437
Bolzano to Salzburg 295 1.1547 0.86064 +4709/-4549
Cologne to Berlin 566 0.93617 0.84832 +4933/-4946
Cologne to Erfurt 359 1.1556 0.85432 +6921/-6775
Cologne to Hamburg 426 0.9319 0.8473 +3798/-3844
Cologne to Hanover 288 0.92428 0.84836 +2755/-2750
Cologne to Zuerich 553 1.0449 0.85734 +8008/-7651
Dresden to Berlin 190 0.85634 0.8441 +781/-863
Dresden to Hamburg 492 0.87915 0.84625 +2887/-2999
Dresden to Hanover 362 0.87148 0.84668 +2079/-2143
Dresden to Innsbruck 611 0.9986 0.85695 +7714/-7255
Dresden to Salzburg 597 0.99966 0.85472 +8018/-7704
Dresden to Zuerich 700 1.0749 0.85525 +11677/-11386
Erfurt to Berlin 298 0.87570 0.84485 +1891/-2048
Erfurt to Dresden 214 0.90511 0.84702 +2312/-2387
Erfurt to Hamburg 386 0.88926 0.84373 +2872/-3061
Erfurt to Hanover 244 0.87977 0.8429 +1950/-2090
Erfurt to Innsbruck 567 1.0308 0.85688 +7144/-6762
Erfurt to Salzburg 550 1.0175 0.85432 +7435/-7198
Erfurt to Zuerich 534 0.14262 0.86082 +10814/-10599
Frankfurt to Cologne 188 0.89446 0.84567 +1904/-1953
Frankfurt to Dresden 458 0.93124 0.84954 +6069/-6052
Frankfurt to Erfurt 259 0.91582 0.85171 +3350/-3255
Frankfurt to Hamburg 491 0.91896 0.84675 +5547/-5641
Frankfurt to Hanover 349 0.91428 0.84693 +4481/-4526
Frankfurt to Salzburg 531 0.99244 0.85478 +6308/-5978
Freiburg to Berlin 789 0.9680 0.84649 +8278/-8514
Freiburg to Cologne 426 0.91022 0.8433 +3184/-3409
Freiburg to Dresden 669 0.9887 0.84733 +8100/-8255
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Table B.1.: Results for the MPC simulations

Cities Distance (km) PID cost/m MPC cost/m Altitude gained/lost (m)

Freiburg to Erfurt 515 0.90607 0.84687 +4545/-4623
Freiburg to Frankfurt 267 0.84769 0.84214 +784/-957
Freiburg to Hamburg 744 0.92870 0.84531 +7228/-7495
Freiburg to Hanover 604 0.91192 0.84492 +5774/-5993
Freiburg to Konstanz 121 0.9170 0.85943 +1564/-1419
Freiburg to Salzburg 564 0.96020 0.85126 +5775/-5617
Freiburg to Stuttgart 197 0.93165 0.85182 +1548/-1573
Hamburg to Hanover 158 0.86131 0.85144 +685/-636
Hamburg to Zuerich 835 1.0593 0.85671 +14587/-14179
Hanover to Salzburg 761 1.007 0.85481 +11389/-11015
Hanover to Zuerich 700 1.0452 0.85573 +12516/-12165
Innsbruck to Salzburg 184 0.86896 0.84045 +1078/-1223
Innsbruck to Zuerich 81 1.1084 0.99943 +6201/-6370
Konstanz to Berlin 781 1.0357 0.84578 +10910/-11288
Konstanz to Dresden 660 1.0407 0.84591 +10349/-10647
Konstanz to Erfurt 496 0.96204 0.84862 +9540/-9760
Konstanz to Frankfurt 356 0.9315 0.84043 +3383/-3697
Konstanz to Hamburg 801 0.11981 0.84528 +12733/-13139
Konstanz to Hanover 661 1.0227 0.84489 +11542/-11900
Konstanz to Innsbruck 235 1.1455 0.97851 +5250/-5089
Konstanz to Salzburg 364 0.94662 0.84886 +3447/-3431
Konstanz to Stuttgart 171 0.98086 0.84570 +2068/-2234
Konstanz to Zuerich 68 0.8956 0.85265 +602/-607
Munich to Berlin 574 0.96322 0.84062 +5940/-6420
Munich to Bolzano 273 0.69066 0.84531 +3863/-4115
Munich to Cologne 565 1.0408 0.84122 +7523/-7988
Munich to Dresden 452 0.96450 0.83975 +5510/-5909
Munich to Erfurt 406 0.96089 0.84088 +4888/-5209
Munich to Frankfurt 388 0.96737 0.83860 +4122/-4538
Munich to Freiburg 419 0.9282 0.84312 +3582/-3826
Munich to Hamburg 777 0.94733 0.8427 +7364/-7873
Munich to Hanover 619 0.99654 0.84232 +9070/-9528
Munich to Innsbruck 161 0.88102 0.85210 +814/-753
Munich to Salzburg 142 0.89217 0.8422 +1189/-1274
Munich to Stuttgart 231 0.91683 0.83792 +1907/-2174
Stuttgart to Berlin 620 0.98879 0.84628 +7218/-7430
Stuttgart to Cologne 362 0.9456 0.84320 +3611/-3806
Stuttgart to Dresden 498 0.99943 0.84685 +6982/-7114
Stuttgart to Erfurt 333 0.91472 0.85242 +6501/-6554
Stuttgart to Frankfurt 200 0.85308 0.84083 +1050/-1199
Stuttgart to Hamburg 638 0.9831 0.84537 +9631/-9874
Stuttgart to Hanover 500 0.99228 0.84499 +8418/-8609
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Table B.1.: Results for the MPC simulations

Cities Distance (km) PID cost/m MPC cost/m Altitude gained/lost (m)

Stuttgart to Salzburg 375 0.95238 0.85321 +3882/-3702
Stuttgart to Zuerich 214 1.04 0.85802 +3023/-2864
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C. Source Code

This chapter contains source code used to produce the results of this thesis. As even
this appendix was too small to contain all the code, most of it can instead be found at
https://github.com/EWannerberg/AutomaticHeuristicGeneration (as of 14
July 2017), for convenient usage with the git utility. The code here is split up into four
main parts: the MPC part,the core diffusion maps part, the closed observables part and
the validation part.

C.1. Model Predictive Control

The Model Predictive Control code is split into different classes as described in chap-
ter 5, which roughly correspond to a class each. The main algorithm is run from the
SimulationManager class in run.py.

Listing C.1: run.py
1 import model_util as mu
2 import solver_util as su
3 import output
4 import debug
5

6

7 __author__ = 'Erik Wannerberg'
8

9

10 class SimulationManager:
11 """
12 Class to control the simulation.
13 :type _model_obj: model_util.BaseModel
14 :type _solver_obj: solver_util.SolverUtil
15 :type _output_list: list[output.OutputInterface]
16 """
17 def __init__(self, model_obj, solver_obj, output_list=list()):
18 assert isinstance(model_obj, mu.BaseModel)
19

20 self._model_obj = model_obj # type: model_util.BaseModel
21

22 assert isinstance(solver_obj, su.SolverUtil)
23 self._solver_obj = solver_obj
24

25 if not isinstance(output_list, list):
26 assert isinstance(output_list, output.OutputInterface)
27 self._output_list = [output_list]
28 else:
29 assert all(isinstance(o, output.OutputInterface) for o in output_list)
30 self._output_list = output_list
31

32 self._error_printer = None
33

34 self.shift_length = 1
35
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36 def setup(self):
37 """
38 Call all the necessary functions in the right order on the participating objects.
39 :return:
40 :rtype:
41 """
42 import math
43 self._model_obj._create_params()
44 self._model_obj._create_variables()
45 self._model_obj._create_expressions()
46 self._model_obj._create_diffeq_constraints()
47 self._model_obj._create_integrals()
48 self._model_obj._discretize()
49 self._model_obj._create_objectives()
50 self._model_obj._presolve()
51

52 self._solver_obj._set_solver(solver_type=self._model_obj._parameters["solver"],
53

solver_executable=self._model_obj._parameters["solver_executable"])↪→
54 self.shift_length = math.floor(self._model_obj.parameters["delta_x"]
55 / self._model_obj.parameters["episode_length"]
56 * self._model_obj.parameters["episode_pts"])
57

58 def set_error_printer(self, error_printer):
59 """
60 Set an outputter to print when something goes wrong
61 :param error_printer: Outputter at error
62 :type error_printer: output.Outputinterface
63 """
64 assert isinstance(error_printer, output.OutputInterface)
65

66 self._error_printer = error_printer
67

68 def run(self):
69 """
70 Run the main simulation loop until completion.
71 """
72 status = self._solver_obj._solve()
73 if not status:
74 if self._error_printer is not None:
75 self._error_printer.print_output()
76 debug.CheckInstanceFeasibility(self._model_obj.model, 0.001)
77

78 for output_obj in self._output_list:
79 if isinstance(output_obj, output.SavingOutputUtil):
80 output_obj.set_index_var(self._model_obj.model.x_local)
81

82 output_obj.add_saved_vars(self._model_obj.model.v,
83 self._model_obj.model.braking_force,
84 self._model_obj.model.slope,
85 self._model_obj.model.height,
86 self._model_obj.model.inst_cost,
87 self._model_obj.model.motor_force,)
88

89 output_obj.update()
90

91 while ((self._model_obj.model.global_x_0.value
92 + self._model_obj.parameters["episode_length"]
93 + self._model_obj.parameters["delta_x"])
94 < self._model_obj.parameters["end_dist"]):
95

96 self._model_obj.shift_all(test_model.model.x_local, self.shift_length)
97 self._model_obj.model.global_x_0 +=

sorted(self._model_obj.model.x_local)[self.shift_length]↪→
98 self._model_obj._presolve()
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99

100 status = self._solver_obj._solve()
101

102 if not status:
103 if self._error_printer is not None:
104 self._error_printer.print_output()
105 debug.CheckInstanceFeasibility(self._model_obj.model, 0.001)
106

107 for output_obj in self._output_list:
108 output_obj.update()
109

110 for output_obj in self._output_list:
111 if isinstance(output_obj, output.SavingOutputUtil):
112 output_obj.print_output(self._model_obj.parameters["output_file"])
113 else:
114 output_obj.print_output()
115

116

117 if __name__ == "__main__":
118 import sys
119

120 filename = "example/test.json"
121 if len(sys.argv) > 1:
122 filename = sys.argv[1]
123

124 test_model = mu.VehicleModel(filename)
125

126 solver = su.SolverUtil(test_model)
127 outputter = output.SavingOutputUtil(test_model)
128 sout = output.SimpleOutputUtil(test_model)
129

130 runner = SimulationManager(model_obj=test_model,
131 solver_obj=solver,
132 output_list=[outputter, sout])
133 runner.setup()
134 runner.set_error_printer(sout)
135 solver._solver.options["max_iter"] = 5000
136 solver._solver.options["bound_relax_factor"] = 0.0001 # is actual constraint

satisfaction limit↪→
137 solver._solver.options["dual_inf_tol"] = 0.1
138 solver._solver.options["constr_viol_tol"] = 0.0001
139 runner.run()
140 solver.print_error_summary()
141

142 if test_model.parameters["plot_after_finish"]:
143 outputter.plot_result_graph()
144 sout.plot_result_graph()

C.2. Diffusion maps

This section contains the code from chapter 6.
The main script comes in two versions, in dmapsTesting.m and dmapsTesting
timlag.m, where the compute diffusion maps modes for single-timeseries runs and
multiple-timeseries runs respectively. The input files for dmapsTesting.m are the ones
given as output from the MPC part, whereas the ones for dmapsTesting timlag.m are
the ones saved after preprocessing by the functions in prune output matrices.py.

Listing C.2: dmapsTesting.m
1 %% Def ine parameters
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2 dataF i l e = ' . . / Val idat ion−MPC/heightmaps/Bo lzano to Innsbruck res502017
−06−24−05.09.52. out ' ;

3
4 % dataF i l e = 'C:/ Users /Publ ic /shareVM/ cos 5rand . out ' ;
5
6 num tl pts = 130 ;
7 num eigs = 30 ;
8 i g n o r e f i r s t = 250 ;
9 max a l lowed s lope = 0 . 2 ;

10 takeEvery = 1 ;
11 t l a g end a t t enua t i on = 0 . 2 ;
12 kerne l width minmedians = 6 ;
13 % kernel width maxmins = 1 . 5 ;
14 kerne l width medians = 2 ;
15
16 %% Import data
17 dataStruct = importdata ( da taF i l e ) ;
18 data = dataStruct . data ( i g n o r e f i r s t : end , : ) ;
19
20 f o r c e c o l = f i nd ( strcmp ( dataStruct . co lheaders , 'motor fo r ce ' ) ) ;
21 d i s t c o l = f i nd ( strcmp ( dataStruct . co lheaders , ' x l o c a l ' ) ) ;
22 s l o p e c o l = f i nd ( strcmp ( dataStruct . co lheader s , ' s l ope ' ) ) ;
23
24 num rows = max( s i z e ( data ) ) ;
25
26 %% cr ea t e f i l t e r f o r s l ope
27 h i g h s l o p e c o l s = abs ( data ( : , s l o p e c o l ) ) > max al lowed s lope ;
28 ignore rows = ze ro s ( s i z e ( h i g h s l o p e c o l s ) , ' l o g i c a l ' ) ;
29
30 ignore width = 40 ;
31 f o r i =1: i gnore width
32 ignore rows ( 1 : ( num rows−i + 1) ) = ignore rows ( 1 : ( num rows−i + 1) ) |

h i g h s l o p e c o l s ( i : num rows ) ;
33 ignore rows ( i : num rows ) = ignore rows ( i : num rows ) | h i g h s l o p e c o l s ( 1 : ( num rows−

i + 1) ) ;
34 end
35
36 %% cons t ruc t time−l agged mani fo ld
37 t l a g e x p o n e n t i a l f a c t o r = −l og ( t l a g end a t t enua t i on ) /( num tl pts −1) ;
38 timeLaggedData = constructTimeLagged ( z s c o r e ( data ( : , f o r c e c o l ) ) , num tl pts ,

t l a g e x p o n e n t i a l f a c t o r ) ;
39
40 i n d i c e s = 1 : s i z e ( timeLaggedData , 1 ) ;
41 % i nd i c e s = i nd i c e s (˜ i gnore rows ( f l o o r ( i gnore width /2) : ( num rows+f l o o r ( i gnore width

/2)−num tl pts ) ) ) ;
42 i n d i c e s = i nd i c e s (˜ i gnore rows ( 1 : ( num rows+1−num tl pts ) ) ) ;
43 r educed Ind i c e s = i nd i c e s ( 1 : takeEvery :max( s i z e ( i n d i c e s ) ) ) ;
44
45 %% Execute D i f f u s i on Maps a lgor i thm
46 di s t mat = makeDistMatrix ( timeLaggedData ( reducedInd ices , : ) ) ;
47 ke rne l w idth = median (min ( d i s t mat + eye ( s i z e ( d i s t mat ) ) *max(max( d i s t mat ) ) ) ) *

kerne l width minmedians ;
48 % kerne l w idth = max(min ( d i s t mat + eye ( s i z e ( d i s t mat ) ) *max(max( d i s t mat ) ) ) ) *

kernel width maxmins ;
49 % kerne l w idth = median ( d i s t mat ( : ) ) * kerne l width medians ;
50 kerne l mat = constructKernelMat ( dist mat , ke rne l w idth ) ;
51 kerne l mat = normal izeKerne l ( kerne l mat ) ;
52 [ e i gv e c t s , e i g v a l s ] = constructDMaps ( kernel mat , num eigs ) ;
53
54 %% Postproces s and p lo t
55 f i g u r e ; p l o t ( dataStruct . data ( reducedInd ices , d i s t c o l ) , e i g v e c t s ( : , [ 2 : 1 0 ] ) )
56 grads = c r e a t e g r a d i e n t s ( e i g v e c t s ( : , 2 : 3 0 ) , dataStruct . data ( reducedInd ices , d i s t c o l ) ) ;
57
58 i f ˜( e x i s t ( 'k' , 'var ' ) && ex i s t ( ' l ' , 'var ' ) && ex i s t ( 'm' , 'var ' ) )
59 k = 2 ; l = 3 ; m = 4 ;

78



C.2. Diffusion maps

60 end
61
62 f i g u r e ; q = quiver ( e i g v e c t s ( : , k ) , e i g v e c t s ( : , l ) , grads ( : , k−1) , grads ( : , l −1) , 3) ;
63 mags = sq r t (sum( grads ( : , [ k , l ] ) . ˆ 2 , 2 ) ) ;
64 co l o r a r r ows (q , mags )
65 x l ab e l ( [ '{\ bf \ p s i } ' , num2str ( k ) ] )
66 y l ab e l ( [ '{\ bf \ p s i } ' , num2str ( l ) ] )
67
68 f i g u r e ; q = quiver3 ( e i g v e c t s ( : , k ) , e i g v e c t s ( : , l ) , e i g v e c t s ( : ,m) , grads ( : , k−1) , grads

( : , l −1) , grads ( : ,m−1) , 3) ;
69 mags = sq r t (sum( grads ( : , [ k , l ,m] ) . ˆ 2 , 2 ) ) ;
70 co l o r a r r ows (q , mags )
71 x l ab e l ( [ '{\ bf \ p s i } ' , num2str ( k ) ] )
72 y l ab e l ( [ '{\ bf \ p s i } ' , num2str ( l ) ] )
73 z l a b e l ( [ '{\ bf \ p s i } ' , num2str (m) ] )

Listing C.3: dmapsTesting timlag.m
1 %% Def ine parameters
2 dataF i l e = ' r emoved s td fo r c e . csv ' ;
3
4 num eigs = 30 ;
5 % takeEvery = 1 ;
6 r educed Ind i c e s = 1 : 4000 ;
7 timeLagAttenuation = 0 . 0 1 ;
8
9 %% Import data

10 dataStruct = importdata ( da taF i l e ) ;
11 dataStruct . t extdata = char ( dataStruct . t extdata ) ;
12 dataStruct . c o lheade r s = s p l i t ( dataStruct . t extdata ( 3 : end ) , ' , ' ) ; % s t a r t s with '# '

due to numpy
13
14 d i s t c o l = f i nd ( strcmp ( dataStruct . co lheaders , ' x l o c a l ' ) ) ;
15 f o r c e c o l = f i nd ( strcmp ( dataStruct . co lheader s , 'motor fo r ce ' ) ) ;
16 i d c o l = f i nd ( strcmp ( dataStruct . co lheaders , ' da t a f i d ' ) ) ;
17 s l o p e c o l = f i nd ( strcmp ( dataStruct . co lheaders , ' s l ope ' ) ) ;
18
19 % ignore rows = c r e a t e S l o p eF i l t e r ( dataStruct . data , s l o p e c o l , d i s t c o l , 40 , 0 . 2 ,

i d c o l ) ;
20 data = dataStruct . data ( : , : ) ;
21 timeLaggedData = data ( : , (max( s i z e ( dataStruct . c o lheade r s ) )+1) : end ) ;
22 num tl pts = s i z e ( timeLaggedData , 2 ) ;
23 timeLagDecays = exp ( l og ( timeLagAttenuation ) / num tl pts * ( 0 : ( num tl pts −1) ) ) ;
24 %e x t r a c t s t a r t s
25 timeLaggedData = timeLaggedData . * ( ones ( s i z e ( timeLaggedData , 1 ) ,1 ) * timeLagDecays ) ;
26
27 %% Execute D i f f u s i on Maps a lgor i thm
28 di s t mat = makeDistMatrix ( timeLaggedData ( reducedInd ice s , : ) ) ;
29 ke rne l w idth = 600 ; %median (min ( d i s t mat + eye ( s i z e ( d i s t mat ) ) *max(max( d i s t mat ) ) ) )

*4 ;
30 kerne l mat = constructKernelMat ( dist mat , ke rne l w idth ) ;
31 kerne l mat = normal izeKerne l ( kerne l mat ) ;
32 [ e i gv e c t s , e i g v a l s ] = constructDMaps ( kernel mat , num eigs ) ;
33
34
35 %% Postproces s and p lo t
36 [ ˜ , inds ] = so r t ( data ( reducedInd ice s , d i s t c o l ) ) ;
37 f i g u r e ; p l o t ( data ( r educed Ind i c e s ( inds ) , d i s t c o l ) , e i g v e c t s ( inds , [ 2 : 1 0 ] ) )
38
39 %compute g rad i en t s once f o r each f i l e used
40 % grad i en t s = ze ro s ( s i z e ( e i g v e c t s ( : , 2 : end ) ) ) ;
41 % f o r id = reshape ( unique ( data ( : , i d c o l ) ) , 1 , [ ] )
42 % t h i s i d = data ( reducedInd ice s , i d c o l ) == id ;
43 % grad i en t s ( t h i s i d , : ) = c r e a t e g r a d i e n t s ( e i g v e c t s ( t h i s i d , 2 : end ) , data (

r educed Ind i c e s ( t h i s i d ) , d i s t c o l ) ) ;
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44 % end
45
46 i f ˜( e x i s t ( 'k' , 'var ' ) && ex i s t ( ' l ' , 'var ' ) && ex i s t ( 'm' , 'var ' ) )
47 k = 2 ; l = 3 ; m = 4 ;
48 end
49
50 f i g u r e ; q = s c a t t e r 3 ( data ( reducedInd ices , 6 ) , data ( reducedInd ices , 5) , data (

reducedInd ice s , 4 ) , 5 , e i g v e c t s ( : , k ) ) ;
51 % f i g u r e ; q = quiver ( e i g v e c t s ( : , k ) , e i g v e c t s ( : , l ) , g r ad i en t s ( : , k−1) , g r ad i en t s ( : , l −1)

, 3) ;
52 % mags = sq r t (sum( g rad i en t s ( : , [ k , l ] ) . ˆ 2 , 2 ) ) ;
53 % co l o r a r r ows (q , mags )
54 % x l ab e l ( k )
55 % y l ab e l ( l )
56 %
57 % f i g u r e ; q = quiver3 ( e i g v e c t s ( : , k ) , e i g v e c t s ( : , l ) , e i g v e c t s ( : ,m) , g r ad i en t s ( : , k−1) ,

g r ad i en t s ( : , l −1) , g r ad i en t s ( : ,m−1) , 3) ;
58 % mags = sq r t (sum( g rad i en t s ( : , [ k , l ,m] ) . ˆ 2 , 2 ) ) ;
59 % co l o r a r r ows (q , mags )
60 % x l ab e l ( k )
61 % y l ab e l ( l )
62 % z l a b e l (m)

Below follow the functions used in the two scripts, in order of usage.

Listing C.4: constructTimeLagged.m
1 func t i on [ t ime lagged matr ix ] = constructTimeLagged ( datapoints , num pts ,

weight kappa )
2 %CONSTRUCTTIMELAGGED Construct time−l agged v a r i a b l e s
3 % Construct a matrix o f time−l agged v a r i a b l e s by appending each data
4 % point by the subsequent po in t s in the f i r s t dimension , weighted by
5 % exp(−weight kappa * i ) , where i i s the d i f f e r e n c e in index between the
6 % point and the subsequent added one
7
8 o r i g s i z e = s i z e ( datapo int s ) ;
9 new num rows = o r i g s i z e (1 )−num pts+1;

10
11
12
13 t ime lagged matr ix = ze ro s ( new num rows , o r i g s i z e (2 ) * num pts ) ;
14
15 f o r i = 1 : num pts
16 t ime lagged matr ix ( : , ( ( i −1)* o r i g s i z e (2 )+1) : ( i * o r i g s i z e (2 ) ) ) = ...
17 datapo int s ( i : ( new num rows + i − 1) , : ) *exp(−weight kappa *( i −1) ) ;
18 end
19
20 end

Listing C.5: makeDistMatrix.m
1 func t i on [ output mat ] = makeDistMatrix ( input mat )
2 %MAKEDISTMATRIX Ba s i c a l l y squareform ( pd i s t ( input ) )
3
4 output mat = squareform ( pd i s t ( input mat ) ) ;
5
6 end

Listing C.6: constructKernelMat.m
1 func t i on [ ke rne l mat r i x ] = constructKernelMat ( d i s t mat r ix , ke rne l w idth )
2 %CONSTRUCTKERNELMAT Build the ke rne l matrix us ing the gauss ian ke rne l .
3
4 ke rne l mat r i x = exp(−( d i s t ma t r i x . ˆ 2 ) . / ( ke rne l w idth . ˆ 2 ) ) ;
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5
6 end

Listing C.7: normalizeKernel.m
1 func t i on [ normal i zed kerne l mat ] = normal izeKerne l ( kerne l matr ix , a lpha exp )
2 %NORMALIZEKERNEL perform norma l i za t i on
3 % This makes the d i f f u s i o n maps e i g env e c t o r s equ iva l en t to the heat k e rn e l s
4 % on the mani fo ld .
5
6 i f narg in < 2
7 alpha exp = 1 ;
8 end
9

10 den s i t y e s t ima t e = sum( kerne l matr ix , 2 ) ;
11
12 multvector = diag ( spar s e ( d en s i t y e s t ima t e .ˆ(− alpha exp ) ) ) ;
13
14 normal i zed kerne l mat = multvector * ke rne l mat r i x * multvector ;
15
16
17 end

Listing C.8: constructDMaps.m
1 func t i on [ e i gve c t s , e i g v a l s ] = constructDMaps ( kerne l matr ix , num components )
2 %CONSTRUCTDMAPS
3 %
4
5 % norma l i za t i on f a c t o r
6 invroot rowsum = 1./ spar s e ( s q r t (sum( kerne l matr ix , 2 ) ) ) ;
7
8 % symmetrize f o r computat iona l ly more e f f i c i e n t s o l u t i o n
9 symmetr i c kerne l = diag ( invroot rowsum ) * ke rne l mat r i x * diag ( invroot rowsum ) ;

10
11 % so l v e e igenproblem
12 [ vects , va l s ] = computeEigs ( symmetr ic kerne l , num components ) ;
13 e i g v a l s = diag ( va l s ) ;
14
15 % undo symmetric t ran format ion to get r e a l e i g v e c t s
16 vec t s = diag ( invroot rowsum ) * vec t s ;
17
18 % normal ize
19 e i g v e c t s = vec t s * diag ( spar s e ( 1 . / sq r t (sum( vec t s . ˆ 2 , 1 ) ) ) ) ;
20
21 % so r t in to descending order
22 [ e i gva l s , inds ] = so r t ( e i gva l s , 'descend ' ) ;
23 e i g v e c t s = e i g v e c t s ( : , inds ) ;
24
25 end

The last file, constructDMaps.m, also uses computeEigs.m for computing the eigen-
pairs.

Listing C.9: computeEigs.m
1 func t i on [ e i gvec s , e i g v a l s ] = computeEigs ( symm matrix , num components )
2 %COMPUTEEIGS Compute e i g env e c t o r s and e i g enva lu e s
3 % current implementation us ing matlab e i g s with opt im i za t i on s f o r
4 % symmetric matrix
5
6 op t i s . issymm = true ;
7 op t i s . d i sp = 2 ;
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8 op t i s . t o l = 1e−8;
9 op t i s . maxit = 1500 ;

10 op t i s . p = min (200 , s i z e ( symm matrix , 1 ) ) ;
11
12 d i sp ( ' Sta r t i ng e i g enva lue s o l v i n g ' )
13 [ e i gvec s , e i gva l s , f l a g ] = e i g s ( symm matrix , num components , 'LM' , o p t i s ) ;
14 d i sp ( 'Eigenvalue s o l v i n g f i n i s h ed , complete convergence : ' + s t r i n g ( not ( boolean ( f l a g

) ) ) )
15
16 end
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For processing many datapoints, the data may be pruned using the utility functions of
prune output matrices.py, for example prune output matrices.

Listing C.10: prune output matrices.py

95 def prune_closer_points(input_data, column_dist_subset=slice(None),
96 keep_max_number=None, ignore_distances_under=None):
97

98 import scipy.spatial.distance as sd
99 import numpy as np
100 import heapq
101

102 num_inputs = np.shape(input_data)[0]
103 dist_mat = sd.squareform(sd.pdist(input_data[:, column_dist_subset],
104 metric='sqeuclidean'))
105

106 # find the closest neighbours to all points
107

108 # add something big to diagonal to not see self as closest
109 biggest_value = np.amax(dist_mat)
110 dist_mat[np.arange(0, num_inputs), np.arange(0, num_inputs)] = biggest_value
111 minimum_dist_indices = np.argmin(dist_mat, axis=1)
112 minimum_dist_values = dist_mat[np.arange(0, num_inputs), minimum_dist_indices]
113

114 if keep_max_number is None or keep_max_number > num_inputs:
115 keep_max_number = 0
116

117 if ignore_distances_under is None:
118 ignore_distances_under = np.percentile(minimum_dist_values, 25,
119 interpolation='nearest')
120 elif ignore_distances_under is None:
121 ignore_distances_under = np.inf
122

123 ignore_distances_under **= 2
124 prune = np.zeros_like(minimum_dist_indices, dtype=bool)
125

126 pqueue = [(minimum_dist_values[i], i, minimum_dist_indices[i])
127 for i in range(num_inputs)]
128

129 # turn into priority queue
130 heapq.heapify(pqueue)
131

132 # remove indices until closest two neighbours are far enough apart
133 while pqueue[0][0] <= ignore_distances_under and len(pqueue) > keep_max_number:
134 current_candidate = pqueue[0]
135 current_index = current_candidate[1]
136 # check if removed already
137 if prune[current_candidate[2]]:
138 # add something big where pruned already to ignore
139 min_neighbour = np.argmin(dist_mat[current_index, :] + prune * biggest_value)
140 new_candidate = (dist_mat[current_index, min_neighbour],
141 current_index,
142 min_neighbour)
143 minimum_dist_values[current_index] = new_candidate[0]
144 heapq.heapreplace(pqueue, new_candidate)
145 else:
146 prune[current_index] = True
147 heapq.heappop(pqueue)
148

149 # reset diagonal to 0
150 dist_mat[np.arange(0, num_inputs), np.arange(0, num_inputs)] = 0
151

152 return input_data[np.logical_not(prune), :], dist_mat[np.ix_(np.logical_not(prune),
np.logical_not(prune))]↪→

153
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C.3. Closed observables and interpolation

For generating the functions for interpolating the dynamics of the system, as described
in section 3.3.5, some functions were used in addition to the core diffusion maps algo-
rithm. Although it is executed as part of the diffusion maps preprocessing and listed
above, constructTimeLagged.m (listing C.4) is technically part of this as well.
create closedobs interps.m creates the three interpolating functions.

Listing C.11: create closedobs interps.m
1 func t i on [ i n fn , dynamic fn , out fn ] = c r e a t e c l o s e d o b s i n t e r p s ( input mat ,

di f fmap coord mat , output mat )
2 %CREATE CLOSEDOBS INTERPS Create the s e t o f i n t e r p o l a t i n g f unc t i on s
3 % c r e a t e s i n t e r p o l a t i o n func t i on s input−>dmaps−>dmaps+1−>output
4
5 i n f n = c r e a t e i n t e r p f u n ( input mat , d i f fmap coord mat ) ;
6 dynamic fn = ...
7 c r e a t e i n t e r p f u n ( di f fmap coord mat ( 1 : end−1 , : ) , ...
8 d i f fmap coord mat ( 2 : end , : ) ) ;
9 out fn = c r e a t e i n t e r p f u n ( di f fmap coord mat , output mat ) ;

10
11
12 end

create interp fun.m creates an interpolating function using the MATLAB class
scatteredInterpolant.

Listing C.12: create interp fun.m
1 func t i on [ i n t e r p f un ] = c r e a t e i n t e r p f u n ( datapt mat , values mat )
2 %CREATE INTERP FUN
3 % cr ea t e a func t i on that
4 % i n t e r p o l a t e s from NxD − matrix 'datapts ' to NxV matrix 'values '
5 % caut ion : cur r ent usage o f s c a t t e r e d I n t e r p o l an t l im i t s D to 3
6 %
7 % TODO: Provide i n t e r p o l a t i n g func t i on as a parameter f o r f l e x i b i l i t y .
8
9 numpts = s i z e ( datapt mat , 1 ) ;

10 a s s e r t ( numpts == s i z e ( values mat , 1 ) , 'Not same amount o f pts in data and va lues ' )
11
12 numdims = s i z e ( values mat , 2 ) ;
13
14 f o r i = 1 : numdims
15 i n t e r p s t r u c t . ( char ( ' i n t e rp ' + s t r i n g ( i ) ) ) = ...
16 s c a t t e r e d I n t e r p o l an t ( datapt mat , values mat ( : , i ) , ' natura l ' ) ;
17 end
18
19 func t i on output va l s = i n t e r p o l a t i o n f u n c t i o n ( po in t s )
20 output va l s = ze ro s ( s i z e ( po ints , 1 ) ,numdims) ;
21 f o r j = 1 : numdims
22 output va l s ( : , j ) = i n t e r p s t r u c t . ( char ( ' i n t e rp ' + s t r i n g ( j ) ) ) ( po in t s ) ;
23 end
24 end
25
26 i n t e r p f un = @i n t e r p o l a t i o n f u n c t i o n ;
27 end
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C.4. Validation

This is the code of the validation framework.
The main function is runSingleScenario, which runs a simulation for a controller and
a height map provided.

Listing C.13: runSingleScenario.m
1 func t i on [ h i s t o r ya r r ay ] = runS ing l eScena r i o ( param fi lename , c on t r o l l e r ,

s t a tu s ev e r y )
2 %RUNSINGLESCENARIO run us ing c o n t r o l l e r
3 % Deta i l ed exp lanat ion goes here
4
5 % opt i ona l argument
6 i f narg in < 3
7 s t a tu s ev e r y = i n f ;
8 i f narg in < 2
9 % i f no c o n t r o l l e r s p e c i f i e d , use a 50m−PID

10 c o n t r o l l e r = @(state , model ) dea l ( getNextControlPID50m ( state , model ) , s t a t e .
x + 50) ;

11 end
12 end
13
14 f i l ename = param fi lename ;
15
16 params = loadParamsFromFile ( f i l ename ) ;
17 model = i n i t i a l i s eCa rMode l ( params ) ;
18
19 cur r en tS ta t e = model . s t a t e ;
20
21 next output = s t a tu s ev e r y ;
22 h i s t o r ya r r ay = [ ] ;
23
24 s imu l a t i on I sF in i s h ed = f a l s e ;
25 whi l e ˜ s imu l a t i on I sF in i sh ed
26
27 [ upcoming control , nextCtr lD i s t ] = c o n t r o l l e r (model . s ta te , model ) ;
28 model = simulat ionDistanceStepForward (model , upcoming control , nextCtr lD i s t ) ;
29
30 h i s t o r ya r r ay = [ h i s t o r ya r r ay ; stateToVec (model . s t a t e ) ] ;
31
32 s imu l a t i on I sF in i sh ed = model . s t a t e . x > model . he ightdata . d i s t l i s t ( end−50) ;
33 s imu l a t i on I sF in i sh ed = s imu l a t i on I sF in i sh ed | | model . s t a t e . v < 0 . 0 1 ;
34 i f model . s t a t e . x > next output
35 d i sp ( [ 'Val idat i on cu r r en t l y at x = ' , num2str (model . s t a t e . x ) ] ) ;
36 next output = next output + s t a tu s ev e r y ;
37 end
38 end
39
40 % u t i l i t y f o r sav ing h i s t o r y
41 func t i on s t a t e v e c = stateToVec ( s t a t e )
42 s t a t e v e c = [ s t a t e . f o r c e s t a t e . t s t a t e . x s t a t e . v ...
43 s t a t e . acc s t a t e .Temp s t a t e . he ight s t a t e . co s t s t a t e . s l ope ] ;
44 end
45
46 end

For comparison, PID-controllers were implemented, for example
getNextControlPID50m.

Listing C.14: getNextControlPID50m.m
1 func t i on [ c on t r o l ] = getNextControlPID50m ( currentState , model )

86



C.4. Validation

2 %GETNEXTCONTROLPID Summary o f t h i s func t i on goes here
3 % Deta i l ed exp lanat ion goes here
4
5 p e r s i s t e n t l a s t S t a t e ;
6 p e r s i s t e n t i n t e ;
7
8 i f isempty ( l a s t S t a t e )
9 l a s t S t a t e = cur r en tS ta t e ;

10 i n t e = 0 ;
11 end
12
13
14 steadyStateForce = 950 ;
15
16 intHalfTime = 40 ;
17
18 % intWeight = 0 .5ˆ(1/ intHalfTime ) ;
19 intWeight = 1 ;
20
21 prop = model . params . v i n i t − cu r r en tS ta t e . v ;
22 i f l a s t S t a t e . t ˜= cur r en tS ta t e . t
23 d i f f = ( cu r r en tS ta t e . v − l a s t S t a t e . v ) /( cu r r en tS ta t e . t − l a s t S t a t e . t ) ;
24 e l s e
25 d i f f = 0 ;
26 end
27 i n t e = in t e * intWeight + (model . params . v i n i t − cu r r en tS ta t e . v ) *( cu r r en tS ta t e . t −

l a s t S t a t e . t ) ;
28
29 coe f P = 2 ;
30 c o e f I = 0 . 6 ;
31 coef D = 0 . 1 ;
32
33 s c a l i n g = 200 ;
34
35 con t r o l = steadyStateForce + ( coe f P * prop + c o e f I * i n t e + coef D * d i f f ) *

s c a l i n g ;
36
37 l a s t S t a t e = cur r en tS ta t e ;
38 end

In order to utilize the interpolation functions from Appendix C.3, one can turn the func-
tions from listing C.11 into a controller using getNextControlDM.

Listing C.15: getNextControlDM.m
1 func t i on [ upcoming control , n e x t c o n t r o l d i s t ] = getNextControlDM ( cu r r en t s t a t e ,

model , DM funs , s t e p l e n )
2 %UNTITLED Summary o f t h i s f unc t i on goes here
3 % Deta i l ed exp lanat ion goes here
4
5 i f narg in < 4
6 s t e p l e n = 50 ;
7 end
8
9 n e x t c o n t r o l d i s t = cu r r e n t s t a t e . x + s t e p l e n ;

10
11 input fun=DM funs {1} ;
12 dyn fun=DM funs {2} ;
13 out fun=DM funs {3} ;
14
15 height 250m pred = model . s lopeEq ( c u r r e n t s t a t e . x + 250) ;
16 height 650m pred = model . s lopeEq ( c u r r e n t s t a t e . x + 650) ;
17
18 upcoming contro l = ...
19 out fun (...
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20 dyn fun (...
21 input fun (...
22 [ c u r r e n t s t a t e . v , height 250m pred , he ight 650m pred ] ) ) ) ;
23
24
25 end
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[39] Boaz Nadler, Stéphane Lafon, Ronald R. Coifman, and Ioannis G. Kevrekidis. Diffu-
sion maps, spectral clustering and reaction coordinates of dynamical systems. Applied
and Computational Harmonic Analysis, 21(1):113–127, July 2006. doi: 10.1016/j.acha.
2005.07.004.

[40] Carmeline J. Dsilva, Ronen Talmon, Ronald R. Coifman, and Ioannis G. Kevrekidis.
Parsimonious representation of nonlinear dynamical systems through manifold
learning: A chemotaxis case study. Applied and Computational Harmonic Analysis, July
2015. doi: 10.1016/j.acha.2015.06.008.

91

http://www.continental-automotive.com/www/automotive_de_en/themes/passenger_cars/interior/connectivity/pi_ehorizon_en.html
http://www.continental-automotive.com/www/automotive_de_en/themes/passenger_cars/interior/connectivity/pi_ehorizon_en.html
http://www.continental-automotive.com/www/automotive_de_en/themes/passenger_cars/interior/connectivity/pi_ehorizon_en.html
https://developers.google.com/maps/documentation/elevation/start
https://developers.google.com/maps/documentation/elevation/start


Bibliography

[41] Lawrence Cayton. Algorithms for manifold learning. Univ. of California at San Diego
Tech. Rep, pages 1–17, 2005.
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Errata

Below follows a listing of minor adjustments and errata corrections, that were made since
the time of submission of the thesis.

General corrections

• Table of Contents: Homogenization of indents.

• Section and subsection headings: Homogenization of capitalization.

Chapter 8:

• Table 8.1 (page 62): Correction of the units of column header ”Distance (m)” to
”Distance (km)”.

• Table 8.1 (page 62): Correction of column header and data interchange for columns
”PID cost/m” and ”MPC cost/m”.
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