
Table of contents
1. Introduction
2. Assembly of the scripting language
3. Data types
4. Number formats
5. Strings
6. Operators
7. Leading signs
8. Formulas
9. Objects
9.1 Destiny object
9.2 Game object
9.3 Convert object
9.4 Logic object
9.5 Math object
9.6 String object
9.7 Error object
9.8 Errors object
9.9 Keyboard object
9.10 Mouse object
9.11 Time object
9.12 Actor object
9.13 Map object
9.14 Event object
9.15 MapEvent object
9.16 Picture object
9.17 Client object
9.18 Server object
9.19 File object
9.20 Directory object

10. Error messages
11. MessageLink
12. Constants
13. Known bugs

< Back Forward >
1. Introduction

14. Appendix
15. Closing words
16. Imprint

Table of contents

1. Introduction
Important notices!

The DestinyPatch has been developed by Bananen-Joe. It is an
extension for the RPG-Maker 2000, which has been developed by the
company Enterbrain. This extension is not an official extension from
Enterbrain.
During the development of the patch the author acted with best
knowledge and conscience, however errors are not excludable. Hence
the author dissociates himself from every direct or indirect damage
that could occur. Though the author is grateful for each helpful hint,
which can be used to correct errors.
The entire DestinyPatch is a free software. Each distribution with costs
is illegal unless the author permits this emphatically.
This help file refers often to external pages (e. g. like Wikipedia). The
author dissociates himself from every external content, because the
internet is a incessantly changing medium (e. g. everyone can edit
Wikipedia articles). During development of this help file all external
links were correct and assists the content of this help file with
explanations, etc. Hence it is not possible in this static help file to react
on external contents that has been changed.

http://en.wikipedia.org/

Embedding the patch
A detailed manual how to embed the Destiny.dll into a RPG-Maker 2000
project is included in the help file for the DestinyPatcher. The
interrelationship of the programs is explained there, too. In this help file
here (the one you are currently reading) is only a manual for the scripting
language (DestinyScript) included!

The layout of this help file
During development of this help file some formats have been designed and
abided. These should help the user for faster navigating and getting a better
overview.

1
2

< BackPrior topic Forward >
Next topic
Current topic

< Back
Table of contents Fordward >

Headline
The headline is written on the upper border of each page.

The footer is on the lower border of each page. On
the left of this footer is the point "< Back", which
can be used to navigate to the previous page. Under

this point is the headline of the previous point written. On the right of this
footer is the point "Forward >", which can be used to navigate to the
following page. Under this point is the headline of the previous point
written. In the center of the footer is the headline of the current page written
again.
Internal links inside of this help file are colored blue and not underlined
unless you hover over them with the mouse cursor.
External links are colored green and always underlined. If you click on an
external link then it will open a new window.

$
Variable = Function("String", 12345);

In code examples the script code is written in one box. On the left border
are line numbers. The following explanations refer to them. The code itself
is colored multiple times to make the terms much easier to read in refer to
their meaning.

Variables & functions are colored blue
Symbols are colored orange
Numbers are colored purple
Strings are colored red

Information
This is a short additional piece of information, which can help you to
avoid some problems.

Important additional information are written in yellow boxes.

2. Assembly of the scripting
language
Calling a DestinyScript

The comment function of the RPG-Maker is used to call a DestinyScript.
Because they are not only used for DestinyScripts (they are used for
"common" comments, too) every DestinyScript begins with a dollar sign ($).
This symbol has been chosen because it looks like a S and the word "script"
starts with a s. It is important that the first char of the RPG-Maker comments
needs to be the $ sign (this even means there may not be spaces or
something else before the dollar sign) otherwise the RPG-Maker comment
will not be interpreted as DestinyScript.
InformationIf a RPG-Maker comment should be a "common" comment,
but starts with a $ sign, it will be interpreted as DestinyScript and could
show error messages. You can solve the problem if you put a space in the
front of the $ sign. So the $ sign isn't the first symbol of the RPG-Maker
comment anymore. In the RPG-Maker event command list the comment
command looks like nearly the same.

1
2

The first example
At first we create a new (empty!) RPG-Maker project. Next we modify the
RPG_RT with the RPG_RT.exe so that it loads the Destiny.dll. (Version: 1.0,
Language: English, MessageLink: activiated, Number of dwords: 100,
Number of doubles: 100, Number of strings: 100)
After generating the project we create a new event. First of all we have this
code:

$
v[1] = 5

We paste this code now into a new RPG-Maker comment.

This graphic can vary from the used RPG-Maker version.

We insert a MessageBox among that comment, which displays the content of
the first variable. (e. g. "Variable no. 1 has the value \v[1]")
If we call the event in game then we get the following result:

We can see that variable no. 1 has the value 5. But why that? All variables of

the RPG-Maker are by default initialized to 0. And given that it is a new
(and complete empty) project there must something else been happen.
The answer is obvious: The DestinyScript assigned the value 5 to the
variable no. 1!

1
2

1
2
3

Assembly of a DestinyScript
If we take a look at the example code again and think about its result then
the meaning of the script will be clear.

$
v[1] = 5

In line no. 1 is the $ sign which tells the Destiny.dll that the RPG-Maker
comment should be interpreted as DestinyScript.
In line no. 2 is the command which assigns the value 5 to variable no. 1.
Such a command has always the same assembly. On the left side is the
destination of the operation. In this case it is variable no. 1 (hence the v[1] -
v stands for variable and [1] for the index!). In the center is the used
operator. In this example this is the equal sign (=). On the right side is that
what we want to assign to the destination (= source). In this case it is the
number 5.
A DestinyScript may contain multiple commands. To separate them a
semicolon (;) is used. A command needn't to be in a single line. But it is
possible to write the entire DestinyScript into a single line (the leading $
sign needs not its own line!).
Information
The last command of a DestinyScript may end with a semicolon but it
needn't to end with a semicolon.

As example a DestinyScript with more than one command could look like
this:

$
v[1] = 5;
v[2] = 23

If we execute this DestinyScript the variable no. 1 will be 5 and variable no.
2 will be 23.
Information
Multiple commands can be written inside of a RPG-Maker comment. But
the leading $ sign is only required once. Hence the $ sign may not be in
front of each command!

< Back
1. Introduction

Forward >
3. Data types

It is expedient to make a important note here. If an error occurs during
execution of a DestinyScript then the entire script will be aborted. This can
be beneficial or even not. To avoid this you could write each command into
a single RPG-Maker comment or change the error handling with the Errors
object.

2. Assembly of the scripting language

3. Data types
What are data types?

As a user of the RPG-Maker 2000 you already know 2 data types. At first
variables and as second switches. But you can't compare a variable and a
switch directly, because they save complete different values. A RPG-Maker
2000 variable can save values in the range from -999999 to +999999 (in the
Destiny.dll you have a greater range - see table). But you can only use
integer values (e. g. floating point numbers like 1.5 won't work!). A switch
however can save only one of two values: on or off (constants: True and
False). These two data types are available in different scopes (one for
variables and one for switches). The Destiny.dll extends the RPG-Maker
game by 3 additional scopes. At first a scope of the data type dword is
added. This data type is complete identical with the data type of the
variable. At second a scope of the data type double is added. This data type
can save floating point numbers with a very huge range. At third a scope
with the data type string is added. This data type saves text instead of
numbers (e. g. names, words or complete sentences).

List of data types
The DestinyPatch knows 7 different data types.

Data
type Size Range Usage

Variable 4
bytes

-2147483648
...
+2147483647

This data type is equivalent to the data type
"dword"

Switch 1
byte 0 ... +1

This data type can save only boolean values
(yes or no). Usually the boolean constants
True (= 1) and False (= 0) are used for this
data type.

Dword 4
bytes

-2147483648
...
+2147483647

This is the most common data type. It saves
only integer values.

Word 2
bytes

-32768 ...
+32767

This data type is similar to dword, but this
one has a smaller range. This data type is
used only by a few methods, but its usable
for data transmission. You can save traffic
with it, because it needs only two bytes. This
data type saves only integer values, too.

Byte 1
byte 0 ... +255

This data type is similar to dword, but this
one has a constitutive smaller range. This
data type saves only very small numbers and
needs hence only one byte in memory. This
data type is used for pixels in a picture. This
data type saves only integer values, too.

Double 8
bytes

-1.7E+308 ...
-5.0E-324 ...
+5.0E-324 ...
+1.7E+308

This data type can save very huge numbers,
but in favor it requires much more space in
memory. The accurancy is 15
integer/decimal places. This is the only data
type that can save floating point numbers.

String 4 + n
bytes

ca. 0 ...
+2147483647

This data type saves text (e. g. names, words
or complete sentences).

Zeichen

1
2
3

Scopes
To save the result of an operation it is necessary to have some scopes in
memory where the result can be stored. Scopes for the data types variable
and switch are allocated by the RPG_RT.exe. The other scopes (for the data
types dword, double and string) are allocated by the Destiny.dll. To access
the scopes you can use their abbreviations.
Abbreviation Data type Data source Identifier
v[] Variable RPG_RT.exe V stands for variable.
s[] Switch RPG_RT.exe S stands for switch.
d[] Dword Destiny.dll D stands for dword.
f[] Double Destiny.dll F stands for floating point number.
a[] String Destiny.dll A stands for ANSI string.
We have already seen how to access a variable via the v abbreviation. You
simply write down the abbreviation with some brackets behind it (the
brackets must be written directly after the abbreviation!). You write down
the index of the element you want to access inside the brackets (e. g. v[1]
for the first variable, v[2] for the second variable, ...). The same principle
works with other scopes, too.

$
d[5] = 100;
v[3] = d[5]

If we paste this example into a RPG-Maker comment and let subsequent
display the value of the variable no. 3 in a MessageBox then we can see that
the variable has the value 100. In this example we assigned first the value
100 to the dword no. 5. Subsequently we assigned the value of the dword
no. 5 to the variable no. 3. On this way we assigned a value from a different
scope to the variable no. 3.

1
2
3

Indirectly addressing
So far we accessed the elements of a scope only directly (e. g. v[1] for the
first variable). An other way to access an element of a scope is the
indirectly addressing. To do this we simply write an element of a scope
instead of an immediate (fixed) number into the brackets.

$
v[4] = 5;
v[v[4]] = 17

If we execute this script and take a subsequently a look at variable no. 5
then we can see that its value is 17. In this example we accessed variable
no. 5 indirectly. First we assigned in line 2 the value 5 (the index of the
variable we want to access) to the variable no. 4. Subsequently we wrote in
line 3 that we want to use the value of variable no. 4 as index instead of an
immediate number.
Information
All scopes can be addressed indirectly. The scopes used for indirectly
addressing can be addressed indirectly, too (e. g. v[v[v[1]]]). The
maximum depth of indirectly addressing depends on the capacity of the
computer where the game is running. Usually you needn't a deeper
addressing depth than 1.

< Back
2. Assembly of the scripting language

Forward >
4. Number formats

Conversion of data types
If the data types differ (e. g. if you want to assign a dword to a double) then
the data types will be converted automatically. This happens inside of
formulas or parameters, too. Only the mixed calculation of strings and
numbers or switches and numbers raise an error. To do a calculation like
this you must explictly convert the values using the Convert object.

3. Data types

4. Number formats
What are number formats?

Number formats are different ways to write down a number in
DestinyScript. There are 4 formats total to write down a number in
DestinyScript. Three of them are known from computer science. The other
format is used for our known decimal system. If we write down a number
then we usually use one of the 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Because
we have 10 digits the base of this number system is 10. If we read a number
then we multiply each digit with the base exponentiated by the digit index
minus 1.
In this example the circumflex is used as symbol for the exponentation.

123 = 1 * 10 ^ 2 + 2 * 10 ^ 1 + 3 * 10 ^ 0
123 = 1 * 100 + 2 * 10 + 3 * 1
123 = 100 + 20 + 3
123 = 123

A translation of a number from the decimal system into the decimal system
meaningless, because the result will always be the same. However if we use
two different number systems (number systems with different bases) then
we get differing results. First we use the hexadecimal system. It contains 16
digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F). The digits A to F equates
to the numbers 10 to 15. For example: 1AB is a valid hexadecimal number.
Translated into the decimal system it is:
In this example the circumflex is used as symbol for the exponentation.

1AB (hex) = 1 * 16 ^ 2 + 10 * 16 ^ 1 + 11 * 16 ^
0 (dec)
1AB (hex) = 1 * 256 + 10 * 16 + 11 * 1 (dec)
1AB (hex) = 256 + 160 + 11 (dec)
1AB (hex) = 427 (dec)

It seems to be meaningless for the layman, but for the expert it is very
helpful. If we write down such numbers we find a drastic problem: Some
numbers can't be clearly related to a specific number system. For example

http://en.wikipedia.org/wiki/Hexadecimal

the number 10 in hexadecimal is not the same as the number 10 in decimal.
Hence we must cleary define which number system we use. So we append a
0x as identifier in DestinyScript at the beginning of a hexadecimal number
(e. g. 0x123 = 291). Something similar is used for the other number formats
octal (Base: 8, Digits: 0-7, Identifier: 0o) and binary (Base: 2, Digits: 0 and
1, Identifier: 0b). For decimal numbers are no identifiers used. An
important note is still that floating point numbers can only be used in the
decimal number format. The point is used as decimal separator (e. g. 1.5 is
a valid floating point number).

List of number formats
DestinyScript supports 4 different number formats

Number
format Base Floating point

number Identifier Examples

Decimal 10 yes none 11, 9, 10.6,
3.1415926535

Hexadecimal 16 no 0x 0x10, 0xAC, 0x1237
Octal 8 no 0o 0o17, 0o32, 0o700

Binary 2 no 0b 0b111011, 0b00111101,
0b1111110

Information
If we try to write down a floating point number in a different number
format than the decimal system then an error occurs (e. g. 0x11.5 isn't a
valid number).

1
2
3

< Back
3. Data types

Forward >
5. Strings

Differently calculation of integers and
floating point numbers
First of all we have the following example:

$
f[1] = 3 / 2;
f[2] = 3.0 / 2.0

You could anticipate that f[1] and f[2] are equal at the end of the script, but
in fact they are different: f[1] whould be 1 and f[2] whould be 1.5 at the end
of the script. This difference occurs because we defined each number in line
2 as integer values. So they are divided like integers (integers don't have
decimal places - hence they are not calculated). In line 3 instead we defined
each number as floating point number. Hence they are calculated like
floating point numbers (the decimal places are not lost). You should notice
this difference if you want to calculate with floating point numbers.

4. Number formats

1
2

5. Strings
Defining strings

Strings are not numbers. However its content must be able to declare in
DestinyScript without creating mistakes (e. g. a string could contain
numbers which should not be interpreted like numbers). The solution is to
write down the content of the string into quotes (").

$
a[1] = "Content of a string"

Information
If you want to use quotes inside of a string then you must use the QUOTE
constant (e. g. a[1] = "Hello with " + QUOTE + "quotes" + QUOTE).

Concatentation of strings
If you want to concatenate some strings you must use the add operator. A
more specific description can be found at 6. Operators.

1
2

< Back
4. Number formats

Forward >
6. Operators

Strings with multiple lines
If a string should contain multiple lines then you must use the CRLF
constant.

$
a[1] = "Line 1" + CRLF + "Line 2"

If you display this string into a MessageBox you will have some trouble,
because the MessageBox of the RPG_RT processes lines on an other way
than the Destiny.dll. A more specific description can be found at the string
placeholder of the MessageLink.

5. Strings

6. Operators
What are operators?

Operators are signs that represent specific arithmetical or binary operations.
DestinyScript supports 9 operators. The set operator is neutral, because it
can be used with each data type. Furthermore there are 5 arithmetical
operators (addition, subtraction, multiplication, Division and Modulo). The
addition ist something special, because it can be used for the concatenation
of strings, too. At last there are 3 binary operators (AND, OR and XOR).

http://en.wikipedia.org/wiki/Binary_operation

1
2

Set

Description

The simpliest operator is the set operator we already know. With this
operator it is possible to assign a value to a destination directly. This
operator can only be used at the beginning of a command. This operator
works with each data type. The equality sign (=) is used for this operator.

Signs

Signs Beginning?
= yes

Example

$
v[1] = 1

1
2
3
4
5

Addition

Description

You can add two values with the addition operator. This operator can be
used at the beginning and in the rear part of a command. If you apply an
addition at the beginning of a command the rear part of the command will
be processed as if it is written in parentheses. If this operator is used with
strings then the values will be concatenated. Switches can't be added. The
plus sign (+) is used for this operator.

Signs

Signs Beginning?
+ no
+= yes

Example

$
v[1] = 1 + 10 + 100;
v[1] += 20;
a[1] = "Joe";
a[2] = "Hello " + a[1]

The variable no. 1 whould be 131 at the end and the string no. 2 whould be
"Hello Joe".
Information
If you use the addition operator to concatenate strings then you may only
use strings. For example this command whould raise an error:
a[1] = "Number equals " + v[1]
Instead all data types must be converted to strings first if you concatenate
them. This command whould be valid:
a[1] = "Number equals " + Convert.String(v[1])
The Convert object is used here.

1
2
3

Subtraction

Example

You can subtract two values with the subtraction operator. This operator can
be used at the beginning and in the rear part of a command. If you apply a
subtraction at the beginning of a command the rear part of the command
will be processed as if it is written in parentheses. Strings and switches can't
be subtracted. The minus sign (-) is used for this operator.

Signs

Signs Beginning?
- no
-= yes

Example

$
v[1] = 50 - 7;
v[1] -= 9

The variable no. 1 whould be 34 at the end.

1
2
3

Multiplication

Description

You can multiply two values with the multiplication operator. This operator
can be used at the beginning and in the rear part of a command. If you apply
a multiplication at the beginning of a command the rear part of the
command will be processed as if it is written in parentheses. Strings and
switches can't be multiplied. The multiplication sign (*) is used for this
operator.

Signs

Signs Beginning?
* no
*= yes

Example

$
v[1] = 7 * 3;
v[1] *= 3

The variable no. 1 whould be 63 at the end.

1
2
3

Division

Description

You can divide two values with the division operator. This operator can be
used at the beginning and in the rear part of a command. If you apply a
division at the beginning of a command the rear part of the command will
be processed as if it is written in parentheses. Strings and switches can't be
divided. If you divide through zero an error will occur. The division slash
(/) is used for this operator.

Signs

Signs Beginning?
/ no
/= yes

Example

$
v[1] = 100 / 10;
v[1] /= 2

The variable no. 1 whould be 5 at the end.

1
2
3
4

Modulo

Description

In the modulo operation the left value will be divided by the right value
(integer division) and the remainder will be returned (this is the part of the
left number, which whould be required to build the decimal part of the
result). This operation can be used at the beginning and in the rear part of a
command. If you apply a modulo operation at the beginning of a command
the rear part of the command will be processed as if it is written in
parentheses. Strings and switches can't be divided. If you divide through
zero an error will occur. The percent sign (%) is used for this operation.

Signs

Signs Beginning?
% no
%= yes

Example

$
v[1] = 100 % 3;
v[2] = 99;
v[2] %= 10

The variable no. 1 whould be 1 at the end and variable no. 2 whould be 9.

http://en.wikipedia.org/wiki/Modulo_operation

1
2
3
4

AND operator

Description

You can apply a binary AND operation with two values via the AND
operator (this means that every bit is AND operated). This operation can be
used at the beginning and in the rear part of a command. If you apply an
AND operation at the beginning of a command the rear part of the
command will be processed as if it is written in parentheses. Strings,
switches and doubles can't be AND operated. The ampersand sign (&) is
used for this operation.

Sings

Sings Beginning?
& no
&= yes

Example

$
v[1] = 100 & 7;
v[2] = 31;
v[2] &= 255

The variable no. 1 whould be 4 at the end and variable no. 2 whould be 31.

http://en.wikipedia.org/wiki/Logical_conjunction

1
2
3
4

OR operation

Description

You can apply a binary OR operation with two values via the OR operator
(this means that every bit is OR operated). This operation can be used at the
beginning and in the rear part of a command. If you apply an OR operation
at the beginning of a command the rear part of the command will be
processed as if it is written in parentheses. Strings, switches and doubles
can't be OR operated. The pipe sign (|) is used for this operation.

Signs

Signs Beginning?
| no
|= yes

Example

$
v[1] = 7 | 3;
v[2] = 1;
v[2] |= 100

The variable no. 1 whould be 7 at the end and variable no. 2 whould be 101.

http://en.wikipedia.org/wiki/Logical_disjunction

1
2
3
4

< Back
5. Strings

Forward >
7. Leading signs

XOR operation

Description

You can apply a binary EXCLUSIVE OR operation (XOR) with two values
via the XOR operator (this means that every bit is XOR operated). This
operation can be used at the beginning and in the rear part of a command. If
you apply a XOR operation at the beginning of a command the rear part of
the command will be processed as if it is written in parentheses. Strings,
switches and doubles can't be XOR operated. The circumflex sign (^) is
used for this operation.

Signs

Signs Beginning?
^ no
^= yes

Example

$
v[1] = 27 ^ 13;
v[2] = 1;
v[2] ^= 3

The variable no. 1 whould be 22 at the end and variable no. 2 whould be 2.

6. Operators

http://en.wikipedia.org/wiki/Exclusive_disjunction

7. Leading signs
Description

There are three leading signs in DestinyScript totally: two arithmetical (Plus
and Minus) as soon as a binary (NOT). Please notice that every sign must
be directly at the beginning of each values/scopes/parentheses. The data
types switch and string cannot be used with leading signs.

1
2

Plus sign

Description

The plus sign has only been introduced to make it easier to copy numbers. It
doesn't change the number. The plus sign (+) is used for this leading sign.
Sign
+

Example

$
v[1] = 0 + +1

The variable no. 1 whould be 1 at the end.

1
2
3

Minus sign

Description

You can define negative numbers by using the minus sign (if you use an
integer value the two's complement will be formed). The minus sign (-) is
used for this leading sign.
Sign
-

Example

$
v[1] = 5 + -3;
v[2] = 10 - -11

The variable no. 1 whould be 2 at the end and variable no. 2 whould be 21.
Information
The mathematical law "minus minus is plus" is used here, too.

http://en.wikipedia.org/wiki/Two%27s_complement

1
2

< Back
6. Operators

Forward >
8. Formulas

NOT sign

Description

You can negate a value with the NOT sign (the ones' complement will be
formed). The tilde sign (~) is used for this leading sign. This leading sign
can't be used with doubles.
Sign
~

Example

$
v[1] = ~100

The variable no. 1 whould be -101 at the end.
Information
According to the boolean algebra is not not the same as the value without
any not sign before it (= Identity)!

7. Leading signs

http://en.wikipedia.org/wiki/Signed_number_representations#Ones.27_complement

8. Formulas
Formulas (generic)

After we know the data types, number formats, strings, operators and
leading signs we know (nearly) all what's required to use formulas in
DestinyScript. The last missing parts are parentheses and priorities of the
operators.

Priorities

Description

According to the arithmetical algebra it is necessary: point operations
(multiplication, division) will be executed before stroke operations
(addition, subtraction). And according to the boolean algebra is necessary:
AND will be executed before OR. A combination of these laws forms the
priorities of the operators. If a formula contain multiple partial calculations
then they are calculated in the order that result from their priorities. If more
than one partial calculation have the same priority then they are calculated
from left to right. Leading signs (plus, minus, NOT) have always the
highest priority.
x = 15 + 3 * 9
x = 15 + 21
x = 36

In this example the point operation (3 * 9) has been calculated before the
stroke operation (which whould be 15 + 3) was calculated.

List of the priorities

In the following list applies: the higher the number the higher the priority.
Operator Priority

AND operation 4
OR operation 3
XOR operation 3
Modulo 2
Division 2
Multiplication 2
Subtraction 1
Addition 1

Example

The following example uses the signs of DestinyScript but it is just a
calcuation example - it is not a valid DestinyScript.
x = 1000 + 2 - 10 * 3 / 15 % 8 | 3 ^ 7 & 6
x = 1002 - 10 * 3 / 15 % 8 | 3 ^ 7 & 6
x = 1002 - 30 / 15 % 8 | 3 ^ 7 & 6
x = 1002 - 2 % 8 | 3 ^ 7 & 6
x = 1002 - 2 % 11 ^ 7 & 6
x = 1002 - 2 % 11 ^ 6
x = 1002 - 2 % 13
x = 1002 - 2
x = 1000

In this example some lines could have been calculated in a single step, but
to make it easier to understand the calculation has been made step-by-step.

< Back
7. Leading signs

Forward >
9. Objects

Parentheses

Description

If a partial calculation with less priority should be calculated before a
partial calculation with high priority then you must put the calculation with
less priority in parentheses ().

Example

The following example uses the signs of DestinyScript but it is just a
calcuation example - it is not a valid DestinyScript.
x = 100 * -(10 + 7)
x = 100 * -17
x = -1700

Information
A sign at the beginning of a pair of parentheses modifies only the result of
the calculation in the parentheses.

8. Formulas

9. Objects
Description

Objects are that what represents the DestinyPatch. All functions and
properties of the RPG-Maker 2000 game (and even those of the Destiny.dll)
are bunched into objects. These functions (further called methods) and
properties can be accessed via the relevant object. For example you can
access the keyboard using the Keyboard object. So you can use the object to
check the key states. As already said an object can contain two types of
content: methods and properties. Those content types are formatted
differently. Methods are always write-protected, properties only sometimes
(see the definition of the relative property).

http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Property_(programming)

1
2
3
4
5

Syntax
The syntax to call an object is always the same:

$
v[1] = Objectname.Functionname(Parameter1,
...);
Objectname.Functionname(Parameter1, ...);
v[2] = Objectname.Propertyname;
v[3] = Objectname[Index].Propertyname

In this example you see several ways to access the content of an object. One
thing is always the same: first you write down the object name, then a dot
and at last the function or property name. Between this identifiers you may
not use any spaces.
If you call a method (Line 2) you must add a pair of parentheses which
must be written directly after the method name (this means without spaces).
Inside of these parentheses you write the parameters (if there are some). To
separate the parameters you use the comma. If you call a method you must
always write down the parentheses even if the method has no parameters!
The result of the method (= return value) can be used in a formula (e. g. the
return value will be stored into variable no. 1 at line 2).
Sometimes a method has no return value (Line 3). In this case you can't
access its return value in formulas.
If you access a property (Line 4) you do it like a method call (but without
the parentheses and the parameters).
Some objects or properties have an index (Line 5). This index identifies
which element of the object/property should be accessed. The index is
written into a pair of brackets []. Like the parentheses they are written
directly after the object name/property name (this means without spaces). If
an index has more than one dimension (e. g. a two dimensional array) then
you separate the indices with a comma.
Information
If a data type in a parameter differs from the specified one (e. g. the data
type string is required and the data type dword is used) then the used
parameter is converted to the required data type automatically (e. g.

dword is converted into string). You needn't to call an extra conversion
method. (Example: v[1] = String.Length(d[1]);)

1
2
3
4
5
6
7
8

Examples

$
v[1] = Keyboard.GetKey();
Keyboard.SetKeyState(VK_RIGHT,
KEYEVENTF_KEYDOWN);
v[2] = Time.Day;
v[3] = Picture[1].Width;
v[4] = Map.Lower[2, 3];
v[5] = 5 - Math.Abs(v[6]);
Mouse.X = 10

In line 2 is a habitually method call (without parameters). The return value
(in this case it is the last pressed key) will be stored into the variable no. 1.
In line 3 is a method without return value (but with parameters) called (in
this case the key state will be set).
In line 4 a property is requested. The property value (in this case the
number of the current day of the month) will be stored into variable no. 2.
In line 5 a property of an object is requested which requires an index. The
property value (in this case the width of picture no. 1) will be stored into
variable no. 3.
In line 6 the value of a property (which has a two dimensional index) of an
object is requested. The property value (in this case number of the chip at
position 2, 3) will be stored into variable no. 4.
In line 7 a method is called (with parameters) inside of a formula. The
return value of the method (in this case the absolute value of variable no. 6)
will be subtracted from the number 5 and then stored into variable no. 5.
In line 8 the value 10 will be assigned to the property of an object (in this
case the x coordinate of the mouse cursor).
Information
The upper/lower case of object/method/property names are irrelevant.
OBJECTNAME.PROPERTY, objectname.property or even
oBjEcTnAmE.PrOpErTy cause all the same.

< Back
8. Formulas

Forward >
9.1 Destiny object

Alphabetical list of objects

Objectname Short description
Actor List of heroes
Client Connections via internet/network
Convert converting of different data types
Destiny Current options of the Destiny.dll
Directory Listing directories and abstract file system operations
Error Handling of single errors
Errors Handling of all errors
Event List of events (EventID)
File Reading/writing files
Game The current game
Keyboard Key queries
Logic Logical operations and comparisons
Map Current map
MapEvent List of events (serially numbered)
Math Miscellaneous mathematical functions
Mouse Cursor position
Picture List of pictures
Server Incoming connections via internet/network
String Miscellaneous string functions
Time Time queries

9. Objects

9.1 Destiny object
Description

The Destiny object represents the Destiny.dll and can be used to query the
version of the Destiny.dll, setting up the language, as soon as
saving/loading the scopes of Destiny.dll.

List of methods/properties

Name Type Short description
VersionMajor Property The integer part of the used Destiny.dll version

VersionMinor Property The decimal part of the used Destiny.dll
version

DllVersionMajor Property The integer part of the available Destiny.dll
version

DllVersionMinor Property The decimal part of the available Destiny.dll
version

Language Property The used language of the Destiny.dll
Save Method Saves the values of all scopes of the Destiny.dll

Load Method Loads the values of all scopes of the
Destiny.dll

1

1
2

VersionMajor

Description

Returns the integer part of the used Destiny.dll version. For example if a
version 3.4 whould be available and the version 1.2 whould be used this
property whould return 1.

Syntax

Destiny.VersionMajor

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Destiny.VersionMajor

On Destiny.dll version 1.0 v[1] whould be at end: 1

1

1
2

VersionMinor

Description

Returns the decimal part of the used Destiny.dll version. For example if a
version 3.4 whould be available and the version 1.2 whould be used this
property whould return 2.

Syntax

Destiny.VersionMinor

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Destiny.VersionMinor

On Destiny.dll version 1.0 v[1] whould be at end: 0

1

1
2

DllVersionMajor

Description

Returns the integer part of the available Destiny.dll version. For example if
a version 3.4 whould be available and the version 1.2 whould be used this
property whould return 3.

Syntax

Destiny.DllVersionMajor

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Destiny.DllVersionMajor

On Destiny.dll version 1.0 v[1] whould be at end: 1

1

1
2

DllVersionMinor

Description

Returns the decimal part of the available Destiny.dll version. For example if
a version 3.4 whould be available and the version 1.2 whould be used this
property whould return 4.

Syntax

Destiny.DllVersionMinor

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Destiny.DllVersionMinor

On Destiny.dll version 1.0 v[1] whould be at end: 0

1

1
2

Language

Description

This is the chosen language of the Destiny.dll. If you change this value you
change the language of the error messages, too.

Syntax

Destiny.Language

Data type

Dword

Type

Property

Range

0: Language German
1: Language English

Example

$
Destiny.Language = 1

At the end all error messages whould be english.

1

Save

Description

Saves all scopes of the Destiny.dll (dwords, doubles and strings) into a file.
The file will be stored into the game directory and has the name
SaveXX.dsd (XX will be replaced with the slot in two digit format).

Syntax

Destiny.Save(Slot)

Return value

None

Type

Method

Parameter: Slot

Description

The number of the save slot.

Data type

Dword

Range

0 to 99

1
2

Example

$
Destiny.Save(1)

At the end all d[...], f[...] and a[...] scopes whould be saved in the file
Save01.dsd.

1

Load

Description

Loads the scopes of the Destiny.dll (dwords, doubles and strings) from a
file. The file is stored into the game directory and has the name
SaveXX.dsd (XX will be replaced with the slot in two digit format).

Syntax

Destiny.Load(Slot)

Return value

None

Type

Method

Parameter: Slot

Description

The number of the save slot.

Data type

Dword

Range

0 to 99

1
2

< Back
9. Objects

Forward >
9.2 Game object

Example

$
Destiny.Load(1)

At the end all d[...], f[...] and a[...] scopes whould be loaded from the file
Save01.dsd.

9.1 Destiny object

9.2 Game object
Description

The Game object represents the RPG_RT.exe and can be used to save/load
the game or even quit it.

List of methods/properties

Name Type Short description
Save Method Saves the game
Load Method Loads the game
Quit Method Quits the game

1

Save

Description

Saves the current game into a file. The file will be stored into the game
directory and has the name SaveXX.lsd (XX will be replaced with the slot
in two digit format). The scopes of the Destiny.dll won't be saved with this
method. If the game can't save the RPG_RT.exe will display an error
message and crash. Something more specific can be found at known bugs.

Syntax

Game.Save(Slot)

Return value

None

Type

Method

Parameter: Slot

Description

The number of the save slot.

Data type

Dword

Range

1
2

0 to 99

Example

$
Game.Save(1)

At the end the game whould be saved (except the destiny scopes) into the
file Save01.lsd.

1

Load

Description

Loads the current game from a file. The file is stored into the game
directory and has the name SaveXX.lsd (XX will be replaced with the slot
in two digit format). The scopes of the Destiny.dll won't be loaded with this
method. If the game can't be loaded the RPG_RT.exe will show an error
message and crash. Something more specific can be found at known bugs.
Information
It's strongly recommended that you use an actual version of the
Destiny.dll, because this command doesn't work reliably on older versions
of Destiny.dll!

Syntax

Game.Load(Slot)

Return value

None

Type

Method

Parameter: Slot

Description

The number of the save slot.

Data type

1
2

Dword

Range

0 to 99

Example

$
Game.Load(1)

At the end the game whould be loaded (except the destiny scopes) from the
file Save01.lsd.

1

1
2

< Back
9.1 Destiny object

Forward >
9.3 Convert object

Quit

Description

Quits the current game and returns to Windows.

Syntax

Game.Quit()

Return value

None

Type

Method

Example

$
Game.Quit()

At the end the game whould exit.

9.2 Game object

9.3 Convert object
Description

You can convert data types with the Convert object.

List of methods/properties

Name Type Short description

DecimalComma Property Specifies wether a comma or a point is used for
decimal separation

Byte Method Converts to the data type byte
Word Method Converts to the data type word
Dword Method Converts to the data type dword
Double Method Converts to the data type double
Switch Method Converts to the data type switch
String Method Converts to the data type string
Angle Method Converts between different angle formats

1

1
2

DecimalComma

Description

If this switch is activated then a comma is used for decimal separation
instead of a point. This property affects only conversion from double to
string.

Syntax

Convert.DecimalComma

Data type

Switch

Type

Property

Example

$
Convert.DecimalComma = True

1

Byte

Description

Converts each data type into the data type byte.

Syntax

Convert.Byte(Number)

Return value

Byte

Type

Method

Parameter: Number

Description

The number which should be converted.

Data type

All

Range

0 to 255

Example

1
2
$
d[1] = Convert.Byte(v[1])

1

Word

Description

Converts each data type into the data type word.

Syntax

Convert.Word(Number)

Return value

Word

Type

Method

Parameter: Number

Description

The number which should be converted.

Data type

All

Range

-32768 to 32767

Example

1
2
$
d[1] = Convert.Word(v[1])

1

Dword

Description

Converts each data type into the data type dword.

Syntax

Convert.Dword(Number)

Return value

Dword

Type

Method

Parameter: Number

Description

The number which should be converted.

Data type

All

Range

-2147483648 to 2147483647

Example

1
2
$
d[1] = Convert.Dword("1234")

d[1] whould be at end: 1234

1

Double

Description

Converts each data type into the data type double.

Syntax

Convert.Double(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which should be converted.

Data type

All

Range

-1.7E+308 to +1.7E+308

Example

1
2
$
f[1] = Convert.Double(v[1])

1

Switch

Description

Converts each data type into the data type switch.

Syntax

Convert.Switch(Number)

Return value

Switch

Type

Method

Parameter: Number

Description

The number which should be converted.

Data type

All

Range

0 to 1

Example

1
2
$
s[1] = Convert.Switch(v[1])

1

String

Description

Converts each data type into the data type string.

Syntax

Convert.String(Number)

Return value

String

Type

Method

Parameter: Number

Description

The number which should be converted.

Data type

All

Range

All valid numbers

Example

1
2
$
a[1] = Convert.String(v[1])

1

Angle

Description

Converts an angle from one format into an other. To specifiy the angle
formats used you can use the angle format constants. (For a more specific
description of the angle formats see Sin method of the Math object)

Syntax

Convert.Angle(Angle, FormatFrom, FormatTo)

Return value

Double

Type

Method

Parameter: Angle

Description

The angle which should be converted.

Data type

Double

Range

All valid angles

1
2

Parameter: FormatFrom

Description

The angle format which is currently used for the angle.

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Parameter: FormatTo

Description

The angle format which shall be converted to.

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
v[1] = Convert.Angle(90, DEG, RPG)

v[1] whould be at end: 64

< Back
9.2 Game object

Forward >
9.4 Logic object

9.3 Convert object

9.4 Logic object
Description

With the Logic object you can apply logical operations with switches and
comparisons with numbers. Additionally you can return different values
conditioned by a switch via the If method.

List of methods/properties

Name Type Short description
Not Method Reverses the value of a switch
And Method Applys a logical AND operation with two switches
Or Method Applys a logical OR operations with two switches
Xor Method Applys a logical XOR operation with two switches
Xnor Method Applys a logical XNOR operation with two switches
Nand Method Applys a logical NAND operation with two switches
Nor Method Applys a logical NOR operation with two switches

Imp Method Applys a logical implication operation with two
switches

Inh Method Applys a logical inhibit operation with two switches
And3 Method Applys a logical AND operation with three switches
Or3 Method Applys a logical OR operation with three switches
Xor3 Method Applys a logical XOR operation with three switches

Xnor3 Method Applys a logical XNOR operation with three
switches

Nand3 Method Applys a logical NAND operation with three
switches

Nor3 Method Applys a logical NOR operation with three switches

Above Method Checks whether a value is greater than an other
value

AboveEqual Method Checks whether a value is greater/equal than an
other value

Below Method Checks whether a value is smaller than an other
value

BelowEqual Method Checks whether a value is smaller/equal than an
other value

Equal Method Checks whether a value is equals to an other value

Unequal Method Checks whether a value isn't equal to an other value
If Method Returns one of two values conditioned by a switch

1

Not

Description

Returns the reversed value of a switch.

Syntax

Logic.Not(Switch1)

Truth table

Switch1 Return value
0 1
1 0

Return value

Switch

Type

Method

Parameter: Switch1

Description

The switch which shall be reversed.

Data type

Switch

1
2

Example

$
s[1] = Logic.Not(True)

s[1] whould be at end: 0 (= False)

1

And

Description

Applys a logical AND operation with two switches.

Syntax

Logic.And(Switch1, Switch2)

Truth table

Switch1 Switch2 Return value
0 0 0
0 1 0
1 0 0
1 1 1

Return value

Switch

Type

Method

Parameter: Switch1

Description

The first switch which shall be operated.

Data type

1
2

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.And(True, False)

s[1] whould be at end: 0 (= False)

1

Or

Description

Applys a logical OR operation with two switches.

Syntax

Logic.Or(Switch1, Switch2)

Truth table

Switch1 Switch2 Return value
0 0 0
0 1 1
1 0 1
1 1 1

Return value

Switch

Type

Method

Parameter: Switch1

Description

The first switch which shall be operated.

Data type

1
2

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.Or(False, True)

s[1] whould be at end: 1 (= True)

1

Xor

Description

Applys a logical XOR operation with two switches.

Syntax

Logic.Xor(Switch1, Switch2)

Truth table

Switch1 Switch2 Return value
0 0 0
0 1 1
1 0 1
1 1 0

Return value

Switch

Type

Method

Parameter: Switch1

Description

The first switch which shall be operated.

Data type

1
2

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.Xor(True, True)

s[1] whould be at end: 0 (= False)

1

Xnor

Description

Applys a logical XNOR operation (equivalence) with two switches.

Syntax

Logic.Xnor(Switch1, Switch2)

Truth table

Switch1 Switch2 Return value
0 0 1
0 1 0
1 0 0
1 1 1

Return value

Switch

Type

Method

Parameter: Switch1

Description

The first switch which shall be operated.

Data type

1
2

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.Xnor(False, False)

s[1] whould be at end: 1 (= True)

1

Nand

Description

Applys a logical NAND operation with two switches.

Syntax

Logic.Nand(Switch1, Switch2)

Truth table

Switch1 Switch2 Return value
0 0 1
0 1 1
1 0 1
1 1 0

Return value

Switch

Type

Method

Parameter: Switch1

Description

The first switch which shall be operated.

Data type

1
2

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.Nand(True, True)

s[1] whould be at end: 0 (= False)

1

Nor

Description

Applys a logical NOR operation with two switches.

Syntax

Logic.Nor(Switch1, Switch2)

Truth table

Switch1 Switch2 Return value
0 0 1
0 1 0
1 0 0
1 1 0

Return value

Switch

Type

Method

Parameter: Switch1

Description

The first switch which shall be operated.

Data type

1
2

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.Nor(True, False)

s[1] whould be at end: 0 (= False)

1

Imp

Description

Applys a logical implication operation with two switches.

Syntax

Logic.Imp(Switch1, Switch2)

Truth table

Switch1 Switch2 Return value
0 0 1
0 1 1
1 0 0
1 1 1

Return value

Switch

Type

Method

Parameter: Switch1

Description

The first switch which shall be operated.

Data type

1
2

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.Imp(False, True)

s[1] whould be at end: 1 (= True)

1

Inh

Description

Applys a logical inhibit operation with two switches.

Syntax

Logic.Inh(Switch1, Switch2)

Truth table

Switch1 Switch2 Return value
0 0 0
0 1 1
1 0 0
1 1 0

Return value

Switch

Type

Method

Parameter: Switch1

Description

The first switch which shall be operated.

Data type

1
2

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.Inh(False, False)

s[1] whould be at end: 0 (= False)

1

And3

Description

Applys a logical AND operation with three switches.

Syntax

Logic.And3(Switch1, Switch2, Switch3)

Truth table

Switch1 Switch2 Switch3 Return value
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Return value

Switch

Type

Method

Parameter: Switch1

1
2

Description

The first switch which shall be operated.

Data type

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Parameter: Switch3

Description

The third switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.And3(True, True, True)

s[1] whould be at end: 1 (= True)

1

Or3

Description

Applys a logical OR operation with three switches.

Syntax

Logic.Or3(Switch1, Switch2, Switch3)

Truth table

Switch1 Switch2 Switch3 Return value
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Return value

Switch

Type

Method

Parameter: Switch1

1
2

Description

The first switch which shall be operated.

Data type

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Parameter: Switch3

Description

The third switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.Or3(False, False, True)

s[1] whould be at end: 0 (= True)

1

Xor3

Description

Applys a logical XOR operation with three switches.

Syntax

Logic.Xor3(Switch1, Switch2, Switch3)

Truth table

Switch1 Switch2 Switch3 Return value
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

Return value

Switch

Type

Method

Parameter: Switch1

1
2

Description

The first switch which shall be operated.

Data type

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Parameter: Switch3

Description

The third switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.Xor3(True, True, True)

s[1] whould be at end: 0 (= False)

1

Xnor3

Description

Applys a logical XNOR operation (equivalence) with three switches.

Syntax

Logic.Xnor3(Switch1, Switch2, Switch3)

Truth table

Switch1 Switch2 Switch3 Return value
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Return value

Switch

Type

Method

Parameter: Switch1

1
2

Description

The first switch which shall be operated.

Data type

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Parameter: Switch3

Description

The third switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.Xnor3(False, False, False)

s[1] whould be at end: 1 (= True)

1

Nand3

Description

Applys a logical NAND operation with three switches.

Syntax

Logic.Nand3(Switch1, Switch2, Switch3)

Truth table

Switch1 Switch2 Switch3 Return value
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

Return value

Switch

Type

Method

Parameter: Switch1

1
2

Description

The first switch which shall be operated.

Data type

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Parameter: Switch3

Description

The third switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.Nand3(True, True, False)

s[1] whould be at end: 1 (= True)

1

Nor3

Description

Applys a logical NOR operation with three switches.

Syntax

Logic.Nor3(Switch1, Switch2, Switch3)

Truth table

Switch1 Switch2 Switch3 Return value
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Return value

Switch

Type

Method

Parameter: Switch1

1
2

Description

The first switch which shall be operated.

Data type

Switch

Parameter: Switch2

Description

The second switch which shall be operated.

Data type

Switch

Parameter: Switch3

Description

The third switch which shall be operated.

Data type

Switch

Example

$
s[1] = Logic.Nor3(False, True, False)

s[1] whould be at end: 0 (= False)

1

Above

Description

Compares two numeric values an returns true if the first value is greater
than the second value.

Syntax

Logic.Above(Number1, Number2)

Return value

Switch

Type

Method

Parameter: Number1

Description

The first number which shall be compared.

Data type

All numbers

Range

Depends on the data type

Parameter: Number2

1
2

Description

The second number which shall be compared.

Data type

All numbers

Range

Depends on the data type

Example

$
s[1] = Logic.Above(1, 7)

s[1] whould be at end: 0 (= False)

1

AboveEqual

Description

Compares two numeric values an returns true if the first value is
greater/equal than the second value.

Syntax

Logic.AboveEqual(Number1, Number2)

Return value

Switch

Type

Method

Parameter: Number1

Description

The first number which shall be compared.

Data type

All numbers

Range

Depends on the data type

Parameter: Number2

1
2

Description

The second number which shall be compared.

Data type

All numbers

Range

Depends on the data type

Example

$
s[1] = Logic.AboveEqual(6, 6)

s[1] whould be at end: 1 (= True)

1

Below

Description

Compares two numeric values an returns true if the first value is smaller
than the second value.

Syntax

Logic.Below(Number1, Number2)

Return value

Switch

Type

Method

Parameter: Number1

Description

The first number which shall be compared.

Data type

All numbers

Range

Depends on the data type

Parameter: Number2

1
2

Description

The second number which shall be compared.

Data type

All numbers

Range

Depends on the data type

Example

$
s[1] = Logic.Below(1, 20)

s[1] whould be at end: 1 (= True)

1

BelowEqual

Description

Compares two numeric values an returns true if the first value is
smaller/equal than the second value.

Syntax

Logic.BelowEqual(Number1, Number2)

Return value

Switch

Type

Method

Parameter: Number1

Description

The first number which shall be compared.

Data type

All numbers

Range

Depends on the data type

Parameter: Number2

1
2

Description

The second number which shall be compared.

Data type

All numbers

Range

Depends on the data type

Example

$
s[1] = Logic.BelowEqual(71, 2)

s[1] whould be at end: 0 (= False)

1

Equal

Description

Compares two numeric values an returns true if the first value equals to the
second value.
Information
This method compares only numbers. If you want to compare string then
you must use the Compare method of the String object. If you want to
compare switches then you must use the Xnor method of this object.

Syntax

Logic.Equal(Number1, Number2)

Return value

Switch

Type

Method

Parameter: Number1

Description

The first number which shall be compared.

Data type

All numbers

Range

1
2

Depends on the data type

Parameter: Number2

Description

The second number which shall be compared.

Data type

All numbers

Range

Depends on the data type

Example

$
s[1] = Logic.Equal(7, 6)

s[1] whould be at end: 0 (= False)

1

Unequal

Description

Compares two numeric values an returns true if the first value doesn't equal
to the second value.
Information
This method compare only numbers. If you want to compare strings for
inequality then you must use the Compare method of the String object and
reverse the result with the Not method of this object. If you want to
compare switches for inequality then you must use the Xor method of this
object.

Syntax

Logic.Unequal(Number1, Number2)

Return value

Switch

Type

Method

Parameter: Number1

Description

The first number which shall be compared.

Data type

All numbers

1
2

Range

Depends on the data type

Parameter: Number2

Description

The second number which shall be compared.

Data type

All numbers

Range

Depends on the data type

Example

$
s[1] = Logic.Unequal(12, 8)

s[1] whould be at end: 1 (= True)

1

If

Description

Returns a value conditioned by the value of a switch. If the switch is True
then TrueValue will be returned, otherwise FalseValue will be returned.
Information
The values including the data types of the parameters will be returned.
However you can't use this method for a writing operation.

Syntax

Logic.If(Expression, TrueValue, FalseValue)

Return value

Either TrueValue or FalseValue (depends on the value of Expression).

Type

Method

Parameter: Expression

Description

Decides whether TrueValue or FalseValue returns.

Data type

Switch

Parameter: TrueValue

1
2

< Back
9.3 Convert object

Forward >
9.5 Math object

Description

Will be returned only if Expression is true.

Data type

All

Parameter: FalseValue

Description

Will be returned only if Expression is false.

Data type

All

Example

$
a[1] = Logic.If(True, "marmalade", "cake")

a[1] whould be at end: "marmalade"

9.4 Logic object

9.5 Math object
Description

You can apply many mathematical operations (trigonometry, logarithmize,
square root, rounding, ...) with the Math object.

List of methods/properties

Name Type Short description
Pi Property Returns Ludolph's number (π = 3,141592653589...)
E Property Returns Euler's number (e = 2,718281828...)
Abs Method Returns the absolute value of a number
Sin Method Calculates the sine of an angle
Cos Method Calculates the cosine of an angle
Tan Method Calculates the tangent of an angle
Cot Method Calculates the cotangent of an angle
Sec Method Calculates the sekant of an angle
Csc Method Calculates the cosekant of an angle
ASin Method Calculates the angle of a sine
ACos Method Calculates the angle of a cosine
ATan Method Calculates the angle of a tangent
ACot Method Calculates the angle of a cotangent
ASec Method Calculates the angle of a sekant
ACsc Method Calculates the angle of a cosekant
SinH Method Calculates the hyperbolic sine
CosH Method Calculates the hyperbolic cosine
TanH Method Calculates the hyperbolic tangent
CotH Method Calculates the hyperbolic cotangent
SecH Method Calculates the hyperbolic sekant
CscH Method Calculates the hyperbolic cosekant
ASinH Method Calculates the inverted hyperbolic sine
ACosH Method Calculates the inverted hyperbolic cosine
ATanH Method Calculates the inverted hyperbolic tangent
ACotH Method Calculates the inverted hyperbolic cotangent
ASecH Method Calculates the inverted hyperbolic sekant

ACscH Method Calculates the inverted hyperbolic cosekant
Power Method Exponentiates a base with an exponent
Log Method Calculates the logarithm to any base
Lg Method Calculates the decade logarithm (base: 10)

Ln Method Calculates the natural logarithm (base: e =
2,718281828...)

Lb Method Calculates the binary logarithm (base: 2)
Sqrt Method Calculates the square root of a number
Cmp Method Compares two values
Exp Method Exponates the number 10 with an exponent
Round Method Rounds a number halfway away from zero
RoundUp Method Rounds a number in direction to +∞
RoundDown Method Rounds a number in direction to -∞
Int Method Cuts the decimal places of a number
Scale Method Cuts the integer places of a number

1

1
2

Pi

Description

This property represents Ludolph's number (π = 3,141592653589...).

Syntax

Math.Pi

Data type

Double

Type

Property, read-only

Example

$
f[1] = Math.Pi

f[1] whould be at end: 3,141592653589...

1

1
2

E

Description

This property represents Euler's number (e = 2,718281828...).

Syntax

Math.E

Data type

Double

Type

Property, read-only

Example

$
f[1] = Math.E

f[1] whould be at end: 2,718281828...

1

1
2

Abs

Description

Returns the absolute value of a number (this means the leading sign will
always be plus).

Syntax

Math.Abs(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number whose absolute value shall be returned.

Data type

Double

Example

$
f[1] = Math.Abs(-2)

f[1] whould be at end: 2

1

Sin

Description

Calculates the sine of an angle (= opposite leg / hypotenuse). You can
specify the angle in one of four angle formats: DEG, RAD, GRAD and
RPG. These names are specified as constants and can be used directly as
parameter. DEG stands for degree and means that a full circle has 360 angle
units. RAD stands for radiant and means that the radian measure (a full
circle has π angle units) is used. GRAD stands for grad and means that a
full circle has 400 angle units. RPG is a RPG-Maker specific format and
means that a full circle has 256 angle units.

Syntax

Math.Sin(Angle, Format)

Return value

Double

Type

Method

Parameter: Angle

Description

The angle which shall be calculated.

Data type

Double

1
2

Parameter: Format

Description

The current format of the angle.

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
f[1] = Math.Sin(90, DEG)

f[1] whould be at end: 1

1

Cos

Description

Calculates the cosine of an angle (= adjacent leg / hypotenuse). (For a
description of the angle formats see Sin method)

Syntax

Math.Cos(Angle, Format)

Return value

Double

Type

Method

Parameter: Angle

Description

The angle which shall be calculated.

Data type

Double

Parameter: Format

Description

The current format of the angle.

1
2

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
f[1] = Math.Cos(Math.Pi, RAD)

f[1] whould be at end: -1

1

Tan

Description

Calculates the tangent of an angle (= opposite leg / adjacent leg). (For a
description of the angle formats see Sin method)

Syntax

Math.Tan(Angle, Format)

Return value

Double

Type

Method

Parameter: Angle

Description

The angle which shall be calculated.

Data type

Double

Parameter: Format

Description

The current format of the angle.

1
2

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
f[1] = Math.Tan(50, GRAD)

f[1] whould be at end: 1

1

Cot

Description

Calculates the cotangent of an angle (= adjacent leg / opposite leg). (For a
description of the angle formats see Sin method)

Syntax

Math.Cot(Angle, Format)

Return value

Double

Type

Method

Parameter: Angle

Description

The angle which shall be calculated.

Data type

Double

Parameter: Format

Description

The current format of the angle.

1
2

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
f[1] = Math.Cot(96, RPG)

f[1] whould be at end: -1

1

Sec

Description

Calculates the sekant of an angle (= hypotenuse / adjacent leg). (For a
description of the angle formats see Sin method)

Syntax

Math.Sec(Angle, Format)

Return value

Double

Type

Method

Parameter: Angle

Description

The angle which shall be calculated.

Data type

Double

Parameter: Format

Description

The current format of the angle.

1
2

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
f[1] = Math.Sec(45, DEG)

f[1] whould be at end: 1,414213562373...

1

Csc

Description

Calculates the cosekant of an angle (= hypotenuse / opposite leg). (For a
description of the angle formats see Sin method)

Syntax

Math.Csc(Angle, Format)

Return value

Double

Type

Method

Parameter: Angle

Description

The angle which shall be calculated.

Data type

Double

Parameter: Format

Description

The current format of the angle.

1
2

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
f[1] = Math.Csc(30, DEG)

f[1] whould be at end: 2

1

ASin

Description

Calculates the angle from a sine (= arc sine). (For a description of the angle
formats see Sin method)

Syntax

Math.Asin(Sine, Format)

Return value

Double

Type

Method

Parameter: Sine

Description

The sine value.

Data type

Double

Parameter: Format

Description

The target angle format.

1
2

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
f[1] = Math.Asin(30, DEG)

f[1] whould be at end: 30

1

ACos

Description

Calculates the angle from a cosine (arc cosine). (For a description of the
angle formats see Sin method)

Syntax

Math.Acos(Cosine, Format)

Return value

Double

Type

Method

Parameter: Cosine

Description

The cosine value.

Data type

Double

Parameter: Format

Description

The target angle format.

1
2

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
f[1] = Math.Acos(1, GRAD)

f[1] whould be at end: 0

1

ATan

Description

Calculates the angle from a tangent (= arc tangent). (For a description of the
angle formats see Sin method)

Syntax

Math.Atan(Tangent, Format)

Return value

Double

Type

Method

Parameter: Tangent

Description

The tangent value.

Data type

Double

Parameter: Format

Description

The target angle format.

1
2

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
f[1] = Math.Atan(1, DEG)

f[1] whould be at end: 45

1

ACot

Description

Calculates the angle from a cotangent (= arc cotangent). (For a description
of the angle formats see Sin method)

Syntax

Math.Acot(Cotangent, Format)

Return value

Double

Type

Method

Parameter: Cotangent

Description

The cotangent value.

Data type

Double

Parameter: Format

Description

The target angle format.

1
2

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
f[1] = Math.Acot(-1, DEG)

f[1] whould be at end: 135 (= -45)

1

ASec

Description

Calculates the angle from a sekant (= arc sekant). (For a description of the
angle formats see Sin method)

Syntax

Math.Asec(Sekant, Format)

Return value

Double

Type

Method

Parameter: Sekant

Description

The sekant value.

Data type

Double

Parameter: Format

Description

The target angle format.

1
2

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
f[1] = Math.Asec(2, DEG)

f[1] whould be at end: 60

1

ACsc

Description

Calculates the angle from a cosekant (= arc cosekant). (For a description of
the angle formats see Sin method)

Syntax

Math.Acsc(Cosekant, Format)

Return value

Double

Type

Method

Parameter: Cosekant

Description

The cosekant value.

Data type

Double

Parameter: Format

Description

The target angle format.

1
2

Data type

Dword

Range

1 to 4 (Constants: DEG, RAD, GRAD and RPG)

Example

$
f[1] = Math.Acsc(1, RPG)

f[1] whould be at end: 64

1

1
2

SinH

Description

Calculates the hyperbolic sine.

Syntax

Math.Sinh(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be calculated.

Data type

Double

Example

$
f[1] = Math.Sinh(f[2])

1

1
2

CosH

Description

Calculates the hyperbolic cosine.

Syntax

Math.Cosh(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be calculated.

Data type

Double

Example

$
f[1] = Math.Cosh(f[2])

1

1
2

TanH

Description

Calculates the hyperbolic tangent.

Syntax

Math.Tanh(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be calculated.

Data type

Double

Example

$
f[1] = Math.Tanh(f[2])

1

1
2

CotH

Description

Calculates the hyperbolic cotangent.

Syntax

Math.Coth(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be calculated.

Data type

Double

Example

$
f[1] = Math.Coth(f[2])

1

1
2

SecH

Description

Calculates the hyperbolic sekant.

Syntax

Math.Sech(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be calculated.

Data type

Double

Example

$
f[1] = Math.Sech(f[2])

1

1
2

CscH

Description

Calculates the hyperbolic cotangent.

Syntax

Math.Csch(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be calculated.

Data type

Double

Example

$
f[1] = Math.Csch(f[2])

1

1
2

ASinH

Description

Calculates the inverted hyperbolic sine (area hyperbolic sine).

Syntax

Math.Asinh(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be calculated.

Data type

Double

Example

$
f[1] = Math.Asinh(f[2])

1

1
2

ACosH

Description

Calculates the inverted hyperbolic cosine (area hyperbolic cosine).

Syntax

Math.Acosh(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be calculated.

Data type

Double

Example

$
f[1] = Math.Acosh(f[2])

1

1
2

ATanH

Description

Calculates the inverted hyperbolic tangent (area hyperbolic tangent).

Syntax

Math.Atanh(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be calculated.

Data type

Double

Example

$
f[1] = Math.Atanh(f[2])

1

1
2

ACotH

Description

Calculates the inverted hyperbolic cotangent (area hyperbolic cotangent).

Syntax

Math.Acoth(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be calculated.

Data type

Double

Example

$
f[1] = Math.Acoth(f[2])

1

1
2

ASecH

Description

Calculates the inverted hyperbolic sekant (area hyperbolic sekant).

Syntax

Math.Asech(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be calculated.

Data type

Double

Example

$
f[1] = Math.Asech(f[2])

1

1
2

ACscH

Description

Calculates the inverted hyperbolic cosekant (area hyperbolic cosekant).

Syntax

Math.Acsch(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be calculated.

Data type

Double

Example

$
f[1] = Math.Acsch(f[2])

1

Power

Description

Exponentiates the base with the exponent.

Syntax

Math.Power(Base, Exponent)

Return value

Double

Type

Method

Parameter: Base

Description

The base value.

Data type

Double

Parameter: Exponent

Description

The exponent value.

1
2

Data type

Double

Example

$
f[1] = Math.Power(3, 4)

f[1] whould be at end: 81 (= 3 * 3 * 3 * 3)

1

Log

Description

Calculates the logarithm of any base.

Syntax

Math.Log(Number, Base)

Return value

Double

Type

Method

Parameter: Number

Description

The number whose logarithm shall be calculated.

Data type

Double

Parameter: Base

Description

The base of the logarithm.

1
2

Data type

Double

Example

$
f[1] = Math.Log(25, 5)

f[1] whould be at end: 2

1

1
2

Lg

Description

Calculates the decade logarithm (the base is 10).

Syntax

Math.Lg(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number whose logarithm shall be calculated.

Data type

Double

Example

$
f[1] = Math.Lg(1000)

f[1] whould be at end: 3

1

1
2

Ln

Description

Calculates the natural logarith (the base is Euler's number).

Syntax

Math.Ln(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number whose logarithm shall be calculated.

Data type

Double

Example

$
f[1] = Math.Ln(1 / Math.E)

f[1] whould be at end: -1

1

1
2

Lb

Description

Calculates the binary logarithm (the base is 2).

Syntax

Math.Lb(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number whose logarithm shall be calculated.

Data type

Double

Example

$
f[1] = Math.Lb(256)

f[1] whould be at end: 8

1

1
2

Sqrt

Description

Calculates the square root of a number.

Syntax

Math.Sqrt(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number whose square root shall be calculated.

Data type

Double

Example

$
f[1] = Math.Sqrt(10000)

f[1] whould be at end: 100

1

Cmp

Description

Compares two numbers. If the first number is smaller than the second
number then the result will be < 0. If the first number is greater than the
second number then the result will be > 0. If both numbers are the same
then the result will be = 0.

Syntax

Math.Cmp(Number1, Number2)

Return value

Dword

Type

Method

Parameter: Number1

Description

The first number to compare.

Data type

Double

Parameter: Number2

Description

1
2

The second number to compare.

Data type

Double

Example

$
d[1] = Math.Cmp(1, 2)

f[1] whould be at end: -1

1

1
2

Exp

Description

Exponentiates the number 10 with the specified number.

Syntax

Math.Exp(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The exponent for the number 10.

Data type

Double

Example

$
f[1] = Math.Exp(5)

f[1] whould be at end: 100000

1

Round

Description

Rounds a number halfway away from zero (this means 5 to 9 will be
rounded up) to the specified place. If you specify 0 as place then the
decimal part will be rounded to the integer part. If you specify a positive
number as place then you round to that decimal place. If you specify a
negative number as place then you round to that integer place.

Syntax

Math.Round(Number, Place)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be rounded.

Data type

Double

Parameter: Place

1
2

Description

The place which shall be rounded (measured from the decimal separator).

Data type

Dword

Example

$
f[1] = Math.Round(3.345, 2)

f[1] whould be at end: 3.35

1

RoundUp

Description

Rounds a number into the direction of +∞ (this means from 1 to 9 will be
rounded up) to the specified place. If you specify 0 as place then the
decimal part will be rounded to the integer part. If you specify a positive
number as place then you round to that decimal place. If you specify a
negative number as place then you round to that integer place.

Syntax

Math.RoundUp(Number, Place)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be rounded.

Data type

Double

Parameter: Place

1
2

Description

The place which shall be rounded (measured from the decimal separator).

Data type

Dword

Example

$
f[1] = Math.RoundUp(-300.7, 0)

f[1] whould be at end: -300 (if you round into the direction of +∞ then the
result will always be more positive)

1

RoundDown

Description

Rounds a number into the direction of -∞ (this means from 1 to 9 will be
rounded down) to the specified place. If you specify 0 as place then the
decimal part will be rounded to the integer part. If you specify a positive
number as place then you round to that decimal place. If you specify a
negative number as place then you round to that integer place.

Syntax

Math.RoundDown(Number, Place)

Return value

Double

Type

Method

Parameter: Number

Description

The number which shall be rounded.

Data type

Double

Parameter: Place

1
2

Description

The place which shall be rounded (measured from the decimal separator).

Data type

Dword

Example

$
f[1] = Math.RoundDown(592.001, -2)

f[1] whould be at end: 500

1

1
2

Int

Description

Cuts the decimal part of a number.

Syntax

Math.Int(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number whose decimal part shall be removed.

Data type

Double

Example

$
f[1] = Math.Int(123.456)

f[1] whould be at end: 123

1

1
2

Scale

Description

Cuts the integer part of a number.

Syntax

Math.Scale(Number)

Return value

Double

Type

Method

Parameter: Number

Description

The number whose integer part shall be removed.

Data type

Double

Example

$
f[1] = Math.Scale(123.456)

f[1] whould be at end: 0,456

< Back
9.4 Logic object

Forward >
9.6 String object

9.5 Math object

9.6 String object
Description

You can manipulate (cut, search, compare, ...) strings with the String object.

Liste of methods/properties

Name Type Short description
Length Method Returns the length of a string
LTrim Method Truncates spaces from the left side of a string
RTrim Method Truncates spaces from the right side of a string

Trim Method Truncates spaces from both sides (left and right)
of a string

Chr Method Translates an ASCII code to a char
Ord Method Returns the ASCII code of a char
Pos Method Returns the position of a search string
SubStr Method Returns a specified part of a string
Compare Method Compares two strings

Replace Method Replaces all occurences of a string in an other
string

ToUpper Method Translates each letter into upper case letters
ToLower Method Translates each letter into lower case letters
Reverse Method Reverses each char of a string
Fill Method Concatenates a string multiple times
Format Method Formats numbers
WeekdayName Method Returns the name of a weekday
MonthName Method Returns the name of a month

1

1
2

Length

Description

Returns the number of chars in a string.

Syntax

String.Length(String)

Return value

Dword

Type

Method

Parameter: String

Description

The string whose length shall be determined.

Data type

String

Example

$
d[1] = String.Length("7 Chars")

d[1] whould be at end: 7

1

1
2

LTrim

Description

Truncates spaces (this means chars with the ASCII code 32) from the left
side of a string.

Syntax

String.LTrim(String)

Return value

String

Type

Method

Parameter: String

Description

The string whose spaces shall be removed from the left side.

Data type

String

Example

$
a[1] = String.Trim(" Text with spaces left
and right ")

a[1] whould be at end: "Text with spaces left and right "

1

1
2

RTrim

Description

Truncates spaces (this means chars with the ASCII code 32) from the right
side of a string.

Syntax

String.RTrim(String)

Return value

String

Type

Method

Parameter: String

Description

The string whose spaces shall be removed from the right side.

Data type

String

Example

$
a[1] = String.Trim(" Text with spaces left
and right ")

a[1] whould be at end: " Text with spaces left and right"

1

1
2

Trim

Description

Truncates spaces (this means chars with the ASCII code 32) from both sides
(left and right) of a string.

Syntax

String.Trim(String)

Return value

String

Type

Method

Parameter: String

Description

The string whose spaces shall be removed from the left and right side.

Data type

String

Example

$
a[1] = String.Trim(" Text with spaces left
and right ")

a[1] whould be at end: "Text with spaces left and right"

1

1
2

Chr

Description

Creates a string from an ASCII code.

Syntax

String.Chr(Char)

Return value

String

Type

Method

Parameter: Char

Description

The ASCII code of the char. The ASCII code 0 isn't valid.

Data type

Byte

Example

$
a[1] = String.Chr(65)

a[1] whould be at end: "A"

http://en.wikipedia.org/wiki/Ascii

1

Ord

Description

Returns the ASCII code of a char at a specified position in a string.

Syntax

String.Ord(String, Position)

Return value

Byte

Type

Method

Parameter: String

Description

The string which contains the char.

Data type

String

Parameter: Position

Description

The position of the char in the string. This is the offset from the start of
the string (this means 0 whould be the first char, 1 whould be the second

1
2

char, ...).

Data type

Dword

Example

$
d[1] = String.Ord("Text", 2)

d[1] whould be at end: 120 (this is the ASCII code of the char "x")

1

Pos

Description

Returns the position of a partial string in an other string. The return value is
the offset from the start of the string (this means 0 whould be the first char,
1 whould be the second char, ...). This method returns -1 if the string
couldn't be found.

Syntax

String.Pos(String, SearchString,
StartPosition)

Return value

Dword

Type

Method

Parameter: String

Description

The string which contains SearchString (haystack).

Data type

String

Parameter: SearchString

1
2

Description

The string which shall be searched (needle).

Data type

String

Parameter: StartPosition

Description

The position where the search shall start. This value is the offset from the
start of the string (this means 0 whould start at the first char, 1 whould
start at the second char, ...).

Data type

Dword

Example

$
d[1] = String.Pos("Search me!", "e", 2)

d[1] whould be at end: 7 (the first "e" has been skipped because the search
started at char no. 3)

1

SubStr

Description

Returns a partial string with specified length at a specified position.

Syntax

String.SubStr(String, Position, Length)

Return value

String

Type

Method

Parameter: String

Description

The string which contains the partial string.

Data type

String

Parameter: Position

Description

The start position where of the partial string. This value is the offset from
the start of the string (this means 0 whould start at the first char, 1 whould

1
2

start at the second char, ...).

Data type

Dword

Parameter: Length

Description

The length of the partial string. If this value is greater than the remainder
of the string (or if it is a negative value) then the entire remainder will be
copied.

Data type

Dword

Example

$
a[1] = String.SubStr("Text with parts", 5,
4)

a[1] whould be at end: "with"

1

Compare

Description

Compares two strings and returns true if they are equal (otherwise false).

Syntax

String.Compare(String1, String2)

Return value

Switch

Type

Method

Parameter: String1

Description

The first string which shall be compared.

Data type

String

Parameter: String2

Description

The second string which shall be compared.

1
2

Data type

String

Example

$
s[1] = String.Compare("Text", "Text")

s[1] whould be at end: 1 (= True)

1

Replace

Description

Replaces all occurences of a partial string in an other string.

Syntax

String.Compare(Expression, Search,
Replacement)

Return value

String

Type

Method

Parameter: Expression

Description

The string which contains Search (Haystack).

Data type

String

Parameter: Search

Description

The string which shall be replaced (Needle).

1
2
3

Data type

String

Parameter: Replacement

Description

The string which shall be used as replacement for Search.

Data type

String

Example

$
a[1] = String.Replace("Milk products are
from cows",
"Milk", "Meat")

a[1] whould be at end: "Meat products are from cows"

1

1
2

ToUpper

Description

Translates each letter (a to z) of a String into upper case letters.

Syntax

String.ToUpper(String)

Return value

String

Type

Method

Parameter: String

Description

The string whose lower case letters shall be translated into upper case
letters.

Data type

String

Example

$
a[1] = String.ToUpper("UPPER and lower case
LETTERS")

a[1] whould be at end: "UPPER AND LOWER CASE LETTERS"

1

1
2

ToLower

Description

Translates each letter (a to z) of a string into lower case letters.

Syntax

String.ToLower(String)

Return value

String

Type

Method

Parameter: String

Description

The string whose upper case letters shall be translated into lower case
letters.

Data type

String

Example

$
a[1] = String.ToLower("UPPER and lower case
LETTERS")

a[1] whould be at end: "upper and lower case letters"

1

1
2

Reverse

Description

Reverses the content of a string.

Syntax

String.Reverse(String)

Return value

String

Type

Method

Parameter: String

Description

The string whose content shall be reversed.

Data type

String

Example

$
a[1] = String.Reverse("Reversed")

a[1] whould be at end: "desreveR"

1

Fill

Description

Concatenates a string multiple times.

Syntax

String.Fill(String, Count)

Return value

String

Type

Method

Parameter: String

Description

The string which shall be repeated.

Data type

String

Parameter: Count

Description

The number of repeats.

1
2

Data type

Dword

Range

0 to 10000

Example

$
a[1] = "We are" + String.Fill(" hungry", 3)

a[1] whould be at end: "We are hungry hungry hungry"

1

Format

Description

Formats a number similar to the MessageLink. The first char must be a F
(for double) or a D (for dword). Accordingly the second parameter will be
formatted either as dword or double. If it is formatted as dword then the
minimum length of digits can follow the D (e. g. D4 whould be a dword
with at least 4 digits). If the number is formatted as double then you can
specify the minimum integer length and/or the exact decimal length (e. g.
F2.3 for at least 2 integer digits an exact 3 decimal digits).

Syntax

String.Format(Format, Number)

Return value

String

Type

Method

Parameter: Format

Description

The format string for the number.

Data type

String

1
2

Parameter: Number

Description

The number which shall be formatted.

Data type

Dword or double

Example

$
a[1] = String.Format("f0.4", 123.7)

a[1] whould be at end: "123.7000" (if Convert.DecimalComma whould be 1
then a comma whould have been used instead of a point as decimal
separator)

1

WeekdayName

Description

Returns the name of a weekday. This method depends on the chosen
language of Destiny.dll.

Syntax

String.WeekdayName(Number, Short)

Return value

String

Type

Method, depends on language

Parameter: Number

Description

The number of the weekday. (0 = Sunday, 1 = Monday, 2 = Tuesday, 3 =
Wednesday, 4 = Thursday, 5 = Friday, 6 = Saturday)

Data type

Byte

Range

0 to 6

1
2

Parameter: Short

Description

Specifies either the weekday shall return in short format (e. g. Sat) or long
format (e. g. Saturday). True means short format.

Data type

Switch

Example

$
a[1] = String.WeekdayName(3, True)

a[1] whould be at end: "Wed" (if Destiny.Language whould be 0 then the
return value whould be "Mi")

1

MonthName

Description

Returns the name of a month. This method depends on the chosen language
of Destiny.dll.

Syntax

String.MonthName(Number, Short)

Return value

String

Type

Method, depends on language

Parameter: Number

Description

The number of the month. (1 = January, 2 = February, 3 = March, 4 =
April, 5 = May, 6 = June, 7 = July, 8 = August, 9 = September, 10 =
October, 11 = November, 12 = December)

Data type

Byte

Range

1 to 12

1
2

< Back
9.5 Math object

Forward >
9.7 Error object

Parameter: Short

Description

Specifies either the month shall return in short format (e. g. Jan) or long
format (e. g. January). True means short format.

Data type

Switch

Example

$
a[1] = String.MonthName(12, False)

a[1] whould be at end: "December" (if Destiny.Language whould be 1 then
the return value whould be "Dezember")

9.6 String object

9.7 Error object
Description

You can enable/disable single error messages and/or query captions with the
Error object. This object requires an index to specify which error message
shall be responded. You can use the Error constants for this index (e. g.
Error[ERROR_SYNTAX].Enabled). A description of the errors can be
found at the error messages.

List of methods/properties

Name Type Short description
Enabled Property Specifies wether an error message is enabled
Title Property The title of an error message
Message Property The content of an error message

1

1
2

Enabled

Description

If this switch is activated then the error message will be displayed if
necessary. If all error messages have been disabled using the Errors object
this switch is ineffective.

Syntax

Error[Index].Enabled

Data type

Switch

Type

Property

Example

$
Error[ERROR_READONLY].Enabled = False

At the end the error message for the write access on read-only values
whould be disabled.

1

1
2

Title

Description

This property returns the title of an error message used in the title of the
error message window. This value depends on the chosen language of the
Destiny.dll.

Syntax

Error[Index].Title

Data type

String

Type

Property, read-only, depends on language

Example

$
a[1] = Error[ERROR_SYNTAX].Title

a[1] whould be at the end: "Error 1: Syntax" (if Destiny.Language whould
be 0 then a[1] whould be a german title)

1

1
2

< Back
9.6 String object

Forward >
9.8 Errors object

Message

Description

This property returns the message used in the body of the error message
window. This value depends on the chosen language of the Destiny.dll.

Syntax

Error[Index].Message

Data type

String

Type

Property, read-only, depends on language

Example

$
a[1] = Error[ERROR_SYNTAX].Message

a[1] whould be at the end: "The syntax is invalid!" (if Destiny.Language
whould be 0 then a[1] whould be a german message)

9.7 Error object

9.8 Errors object
Description

You can enable/disable all error messages with the Error object.
Additionally you control the error handling.

List of methods/properties

Name Type Short description
Enable Method Enables the error message output system
Disable Method Disables the error message output system
Resume Method Admits multi-line DestinyScripts to continue on errors
Halt Method Admits multi-line DestinyScript to abort on errors
Catch Method Returns the number of the last occured error

1

1
2

Enable

Description

Enables the error message output system. This has no effect on the single
disabled errors via the Error object (this means if an error occurs and it has
been disabled with the Error object then there won't be any error message
shown).

Syntax

Errors.Enable()

Return value

None

Type

Method

Example

$
Errors.Enable()

At the end error messages whould be shown if necessary (= default option).

1

1
2

Disable

Description

Disables the error message output system. All error messages will be
suppressed. This happens even if single errors have been enabled using the
Error object.

Syntax

Errors.Disable()

Return value

None

Type

Method

Example

$
Errors.Disable()

At the end no error messages whould be shown.

1

1
2
3
4
5

Resume

Description

If you call this method then multi-line DestinyScripts will continue running
if an error occurs.

Syntax

Errors.Resume()

Return value

None

Type

Method

Example

$
v[1] = 0;
Errors.Resume();
v[2] = 5 / 0;
v[1] = 5

v[1] whould be at end: 5 (the line 4 raises a "Division by zero" error. The
following lines will still be executed!)

1

1
2
3
4
5

Halt

Description

If you call this method then multi-line DestinyScripts will abort if an error
occurs (= default option).

Syntax

Errors.Halt()

Return value

None

Type

Method

Example

$
v[1] = 0;
Errors.Halt();
v[2] = 5 / 0;
v[1] = 5

v[1] whould be at end: 0 (the line 4 raises a "Division by zero" error. So the
following lines won't be executed!)

1

1
2

1
2

Catch

Description

This method returns the number of the last occured error. If no error has
occured the return value is 0. After a query of this method the number of
the last occured error will be reset to 0. If an unknown error occured the
return value is -1 (this differs from ERROR_UNKNOWN which has the
value 0).

Syntax

Errors.Catch()

Return value

Dword

Type

Method

Example

In this example two DestinyScripts will run serially, but in two different
RPG-Maker comments.

$
v[2] /= 0

$
v[1] = Errors.Catch()

v[1] whould be at end: 15 (this is the error number of the "Division by zero"
number)

< Back
9.7 Error object

Forward >
9.9 Keyboard object

9.8 Errors object

9.9 Keyboard object
Description

You can query/set key states with the Keyboard object. The mouse buttons
(left, middle, right) will be queried with this object, too. (You can use the
mouse button constants for this)

List of methods/properties

Name Type Short description
GetKeyState Method Queries the state of a key
GetKey Method Returns the key code of the last pressed key

GetKeyText Method Returns the key code of the last pressed key
considering to the char repeat

SetKeyState Method Sets the state of a key

1

GetKeyState

Description

With this method you can query the current key state of a specified key. You
can use the virtual key code constants for this. This method returns a value
unequal to zero if the key is pressed. This method is equivalent to the
Windows function GetAsyncKeyState.

Syntax

Keyboard.GetKeyState(Keycode)

Return value

Word

Type

Method

Parameter: Keycode

Description

The number of the key to be queried. You can use the virutal key code
constants for this.

Datentyp

Dword

Example

1
2
$
v[1] = Keyboard.GetKeyState(VK_DOWN)

If the key [Arrow down] is pressed then v[1] whould be at end -32767 or
-32768, otherwise 0 or 1.

1

1
2

GetKey

Description

Queries all keys from 1 to 254 and returns the first number of the pressed
key. If no key is pressed this method will return 0.

Syntax

Keyboard.GetKey()

Return value

Dword

Type

Method

Example

$
v[1] = Keyboard.GetKey()

At the end the virtual key code of the last pressed key whould be returned.
But only the first found key will be returned. If more than one key is
pressed at the same time then only the lower virtual key code will be
returned. Hence you should use the GetKeyText method for text input.

1

1
2

GetKeyText

Description

Queries all keys from 1 to 254 and returns the first number of the pressed
key considering to the char repeat. If no key is pressed with expedient char
repeat this method will return 0. This method can be used for text input.

Syntax

Keyboard.GetKeyText()

Return value

Dword

Type

Method

Example

$
v[1] = Keyboard.GetKeyText()

At the end the last pressed key (considering to the char repeat) whould be
returned. If you use this in a loop then you could input chars in the correct
order. If a char whould be hold down then the char repeat whould make sure
that not each loop will return this key code.

1

SetKeyState

Description

You can set the state of a key with this method. You can use the virtual key
code constants for this. To specify the key state you can use the key state
constants. This method is equivalent to the windows function keybd_event.

Syntax

Keyboard.SetKeyState(Keycode, Keystate)

Return value

None

Type

Method

Parameter: Keycode

Description

The virtual key code. You can use the virtual key code constants for this.

Datentyp

Dword

Parameter: Keystate

Description

1
2

< Back
9.8 Errors object

Forward >
9.10 Mouse object

The new key state. You can use the key state constants for this.

Datentyp

Dword

Example

$
Keyboard.SetKeyState(VK_RIGHT,
KEYEVENTF_KEYDOWN)

At the end the player whould try to move right, because the computer thinks
the right arrow key is pressed. This will stop if the right arrow key is
released (in this case you must even press it first!). To "release" the key via
DestinyScript you can use the KEYEVENTF_KEYUP constant instead of
KEYEVENTF_KEYDOWN.

9.9 Keyboard object

9.10 Mouse object
Description

You can get/set the position of the mouse cursor via the Mouse object. The
cursor position is relative to the upper left corner of the game window. If
the game is in window mode the coordinates will be transformed
automatically.

List of methods/properties

Name Type Short description
X Property The current x coordinate of the mouse cursor
Y Property The current y coordinate of the mouse cursor

1

1
2

X

Description

This property represents the x coordinate of the mouse cursor and is relative
to the upper left corner of the game window. If the game window is
stretched then the x coordinate will be transformed automatically. The unit
for this value is pixel.

Syntax

Mouse.X

Data type

Dword

Type

Property

Example

$
Mouse.X = 10

At the end the x coordinate of the mouse cursor whould be 10 pixel away
from the left border of the game window.

1

1
2

< Back
9.9 Keyboard object

Forward >
9.11 Time object

Y

Description

This property represents the y coordinate of the mouse cursor and is relative
to the upper left corner of the game window. If the game window is
stretched then the y coordinate will be transformet automatically. The unit
for this value is pixel.

Syntax

Mouse.Y

Data type

Dword

Type

Property

Example

$
v[1] = Mouse.Y

At the end v[1] whould be the current y coordinate relative to the upper
border of the game window.

9.10 Mouse object

9.11 Time object
Description

You can query the current date/time of the computer with the Time object.

List of methods/properties

Name Type Short description
Weekday Property The current weekday
Day Property The current day of the month
Month Property The current month
Year Property The current year
Hour Property The current hour
Minute Property The current minute
Second Property The current second
Millisecond Property The current millisecond
Tick Property A continuous counter in milliseconds

1

1
2

Weekday

Description

This property returns the current weekday. Sunday is the first day of the
week (0 = Sunday, 1 = Monday, 2 = Tuesday, 3 = Wednesday, 4 = Thursday,
5 = Friday, 6 = Saturday).

Syntax

Time.Weekday

Data type

Word

Type

Property, read-only

Example

$
v[1] = Time.Weekday

At the end v[1] whould be the current weekday (e. g. on a tuesday v[1]
whould be 2).

1

1
2

Day

Description

This property returns the current day of the month.

Syntax

Time.Day

Data type

Word

Type

Property, read-only

Example

$
v[1] = Time.Day

At the end v[1] whould be the current day of the month (e. g. at the 08.
January 1987 this whould be 8).

1

1
2

Month

Description

This property returns the current month. (1 = January, 2 = February, 3 =
March, 4 = April, 5 = May, 6 = June, 7 = July, 8 = August, 9 = September,
10 = October, 11 = November, 12 = December)

Syntax

Time.Month

Data type

Word

Type

Property, read-only

Example

$
v[1] = Time.Month

At the end v[1] whould be the current month (e. g. at the 08. January 1987
this whould be 1).

1

1
2

Year

Description

This property returns the current year.

Syntax

Time.Year

Data type

Word

Type

Property, read-only

Example

$
v[1] = Time.Year

At the end v[1] whould be the current year (e. g. at the 08. January 1987
this whould be 1987).

1

1
2

Hour

Description

This property returns the current hour.

Syntax

Time.Hour

Data type

Word

Type

Property, read-only

Example

$
v[1] = Time.Hour

At the end v[1] whould be the current hour (e. g. at 12:30 this whould be
12).

1

1
2

Minute

Description

This property returns the current minute.

Syntax

Time.Minute

Data type

Word

Type

Property, read-only

Example

$
v[1] = Time.Minute

At the end v[1] whould be the current minute (e. g. at 12:30 this whould be
30).

1

1
2

Second

Description

This property returns the current second.

Syntax

Time.Second

Data type

Word

Type

Property, read-only

Example

$
v[1] = Time.Second

At the end v[1] whould be the current second.

1

1
2

Millisecond

Description

This property returns the current millisecond.

Syntax

Time.Millisecond

Data type

Word

Type

Property, read-only

Example

$
v[1] = Time.Millisecond

At the end v[1] whould be the current millisecond.

1

1
2

< Back
9.10 Mouse object

Forward >
9.12 Actor object

Tick

Description

This counter counts every millisecond up by one. The value of this property
is equivalent to the Windows function GetTickCount. This property can be
used to measure time differences. You simply save the value before and
after an action. The difference is the required time for that action in
milliseconds.

Syntax

Time.Tick

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Time.Tick

At the end v[1] whould be the current tick of the computer.

9.11 Time object

9.12 Actor object
Description

You can get/set the properties of an hero with the Actor object. This object
requires an index to specify which hero shall be responded. This index is
the same as the hero id in the RPG-Maker 2000 database.

List of methods/properties

Name Type Short description
Name Property The name of the hero
Degree Property The degree of the hero
Level Property The level of the hero
HP Property The health points of the hero
MP Property The magic points of the hero
AttackDiff Property The difference of the hero's attack points
DefenseDiff Property The difference of the hero's defense points
MindDiff Property The difference of the hero's mind points
AgilityDiff Property The difference of the hero's agility points
MaxHPDiff Property The difference of the hero's maximum health points
MaxMPDiff Property The difference of the hero's maximum magic points
EXP Property The expansion points of the hero

1

1
2

Name

Description

This is the current name of the hero.

Syntax

Actor[Index].Name

Data type

String

Type

Property

Example

$
a[1] = Actor[1].Name

At the end a[1] whould contain the name of the first hero (in this case
probably "Alex").

1

1
2

Degree

Description

This is the current degree of the hero.

Syntax

Actor[Index].Degree

Data type

String

Type

Property

Example

$
a[1] = Actor[1].Degree

At the end a[1] whould contain the degree of the first hero (in this case
probably "Soldier").

1

1
2

Level

Description

This is the current level of the hero. If you change this property then the
expansion points won't be changed automatically, too.

Syntax

Actor[Index].Level

Data type

Dword

Type

Property

Example

$
v[1] = Actor[1].Level

At the end v[1] whould contain the current level of the first hero (in this
case probably 1).

1

1
2

HP

Description

This the current health point value of the hero.

Syntax

Actor[Index].HP

Data type

Dword

Type

Property

Example

$
v[1] = Actor[1].HP

At the end v[1] whould contain the health points of the first hero (in this
case probably 48).

1

1
2

MP

Description

This is the current magic point value of the hero.

Syntax

Actor[Index].MP

Data type

Dword

Type

Property

Example

$
v[1] = Actor[1].MP

At the end v[1] whould be the current magic points of the first hero (in this
case probably 38).

1

1
2

AttackDiff

Description

This is the difference between the current attack points to the normal attack
points of the hero's level. (e. g. if the hero whould usually have 10 attack
points on the current level, but totally has 12 attack points, then the
difference whould be 2)

Syntax

Actor[Index].AttackDiff

Data type

Dword

Type

Property

Example

$
v[1] = Actor[1].AttackDiff

1

1
2

DefenseDiff

Description

This is the difference between the current defense points to the normal
defense points of the hero's level. (For a difference example see AttackDiff)

Syntax

Actor[Index].DefenseDiff

Data type

Dword

Type

Property

Example

$
v[1] = Actor[1].DefenseDiff

1

1
2

MindDiff

Description

This is the difference between the current mind points to the normal mind
points of the hero's level. (For a difference example see AttackDiff)

Syntax

Actor[Index].MindDiff

Data type

Dword

Type

Property

Example

$
v[1] = Actor[1].MindDiff

1

1
2

AgilityDiff

Description

This is the difference between the current agility points to the normal agility
points of the hero's level. (For a difference example see AttackDiff)

Syntax

Actor[Index].AgilityDiff

Data type

Dword

Type

Property

Example

$
v[1] = Actor[1].AgilityDiff

1

1
2

MaxHPDiff

Description

This is the difference between the current maximum health points to the
normal maximum health points of the hero's level. (For a difference
example see AttackDiff)

Syntax

Actor[Index].MaxHPDiff

Data type

Dword

Type

Property

Example

$
v[1] = Actor[1].MaxHPDiff

1

1
2

MaxMPDiff

Description

This is the difference between the current maximum magic points to the
normal maximum health points of the hero's level. (For a difference
example see AttackDiff)

Syntax

Actor[Index].MaxMPDiff

Data type

Dword

Type

Property

Example

$
v[1] = Actor[1].MaxMPDiff

1

1
2

< Back
9.11 Time object

Forward >
9.13 Map object

EXP

Description

This is the expansion point value of the hero. If you change this value the
level of the hero will not be changed automatically, too.

Syntax

Actor[Index].EXP

Data type

Dword

Type

Property

Example

$
v[1] = Actor[1].EXP

9.12 Actor object

9.13 Map object
Description

You can get/set the properties of the current map with the Map object. You
can read generic informations (width, height, ...) or change the single chips
(upper chip, lower chip).

List of methods/properties

Name Type Short description
ID Property The id of the map
Width Property The width of the map
Height Property The height of the map
HeroX Property The x coordinate of the hero on the map
HeroY Property The y coordinate of the hero on the map
Chipset Property The id of the map's used chipset
Lower Property The lower chip at a specific position on the map
Upper Property The upper chip at a specific position on the map
EventCount Property The number of events on the map

1

1
2

ID

Description

This is the id used by the RPG-Maker 2000 to identify the current map.

Syntax

Map.ID

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Map.ID

At the end v[1] whould contain the Id of the current map (in this case
probably 1).

1

1
2

Width

Description

This is the width (in chips) of the current map.

Syntax

Map.Width

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Map.Width

At the end v[1] whould contain the width of the current map (e. g. on a 20 x
15 sized map this whould be 20).

1

1
2

Height

Description

This is the height (in chips) of the current map.

Syntax

Map.Height

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Map.Height

At the end v[1] whould contain the height of the current map (e. g. on a 20
x 15 sized map this whould be 15).

1

1
2

HeroX

Description

This is the current hero's x coordinate on the current map.

Syntax

Map.HeroX

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Map.HeroX

At the end v[1] whould contain the current x coordinate of the hero.

1

1
2

HeroY

Description

This is the current hero's y coordinate on the current map.

Syntax

Map.HeroY

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Map.HeroY

At the end v[1] whould contain the current y coordinate of the hero.

1

1
2

Chipset

Description

This is the id of the chipset which is used by the current map.

Syntax

Map.Chipset

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Map.Chipset

At the end v[1] whould contain the chipset id of the current map.

1

1
2

Lower

Description

This is the lower chip at a specific position on the map. A two dimensional
index is used to specify the position. The first value is the x coordinate an
the second value is the y coordinate. Both values start at 0. The boundaries
of the map may not be exceeded.

Syntax

Map.Lower[X, Y]

Data type

Word

Type

Property

Example

$
Map.Lower[0, 0] = 4333

At the end the lower chip in the upper left corner of the map (position 0, 0)
whould be changed to a poisoned chip (depends on the chipset).

1

1
2

Upper

Description

This is the upper chip at a specific position on the map. A two dimensional
index is used to specify the position. The first value is the x coordinate an
the second value is the y coordinate. Both values start at 0. The boundaries
of the map may not be exceeded.

Syntax

Map.Upper[X, Y]

Data type

Word

Type

Property

Example

$
Map.Upper[Map.Width - 1, 0] = 10000

At the end the upper chip in the upper right corner of the map whould be a
clear chip (depends on the chipset).

1

1
2

< Back
9.12 Actor object

Forward >
9.14 Event object

EventCount

Description

This is the total number of events (excluding the hero and the vehicles) on
the map. This property can be quite well combined for loops with the
MapEvent object.

Syntax

Map.EventCount

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Map.EventCount

At the end v[1] whould contain the number of events on the current map.

9.13 Map object

9.14 Event object
Description

You can get/set the properties of an event with the Event object. The Event
object requires an index to specify which event shall be responded. This
index is the event id used in the RPG-Maker. Because the event id is not
continuous numbered this object is not capable for loops. If you want to
access events in loops then you should use the MapEvent object. If you
want to access a special event (this, hero, boat, ship or airship) you can use
the special event constants as index.

List of methods/properties

Name Type Short description
ID Property The id of the event
MapID Property The id of the map where the event is placed
X Property The x coordinate of the event
Y Property The y coordinate of the event
Dir1 Property The first part of the event's direction
Dir2 Property The second part of the event's direction
DirFlags Property The direction properties of the event
Exists Property The clear state of the event
ScreenX Property The x coordinate of the event on the screen
ScreenY Property The y coordinate of the event on the screen
Frame Property The current frame of the event
Offset Property The current offset to the next field of the event
Charset Property The name of the event's charset
Frequency Property The movement frequency of the event
Speed Property The movement speed of the event
Transparency Property The transparency of the event
FixDir Property The fixed direction property of the event
Phasing Property The "walk trough walls" property of the event
StopAnimation Property The "no walk animation" property of the event
JumpTime Property The jump time value of the event

1

1
2

ID

Description

This is the id used to identify the event in the RPG-Maker.

Syntax

Event[Index].ID

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Event[1].ID

At the end v[1] whould contain the id of the first event (in this case 1).

1

1
2

MapID

Description

This is the id of the map where the event is currently placed.

Syntax

Event[Index].MapID

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Event[1].MapID

At the end v[1] whould be the first event's map id (in this case probably 1).

1

1
2

X

Description

This is the x coordinate (in chips) of the event on the current map.

Syntax

Event[Index].X

Data type

Dword

Type

Property

Example

$
v[1] = Event[1].X

1

1
2

Y

Description

This is the y coordinate (in chips) of the event on the current map.

Syntax

Event[Index].Y

Data type

Dword

Type

Property

Example

$
v[1] = Event[1].Y

1

1
2

Dir1

Description

This is the first part of the direction flags of the event.

Syntax

Event[Index].Dir1

Data type

Byte

Type

Property

Example

$
v[1] = Event[1].Dir1

1

1
2

Dir2

Description

This is the second part of the direction flags of the event.

Syntax

Event[Index].Dir2

Data type

Byte

Type

Property

Example

$
Event[HERO].Dir2 = DIR_RIGHT

1

1
2

DirFlags

Description

This is the direction property of the event (this is a combination of Dir1 and
Dir2).

Syntax

Event[Index].DirFlags

Data type

Word

Type

Property

Example

$
v[1] = Event[1].DirFlags

1

1
2

Exists

Description

This property is true whether the event does "exist". If this value is false
then the event has been cleared (e. g. with the "clear timer" from the RPG-
Maker).

Syntax

Event[Index].Exists

Data type

Switch

Type

Property

Example

$
Event[1].Exists = False

At the end the first event whould be cleared.

1

1
2

ScreenX

Description

This is the x coordinate of the event in pixel.

Syntax

Event[Index].ScreenX

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Event[1].ScreenX

1

1
2

ScreenY

Description

This is the y coordinate of the event in pixel.

Syntax

Event[Index].ScreenY

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Event[1].ScreenY

1

1
2

Frame

Description

This is the current frame (a piece of the charset) of the event.

Syntax

Event[Index].Frame

Data type

Dword

Type

Property

Example

$
v[1] = Event[1].Frame

http://en.wikipedia.org/wiki/Film_frame

1

1
2

Offset

Description

This is the offset from the next field of the event in considering to its
direction.

Syntax

Event[Index].Offset

Data type

Dword

Type

Property

Example

$
v[1] = Event[1].Offset

1

1
2

Charset

Description

This is the name of the event's currently used charset.

Syntax

Event[Index].Charset

Data type

Dword

Type

Property

Example

$
a[1] = Event[1].Charset

At the end a[1] whould contain the used charset of the first event (e. g.
"CROWN7" for the RTP file "CROWN7.png").

1

1
2

Frequency

Description

This is the current movement frequency of the event. This value should be
in the range of 1 to 8.

Syntax

Event[Index].Frequency

Data type

Dword

Type

Property

Example

$
v[1] = Event[1].Frequency

1

1
2

Speed

Description

This is the current movement speed of the event. This value should be in the
range of 1 to 8.

Syntax

Event[Index].Speed

Data type

Dword

Type

Property

Example

$
v[1] = Event[1].Speed

1

1
2

Transparency

Description

This is the current transparency of the event. This value should be in the
range of 0 to 8.

Syntax

Event[Index].Transparency

Data type

Dword

Type

Property

Example

$
v[1] = Event[1].Transparency

1

1
2

FixDir

Description

This property decides whether the direction of the event is fixed (true
means the direction is fixed)

Syntax

Event[Index].FixDir

Data type

Switch

Type

Property

Example

$
Event[THIS].FixDir = True

At the end the direction of the current event whould be fixed.

1

1
2

Phasing

Description

This property decides whether an event can walk trough walls, etc. (true
means the event can walk through walls).

Syntax

Event[Index].Phasing

Data type

Switch

Type

Property

Example

$
Event[THIS].Phasing = True

At the end the current event could walk trough walls.

1

1
2

StopAnimation

Description

This property decides whether an event has a movement animation. (true
means the event has no walking animation).

Syntax

Event[Index].StopAnimation

Data type

Switch

Type

Property

Example

$
Event[THIS].StopAnimation = True

At the end the current event whouldn't have a walking animation.

1

1
2

< Back
9.13 Map object

Forward >
9.15 MapEvent object

JumpTime

Description

This property contains the jump time of the event.

Syntax

Event[Index].JumpTime

Data type

Dword

Type

Property

Example

$
v[1] = Event[1].JumpTime

9.14 Event object

9.15 MapEvent object
Description

You can get/set properties of an event with the MapEvent object. The
MapEvent object requires an index which is the number of the event started
by zero (e. g. 0 is the first event on the map, 1 is the second, ...). This index
is not the same as the event id used in the RPG-Maker to identfy events. If
you want to access a single event using its id you should use the Event
object. If you want to access a special event (this, hero, boat, ship or
airship) you can use the special event constants as index.

< Back9.14 Event object Forward >
9.16 Picture object

List of methods/properties
Given that this object is completely identical to the Event object (except of
the different index) see for a list of methods/properties there.

9.15 MapEvent object

9.16 Picture object
Description

You can get/set the properties of a picture with the Picture object.
Additionally you can edit its content. The Picture object requires an index
to specify which picture is responded. This index is the picture id.

List of methods/properties

Name Type Short description
X Property The x coordinate of the picture
Y Property The y coordinate of the picture
Width Property The width of the picture
Height Property The height of the picture
Magnification Property The magnification of the picture
Transparency Property The transparency of the picture
Red Property The red coloration of the picture
Green Property The green coloration of the picture
Blue Property The blue coloration of the picture
Chroma Property The chroma of the picture
Action Property The action of the picture
ActionStrength Property The action strength of the picture
ActionValue Property The current action value of the picture
MapMove Property The move with map property of the picture

MapX Property The relative x coordinate of the picture on the
map

MapY Property The relative y coordinate of the picture on the
map

Pixel Property A pixel of the picture at a specific position
Palette Property A specified palette entry
UseMaskColor Property The "use mask color" property of the picture
DrawLine Method Draws a line into the picture
FillRect Method Draws a filles rectangular into the picture

CopyRect Method Copies a rectangular from one picture into an
other

BltRect Method Copies a rectangular from on picture into an

other an skips a specific color
FlushPalette Method Applies changes of the palette

1

1
2

X

Description

This is the current x coordinate of the picture (in pixel). The RPG-Maker
2000 relates this coordinate to the center of the picture. If this value is too
huge then the RPG_RT could crash. A more specific description can be
found at the known bugs.

Syntax

Picture[Index].X

Data type

Double

Type

Property

Example

$
f[1] = Picture[1].X

At the end f[1] whould contain the x coordinate of the first picture (e. g. at
the position 160:120 this whould be 160).

1

1
2

Y

Description

This is the current y coordinate of the picture (in pixel). The RPG-Maker
2000 relates this coordinate to the center of the picture. If this value is too
huge then the RPG_RT could crash. A more specific description can be
found at the known bugs.

Syntax

Picture[Index].Y

Data type

Double

Type

Property

Example

$
f[1] = Picture[1].Y

At the end f[1] whould contain the y coordinate of the first picture (e. g. at
the position 160:120 this whould be 120).

1

1
2

Width

Description

This is the width of the picture.

Syntax

Picture[Index].Width

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Picture[1].Width

1

1
2

Height

Description

This is the height of the picture.

Syntax

Picture[Index].Height

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Picture[1].Height

1

1
2

Magnification

Description

This is the magnification of the picture. This value is in percent (e. g. 100
equals to 100% what whould be the normal size). This value should be in
the range of 1 to 2000.

Syntax

Picture[Index].Magnification

Data type

Dword

Type

Property

Example

$
v[1] = Picture[1].Magnification

1

1
2

Transparency

Description

This is the transparency of the picture. This value is in percent (e. g. 0
means that the picture is not transparent). This value should be in the range
of 0 to 100.

Syntax

Picture[Index].Transparency

Data type

Dword

Type

Property

Example

$
v[1] = Picture[1].Transparency

1

1
2

Red

Description

This is the red coloration of the picture. This value is in percent (e. g. 100 is
the default view). This value should be in the range of 0 to 200.

Syntax

Picture[Index].Red

Data type

Dword

Type

Property

Example

$
v[1] = Picture[1].Red

1

1
2

Green

Description

This is the green coloration of the picture. This value is in percent (e. g. 100
is the default view). This value should be in the range of 0 to 200.

Syntax

Picture[Index].Green

Data type

Dword

Type

Property

Example

$
v[1] = Picture[1].Green

1

1
2

Blue

Description

This is the blue coloration of the picture. This value is in percent (e. g. 100
is the default view). This value should be in the range of 0 to 200.

Syntax

Picture[Index].Blue

Data type

Dword

Type

Property

Example

$
v[1] = Picture[1].Blue

1

1
2

Chroma

Description

This is the chrominance of the picture. This value is in percent (e. g. 100 is
the default view). This value should be in the range of 0 to 200.

Syntax

Picture[Index].Chroma

Data type

Dword

Type

Property

Example

$
v[1] = Picture[1].Chroma

http://en.wikipedia.org/wiki/Chrominance

1

1
2

Action

Description

This is the action of the picture. You can use the action constants for this.

Syntax

Picture[Index].Action

Data type

Dword

Type

Property

Range

0 to 2

Example

$
v[1] = Picture[1].Action

1

1
2

ActionStrength

Description

This is the action strength of the value of the picture.

Syntax

Picture[Index].ActionStrength

Data type

Dword

Type

Property

Range

-10 to 10

Example

$
v[1] = Picture[1].ActionStrength

1

1
2

ActionValue

Description

This is the current action value of the picture.

Syntax

Picture[Index].ActionValue

Data type

Double

Type

Property

Example

$
f[1] = Picture[1].ActionValue

At the end f[1] whould contain the action value (if the action whould be
rotation then this whould be the angle in RPG format) of the first picture.

1

1
2

MapMove

Description

If this property is true then the move with map property of the picture is
used.

Syntax

Picture[Index].MapMove

Data type

Switch

Type

Property

Example

$
Picture[1].MapMove = True

At the end the move with map property of the first picture whould be
activated (the picture whould scroll with the map).

1

1
2

MapX

Description

This is x coordinate used in the show picture command for pictures with
activated move with map option.

Syntax

Picture[Index].MapX

Data type

Double

Type

Property

Example

$
f[1] = Picture[1].MapX

1

1
2

MapY

Description

This is the y coordinate used in the show picture command for pictures with
activated move with map option.

Syntax

Picture[Index].MapY

Data type

Double

Type

Property

Example

$
f[1] = Picture[1].MapY

1

1
2

Pixel

Description

You cann access pixels with this property. This property requires a two
dimensional index. The first value is the x coordinate and the second value
is the y coordinate. The first pixel is at [0, 0] and the last pixel is at [width -
1, height - 1]. The boundaries may not be exceeded. The value of a pixel is
the index of the used palette entry (0 to 255).

Syntax

Picture[Index].Pixel[X, Y]

Data type

Byte

Type

Property

Example

$
v[1] = Picture[1].Pixel[0, 0]

At the end v[1] whould be the index of the palette entry used for the pixel in
the upper left corner of the first picture.

1

1
2

Palette

Description

You can access the color values used in a picture's palette with this property.
This option requires an index which responded to the palette entry in the
range of 0 to 255. If you change one or more palette entries you must call
FlushPalette to apply the changes.

Syntax

Picture[Index].Palette[Color]

Data type

Dword

Type

Property

Example

$
v[1] = Picture[1].Palette[0]

At the end v[1] whould contain the RGB color of the first palette entry of
the first picture.

1

1
2

UseMaskColor

Description

If this property is true then the mask color will not be drawn.

Syntax

Picture[Index].UseMaskColor

Data type

Switch

Type

Property

Example

$
Picture[1].UseMaskColor = True

At the end the mask color of the first picture whouldn't be drawn.

1

DrawLine

Description

With this option you can draw a one pixel thick line. The start coordinates
are X1 and Y1. The end coordinates are (these are not always reached) are
X2 and Y2. The color for this line is the index for the palette entry.

Syntax

Picture[Index].DrawLine(X1, Y1, X2, Y2,
Color)

Return value

None

Type

Method

Parameter: X1

Description

The x coordinate where the line begins.

Data type

Dword

Parameter: Y1

Description

The y coordinate where the line begins.

Data type

Dword

Parameter: X2

Description

The x coordinate where the line ends.

Data type

Dword

Parameter: Y2

Description

The y coordinate where the line ends.

Data type

Dword

Parameter: Color

Description

The used palette entry for the color of the line.

Data type

Byte

1
2

Example

$
Picture[1].DrawLine(0, 0, 24, 24, 1)

At the end there whould be a line drawn from 0, 0 to 24, 24 in the color of
the second palette entry (= index 1).

1

FillRect

Description

You can draw a filled rectangle with this method. The start coordinates are
left and top. The end coordinates (these are never reached) are right and
bottom. The color for this rectangle is the index for the palette entry.

Syntax

Picture[Index].FillRect(Left, Top, Right,
Bottom, Color)

Return value

None

Type

Method

Parameter: Left

Description

The left border of the rectangle.

Data type

Dword

Parameter: Top

Description

The upper border of the rectangle.

Data type

Dword

Parameter: Right

Description

The right border + 1 of the rectangle (= left + width).

Data type

Dword

Parameter: Bottom

Description

The lower border + 1 of the rectangle (= top + height).

Data type

Dword

Parameter: Color

Description

The used palette entry for the color of the rectangle.

Data type

Byte

1
2

Example

$
Picture[1].FillRect(0, 0, 24, 24, 1)

At the end there whould be a rectangle drawn from 0, 0 to (including) 23,
23 in the color of the second palette entry (= index 1).

1
2

CopyRect

Description

With this method you can copy a rectangular area from one picture into an
other. The palette entries will not be adjusted. So if the source picture has
the color red as palette entry 0 and the destination picture has the color
green as palette entry 0 then all red pixels (that refer to palette entry 0) will
be green in the destination picture. X and Y specify the position where the
area should be drawn in the current picture. The source id must be a valid
picture id of an other (!) picture. The parameters Left, Top, Right and
Bottom describe the range and the coordinates of the area in the source
picture.

Syntax

Picture[Index].CopyRect(X, Y,
Source-ID, Left, Top, Right, Bottom)

Return value

None

Type

Method

Parameter: X

Description

The x coordinate where the area shall be drawn to.

Data type

Dword

Parameter: Y

Description

The y coordinate where the area shall be drawn to.

Data type

Dword

Parameter: Source-ID

Description

The id of the source picture. This value may not the same as the
destination picture.

Data type

Dword

Parameter: Left

Description

The left border of the area in the source picture.

Data type

Dword

Parameter: Top

1
2

Description

The upper border of the area in the source picture.

Data type

Dword

Parameter: Right

Description

The right border + 1 of the area in the source picture (= left + width).

Data type

Dword

Parameter: Bottom

Description

The lower border + 1 of the area in the source picture (= top + height).

Data type

Dword

Example

$
Picture[1].CopyRect(0, 0, 2, 0, 0, 24, 24)

At the end there whould be a rectangular area copied from the second
picture to the first which is at 0, 0 and has a size of 24 x 24 pixels.

1
2

BltRect

Description

With this method you can copy a rectangular area from one picture into an
other, but the specified mask color will be skipped. The palette entries will
not be adjusted. So if the source picture has the color red as palette entry 0
and the destination picture has the color green as palette entry 0 then all red
pixels (that refer to palette entry 0) will be green in the destination picture.
X and Y specify the position where the area should be drawn in the current
picture. The source id must be a valid picture id of an other (!) picture. The
parameters Left, Top, Right and Bottom describe the range and the
coordinates of the area in the source picture.

Syntax

Picture[Index].CopyRect(X, Y,
Source-ID, Left, Top, Right, Bottom,
MaskColor)

Return value

None

Type

Method

Parameter: X

Description

The x coordinate where the area shall be drawn to.

Data type

Dword

Parameter: Y

Description

The y coordinate where the area shall be drawn to.

Data type

Dword

Parameter: Source-ID

Description

The id of the source picture. This value may not the same as the
destination picture.

Data type

Dword

Parameter: Left

Description

The left border of the area in the source picture.

Data type

Dword

Parameter: Top

Description

The upper border of the area in the source picture.

Data type

Dword

Parameter: Right

Description

The right border + 1 of the area in the source picture (= left + width).

Data type

Dword

Parameter: Bottom

Description

The lower border + 1 of the area in the source picture (= top + height).

Data type

Dword

Parameter: MaskColor

Description

1
2

Specifies the palette entry whose pixels shall not be copied.

Data type

Byte

Example

$
Picture[1].BltRect(0, 0, 2, 0, 0, 24, 24, 0)

At the end there whould be a rectangular area copied from the second
picture to the first skipping the color 0. The area is drawn at 0, 0 and has a
size of 24 x 24 pixels.

1

1
2
3

< Back
9.15 MapEvent object

Forward >
9.17 Client object

FlushPalette

Description

With this method you can apply changes of a palette.

Syntax

Picture[Index].FlushPalette()

Return value

None

Type

Method

Example

$
Picture[1].Palette[0] = 0xFF00FF;
Picture[1].FlushPalette()

At the end the color of the first palette entry whould have been changed to
magenta (Color code #FF00FF) and used to draw the picture.

9.16 Picture object

9.17 Client object
Description

You can establish a connection to other computers via the TCP/IP protocol
with the Client object. If a connection has been established successfully
then you call it a socket. Using such a socket you can send/receive data. In
DestinyScript there are two kinds of sockets (= socket types): sockets using
the Destiny protocol (= DestinySockets) and such who don't have a specific
protocol (= RAW sockets). Sockets that are not longer required should be
closed. The Client object requires an index to specify the responded socket.
This index is in the range of 0 to 31. The assignment of the index can be
done with the Server object if you accept incoming connections.

http://en.wikipedia.org/wiki/TCP/IP
http://en.wikipedia.org/wiki/Internet_socket

List of methods/properties

Name Type Short description
Type Property The used socket type
State Property The current connection state
LocalIP Property The used ip of the own computer
LocalPort Property The used port of the own computer
RemoteIP Property The used ip of the other computer
RemotePort Property The used port of the other computer
Connect Method Establishes a connection to an other computer
Close Method Closes an open connection
SendVariable Method Sends a variable over a DestinySocket
SendByte Method Sends a byte over a DestinySocket
SendWord Method Sends a word over a DestinySocket
SendDword Method Sends a dword over a DestinySocket
SendDouble Method Sends a double over a DestinySocket
SendString Method Sends a string over a DestinySocket
SendSwitch Method Sends a switch over a DestinySocket
SendRawData Method Sends data over a RAW socket

GetRecvType Method Returns the kind of received data from a
DestinySocket

GetRecvLength Method Returns the number of bytes received on a
socket

RecvID Method Receives the id from the current data package of
a DestinySocket

RecvVariable Method Receives a variable from a DestinySocket
RecvByte Method Receives a byte from a DestinySocket
RecvWord Method Receives a word from a DestinySocket
RecvDword Method Receives a dword from a DestinySocket

RecvDouble Method Receives a double from a DestinySocket
RecvString Method Receives a string from a DestinySocket
RecvSwitch Method Receives a switch from a DestinySocket
RecvRawData Method Receives data from a RAW socket

1

1
2

Type

Description

This property specifies whether DestinySocket (= 0) or a RAW socket (= 1)
is used. You can use the socket type constants for this.

Syntax

Client[Index].Type

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Client[0].Type

1

1
2

State

Description

This property represents the current state of the socket. You can use the
socket state constants for this.

Syntax

Client[Index].State

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Client[0].State

1

1
2

LocalIP

Description

The value of this property is the ip used on the own computer for the
connection.

Syntax

Client[Index].LocalIP

Data type

String

Type

Property, read-only

Example

$
a[1] = Client[0].LocalIP

1

1
2

LocalPort

Description

The value of this property is the port used on the own computer for the
connection.

Syntax

Client[Index].LocalPort

Data type

Dword

Type

Property, read-only

Range

1 to 65535

Example

$
v[1] = Client[0].LocalPort

1

1
2

RemoteIP

Description

The value of this property is the ip used on the other computer for the
connection.

Syntax

Client[Index].RemoteIP

Data type

String

Type

Property, read-only

Example

$
a[1] = Client[0].RemoteIP

1

1
2

RemotePort

Description

The value of this property is the port used on the other computer for the
connection.

Syntax

Client[Index].RemotePort

Data type

Dword

Type

Property, read-only

Range

1 to 65535

Example

$
v[1] = Client[0].RemotePort

1

Connect

Description

You can establish a connection with this method using the the TCP/IP
protocol. If you call this method you define whether it uses a DestinySocket
or a RAW socket. Because the windows function used to establish a
connection is a "blocking call" the DestinyScript (and even the game) will
freeze until a connection is established or the timeout occured. The timeout
value is ca. 2 seconds. If a connection has been established or not can be
checked with the state property of this object.

Syntax

Client[Index].Connect(Address, Port,
Sockettype)

Return value

None

Type

Method

Parameter: Address

Description

The address of the destination computer. This can either be an ip (e. g.
"192.168.1.1") or a hostname (e. g. "bananen-joe.de").

Data type

1
2

String

Parameter: Port

Description

The port of the destination computer. (e. g. Port 80 for http)

Data type

Dword

Range

1 to 65535

Parameter: Sockettype

Description

The socket type for the connection. This can be either DestinySocket (= 0)
or RAW socket (= 1). You can use the socket constants for this.

Data type

Dword

Range

0 to 1

Example

$
Client[0].Connect("bananen-joe.de", 80,

SOCK_RAW)
At the end a connection via internet whould be established to the webserver
"bananen-joe.de".

1

1
2

Close

Description

With this method an open connection can be closed. If a socket is closed it
can be used to open a new connection. If you close a already closed socket
this doesn't raise any problems.

Syntax

Client[Index].Close()

Return value

None

Type

Method

Example

$
Client[0].Close()

1

SendVariable

Description

With this method you can send a variable over a connected DestinySocket.
This method can't be used with RAW sockets.

Syntax

Client[Index].SendVariable(ID, Variable)

Return value

None

Type

Method

Parameter: ID

Description

The index of the variable. This value may differ from the real variable
index.

Data type

Dword

Parameter: Variable

Description

1
2

The value of the variable.

Data type

Dword

Example

$
Client[0].SendVariable(1, v[1])

At the end the value of the first variable whould be send over the first
socket (which is a connected DestinySocket).

1

SendByte

Description

With this method you can send a byte over a connected DestinySocket. This
method can't be used with RAW sockets.

Syntax

Client[Index].SendByte(ID, Byte)

Return value

None

Type

Method

Parameter: ID

Description

The associated index of the byte.

Data type

Dword

Parameter: Byte

Description

The value of the byte.

1
2

Data type

Byte

Example

$
Client[0].SendByte(1, v[1])

At the end the value of the first variable whould be send (as byte) over the
first socket (which is a connected DestinySocket).

1

SendWord

Description

With this method you can send a word over a connected DestinySocket.
This method can't be used with RAW sockets.

Syntax

Client[Index].SendWord(ID, Word)

Return value

None

Type

Method

Parameter: ID

Description

The associated index of the word.

Data type

Dword

Parameter: Word

Description

The value of the word.

1
2

Data type

Word

Example

$
Client[0].SendWord(1, v[1])

At the end the value of the first variable whould be send (as dword) over the
first socket (which is a connected DestinySocket).

1

SendDword

Description

With this method you can send a dword over a connected DestinySocket.
This method can't be used with RAW sockets.

Syntax

Client[Index].SendDword(ID, Dword)

Return value

None

Type

Method

Parameter: ID

Description

The associated index of the dword.

Data type

Dword

Parameter: Dword

Description

The value of the dword.

1
2

Data type

Dword

Example

$
Client[0].SendDword(1, d[1])

At the end the value of the first dword whould be send over the first socket
(which is a connected DestinySocket).

1

SendDouble

Description

With this method you can send a double over a connected DestinySocket.
This method can't be used with RAW sockets.

Syntax

Client[Index].SendDouble(ID, Double)

Return value

None

Type

Method

Parameter: ID

Description

The associated index of the double.

Data type

Dword

Parameter: Double

Description

The value of the double.

1
2

Data type

Double

Example

$
Client[0].SendDouble(1, f[1])

At the end the value of the first double whould be send over the first socket
(which is a connected DestinySocket).

1

SendString

Description

With this method you can send a string over a connected DestinySocket.
The string may not exceed a length of 255 chars. This method can't be used
with RAW sockets.

Syntax

Client[Index].SendString(ID, String)

Return value

None

Type

Method

Parameter: ID

Description

The associated index of the string.

Data type

Dword

Parameter: String

Description

1
2

The value of the string. This value may not exceed 255 chars!

Data type

String

Example

$
Client[0].SendString(1, a[1])

At the end the value of the first string whould be send over the first socket
(which is a connected DestinySocket).

1

SendSwitch

Description

With this method you can send a switch over a connected DestinySocket.
This method can't be used with RAW sockets.

Syntax

Client[Index].SendSwitch(ID, Switch)

Return value

None

Type

Method

Parameter: ID

Description

The associated index of the switch.

Data type

Dword

Parameter: Switch

Description

The value of the switch.

1
2

Data type

Switch

Example

$
Client[0].SendSwitch(1, s[1])

At the end the value of the first string whould be send over the first socket
(which is a connected DestinySocket).

1

SendRawData

Description

With this method you can send a specified amount of data over a RAW
socket. The data is processed binary, so it is possible to send less data than
the value contains (e. g. you can send 4 bytes of a double although it is
usually 8 bytes long). This method can't be used with DestinySockets.

Syntax

Client[Index].SendRawData(Datasource,
Length)

Return value

None

Type

Method

Parameter: Datasource

Description

The data source where the bytes are taken from.

Data type

Alle

Parameter: Length

1
2
3
4

Description

The number of bytes being send. This may not exceed the length of the
data source. For example you can't send 9 bytes from a double (which has
a maximum length of 8 bytes).

Data type

Dword

Example

$
a[1] = "GET / HTTP/1.0" + CRLF +
"Host: bananen-joe.de" + CRLF + CRLF;
Client[0].SendRawData(a[1],
String.Length(a[1]))

At the end content of a[1] (which is a http request header) whould be send
over a RAW socket (compare the example of connect) to the webserver
"bananen-joe.de".

http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

1

1
2

GetRecvType

Description

With this method you can determine whether a data packet has been
received completely. If the return value is negative value then the data paket
isn't complete (the return value is the negative data type), otherwise (if the
return value is positive) the data paket is complete and the return value tells
you what kind it is. You can use the data type constants for this. If there is
no data paket this method will return 0. This method can only be used with
DestinySockets. If you call this method the Destiny.dll will receive data on
this socket if possible.

Syntax

Client[Index].GetRecvType()

Return value

Dword

Type

Method

Example

$
v[1] = Client[0].GetRecvType()

Am Ende wäre v[1] der Data type des zuletzt empfangenen Datenpakets bei
einem verbundenen DestinySocket. Wenn Examplesweise der andere
Computer mit SendVariable eine Variable versendet hätte, würde hier die
Zahl 1 (= TYPE_VARIABLE) zurückgegeben werden.

1

1
2

GetRecvLength

Description

Returns the number of received data (in bytes). This value can't be more
than 500 bytes due to a weakness of the Destiny.dll (the internal buffer is
limited to 500 bytes). This method can be used with each socket type. If
you call this method the Destiny.dll will receive data on this socket if
possible.

Syntax

Client[Index].GetRecvLength()

Return value

Dword

Type

Method

Example

$
v[1] = Client[0].GetRecvLength()

1

1
2

RecvID

Description

Receives the associated id of the current data package. This method must be
called implicitly before other recv methods are called on DestinySockets
(except for GetRecvType and GetRecvLength) because these methods
remove the current data package from the internal buffer. RecvID doesn't
remove the current data package from the internal buffer. This method can
only be used with DestinySockets.

Syntax

Client[Index].RecvID()

Return value

Dword

Type

Method

Example

$
v[1] = Client[0].RecvID()

At the end v[1] whould contain the id of the last received data package on a
connected DestinySocket. For example if the other computer executes
SendVariable(1, 2) this method (on our computer) whould return 1.

1

1
2

RecvVariable

Description

Receives the variable value of the current data package and removes that
data package from the internal buffer. This method can only be used with
DestinySockets.

Syntax

Client[Index].RecvVariable()

Return value

Dword

Type

Method

Example

$
v[1] = Client[0].RecvVariable()

At the end v[1] whould contain the variable value of the last received data
package on a connected DestinySocket. For example if the other computer
executes SendVariable(1, 2) this method (on our computer) whould return
2.

1

1
2

RecvByte

Description

Receives the byte value of the current data package and removes that data
package from the internal buffer. This method can only be used with
DestinySockets.

Syntax

Client[Index].RecvByte()

Return value

Byte

Type

Method

Example

$
v[1] = Client[0].RecvByte()

1

1
2

RecvWord

Description

Receives the word value of the current data package and removes that data
package from the internal buffer. This method can only be used with
DestinySockets.

Syntax

Client[Index].RecvWord()

Return value

Word

Type

Method

Example

$
v[1] = Client[0].RecvWord()

1

1
2

RecvDword

Description

Receives the dword value of the current data package and removes that data
package from the internal buffer. This method can only be used with
DestinySockets.

Syntax

Client[Index].RecvDword()

Return value

Dword

Type

Method

Example

$
v[1] = Client[0].RecvDword()

1

1
2

RecvDouble

Description

Receives the double value of the current data package and removes that
data package from the internal buffer. This method can only be used with
DestinySockets.

Syntax

Client[Index].RecvDouble()

Return value

Double

Type

Method

Example

$
f[1] = Client[0].RecvDouble()

1

1
2

RecvString

Description

Receives the string value of the current data package and removes that data
package from the internal buffer. This method can only be used with
DestinySockets.

Syntax

Client[Index].RecvString()

Return value

String

Type

Method

Example

$
a[1] = Client[0].RecvString()

1

1
2

RecvSwitch

Description

Receives the switch value of the current data package and removes that data
package from the internal buffer. This method can only be used with
DestinySockets.

Syntax

Client[Index].RecvSwitch()

Return value

Switch

Type

Method

Example

$
a[1] = Client[0].RecvSwitch()

1

RecvRawData

Description

Receives a specified amount of bytes and returns this value as a specified
data type. If the data type has a minimum length (e. g. double requires 8
bytes total) the missing bytes will be filled with zeros. Finally the received
amount of bytes will be removed from the internal buffer. The amount of
bytes may not exceed 500 bytes. This method can only be used with RAW
sockets.

Syntax

Client[Index].RecvRawData(DataType, Length)

Return value

Depends on the parameter DataType.

Type

Method

Parameter: DataType

Description

Defines the data type used for the return value. You can use the data type
constants for this.

Data type

Dword

1
2
3

< Back
9.16 Picture object

Forward >
9.18 Server object

Range

1 to 7

Parameter: Length

Description

Defines the number of bytes to receive. If this value is too small for the
specified data type then the missing bytes will be filled with zero bytes.

Data type

Dword

Range

1 to 500

Example

$
v[1] = Client[0].GetRecvLength();
a[1] = Client[0].RecvRawData(TYPE_STRING,
v[1])

At the end a[1] whould contain a string in the length of the received bytes
of the connected RAW socket. Usally there must be checked whether more
than 0 bytes are received before the call of RecvRawData.

9.17 Client object

9.18 Server object
Description

You can accept incoming connections from other computers via the TCP/IP
protocol with the Server object. Accepted connections can be accessed via
the Client object.

List of methods/properties

Name Type Short description
Type Property The used socket type
State Property The current connection state
Listen Method Waits for incoming connections
Close Method Stops the waiting for incoming connections
Accept Method Accepts an incoming connection

1

1
2

Type

Description

This property specifies whether accepted connections will be
DestinySockets (= 0) or RAW-Sockets (= 1). You can use the socket type
constants for this. This value will be specified with the call of the listen
method.

Syntax

Server.Type

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Server.Type

1

1
2

State

Description

This property specifies the current state of the server socket. You can use
the socket state constants for this.

Syntax

Server.State

Data type

Dword

Type

Property, read-only

Example

$
v[1] = Server].State

1

Listen

Description

With this method you can set the server socket into the listening state. If a
server socket is in listening state then it can accept incoming connections.
To accept an incoming connection you can use the accept method. On some
computers the firewall can make trouble. In this case it is impossible to
accept incoming connections. Fore more specific information see at the
known bugs.

Syntax

Server.Listen(Port, SocketType)

Return value

None

Type

Method

Parameter: Port

Description

The local port used for incoming connections. The clients must connect to
this port if they want to establish a connection.

Data type

Dword

1
2

Range

1 to 65535

Parameter: SocketType

Description

The socket types of the client sockets that are created using the accept
method. You can use the socket type constants for this.

Data type

Dword

Range

0 to 1

Example

$
Server.Listen(12345, SOCK_DESTINY)

At the end incoming connections from the network (or internet) whould be
able to accept.

1

1
2

Close

Description

With this method you can close the server socket. In this case no more
incoming connections will be accepted. Already connected clients are still
connected.

Syntax

Server.Close()

Return value

None

Type

Method

Example

$
Server.Close()

1

Accept

Description

With this method you can accept an incoming connection (if there is one).
The accepted connection will be dedicated to a Client object. The return
value of this method is the index used for the client object that has accepted
the connection. If there wasn't an incoming connection pending then this
method will return -1. You can specify a client with the parameter client. If
you do so then only this client object will be used to accept a connection
and the client socket will be closed if necessary. If the next free socket shall
be used then you can use the NEXT_FREE_SOCKET constant (= -1).

Syntax

Server.Accept(Client)

Return value

Dword

Type

Method

Parameter: Client

Description

The index of the client object which shall accept the incoming connection.
For the next free client object use the NEXT_FREE_SOCKET constant.

Data type

1
2

< Back
9.17 Client object

Forward >
9.19 File object

Dword

Range

-1 to 31

Example

$
v[1] = Server.Accept(NEXT_FREE_SOCKET)

At the end v[1] whould contain the index of the client object which has
accepted the incoming connection (if there was one). This only works if the
server socket was in listening state. If a client has established a connection
(and it has been accepted) then you can access this connection (in this
example) with Client[v[1]] like a normal client socket.

9.18 Server object

9.19 File object
Description

You can read/write files with the File object. Due to security reasons each
file access is only possible inside of the game directory. The File object
requires an index in the range of 0 to 31. This index is required to specify
which file stream shall be used (in other words you can open multiple files
at the same time).

List of methods/properties

Name Type Short description
Open Method Opens a file for reading and/or writing
Close Method Closes a previously opened file
ReadRawData Method Reads data from the file
WriteRawData Method Writes data into the file
GetFilePointer Method Returns the current read/write position of the file
SetFilePointer Method Sets the current read/write position of the file
Length Method Returns the current length of the file
Truncate Method Truncates the rear part of the file

1

Open

Description

With this method you can open a file for reading/writing. If you open a file
for writing and it doesn't exist then it will be created automatically. You can
specify only a relative path to the game directory as file name. The
parameter file mode specifies either the file shall be opened for reading
and/or writing. You can use the file mode constants for this. After opening
and reading/writing all required data you must close the file with the close
method to ensure that the file handles are free again.

Syntax

File[Index].Open(Filename, FileMode)

Return value

None

Type

Method

Parameter: Filename

Description

Specifies the filename (including the relative path if necessary) of the file
which shall be opened. Files may only be opened inside the game
directory (and subdirectories)!

Data type

http://en.wikipedia.org/wiki/Path_(computing)

1
2

String

Parameter: FileMode

Description

Specifies whether a file shall be opened for reading/writing. To specify
more than one file mode you must use the binary or operator (e. g.
FILE_READ | FILE_WRITE). If you open a file for appending it will
always be opened with write access. You can use the file mode constants
for this parameter.

Data type

Dword

Range

1 to 7

Example

$
File[0].Open("Textfile.txt", FILE_WRITE)

At the end a file with the name "Textfile.txt" whould be opened in the game
directory for writing. If this file whould not exist then it whould be created.

1

1
2

Close

Description

With this method you can close a previously opened file. The file handle
will be free again and each writing operation will be finally done. (On some
operating systems it is possible that some write operations are only done
after you closed the file! Hence you should close the file if you no longer
need it.)

Syntax

File[Index].Close()

Return value

None

Type

Method

Example

$
File[0].Close()

At the end the file previously opened with the open method whould be
closed. Hence you can open a file with the File object (using index 0) again.

1

ReadRawData

Description

With this method you can read an amount of bytes from a previously
opened file (with read access). The first parameter specifies the data type
which is used to return the bytes read. You can use the data type constants
for this. If you read data from a text file then you should only use strings for
reading/writing. The second parameter specifies the amount of bytes which
is being read. This value may not exceed the maximum size of the data type
(e. g. 8 bytes for double, 4 bytes for dword, ...). If this value is smaller than
the maximum size of the specified data type then the missing bytes will be
filled with zero-bytes to reach the required length. If you specify (for each
data type expect string) a length of 0 bytes then the required number of
bytes will be read automatically. After reading the bytes the internal file
pointer will be increased automatically by the amount of bytes.

Syntax

File[Index].ReadRawData(DataType, Length)

Return value

Depends on the parameter DataType.

Type

Method

Parameter: Data type

Description

1
2

Specifies the data type of the return value. You can use the data type
constants for this.

Data type

Dword

Range

1 to 7

Parameter: Length

Description

Specifies the amount of bytes that will be read. If this value is too small
for the specified data type then the data type will be filles with zero-bytes.
You can specify a 0 here for each data type expect string to detect
automatically which length is required.

Data type

Dword

Example

$
a[1] = File[0].ReadRawData(TYPE_STRING,
File[0].Length()))

At the end the entire content of a previously opened (text-)file whould be
read into a[1].

1

WriteRawData

Description

With this method you can write data into a previously opened file (with
write access). The first parameter specifies the data source (which contents
the bytes to be written). If the target file is a text file then you should only
write strings. The second parameter specifies the amount of bytes that shall
be written into the file. This value may not exceed the maximum length of
the data type used by the data source. You can specify a 0 here to write the
entire data source (unlike ReadRawData this works with strings) into the
file. After writing the data into the file the internal file pointer will be
increased automatically by the amount of bytes written. If you write past the
end of file then the file size will increase automatically.

Syntax

File[Index].WriteRawData(DataSource, Length)

Return value

None

Type

Method

Parameter: DataSource

Description

Specifies the data source which contains the bytes that shall be written
into the file.

1
2

Data type

All

Parameter: Length

Description

Specifies the amount of bytes that shall be written into the file. If this
value is 0 then the entire content of the data source will be written into the
file automatically.

Data type

Dword

Example

$
File[0].WriteRawData(v[1], 0)

At the end the entire content of the first variable whould be written into a
(binary) file.

1

1
2

GetFilePointer

Description

With this method you can retrieve the position of the internal file pointer.

Syntax

File[Index].GetFilePointer()

Return value

Dword

Type

Method

Example

$
v[1] = File[0].GetFilePointer()

1

1
2

SetFilePointer

Description

With this method you can set the new position of the internal file pointer.

Syntax

File[Index].SetFilePointer(NewFilePointer)

Return value

None

Type

Method

Parameter: NewFilePointer

Description

Specifies the new position of the file pointer. This value may not exceed
the current file length.

Data type

Dword

Example

$
File[0].SetFilePointer(0)

At the end the internal file pointer whould point to the begin (= 0) of the
file.

1

1
2

Length

Description

With this method you can retrieve the current length of a file.

Syntax

File[Index].Length()

Return value

Dword

Type

Method

Example

$
v[1] = File[0].Length()

1

1
2
3

< Back
9.18 Server object

Forward >
9.20 Directory object

Truncate

Description

With this method you can truncate the rear part of a file. The file will be
truncated after the position of the internal file pointer. For example you can
clear to entire content of a file if the internal file pointer points to the begin
of the file (= 0). To truncate a file you must open it with write access.

Syntax

File[Index].Truncate()

Return value

None

Type

Method

Example

$
File[0].SetFilePointer(0);
File[0].Truncate()

At the end the entire file whould be cleared.

9.19 File object

9.20 Directory object
Description

You can edit directory and file structures with the Directory object.
Additionally you can browse directories. Like at the File object you can
only access the game directory and its subdirectories.

List of methods/properties

Name Type Short description
CreateDir Method Creates a directory
RemoveDir Method Removes an empty(!) directory
Rename Method Renames a file/directory or moves it
CopyFile Method Copies a file
DeleteFile Method Deletes a file
GetAttributes Method Returns the attributes of a file/directory
SetAttributes Method Sets the attributes of a file/directory
FindFirst Method Starts to browse a directory
FindNext Method Continues the browsing of a directory
FindClose Method Stops the browsing of a directory

1

CreateDir

Description

With this method you can create a new directory. The name of the directory
has a relative path to the game directory.

Syntax

Directory.CreateDir(Directory)

Return value

None

Type

Method

Parameter: Directory

Description

Specifies the name (inclusive the relative path if necessary) of the new
directory. You can only create directories inside of the game directory
(and subdirectories).

Data type

String

Example

1
2
$
Directory.CreateDir("Picture\Content")

At the end a new subdirectory whould be created with the name "Content"
in the Picture folder.

1

RemoveDir

Description

With this method you can remove an empty directory. The name of the
directory has a relative path to the game directory.

Syntax

Directory.RemoveDir(Directory)

Return value

None

Type

Method

Parameter: Directory

Description

Specifies the name (inclusive the relative path if necessary) of the
directory that shall be removed. You can only remove directories inside of
the game directory (and subdirectories).

Data type

String

Example

1
2
$
Directory.RemoveDir("Testfolder")

At the end the directory with the name "Testfolder"e; (which is inside of the
game directory) whould be removed.

1

Rename

Description

With this method you can rename or move files and directories. A
file/directory is moved if it gets a new path (without a new name).
Otherwise it will be renamed (and moved if the path is different).

Syntax

Directory.Rename(OldPath, NewPath)

Return value

None

Type

Method

Parameter: OldPath

Description

Specifies the current (relative) path of the file/directory. You can only
rename files/directories inside of the game directory (and subdirectories).

Data type

String

Parameter: NewPath

Description

1
2
3
4
5

Specifies the new (relative) path of the file/directory. You can only
rename files/directories inside of the game directory (and subdirectories).

Data type

String

Example

$
Directory.Rename("Folder old\File.txt",
"Folder new\File.txt);
Directory.Rename("Folder old\Subfolder",
"Folder old\Subfolder2)

At the end the file "File.txt" whould be moved from the directory "Folder
old" into the directory "Folder new" (Line 2 & 3). Additionally the
directory "Subfolder" whould be renamed to "Subfolder2" (Line 4 & 5).

1

CopyFile

Description

With this method you can copy files.

Syntax

Directory.CopyFile(SourceFile,
DestinationFile)

Return value

None

Type

Method

Parameter: SourceFile

Description

Specifies the (relative) path of the file which shall be copied. You can
only copy files inside of the game directory (and subdirectories).

Data type

String

Parameter: DestinationFile

Description

1
2

Specifies the (relative) path of the copy. You can only copy files inside of
the game directory (and subdirectories).

Data type

String

Example

$
Directory.CopyFile("RPG_RT.exe",
"RPG_RT2.exe")

At the end the file "RPG_RT.exe" whould be copied as "RPG_RT2.exe".

1

1
2

DeleteFile

Description

With this method you can delete files.

Syntax

Directory.DeleteFile(File)

Return value

None

Type

Method

Parameter: File

Description

Specifies the (relative) path of the file that shall be deleted. You can only
delete files inside of the game directory (and subdirectories).

Data type

String

Example

$
Directory.DeleteFile("Test.txt")

At the end the file "Test.txt" whould be deleted.

1

GetAttributes

Description

With this method you can retrieve the attributes of a file/directory. The
return value is a combination of the file attribute constants.

Syntax

Directory.GetAttributes(Path)

Return value

Dword

Type

Method

Parameter: Path

Description

Specifies the (relative) path of the file/directory whose attributes shall be
retrieved. You can only access the attributes of files/directories inside of
the game directory (and subdirectories).

Data type

String

Example

1
2
$
v[1] = Directory.GetAttributes("Test.txt")

1

SetAttributes

Description

With this method you can set the attributes of a file/directory. You can use
(and combine) the file attribute constants for this. You can't convert
directories into files (or vice versa).

Syntax

Directory.SetAttributes(Path, NewAttributes)

Return value

None

Type

Method

Parameter: Path

Description

Specifies the (relative) path of the file/directory whose attributes shall be
set. You can only set the attributes of files/directories inside of the game
directory (and subdirectories).

Data type

String

Parameter: NewAttributes

1
2

Description

Specifies the new attributes of the file/directory. You can use (and
combine) the file attribute constants for this. Files may not have the
attribute FILE_ATTRIBUTE_DIRECTORY.

Data type

Dword

Example

$
Directory.SetAttributes("Test.txt",
FILE_ATTRIBUTE_HIDDEN)

At the end the file "Test.txt" whould be marked as hidden.

1

FindFirst

Description

With this method you can start to browse a directory. You can specify the
search options with the parameter search pattern. To continue the browsing
(and even find all files/directories) you must call the method FindNext in a
loop. During each browsing you find first the directories "." and "..". "." is
the current directory and ".." is the parent directory. If you don't need this
information you should skip it. This method is equivalent to the windows
function FindFirstFile.

Syntax

Directory.FindFirst(SearchPattern)

Return value

String

Type

Method

Parameter: SearchPattern

Description

Specifies the (relative) path of the browsing directory including the
placeholders. You can use the asterisk (*) and the question mark (?) as
placeholder. The asterisk stands for any number of unknown chars and the
question mark stand for exact one unknown char. To browse effectively
you must use at least one of these placeholders. You can only access
files/directories inside of the game directory (and subdirectories).

http://en.wikipedia.org/wiki/Placeholder

1
2

Data type

String

Example

$
a[1] = Directory.FindFirst("*.lmu")

At the end a[1] whould contain the filename of the first map of the game (=
files in the gamedirectory with the extension lmu are maps).

1

1
2

FindNext

Description

After starting to browse a directory using the FindFirst method you can
continue browsing using this method. After each call this method returns
the filename of the next matching file/directory. If this method returns an
empty string then the browsing is finished and it must be closed using
FindClose.

Syntax

Directory.FindNext()

Return value

String

Type

Method

Example

$
a[1] = Directory.FindNext()

At the end a[1] whould contain the next matching file/directory of a
browsing. This command should be used in a loop until it returns an empty
string (in this example a[1] whould be empty).

1

1
2

< Back
9.19 File object

Forward >
10. Error messages

FindClose

Description

With this method you can close a previously started browsing.

Syntax

Directory.FindClose()

Return value

None

Type

Method

Example

$
Directory.FindClose()

9.20 Directory object

10. Error messages
Description

During the execution of a DestinyScript the can occur errors on different
places. A list of all errors (and their meanings) is listed here.

List of errors

Nummer Name of constant Short description
0 ERROR_UNKNOWN An unknown error

1 ERROR_SYNTAX
Unexpected chars are
used in the
DestinyScript

2 ERROR_NOVALUE A value is expected but
no one is denoted

3 ERROR_UNKNOWNNAME An unknown name was
used

4 ERROR_CONVERT
A value couldn't be
converted due to an
unknown reason

5 ERROR_READONLY It was tried to write a
read-only value

6 ERROR_ARRAYBOUND The used index exceeds
the boundaries

7 ERROR_RANGE

A value couldn't be
converted because it is
out of the range of the
destination data type

8 ERROR_MEMORY The isn't sufficient free
memory available

9 ERROR_VALUE
An invalid value has
been used for a
parameter

10 ERROR_BINARYFLOAT
It was tried to execute a
binary operation with a
floating point number

11 ERROR_CALCSWITCH It was tried to calculate
with a switch

12 ERROR_CALCSTRING It was tried to calculate
with a string

13 ERROR_FLOATERROR
An error occured during
a floating point
operation

14 ERROR_FLOATLENGTH
To much places have
been denoted for a
floating point number

15 ERROR_DIVISIONBYZERO It was tried to divide by
zero

16 ERROR_STRINGFORMAT
A string has an invalid
format so it couldn't be
converted

17 ERROR_STRINGRANGE
It was tried to access a
char which exceeds the
length of the string

18 ERROR_PICTURE A picture hasn't been
loaded

19 ERROR_PIXELRANGE
It was tried to access an
area that exceed the
boundaries of a picture

20 ERROR_SAMEPICTURE
It was tried to use the
same source and
destination picture

21 ERROR_PALETTERANGE

It was tried to access a
palette entry which
exceeds the 256 colors
palette

22 ERROR_SOCKETSTARTUP The socket system
couldn't be initialized

23 ERROR_NOFREESOCKET There are no more free
sockets available

24 ERROR_CANTCREATESOCKET It was not possible to
create a socket

25 ERROR_SOCKETSTILLOPEN It was tried to open a
socket while its already
open

26 ERROR_SOCKETNOTOPEN
It was tried to use a
socket method which
requires an open socket

27 ERROR_CANTCONNECT
It was not possible to
connect to the specified
address

28 ERROR_SOCKETTYPE

It was tried to use a
socket method which is
appointed for an other
socket type

29 ERROR_SOCKETERROR
An unknown error
occured during the
access of a socket

30 ERROR_OOB

Out of band data
(garbage) has been
received on a
DestinySocket

31 ERROR_STRINGTOOLONG
It was tried to send a
string which is longer
than 255 bytes

32 ERROR_NOFREEFILEHANDLE It was tried to open an
already open file handle

33 ERROR_CANTRESOLVEPATH It was not possible to
resolve a path

34 ERROR_NOPERMISSION
It was tried to access a
path outside of the
game directory

35 ERROR_CANTOPENFILE It was not possible to
open a file

36 ERROR_FILENOTOPEN It was tried to use a file
function which requires

an open file

37 ERROR_CANTACCESSFILE It was not possible to
access a file

38 ERROR_CANTCREATEDIR It was not possible to
create a directory

39 ERROR_CANTREMOVEDIR It was not possible to
remove a directory

40 ERROR_CANTRENAMEFILE
It was not possible to
rename/move a
file/directory

41 ERROR_CANTCOPYFILE It was not possible to
copy a file

42 ERROR_CANTDELETEFILE It was not possible to
delete a file

43 ERROR_CANTREADATTRIBUTES
It was not possible to
retrieve the attributes of
a file/directory

44 ERROR_CANTWRITEATTRIBUTES
It was not possible to
set the attributes of a
file/directory

45 ERROR_SEARCHSTILLOPEN A directory browsing is
already started

46 ERROR_CANTSTARTSEARCH
It was not possible to
start a directory
browsing

47 ERROR_NOSEARCHSTARTED

It was tried to use a
method which requires
an already started
directory browsing

Error 0: ERROR_UNKNOWN

Description

This error may never occur. It is only here to cover the impossible case.

1
2

Error 1: ERROR_SYNTAX

Description

This error occurs if an invalid char has been used in DestinyScript. This
could happen whether there are too much parameters declared (in that case
the interpreter want's a closing parenthesis and not a comma).

Example of the error

$
:

1
2

Error 2: ERROR_NOVALUE

Description

This error occurs if a value is required but no one is specified. This could be
an empty pair of parantheses in a formula or simply a missing term.

Example of the error

$
v[1] = 3 + () + 1

1
2

Error 3: ERROR_UNKNOWNNAME

Description

This error occurs if a name (this means name of an object, method,
property, constant or scope) has been denoted that doesn't exist.

Example of the error

$
v[1] = Picture[1].Toast

The Picture object has no property with the name "Toast".

Error 4: ERROR_CONVERT

Description

This error may never occur. It whould only occur if the interpreter tries to
convert a not specified value.

1
2

Error 5: ERROR_READONLY

Description

This error occurs if it is tried to write a read-only (this means write-
protected) value. Wheter a value is read-only or not is written in its
definition.

Example of the error

$
Destiny.DllVersionMajor = 100

The property "DllVersionMajor" of the Destiny object is declared as read-
only.

1
2

Error 6: ERROR_ARRAYBOUND

Description

This error occurs if an invalid index is used. For example if the range is
defined as 1 to 100 then all indices less than 1 or bigger than 100 are
invalid.

Example of the error

$
Picture[-1].UseMaskColor = False

The index of the Picture object start with 1. Hence each negative index is
invalid.

1
2
3

Error 7: ERROR_RANGE

Description

A data type with a huge value was tried to be converted into a data type
with a small range. For example the data type byte allows only values in the
range from 0 to 255. So it is not possible to convert a value smaller than 0
or bigger than 255 into a byte.

Example of the error

$
f[1] = Math.Exp(11);
v[1] = f[1]

The error occurs in line 3. f[1] is 100,000,000,000 but the maximum value
of dword is 2,147,483,647. Hence it is not possible to store the huge value
into the small data type.

1
2
3

Error 8: ERROR_MEMORY

Description

There is not enough memory available to execute a command. For example
this could happen if it is tried to allocate a string which is some giga bytes
long. This error can depend on the used target computer system where the
game is running. In this case a reboot of the computer could help.

Example of the error

$
a[1] += a[1] + String.Fill("This is just" +
" a long example string", 1000)

If this DestinyScript is executed in a (endless) loop then a[1] will grow and
grow and grow... In theory this could raise the error if there is insufficient
memory.

1
2

Error 9: ERROR_VALUE

Description

An invalid value has been specified for a parameter. Which values are valid
for a parameter is written in the definition of its method. For the most
parameters, where ranges are definied, you can use constants.

Example of the error

$
Server.Listen(1000000, SOCK_DESTINY)

The first parameter of the listen methods specifies the port where the socket
will listen on. The range of this port specified as 1 to 65535. The value
1000000 exceeds this range.

1
2

Error 10: ERROR_BINARYFLOAT

Description

This error occurs when it is tried to apply a binary operation (AND, OR,
NOT and XOR) with a floating point number. Binary operations are only
allowed for integer data types (byte, word and dword).

Example of the error

$
f[1] &= 1

The used operator is an AND operator and not valid for an operation with
the floating point number f[1].

1
2

Error 11: ERROR_CALCSWITCH

Description

This error occurs if it is tried to calculate with switches. This includes
arithmetical and binary operations.

Example of the error

$
s[1] += 1

The used operator is an addition operator. Because s[1] is a switch this is
invalid.
Information
To apply logical operations with switches you can use the Logic object.

1
2

Error 12: ERROR_CALCSTRING

Description

This error occurs if it is tried to calculate with strings. This includes
arithmetical and binary operations. The only operator, which may be used
with strings (additionally to the set operator), is the addition operator which
is used to concatenate strings.

Example of the error

$
a[1] = "Hello Nr. " + 5

Numbers and strings are used in the same calculation. So the addition
operator is interpreted as addition and not as concatenation.
Information
To avoid this error you can convert strings into numbers first (or vice
versa). You can use the Convert object for this.

Error 13: ERROR_FLOATERROR

Description

This error occurs if a floating point operation was invalid. This could
happen with (invalid) floating point numbers which are read from a file.

1
2

Error 14: ERROR_FLOATLENGTH

Description

This error occurs if a number (in text form), which is longer than 13 chars,
is being converted into a floating point number.

Example of the error

$
f[1] = 1234567890.1234567890

The number has 10 integer places and 10 decimal places. In sum this are 20
places. This are more than the maximum allowed 13 places.

1
2

Error 15: ERROR_DIVISIONBYZERO

Description

This error occurs if it is tried to divide trough zero. This is (depending on
the laws of mathematics) not possible. In theory it is possible to subtract
zero infinite times from any number.

Example of the error

$
v[1] /= 0

1
2

Error 16: ERROR_STRINGFORMAT

Description

This error occurs if it is tried to convert a string into a number which has an
invalid format (this means it doesn't contain (only) a number).

Example of the error

$
v[1] = "Number: 12345"

The string "Number: 12345" is not a number. Instead "12345" whould be
valid.

1
2

Error 17: ERROR_STRINGRANGE

Description

This error occurs if it is tried to access a position which exceeds the length
of a string.

Example of the error

$
v[1] = String.Ord("Hello", 5)

The string "Hello" has a length of 5 chars. It is tried to access the sixth char
(= position 5) with the Ord method.

1
2

Error 18: ERROR_PICTURE

Description

This error occurs if it is tried to access a picture property, which is only
available if the picture has been loaded (e. g. the pixels of a picture).

Example of the error

$
v[1] = Picture[1].Pixel[0, 0]

If there is no picture loaded as id 1 this will raise an error.

1
2

Error 19: ERROR_PIXELRANGE

Description

This error occurs if it is tried to access some pixel which exceed the
picture's boundaries.

Example of the error

$
v[1] = Picture[1].FillRect(0, 0, 100, 100)

The error whould occur if the Picture no. 1 whould be smaller than 100 x
100 pixels (e. g. if the picture has a size of 20 x 20 pixels).

1
2

Error 20: ERROR_SAMEPICTURE

Description

This error occurs if it is tried to copy an area from one picture to the same
picture.

Example of the error

$
Picture[1].CopyRect(0, 0, 1, 0, 0, 100, 100)

The error whould occur because the source picture (= 1) is the same as the
destination picture (= 1).
Information
To avoid this problem you could load the same picture two times. Then
you could copy the area from one picture to the other and then erase the
copy.

1
2

Error 21: ERROR_PALETTERANGE

Description

This error occurs if it is tried to access a palette entry outside the range of 0
to 255.

Example of the error

$
Picture[1].Palette[256] = 0xFF

The palette entry with the index 256 doesn't exist.

Error 22: ERROR_SOCKETSTARTUP

Description

This error whould occur if it is not possible to initialize the socket system.
This is an error of the target system, where the game is running. The reason
for this error could be a wrong winsock version or an invalid network
driver.

Error 23: ERROR_NOFREESOCKET

Description

This error occurs if there is no more free socket to accept an incoming
connection.

Error 24: ERROR_CANTCREATESOCKET

Description

This error occurs if it is not possible to create a socket. This is an error of
the target system, where the game is running. The reason for this error
could be insufficient resources.

1
2
3

Error 25: ERROR_SOCKETSTILLOPEN

Description

This error occurs if it is tried to connect an already connected socket.

Example of the error

$
Client[0].Connect("127.0.0.1",
SOCK_DESTINY);
Client[0].Connect("127.0.0.1", SOCK_DESTINY)

If we assume that the first connection whould be established then the
second try to establish a connection whould raise this error. To avoid this
error it is satisfactory to close the socket with the Close method before the
connection is being established.

1
2
3

Error 26: ERROR_SOCKETNOTOPEN

Description

This error occurs if it is tried to do an operation which requires a connected
socket.

Example of the error

$
Client[0].Close();
Client[0].SendVariable(1, 1)

The error whould occur in line 3, because the socket is closed (line 2).
Hence it is not possible to send dara.

1
2

Error 27: ERROR_CANTCONNECT

Description

This error occurs if it was not possible to establish a connection.

Example of the error

$
Client[0].Connect("255.255.255.255",
SOCK_DESTINY)

It is not possible to connect to the specified address (in this case it is an
invalid address).

1
2
3

Error 28: ERROR_SOCKETTYPE

Description

This error occurs if it is tried to use RAW methods on a DestinySocket or
DestinySocket methods on a RAW socket.

Example of the error

$
Client[0].Connect("127.0.0.1",
SOCK_DESTINY);
Client[0].SendRawData("Hello", 5)

The error whould occur in line 3 because the socket type is DestinySocket
and the SendRawData method is only for RAW sockets.

Error 29: ERROR_SOCKETERROR

Description

This error occurs if the socket system reports an error. This is a problem of
the target system, where the game is running. The reason could be
insufficient resources.

Error 30: ERROR_OOB

Description

This error occurs if a DestinySocket receives invalid data (out of band).
This could occur if a DestinySocket connects to a RAW socket (or vice
versa).
Information
The DestinyProtocol has no error handling. Hence a connection must be
closed an re-established if such an error occurs. Usually the used TCP/IP
protocol avoids the arrival of invalid data packages (because the TCP/IP
protocol has its own error handling).

1
2

Error 31: ERROR_STRINGTOOLONG

Description

This error occurs if a string with a length greater than 255 bytes shall be
sent over a DestinySocket.

Example of the error

$
Client[0].SendString(1, String.Fill("Bla",
500))

The error whould occur because the string, which shall be sent, is greater
than 255 bytes (the length is 1500 bytes total).
Information
To avoid this error you could split the string into 255 char pieces (e. g.
with the SubStr method). Next you send the first piece with the string id.
Finally you send the other pieces with id 0. The receiving socket could
append all received strings with id 0 to the last string id that was
received.

1
2
3

Error 32: ERROR_NOFREEFILEHANDLE

Description

This error occurs if it is tried to open a file although the used file handle is
already open.

Example of the error

$
File[0].Open("Test.txt", FILE_WRITE);
File[0].Open("Test2.txt", FILE_WRITE)

The error whould occur in line 3, because the used file handle (= 0) is
already open (line 2).

Error 33: ERROR_CANTRESOLVEPATH

Description

This error occurs if it was not possible to resolve the path. This is an error
of the target system, but could occur in theory with invalid paths.

1
2

Error 34: ERROR_NOPERMISSION

Description

This error occurs if it was tried to access a file or folder, which is outside of
the game directory.

Example of the error

$
Directory.DeleteFile("C:\NTLDR")

Unless the game is running in C:\ (and this whould be stupid) this whould
raise an error. Otherwise (if this whould be possible) an execution of this
command could waste the computer system after a reboot. This is the
reason why file/directory access is only allowed inside of the game
directory.

1
2
3

Error 35: ERROR_CANTOPENFILE

Description

This error occurs if an file couldn't be opened. The reason could be that the
file is already opened by an other program, because an not existing file is
being opened only with read access, because the file name includes invalid
chars, ...

Example of the error

$
File[0].Open(
"Filenames may not contain ?.txt",
FILE_READ)

The error occurs because filenames may not contain question marks.

1
2
3

Error 36: ERROR_FILENOTOPEN

Description

This error occurs if a method is called which requires an open file handle,
but the used file handle is not open.

Example of the error

$
File[0].Close();
File[0].WriteRawData(12345, TYPE_DWORD)

The error whould occur in line 3, because the file handle is closed (line 2).

Error 37: ERROR_CANTACCESSFILE

Description

This error occurs if a read/write command on a file handle fails. This
depends on the target system, where the game is running. The reason could
be insufficient free disk space.

Error 38: ERROR_CANTCREATEDIR

Description

This error occurs if it was not possible to create a directory. This depends
on the target system, where the game is running. The reason could be
insufficient free disk space or an other file/directory with the same name
already exists.

Error 39: ERROR_CANTREMOVEDIR

Description

This error occurs if it was not possible to remove a directory. Additionally
to reasons of ERROR_CANTCREATEDIR the reason could be that the
directory, which shall be removed, isn't empty (so it contains
files/directories).

Error 40: ERROR_CANTRENAMEFILE

Description

This error occurs if it was not possible to rename/move a file/directory. This
depends on the target system, where the game is running. The reason could
be insufficient free disk space or that already a file/directory exists with the
target name.

Error 41: ERROR_CANTCOPYFILE

Description

This error occurs if it was not possible to copy a file. This depends on the
target system, where the game is running. The reason could be insufficient
free disk space or that already a file/directory exists with the target name.

Error 42: ERROR_CANTDELETEFILE

Description

This error occurs if it was not possible to delete a file. This depends on the
target system, where the game is running. The reason could be that the file
is marked as read-only or that already a file/directory exists with the target
name.

Error 43: ERROR_CANTREADATTRIBUTES

Description

This error occurs if it was not possible to retrieve the attributes of a
file/directory. This depends on the target system, where the game is
running. The reason could be that the user has not the required rights to
access the file/directory.

Error 44: ERROR_CANTWRITEATTRIBUTES

Description

This error occurs if it was not possible to set the attributes of a
file/directory. This depends on the target system, where the game is
running. The reason could be that the user has not the required rights to
access the file/directory.

1
2
3

Error 45: ERROR_SEARCHSTILLOPEN

Description

This error occurs if it is tried to open a new directory browsing while an
other is still open.

Example of the error

$
Directory.FindFirst("*.*");
Directory.FindFirst("*.*")

The error whould occur in line 3, because the browsing is still open (since
line 2).

1
2

Error 46: ERROR_CANTSTARTSEARCH

Description

This error occurs if it was not possible to open a directory browsing. The
reason could be an invalid search pattern or an invalid path.

Example of the error

$
Directory.FindFirst("|*.*")

The error occurs because there is no directory with the name | (in fact this is
not possible, because a file/directory may not contain | in its name).

1
2
3

< Back
9.20 Directory object

Forward >
11. MessageLink

Error 47: ERROR_NOSEARCHSTARTED

Description

This error occurs if it is tried do retrieve the next browse result, but no
directory browsing was started.

Example of the error

$
Directory.FindClose();
a[1] = Directory.FindNext()

The error whould occur in line 3, because the directory browsing is closed
(line 2).

10. Error messages

11. MessageLink
Description

If the MessageLink was embedded into the RPG_RT (for this see the
manual of the DestinyPatcher) then are some new placeholders added to the
message command. These placeholder can be used to display the content of
Destiny.dll scopes. The formatting is similar to the formatting of the Format
method of the String object. The differences are that you must add a
backslash in the front of the placeholder, an index at the end of the
placeholder and that you can use the a-placeholder for strings. All in all you
have three additional placeholder with the MessageLink: A for strings, D
for dwords and F for Doubles (the placeholders are equal to the identifers of
the scopes).
MessageBox:
Hello, this is the first string: "\a[1]"
This is the second dword: \d[2]
and this is the third double: \f[3]

The formatting of the placeholders looks like the formatting of the default
RPG-Maker placeholders. But each of these three placeholders has its own
properties.

1
2

The string placeholder

Description

The only special property of the string placeholder is that it doesn't support
line breaks. This depends on the RPG_RT which internal handles lines
separated. A text, which has usually multiple lines, is shown in a single line.
The chars, which indicate a line break, are displayed.

Example

$
a[1] = "Line 1" + CRLF + "Line 2"

MessageBox:
"\a[1]"

At the end the following MessageBox whould be displayed:

As you can see the two chars of a line break (CarriageReturn and LineFeet)
are displayed as arrows. If a string shall be displayed over multiple lines
then you must split it first. You can use the Pos method and the SubStr
method of the String object for this.

1
2

The dword placeholder

Description

This placeholder can display dwords with a minimum number of digits. To
do this you simply write the number of digits behind the placeholder.

Example

$
d[1] = 1500

MessageBox:
\d[1]
\d6[1]
\d2[1]

At the end the following MessageBox whould be displayed:

In the first line the number of digits is determined automatically. In the
second line we specified a minimum number of digits which is greater than
the required number of digits to display the number. Hence zeros are added
to the beginning of the number. In the third line the specified minimum
number of digits is exceeded by the required number of digits to display the
number. Hence the number is displayed normally.

1
2

The double placeholder

Description

This placeholder can display doubles with a minimum number of integer
places and an exact number of decimal places. To do this you simply write
the minimum number of digits for the integer places, a dot (as decimal
separator) and the exact number of digits for the decimal places.

Example

$
f[1] = 123.456

MessageBox:
\f[1]
\f4[1]
\f0.2[1]
\f4.4[1]

At the end the following MessageBox whould be displayed:

In the first line the length of the integer places and the decimal places is
determined automatically. In the second line a minimum length is specified
for the integer places. The length of the integer places is shorter than the
minimum length so zeros are added to the beginning of the number. In the
third line we specified minimum 0 digits for the integer places (this is the
default option) and exact 2 decimal places. In the fourth line we specified
minimum 4 integer places and exact 4 decimal places.
Information
If a number is specified that it should not display any decimal places then
only integer places will be displayed. This means that even the decimal

< Back
10. Error messages

Forward >
12. Constants

separator will not be displayed. (e. g. \f0.0[1] will display 123 if f[1] is
123.456)

11. MessageLink

12. Constants
Description

At different places in DestinyScript specific numbers are required. But
some values are hard to memorize. Hence you should use constants (these
are names which represent the specified numbers). If you write the name of
the constant instead of the number it represents then the result will be the
same.

List of constant groups
Because the most constants belong together they are grouped here.

Objects Group name Short description

Logic Switch
values The values 0 and 1

Math/Convert Angle
formats Angle formats for angle methods

String Special chars Special chars that you can't write in
DestinyScript

Error Errors The error constants

Keyboard Virtual
keycodes

The keys of the keyboard (and the buttons of
the mouse)

Keyboard Key state The possible key states

Map-/Event Special
events "Special" events (hero, boat, ...)

Map-/Event Directions Up, down, left and right
Picture Actions Actions of the pictures
Client/Server Socket state The possible states of a socket
Client/Server Socket type The possible types of a socket
Client/File Data types The data types of the Destiny.dll

Server Socket
choice The next free socket

File File mode Modes for opening files

Directory File
attributes Attributes of files and directories

Switch values

Description

This constants are very important, because they represent the boolean
values.

Constants

Constant Value Description
False 0 Switch state: OFF
True 1 Switch state: ON

Angle formats

Description

This constants define the angle formats. A more specific description can be
found at the Sin method of the Math object.

Constants

Constant Value Description
DEG 1 For angles with 360 units in a full circle (= degree)
RAD 2 For angles with π units in a full circla (= radiant)
GRAD 3 For angles with π units in a full circle (= grad)

RPG 4 For angles with 256 units in a full circle (= RPG-Maker
specific)

Special chars

Description

This constants define string values, which could not be written in
DestinyScript.

Constants

Constant Value Description
CR ASCII char no. 13 CarriageReturn
LF ASCII char no. 10 LineFeed
CRLF ASCII char 13 and 10 A line break under windows
QUOTE " Double quotes

Errors

Description

This constants define the error numbers.

Constants

Constant Value Description
ERROR_UNKNOWN 0 See description of the error
ERROR_SYNTAX 1 See description of the error
ERROR_NOVALUE 2 See description of the error
ERROR_UNKNOWNNAME 3 See description of the error
ERROR_CONVERT 4 See description of the error
ERROR_READONLY 5 See description of the error
ERROR_ARRAYBOUND 6 See description of the error
ERROR_RANGE 7 See description of the error
ERROR_MEMORY 8 See description of the error
ERROR_VALUE 9 See description of the error
ERROR_BINARYFLOAT 10 See description of the error
ERROR_CALCSWITCH 11 See description of the error
ERROR_CALCSTRING 12 See description of the error
ERROR_FLOATERROR 13 See description of the error
ERROR_FLOATLENGTH 14 See description of the error
ERROR_DIVISIONBYZERO 15 See description of the error
ERROR_STRINGFORMAT 16 See description of the error
ERROR_STRINGRANGE 17 See description of the error
ERROR_PICTURE 18 See description of the error
ERROR_PIXELRANGE 19 See description of the error
ERROR_SAMEPICTURE 20 See description of the error

ERROR_PALETTERANGE 21 See description of the error
ERROR_SOCKETSTARTUP 22 See description of the error
ERROR_NOFREESOCKET 23 See description of the error
ERROR_CANTCREATESOCKET 24 See description of the error
ERROR_SOCKETSTILLOPEN 25 See description of the error
ERROR_SOCKETNOTOPEN 26 See description of the error
ERROR_CANTCONNECT 27 See description of the error
ERROR_SOCKETTYPE 28 See description of the error
ERROR_SOCKETERROR 29 See description of the error
ERROR_OOB 30 See description of the error
ERROR_STRINGTOOLONG 31 See description of the error
ERROR_NOFREEFILEHANDLE 32 See description of the error
ERROR_CANTRESOLVEPATH 33 See description of the error
ERROR_NOPERMISSION 34 See description of the error
ERROR_CANTOPENFILE 35 See description of the error
ERROR_FILENOTOPEN 36 See description of the error
ERROR_CANTACCESSFILE 37 See description of the error
ERROR_CANTCREATEDIR 38 See description of the error
ERROR_CANTREMOVEDIR 39 See description of the error
ERROR_CANTRENAMEFILE 40 See description of the error
ERROR_CANTCOPYFILE 41 See description of the error
ERROR_CANTDELETEFILE 42 See description of the error
ERROR_CANTREADATTRIBUTES 43 See description of the error
ERROR_CANTWRITEATTRIBUTES 44 See description of the error
ERROR_SEARCHSTILLOPEN 45 See description of the error
ERROR_CANTSTARTSEARCH 46 See description of the error
ERROR_NOSEARCHSTARTED 47 See description of the error

Virtual keycodes

Description

This constants define the values for keys. (Usually this whould be much
more constants, but they are removed because this constants are for very
special keyboard layouts)

Constants

Constant Value Description
VK_DOWN 40 Arrow down key
VK_LEFT 37 Arrow left key
VK_RIGHT 39 Arrow right key
VK_UP 38 Arrow up key
VK_CONTROL 17 Ctrl key
VK_MENU 18 Alt key
VK_RETURN 13 Enter key
VK_SHIFT 16 Shift key
VK_SPACE 32 Space
VK_LBUTTON 1 Left mouse button
VK_MBUTTON 4 Middle mouse button
VK_RBUTTON 2 Right mouse button
VK_NUMPAD0 96 Numeric pad 0
VK_NUMPAD1 97 Numeric pad 1
VK_NUMPAD2 98 Numeric pad 2
VK_NUMPAD3 99 Numeric pad 3
VK_NUMPAD4 100 Numeric pad 4
VK_NUMPAD5 101 Numeric pad 5
VK_NUMPAD6 102 Numeric pad 6

VK_NUMPAD7 103 Numeric pad 7
VK_NUMPAD8 104 Numeric pad 8
VK_NUMPAD9 105 Numeric pad 9
VK_MULTIPLY 106 Numeric pad multiply
VK_ADD 107 Numeric pad add
VK_SUBTRACT 109 Numeric pad subtract
VK_DECIMAL 110 Numeric pad decimal separator
VK_DIVIDE 111 Numeric pad divide
VK_0 48 0 key
VK_1 49 1 key
VK_2 50 2 key
VK_3 51 3 key
VK_4 52 4 key
VK_5 53 5 key
VK_6 54 6 key
VK_7 55 7 key
VK_8 56 8 key
VK_9 57 9 key
VK_A 65 A key
VK_B 66 B key
VK_C 67 C key
VK_D 68 D key
VK_E 69 E key
VK_F 70 F key
VK_G 71 G key
VK_H 72 H key
VK_I 73 I key
VK_J 74 J key
VK_K 75 K key
VK_L 76 L key

VK_M 77 M key
VK_N 78 N key
VK_O 79 O key
VK_P 80 P key
VK_Q 81 Q key
VK_R 82 R key
VK_S 83 S key
VK_T 84 T key
VK_U 85 U key
VK_V 86 V key
VK_W 87 W key
VK_X 88 X key
VK_Y 89 Y key
VK_Z 90 Z key
VK_BACK 8 Backspace key
VK_CAPITAL 20 Capslock key
VK_NUMLOCK 144 Numlock key
VK_SCROLL 145 Scroll lock key
VK_DELETE 46 Del key
VK_END 35 End key
VK_ESCAPE 27 Escape key
VK_HOME 36 Home key
VK_INSERT 45 Ins key
VK_PAUSE 19 Pause key
VK_PGDN 34 Page down key
VK_PGUP 33 Page up key
VK_PRINT 44 Print key
VK_TAB 9 Tab key
VK_F1 112 F1 key

VK_F2 113 F2 key
VK_F3 114 F3 key
VK_F4 115 F4 key
VK_F5 116 F5 key
VK_F6 117 F6 key
VK_F7 118 F7 key
VK_F8 119 F8 key
VK_F9 120 F9 key
VK_F10 121 F10 key
VK_F11 122 F11 key
VK_F12 123 F12 key

Key states

Description

This constants are used to specify a key state. This constants can't be used
to query a key state!

Constants

Constant Value Description
KEYEVENTF_KEYDOWN 0 The key is pressed
KEYEVENTF_KEYUP 2 The key is released

Special events

Description

This constants are used to access special events (hero, boat, ship, airship or
the current event) with the Event or Mapevent object.

Constants

Constant Value Description
THIS 10005 The current event
HERO 10001 The hero event
BOAT 10002 The boat event
SHIP 10003 The ship event
AIRSHIP 10004 The airship event

Directions

Description

This constants are used to identify the direction of an event.

Constants

Constant Value Description
DIR_UP 0 Direction: Up
DIR_RIGHT 1 Direction: Right
DIR_DOWN 2 Direction: Down
DIR_LEFT 3 Direction: Left

Actions

Description

This constants are used to identify the action of a picture.

Constants

Constant Value Description
ACTION_NONE 0 No action
ACTION_ROTATION 1 Rotation effect
ACTION_RIPPLE 2 Ripple effect

Socket states

Description

This constants are used to identify the state of a socket (client/server).

Constants

Constant Value Description
STATE_CLOSED 0 The socket is closed
STATE_CONNECTED 1 The (client) socket is connected

STATE_LISTENING 2 The (server) socket wait for incoming
connections

STATE_ERROR -1 The socket reports an error

Socket type

Description

This constants are used to identify the type of a socket (client/server).

Constants

Constant Value Description

SOCK_DESTINY 0 The socket is a DestinySocket (hence it uses the
DestinyProtocol)

SOCK_RAW 1 The socket is a RAW socket (hence it uses not a
specific protocol)

Data types

Description

This constants are used to specify the data types.

Constants

Constant Value Description
TYPE_VARIABLE 1 Data type: variable
TYPE_SWITCH 2 Data type: switch
TYPE_DWORD 3 Data type: dword
TYPE_DOUBLE 4 Data type: double
TYPE_STRING 5 Data type: string
TYPE_BYTE 6 Data type: byte
TYPE_WORD 7 Data type: word

Socket choice

Description

This constant is used to use the next free socket for incoming connections.

Constants

Constant Value Description
NEXT_FREE_SOCKET -1 The next free socket will be used

File modes

Description

This constants are used to specify the mode for opening files. This constants
can be combined using the binary OR operator.

Constants

Constant Value Description
FILE_READ 1 Data can be read
FILE_WRITE 2 Data can be written

FILE_APPEND 6 Data can be written and the file pointer starts at
the end of the file

< Back11. MessageLink Forward >
13. Known bugs

File attributes

Description

This constants are used to specify the attributes of a file/directory. This
constants can be combined using the binary OR operator.

Constants

Constant Value Description

FILE_ATTRIBUTE_ARCHIVE 32 A file/directory has the archive
flag

FILE_ATTRIBUTE_DIRECTORY 16 A "e;thing"e; is a directory and
not a file

FILE_ATTRIBUTE_HIDDEN 2 A file/directory is hidden

FILE_ATTRIBUTE_NORMAL 128 A file/directory has no special
attributes

FILE_ATTRIBUTE_READONLY 1 A file/directory can only be
read

FILE_ATTRIBUTE_SYSTEM 4 A file/directory is a part of the
operating system

12. Constants

13. Known bugs
Description

If a method of DestinyScript has not the defined effect then this is a bug (=
software error). Some of these bugs depend on the target computer system,
where the game is running. Hence here is a list of known bugs and
solutions.

List of known bugs

Object Methods Source of
error Short description

Game Save /
Load RPG_RT.exe The game crashes if it can't read/write

a save file

Picture X / Y RPG_RT.exe The game crashes if the coordinates
are too huge

Server Listen Operating
system Incoming connections are blocked

Alle mit
Index Alle User The game crashes on invalid indices

Game.Save / Game.Load

Source of error

RPG_RT.exe

Problem

This is a bug which can occur if it was not possible to save/load a game. In
this case the game will crash. The filename of a save file is
quot;SaveXX.lsd", whereas XX is the respective save slot with two digits
(e. g. "Save01.lsd"). If the game crashes during save then the save file is
probably read-only. If the game crashes during load then the file probably
doesn't exist (or that the save file is corrupt).

Solution

To check if the save file can be read/written you can simply open it with the
Open method of the File object. If the opening works then you can probably
save/load the save file.

Picture.X / Picture.Y

Source of error

RPG_RT.exe

Problem

If a picture has too huge coordinates then the game will crash (e. g. X =
5000 or Y = -5000).

Solution

If a graphic shall simply not be displayed then you can place it a little bit
out of the visible range of the screen. Otherwise you could split the file into
small pieces and move the small pieces using DestinyScript.

Server.Listen

Source of error

Betriebssystem

Problem

This is an error which can occur with firewalls (this includes all operating
systems since Windows XP, which includes a firewall). All incoming
connections are blocked by the firewall.

Solution

To solve this problem you must specify that the program/port may accept
incoming connections. For Windows firewalls you can use the manual on
Microsoft.com. If you have an external firewall (router, etc.) you must
enable the "port forwarding"e;.

http://support.microsoft.com/kb/889740/en

< Back12. Constants Forward >
14. Appendix

All objects with index

Source of error

User

Problem

This problem occurs if an invalid index is used with objects of the RPG_RT.
For example if you try to change the properties of the hero with the id 0 (the
first hero id is usually 1). In such a case the game will crash.

Solution

To solve this problem you must look out to use valid indices.

13. Known bugs

14. Appendix
Description

Here shall some technical details about the Destiny.dll be descripted.
Currently this is only the design of the DestinyProtocol.

DestinyProtocol

Description

The DestinyProtocol has been developed by Bananen-Joe for the RPG-
Maker. It offers the basic functions for transmitting variables, switches,
dwords, doubles, words, bytes and strings. These are all associated with an
id.

Assembly of a DestinyProtocol command

XX IIIIIIII VV...
The assembly is simple. At first there will be 1 byte sent as command (red).
This command decides the format and the length of the value. The first
parameter of the command is a dword value (little endian), which contains
the associated id (blue). The second parameter of the command contains the
value of the data type (purple).

List of the DestinyProtocol commands

Command
(byte)

Size (of the
value) Format (value) Description

V 4 Dword, little endian (=
4 bytes total) A variable is sent

S 0 none (= 0 bytes total) A switch is sent with
value 1 (True)

s 0 none (= 0 bytes total) A switch is send with
value 0 (False)

D 4 Dword, little endian (=
4 bytes total) A dword is sent

F 8 Double, little endian (=
8 bytes total) A double is sent

W 2 Word, little endian (= 2 A word is sent

1
2

1
2
3

bytes total)
B 1 Byte (= 1 byte total) A byte is sent
A 1 + n bytes See string format See string format

String format

The string format doesn't contain numbers. Hence the first byte (after the
index) specifies the length of the string. The following bytes are the string.
Here you can see the weakness of the format: strings, that are longer than
255 bytes, can't be sent with this format. But this is intended, because the
interal buffer of the Destiny.dll has a maximum size of 500 bytes.
Otherwise, if the strings could be longer than 500 bytes, it whould not be
possible to check if the entire string has been received. This was the
simpliest solution to ensure that not too much memory is required.
Furthermore the developer of the code was lazy here.

Examples

SendVariable

$
Client[0].SendVariable(1, 2)

The SendVariable example whould create the following data package (Hex-
Dump):
56 01 00 00 00 02 00 00 00

SendSwitch

$
Client[0].SendSwitch(100, True);
Client[0].SendSwitch(-200, False)

The SendSwitch example whould create the following data package (Hex-
Dump):

1
2

1
2

1
2

1
2

53 64 00 00 00
73 38 FF FF FF

SendDword

$
Client[0].SendDword(10000, 0x12345678)

The SendDword example whould create the following data package (Hex-
Dump):
44 10 27 00 00 78 56 34 12

SendDouble

$
Client[0].SendDouble(0xAABBCCDD, Math.Pi)

The SendDouble example whould create the following data package (Hex-
Dump):
46 DD CC BB AA 18 2D 44 54 FB 21 09 40

SendWord

$
Client[0].SendWord(0x987654, 100)

The SendWord example whould create the following data package (Hex-
Dump):
57 54 76 98 00 64 00

SendByte

$
Client[0].SendByte(0xD0C0B0A0, 3)

1
2

< Back
13. Known bugs

Forward >
15. Closing words

The SendByte example whould create the following data package (Hex-
Dump):
42 A0 B0 C0 D0 03

SendString

$
Client[0].SendString(1111111, "Hello")

The SendString example whould create the following data package (Hex-
Dump):
41 47 F4 10 00 05 48 65 6C 6C 6F

14. Appendix

15. Closing words
As the great end of this manual I want to add a review about the
DestinyPatch and its development. Since some years I had the idea to
develop a patch for the RPG-Maker, but at that time I had not the required
knowledge. I had tried to create a solution with a second exe file, which
modifies the memory of the real exe file. This solution has a lot of problems
(not only due to the performance). For example the memory addresses
differ in the RPG_RT depending on the number of variables allocated, etc..
An other problem whould be the parallel monitoring of memory. This could
make trouble on slow computer systems.

At that time I had the idea that a patch, which could read the content of the
comment command, whould be optimal. This whould have the advantage
that each command, which shall be executed by the patch, is entered into
the RPG-Maker. And further that the patch is working serial (so the RPG-
Maker whould make a pause during the execution of a patch command).
Three years later (end of the year 2005 - at that time I had gathered much
more knowledge about exe files and learned the programming language
Assembler) I picked up my old idea and started to develop the
DestinyPatch. To do this I had disassembled the RPG_RT.exe and patched it
by hand (with a hex editor). The patch worked, but it was poor. For example
it didn't afford a real formula interpreter. Additionally some functions (like
the disabling of the F12 key) made trouble. In my opinion the patch was
more an impertinance than a helpful tool. Hence I canceled the
DestinyPatch.

At the beginning of 2007 I rediscovered the pleasure of modifing games. I
modified a game for a friend (more life, etc.). Hence I resumed the project
"Destiny" and completely revised. But this time I used more structure! For
example I created some structograms for the formula interpreter. This eases
the work enormously. Additionally I solved the problems like the F12 key
thingy on the first start-up. Sometimes it is useful to make a (short) break.
The entire year 2007 I worked continously (this means at leas 1 hour per
week) on the patch until it was ready at the end of 2007.

< Back
14. Appendix

Forward >
16. Imprint

The most difficult part of the project was the development of the help files.
(Writing easily readable text is much more complicated than writing
procedures which modify the stack of its own calling procedures). But the
documentating of the patch included advantages. Because I noticed some
meaningless functions, that could be removed, and some missing functions,
that should be added (e. g. the If method). By hindsight some functions,
which are from the first project time of 2005, are useless. But I leave them
inside because they could be possibly useful (e. g. who needs a arcus
secans?!).

Now (Beginning of 2008) the patch is checked ready (for now). I don't
know if there will be new versions. (This depends on the requirement of the
users). Furthermore some people whould like to have functions, which are
hard to include. (For this functions it whould be easier and much more
expedient to write an own RPG-Maker).

But for now I wish all people, who want to use the patch (nevertheless to
the old RPG-Maker 2000 version) a lot of fun!

15. Closing words

< Back
15. Closing words

Forward >

16. Imprint
The entire DestinyPatch (Destiny.dll and DestinyPatcher) and the help files
(DestinyPatcher help file and DestinyScript help file) have been developed
by David Gausmann (alias Bananen-Joe). Closing words about the project
can be found in the help file for the scripting language (DestinyScript).

If you have questions (which could not be answered with these help files),
remarks and critique you can contact the author via his email address:
DestinyDLL ette Bananen-Joe.de (You must replace the ette with an at
symbol - if you don't understand this please don't contact me!).
Questions send over other ways (other email addresses, messenger, ...)
won't be answered and (as far as possible) immediately deleted!

And have a look on my homepage!
http://www.bananen-joe.de/

Have fun - yours sincerely Bananen-Joe.

16. Imprint

http://www.bananen-joe.de/

	Table of contents
	1. Introduction
	2. Assembly of the scripting language
	3. Data types
	4. Number formats
	5. Strings
	6. Operators
	7. Leading signs
	8. Formulas
	9. Objects
	9.1 Destiny object
	9.2 Game object
	9.3 Convert object
	9.4 Logic object
	9.5 Math object
	9.6 String object
	9.7 Error object
	9.8 Errors object
	9.9 Keyboard object
	9.10 Mouse object
	9.11 Time object
	9.12 Actor object
	9.13 Map object
	9.14 Event object
	9.15 MapEvent object
	9.16 Picture object
	9.17 Client object
	9.18 Server object
	9.19 File object
	9.20 Directory object

	10. Error messages
	11. MessageLink
	12. Constants
	13. Known bugs
	14. Appendix
	15. Closing words
	16. Imprint

