Skip to content
This repository

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
branch: master
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 359 lines (315 sloc) 12.193 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
Require Import List util list_util Program Relations.
Require EquivDec.

Set Implicit Arguments.

Record DiGraph: Type := Build
  { Vertex: Type
  ; Vertex_eq_dec: EquivDec.EqDec Vertex eq
  ; vertices: ExhaustiveList Vertex
  ; edges: Vertex -> list Vertex
  ; edges_NoDup: forall v, NoDup (edges v)
  }.

Existing Instance Vertex_eq_dec.
Existing Instance vertices.

Hint Resolve edges_NoDup.
Hint Immediate edges_NoDup.

Implicit Arguments edges [d].

Definition flat_edge_list (g: DiGraph): list (Vertex g * Vertex g) :=
  flat_map (fun v => map (pair v) (edges v)) (vertices g).

Section reachability.

  Variable g: DiGraph.

  Definition edge: relation (Vertex g) := fun v w => In w (edges v).
  Let ved := Vertex_eq_dec g.

  Definition Edge := (Vertex g * Vertex g)%type.
  Definition Edge_eq_dec: forall (e e': Edge), decision (e=e')
    := pair_eq_dec ved ved.

  Variable start: list (Vertex g).
  Hypothesis NoDup_start: NoDup start.

  Definition reachable v: Prop := exists s, In s start /\ trans_refl_closure.R edge s v.

  Program Fixpoint unreachables_worker (unvisited: list (Vertex g))
    (tovisit: { l | NoDup l /\ incl l unvisited
      /\ (forall v, ~ In v unvisited -> forall w, In w unvisited -> edge v w -> In w l)
      /\ (forall v, ~ In v unvisited -> reachable v)
      /\ (forall v, In v l -> reachable v)}) {measure (length unvisited)}:
    { l | incl l (subtr ved unvisited tovisit)
      /\ (forall v, ~ In v l -> forall w, edge v w -> ~ In w l)
      /\ (forall v, ~ In v l -> reachable v) } :=
    match tovisit with
    | nil => unvisited
    | h :: t => @unreachables_worker (remove ved h unvisited)
      (t ++ intersection ved unvisited (subtr ved (edges h) (h :: t))) _
    end.

  Next Obligation. Proof with auto.
    (* the result in the nil case meets the result spec *)
    split. apply incl_refl.
    split...
    repeat intro.
    destruct (i0 v H w H1 H0).
  Qed.

  Next Obligation. Proof with simpl; auto.
    (* the invariant is maintained in the recursive call *)
    clear unreachables_worker.
    inversion_clear n.
    repeat split; intros.
            (* we don't introduce duplicates *)
            apply NoDup_app...
            repeat intro.
            destruct (intersection_In ved x _ _ H2).
            destruct (snd (In_remove ved (subtr ved (edges h) t) x h) H4).
            destruct (In_subtr _ _ _ _ H5)...
          (* the new tovisit is still included in the new unvisited *)
          apply incl_app.
            repeat intro.
            apply (fst (In_remove ved unvisited a h)).
            split... intro. subst...
          repeat intro.
          destruct (intersection_In ved a _ _ H1).
          apply (fst (In_remove ved unvisited a h)).
          split...
          destruct (In_remove ved (subtr ved (edges h) t) a h).
          firstorder.
        (* the new tovisit is still the border between visiteds and unvisiteds *)
        destruct (snd (In_remove ved _ _ _) H2).
        rewrite remove_eq_filter in H1.
        destruct (not_In_filter' ved _ _ unvisited H1).
          destruct (i0 v H6 w H4 H3)...
          firstorder.
        destruct (ved h v); [idtac | discriminate].
        unfold Equivalence.equiv in e. subst v.
        destruct (In_dec ved w t)...
        apply in_or_app...
      (* things not in the new unvisited are still reachable *)
      rewrite remove_eq_filter in H1.
      destruct (not_In_filter' ved v _ unvisited H1)...
      destruct (ved h v); [idtac | discriminate].
      firstorder.
    (* things in the new tovisit are still reachable *)
    destruct (in_app_or _ _ _ H1). apply r0...
    destruct (intersection_In _ _ _ _ H2).
    destruct (snd (In_remove ved (subtr ved (edges h) t) v h) H4).
    destruct (r0 h (in_eq _ _)). destruct H7.
    exists x. split...
    apply trans_refl_closure.step with h...
    unfold edge.
    destruct (In_subtr _ _ _ _ H5)...
  Qed.


  Next Obligation. Proof with simpl; auto.
    (* the length decreases in the recursive call *)
    apply remove_length_lt, i...
  Qed.

  Next Obligation. Proof with auto.
    (* the result in the recursive case meets the result spec *)
    destruct_call unreachables_worker.
    simpl proj1_sig in *.
    clear unreachables_worker.
    destruct a. destruct H0.
    split...
    (*subst tovisit.*)
    simpl.
    repeat intro.
    specialize (H a H2).
    destruct (In_subtr _ _ _ _ H).
    clear H.
    destruct (snd (In_remove ved unvisited a h) H3).
    apply (In_remove ved (subtr ved unvisited t) a h)...
    split... apply subtr_In...
  Qed.

  Program Definition unreachables:
    { l: list (Vertex g) | forall w, ~ In w l <-> reachable w }
     := @unreachables_worker (vertices g) start.

  Next Obligation. Proof with auto.
    (* the invariant holds at the start *)
    split...
    split. repeat intro...
    split. intros. elimtype False...
    split. intros. elimtype False...
    intros. exists v. split...
  Qed.

  Obligation Tactic := idtac.

  Next Obligation. Proof with auto.
    (* worker's result implies our desired result *)
    destruct (unreachables_worker (exist (fun l => NoDup l /\ incl l (vertices g) /\
       (forall v, ~ In v (vertices g) -> forall w0, In w0 (vertices g) -> edge v w0 -> In w0 l) /\
       (forall v, ~ In v (vertices g) -> reachable v) /\
       (forall v, In v l -> reachable v)) start unreachables_obligation_1)).
    simpl in *.
    destruct a. destruct H0.
    intro. split... repeat intro.
    destruct H2. destruct H2.
    destruct (trans_refl_closure.flip_inv (fun j => In j x) (fun j => In_dec ved j x) H4)...
      intro.
      apply (snd (In_subtr ved (vertices g) start _ (H _ H5)) H2).
    destruct H5. destruct H5. destruct H6.
    apply (H0 _ H5 _ H7)...
  Qed.

  Obligation Tactic := program_simpl.


  (* let's do it again, this time using James' method *)

  Inductive result_rel:
    forall (unvisited tovisit result: list (Vertex g)), Prop :=
      | result_nil unvisited: result_rel unvisited nil unvisited
      | result_cons unvisited h t r:
         result_rel (remove ved h unvisited)
         (t ++ intersection ved unvisited (subtr ved (edges h) (h :: t))) r ->
         result_rel unvisited (h :: t) r.

  Hint Constructors result_rel.

  Hint Unfold reachable.

  Lemma half_correct (unvisited tovisit r: list (Vertex g)):
    result_rel unvisited tovisit r ->
     (forall v, ~ In v unvisited -> reachable v)
     -> (forall v, In v tovisit -> reachable v)
     -> (forall v, ~ In v r -> reachable v).
      (* todo: is this soundness or completeness? i can't tell because
of this complement stuff.. *)
  Proof with simpl; auto.
    intros P.
    induction P...
    repeat intro.
    apply IHP; intros...
      (* things not in the new unvisited are still reachable *)
      rewrite remove_eq_filter in H2.
      destruct (not_In_filter' ved _ _ unvisited H2)...
      destruct (ved h v0); [idtac | discriminate].
      clear H3. subst...
    (* things in the new tovisit are still reachable *)
    destruct (in_app_or _ _ _ H2). apply H0...
    destruct (intersection_In _ _ _ _ H3). clear H3.
    destruct (snd (In_remove ved (subtr ved (edges h) t) v0 h) H5).
    destruct (H0 h (in_eq _ _)). destruct H7.
    destruct (In_subtr _ _ _ _ H5).
    eauto.
  Qed.

  Lemma other_half (unvisited tovisit r: list (Vertex g)):
    result_rel unvisited tovisit r ->
    (forall v, ~ In v unvisited -> forall w,
      In w unvisited -> edge v w -> In w tovisit) ->
      (forall v, ~ In v r -> forall w, edge v w -> ~ In w r)
      /\ incl r (subtr ved unvisited tovisit).
  Proof with simpl; auto.
    intros P.
    induction P; intros.
      split.
        repeat intro.
        destruct (H _ H0 _ H2 H1).
      unfold incl...
    destruct IHP.
      intros.
      (* the new tovisit is still the border between visiteds and unvisiteds *)
      destruct (snd (In_remove ved _ _ _) H1).
      rewrite remove_eq_filter in H0.
      destruct (not_In_filter' ved _ _ unvisited H0).
        destruct (H _ H5 _ H3 H2)...
        firstorder.
      destruct (ved h v); [idtac | discriminate].
      clear H5. unfold Equivalence.equiv in e. subst v.
      destruct (In_dec ved w t)...
      apply in_or_app...
    split...
    repeat intro.
    destruct (In_subtr _ _ _ _ (H1 _ H2)).
    simpl.
    apply (fst (In_remove ved (subtr ved unvisited t) a h)).
    destruct (snd (In_remove ved unvisited a h) H3).
    split...
    apply subtr_In...
  Qed.
(*
Program Fixpoint result_rel_exists (unvisited: list (Vertex g))
(tovisit: { l | NoDup l /\ incl l unvisited })
{measure (length unvisited)}:
{ r | result_rel unvisited tovisit r } :=
match tovisit with
| nil => unvisited
| h :: t => result_rel_exists (remove ved h unvisited)
(t ++ intersection ved unvisited (subtr ved (edges h) (h :: t)))
end.

Next Obligation. (* length decrease *)
intros.
apply remove_length_lt. destruct H.
apply H0. auto.
Qed.

Next Obligation. Proof with auto. (* NoDup/incl for recursive call. *)
destruct H. inversion_clear H.
split.
(* we don't introduce duplicates *)
apply NoDup_app...
repeat intro.
destruct (intersection_In ved x _ _ H3).
destruct (snd (In_remove ved (subtr ved (edges h) t) x h) H5).
destruct (In_subtr _ _ _ _ H6)...
(* the new tovisit is still included in the new unvisited *)
apply incl_app.
repeat intro.
apply (fst (In_remove ved unvisited a h)).
split... intro. subst...
repeat intro.
destruct (intersection_In ved a _ _ H).
apply (fst (In_remove ved unvisited a h)).
split...
destruct (In_remove ved (subtr ved (edges h) t) a h).
firstorder.
Qed.

Next Obligation. Proof with auto. (* recursive result meets the spec *)
(* ugly trivial thing, really just a silly Program artifact. *)
destruct (result_rel_exists
(exist
(fun unvisited' : list (Vertex g) =>
length unvisited' < length unvisited) (remove ved h unvisited)
(result_rel_exists_obligation_2 result_rel_exists
(exist (fun l : list (Vertex g) => NoDup l /\ incl l unvisited)
tovisit H) Heq_tovisit))
(exist
(fun l : list (Vertex g) =>
NoDup l /\ incl l (remove ved h unvisited))
(t ++
intersection ved unvisited (remove ved h (subtr ved (edges h) t)))
(result_rel_exists_obligation_3 result_rel_exists
(exist (fun l : list (Vertex g) => NoDup l /\ incl l unvisited)
tovisit H) Heq_tovisit))).
simpl in *. subst...
Qed.

Program Definition unreachables':
{ l: list (Vertex g) | forall w, ~ In w l <-> reachable w }
:= @result_rel_exists (vertices g) start.

Next Obligation. Proof with auto. split... repeat intro... Qed.

Next Obligation. Proof with auto.
destruct (result_rel_exists
(exist (fun l : list (Vertex g) => NoDup l /\ incl l (vertices g))
start unreachables'_obligation_1)).
simpl in *.
split.
apply (half_correct r); intros...
elimtype False...
exists v. split...
destruct (other_half r).
intros. elimtype False...
repeat intro.
destruct H1. destruct H1.
destruct (trans_refl_closure.flip_inv (fun j => In j x) (fun j => In_dec ved j x) H3)...
intro.
apply (snd (In_subtr ved (vertices g) start _ (H0 x0 H4)) H1).
destruct H4. destruct H4. destruct H5.
apply (H _ H4 _ H6)...
Qed.

(* This concludes James' approach. *)
*)

  Program Definition reachables:
    { l: list (Vertex g) | forall w, In w l <-> reachable w }
    := subtr ved (vertices g) unreachables.

  Obligation Tactic := idtac.

  Next Obligation. Proof with auto.
    destruct unreachables.
    intros.
    split; intro.
      destruct (In_subtr _ _ _ _ H).
      simpl in H1.
      apply (i w)...
    apply subtr_In...
    apply (i w)...
  Qed.

  Definition reachable_dec (v: Vertex g): decision (reachable v) :=
    let (x, i) := unreachables in
      match In_dec ved v x with
      | left i0 => right (fun H => snd (i v) H i0)
      | right n => left (fst (i v) n)
      end.

End reachability.

Implicit Arguments reachable [[g]].
Something went wrong with that request. Please try again.