BP++ Scratch-pad

September 2022

1 Reciprocal Argument

Simple argument

Reciprocal Argument Prover Input: $V, g, \mathbf{g}, \mathbf{h}, v, \gamma$ such that $V = g^v \mathbf{h}^{\gamma}$ such that $|\mathbf{g}| = max(n, b)$ where *n* is the maximum number of bits and *b* is the base. **Verifier Input:** *V*, *g*, **g**, **h Round 1:** Prover computes the digits(d) and multiplicities(m) of digits as $\forall i$ $0 \leq d_i \leq b$. $v = \sum_{i=0}^{n} (\mathbf{b}^{i} d_{i})$ (1) $\forall j \ 0 \le j \le \mathbf{b} : m_j = \sum_{i=0}^n (d_i = j)$ (2)Throughout the protocol, index *i* is associated with digits of the numbers d_i , index *j* is associated with multiplicities m_j . And sends commitments to *M* as $b_m \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ (3) $\mathbf{l_m} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^6$ (4) $M = g^{b_m} \mathbf{g}^{\mathbf{m}} \mathbf{h}^{\mathbf{l}_{\mathbf{m}}}$ (5) $\mathbf{l}_{\mathbf{d}} = (0, 0, -l_m(3), 0, -l_m(5), 0)$ (6) $b_d \stackrel{\$}{\leftarrow} \mathbb{Z}_p$ (7) $D = g^{b_d} \mathbf{g^d} \mathbf{h^{l_d}}$ (8)P sends the commitments D and M. Verifier then sends back challenge e

$$e \stackrel{\$}{\leftarrow} \mathbb{Z}_p \tag{9}$$

Round 2: Prover computes the reciprocal(**r**) sends the reciprocal commitment *R* where $r_i = \frac{1}{e+d_i}$

$$\forall \mathbf{i} \ \mathbf{l}_{\mathbf{r}_{\mathbf{i}}} = \mathbf{0} \tag{10}$$

$$b_r \stackrel{\$}{\leftarrow} \mathbb{Z}_p$$
 (11)

$$R = g^{b_r} \mathbf{g}^r \mathbf{h}^{\mathbf{l}_r} \tag{12}$$

Verifier sends back challenges *x*, *y*, *q*

$$x, q, y \stackrel{\$}{\leftarrow} \mathbb{Z}_p \tag{13}$$

Round 3: Prover samples the blinders(**s**) and sends the commitment *S* to the verifier as shown below. Let $\alpha_m = (\frac{1}{e+0}, \frac{1}{e+1}, \dots, \frac{1}{e+b-1}), Q^{-1} = (q^{-1}, \dots, q^{-n})$

$$\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_p^6 \tag{14}$$

$$b_s = |\mathbf{s}|_q^2 \tag{15}$$

$$\delta(T) = Q^{-1} \odot (x \boldsymbol{\alpha}_m T^4 + -\mathbf{1} x T^2 + \mathbf{b} T^3) + e \mathbf{1} T^2$$
(16)

$$\mathbf{c} = y(T, T^2, T^3, T^4, T^6, T^7)$$
(17)

Compute
$$l_s$$
 such that (18)

$$\mathbf{w}(T) = \mathbf{s} + \mathbf{mT} + \mathbf{dT}^2 + \mathbf{rT}^3 + \delta(T)$$
(19)

$$\hat{v}(T) = 2vT^5 + b_s + b_mT + b_dT^2 + b_sT^3$$
(20)

$$\langle \mathbf{c}, \mathbf{l}_{\mathbf{s}} \rangle = \hat{v}(T) - |\mathbf{w}(T)|_{q}^{2} - \langle \mathbf{c}, (\mathbf{l}_{\mathbf{m}}T + \mathbf{l}_{\mathbf{d}}T^{2} + \mathbf{l}_{\mathbf{r}}T^{3} + \gamma T^{5}) \rangle$$
(21)

If the values are set correctly, we can uniquely determine values of l_s by comparing co-efficient of T on both sides. If the prover is honest, all powers but T^5 can be cancelled by attentively computing l_s . T^5 is zero only if prover is honest.

Send
$$S = g^{b_s} \mathbf{g^s} \mathbf{h^{l_s}}$$
 (22)

Verifier sends back challenge
$$t$$
 (23)

Norm Argument: $|\mathbf{w}|_q^2 + \langle \mathbf{l}, \mathbf{c} \rangle = v$ for a given $C = g^v \mathbf{g}^w h^{\mathbf{l}}$. Run the norm argument with

$$\mathbf{w} = \mathbf{w}(t) \tag{24}$$

$$l = l_s + l_m t + l_d t^2 + l_r t^3 + \gamma t^5$$
(25)

$$v_g = 2t^5(\langle \mathbf{1}, \mathbf{Q} \rangle + e\langle \mathbf{1}, \mathbf{b} \rangle + -x\langle \mathbf{Q}^{-1}, \mathbf{b} \rangle) + x^2 t^8 \langle \boldsymbol{\alpha}_m, \boldsymbol{\alpha}_m \rangle$$
(26)

Verification: Compute C

$$C = SM^t D^{t^2} R^{t^3} V^{2t^5} \mathbf{g}^{\delta(t)} g^{v_g}$$
⁽²⁷⁾

Run norm argument with C with the above computed q

$$\mathbf{c} = y(t, t^2, t^3, t^4, t^6, t^7)$$
(28)

2 **Proof Outline:**

In order to prove computational witness extended emulation, we construct an extractor χ as follows. The extractor χ runs the prover with $n\dot{m}$ different values of y, m + 2 different values of z, and 7 different values of the challenge t. Additionally it invokes the extractor norm argument for the transcripts. This results in 7(m + 2) transcripts.

If for any other set of challenges (t, y, q) the extractor can compute a different representation of A or S, then this yields a non-trivial discrete logarithm relation between independent generators h, g, h which contradicts the discrete logarithm assumption.

3 Constraints on variables:

Power of t	co-efficient	constraint
t ¹¹	$2R\gamma(4)$	$\gamma(4)=0$
t^{10}	$2Rl_{\mathbf{r}}(5)$	$\mathbf{l_r}(5) = 0$
t^9	$R(2\boldsymbol{\gamma}(3) + \mathbf{l_d}(5) + \mathbf{l_r}(4))$	$\mathbf{l_r}(4) = -2\gamma(3) - \mathbf{l_d}(5)$
t^8	$R(2\gamma(2) + \mathbf{l_d}(4) + \mathbf{l_m}(5))$	$\mathbf{l_m}(5) = -2\gamma(2) - \mathbf{l_d}(4)$
t^5	$2R(\mathbf{l}_{\mathbf{r}}(1) + \mathbf{l}_{\mathbf{d}}(2) + \mathbf{l}_{\mathbf{m}}(3))$	$\mathbf{l_r}(1) = -\mathbf{l_d}(2) - \mathbf{l_m}(3)$
t^0	$\sum_{i=0}^{n}(q^{i}(\mathbf{s}(i))^{2})-b_{s}$	$b_s = \sum_{i=0}^n (q^i(\mathbf{s}(i))^2)$
$t^i \ i \ge 1 \land i \le 7 \land i \ne 5$	21	21

Variables with constraints: b_s , l_s , $\gamma(4)$, $l_r(4)$, $l_m(5)$, $l_r(1)$

4 Zero knowledge:

The proof transcript consists of $(M, D, R, S, \mathbf{l}, \mathbf{w})$. If we can show that \mathbf{w} and \mathbf{l} are uniformly distributed, we can use the simulator is rather straightforward. We compute $v = |w|_q^2 + \langle l, c \rangle$. We sample all other proof elements randomly and compute $S = \frac{g^v \mathbf{g}^w \mathbf{h}^l}{M^t D^{t^2} R^{t^3} V^{2t^5} P}$.

4.0.1 Lemma:

For any point $P = g^c \mathbf{g}^a \mathbf{h}^b$, as long as any of *c* or any of the components of **a**, **b** are random. Then *P* is randomly distributed.

- **w** is randomly distributed as it contains the **s** which is sampled randomly in protocol.
- Informally, the constraint degree is the number of constraints that we have on blinding values. We have overall 10 constraints $|\mathbf{l}_{\mathbf{s}}| = 6 + \mathbf{l}_{\mathbf{r}}(1), \mathbf{l}_{\mathbf{r}}(4), \mathbf{l}_{\mathbf{m}}(5), b_s$ with 28(6 in 1 and 1 in b = 7; 4 l equations) free variables.

- we need to show that 4 points are *M*, *D*, *R*, *S* are uniformly distributed and **l**_s is also uniformly distributed.
- By 4.0.1, using values b_m , b_d , b_r we can easily argue that the points M, D, R are uniformly distributed. If \mathbf{l}_d is sampled randomly, then 1 would also have a random distribution. Any one of the l_s values, say $l_s(2)$ depends on linear combination on $l_d(0)$ (and other values) which is randomly distributed. Atleast one value of \mathbf{l}_s , namely, $l_s(2)$ is randomly distributed so according to 4.0.1, S is uniformly distributed.