BP++ Scratch-pad

September 2022

1 Reciprocal Argument

Simple argument

Reciprocal Argument

Prover Input: $V, g, \mathbf{g}, \mathbf{h}, v, \gamma$ such that $V=g^{v} \mathbf{h}^{\gamma}$ such that $|\mathbf{g}|=\max (n, b)$ where n is the maximum number of bits and b is the base.
Verifier Input: V, g, \mathbf{g}, h
Round 1: Prover computes the digits(d) and multiplicities(m) of digits as $\forall i$ $0 \leq d_{i} \leq b$.

$$
\begin{gather*}
v=\sum_{i=0}^{n}\left(b^{i} d_{i}\right) \tag{1}\\
\forall j 0 \leq j \leq b: m_{j}=\Sigma_{i=0}^{n}\left(d_{i}=j\right) \tag{2}
\end{gather*}
$$

Throughout the protocol, index i is associated with digits of the numbers d_{i}, index j is associated with multiplicities m_{j}. And sends commitments to M as

$$
\begin{gather*}
b_{m} \stackrel{\$}{\leftarrow} \mathbb{Z}_{p} \tag{3}\\
\mathbf{1}_{\mathbf{m}} \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}^{6} \tag{4}\\
M=g^{b_{m}} \mathbf{g}^{\mathbf{m}} \mathbf{h}^{\mathbf{1}_{\mathbf{m}}} \tag{5}\\
\mathbf{1}_{\mathbf{d}}=\left(0,0,-l_{m}(3), 0,-l_{m}(5), 0\right) \tag{6}\\
b_{d} \stackrel{\$}{\leftarrow} \mathbb{Z}_{p} \tag{7}\\
D=g^{b_{d}} \mathbf{g}^{\mathbf{d}} \mathbf{h}^{\mathbf{1}_{\mathbf{d}}} \tag{8}
\end{gather*}
$$

P sends the commitments D and M. Verifier then sends back challenge e

$$
e \stackrel{\$}{\leftarrow} \mathbb{Z}_{p}
$$

Round 2: Prover computes the reciprocal(r) sends the reciprocal commitment R where $r_{i}=\frac{1}{e+d_{i}}$

$$
\begin{gather*}
\forall \mathbf{i} \mathbf{1}_{\mathrm{r}_{\mathrm{i}}}=0 \tag{10}\\
b_{r}{ }^{\Phi} \mathbb{Z}_{p} \tag{11}\\
R=g^{b_{r}} \mathbf{g}^{\mathbf{r}^{\mathbf{h}^{\mathbf{r}}}} \tag{12}
\end{gather*}
$$

Verifier sends back challenges x, y, q

$$
\begin{equation*}
x, q, y \stackrel{\$}{\stackrel{ }{*}} \tag{13}
\end{equation*}
$$

Round 3: Prover samples the blinders(s) and sends the commitment S to the verifier as shown below. Let $\alpha_{m}=\left(\frac{1}{e+0}, \frac{1}{e+1}, \ldots, \frac{1}{e+b-1}\right), Q^{-1}=\left(q^{-1}, \ldots, q^{-n}\right)$

$$
\begin{gather*}
\mathbf{s} \stackrel{\Phi}{ }^{\Phi} \mathbb{Z}_{p}^{6} \tag{14}\\
b_{s}=|\mathbf{s}|_{q}^{2} \tag{15}\\
\delta(T)=Q^{-1} \odot\left(x \boldsymbol{\alpha}_{m} T^{4}+-1 x T^{2}+\mathbf{b} T^{3}\right)+e \mathbf{1} T^{2} \tag{16}\\
\mathbf{c}=y\left(T, T^{2}, T^{3}, T^{4}, T^{6}, T^{7}\right) \tag{17}
\end{gather*}
$$

Compute 1_{s} such that

$$
\begin{equation*}
\mathbf{w}(T)=\mathbf{s}+\mathbf{m} \mathbf{T}+\mathbf{d T}^{\mathbf{2}}+\mathbf{r T}^{3}+\delta(T) \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\hat{v}(T)=2 v T^{5}+b_{s}+b_{m} T+b_{d} T^{2}+b_{s} T^{3} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle\mathbf{c}, \mathbf{1}_{\mathbf{s}}\right\rangle=\hat{v}(T)-|\mathbf{w}(T)|_{q}^{2}-\left\langle\mathbf{c},\left(\mathbf{1}_{\mathbf{m}} T+\mathbf{1}_{\mathbf{d}} T^{2}+\mathbf{1}_{\mathbf{r}} T^{3}+\gamma T^{5}\right)\right\rangle \tag{20}
\end{equation*}
$$

If the values are set correctly, we can uniquely determine values of l_{s} by comparing co-efficient of T on both sides. If the prover is honest, all powers but T^{5} can be cancelled by attentively computing l_{s}. T^{5} is zero only if prover is honest.

$$
\begin{equation*}
\text { Send } S=g^{b_{s}} \mathbf{g}^{\mathbf{s}} \mathbf{h}^{1_{s}} \tag{22}
\end{equation*}
$$

Verifier sends back challenge t
Norm Argument: $|\mathbf{w}|_{q}^{2}+\langle\mathbf{l}, \mathbf{c}\rangle=v$ for a given $C=g^{v} \mathbf{g}^{\mathbf{w}} h^{1}$. Run the norm argument with

$$
\begin{gather*}
\mathbf{w}=\mathbf{w}(t) \tag{24}\\
\mathbf{l}=\mathbf{1}_{\mathbf{s}}+\mathbf{1}_{\mathbf{m}} \mathbf{t}+\mathbf{1}_{\mathbf{d}} \mathbf{t}^{2}+\mathbf{1}_{\mathbf{r}} \mathbf{t}^{\mathbf{3}}+\gamma \mathbf{t}^{\mathbf{5}} \tag{25}\\
v_{g}=2 t^{5}\left(\langle\mathbf{1}, \mathbf{Q}\rangle+e\langle\mathbf{1}, \mathbf{b}\rangle+-x\left\langle\mathbf{Q}^{\mathbf{1}}, \mathbf{b}\right\rangle\right)+x^{2} t^{8}\left\langle\boldsymbol{\alpha}_{\boldsymbol{m}}, \boldsymbol{\alpha} \boldsymbol{\alpha _ { m }}\right\rangle \tag{26}
\end{gather*}
$$

Verification: Compute C

$$
\begin{equation*}
C=S M^{t} D^{t^{2}} R^{t^{3}} V^{2 t^{5}} \mathbf{g}^{\delta(t)} g^{v_{g}} \tag{27}
\end{equation*}
$$

Run norm argument with C with the above computed q

$$
\begin{equation*}
\mathbf{c}=y\left(t, t^{2}, t^{3}, t^{4}, t^{6}, t^{7}\right) \tag{28}
\end{equation*}
$$

2 Proof Outline:

In order to prove computational witness extended emulation, we construct an extractor χ as follows. The extractor χ runs the prover with $n \dot{m}$ different values of $y, m+2$ different values of z, and 7 different values of the challenge t. Additionally it invokes the extractor norm argument for the transcripts. This results in $7(m+2)$ transcripts.

If for any other set of challenges (t, y, q) the extractor can compute a different representation of A or S, then this yields a non-trivial discrete logarithm relation between independent generators h, g, h which contradicts the discrete logarithm assumption.

3 Constraints on variables:

Power of t	co-efficient	constraint
t^{11}	$2 R \gamma(4)$	$\gamma(4)=0$
t^{10}	$2 R \mathbf{l}_{\mathbf{r}}(5)$	$\mathbf{1}_{\mathbf{r}}(5)=0$
t^{9}	$R\left(2 \gamma(3)+\mathbf{1}_{\mathbf{d}}(5)+\mathbf{1}_{\mathbf{r}}(4)\right)$	$\mathbf{1}_{\mathbf{r}}(4)=-2 \gamma(3)-\mathbf{1}_{\mathbf{d}}(5)$
t^{8}	$R\left(2 \gamma(2)+\mathbf{1}_{\mathbf{d}}(4)+\mathbf{1}_{\mathbf{m}}(5)\right)$	$\mathbf{1}_{\mathbf{m}}(5)=-2 \gamma(2)-\mathbf{1}_{\mathbf{d}}(4)$
t^{5}	$2 R\left(\mathbf{1}_{\mathbf{r}}(1)+\mathbf{1}_{\mathbf{d}}(2)+\mathbf{1}_{\mathbf{m}}(3)\right)$	$\mathbf{1}_{\mathbf{r}}(1)=-\mathbf{1}_{\mathbf{d}}(2)-\mathbf{1}_{\mathbf{m}}(3)$
t^{0}	$\sum_{i=0}^{n}\left(q^{i}(\mathbf{s}(i))^{2}\right)-b_{s}$	$b_{s}=\sum_{i=\Omega}^{n}\left(q^{i}(\mathbf{s}(i))^{2}\right)$
$t^{i} i \geq 1 \wedge i \leq 7 \wedge i \neq 5$	21	21

Variables with constraints: $b_{s}, l_{s}, \gamma(4), \mathbf{l}_{\mathbf{r}}(4), \mathbf{l}_{\mathbf{m}}(5), \mathbf{1}_{\mathbf{r}}(1)$

4 Zero knowledge:

The proof transcript consists of $(M, D, R, S, 1, \mathbf{w})$. If we can show that \mathbf{w} and \mathbf{l} are uniformly distributed, we can use the simulator is rather straightforward. We compute $v=|w|_{q}^{2}+\langle l, c\rangle$. We sample all other proof elements randomly

4.0.1 Lemma:

For any point $P=g^{c} \mathbf{g}^{\mathbf{a}} \mathbf{h}^{\mathbf{b}}$, as long as any of c or any of the components $\mathbf{~ o f ~} \mathbf{a}, \mathbf{b}$ are random. Then P is randomly distributed.

- \mathbf{w} is randomly distributed as it contains the \mathbf{s} which is sampled randomly in protocol.
- Informally, the constraint degree is the number of constraints that we have on blinding values. We have overall 10 constraints $\left|\mathbf{1}_{\mathbf{s}}\right|=6+\mathbf{1}_{\mathbf{r}}(1), \mathbf{1}_{\mathbf{r}}(4), \mathbf{1}_{\mathbf{m}}(5), b_{s}$ with 28(6 in 1 and 1 in $b=7 ; 41$ equations) free variables.
- we need to show that 4 points are M, D, R, S are uniformly distributed and 1_{s} is also uniformly distributed.
- By 4.0.1, using values b_{m}, b_{d}, b_{r} we can easily argue that the points M, D, R are uniformly distributed. If $\mathbf{1}_{\mathrm{d}}$ is sampled randomly, then $\mathbf{1}$ would also have a random distribution. Any one of the l_{s} values, say $l_{s}(2)$ depends on linear combination on $l_{d}(0)$ (and other values) which is randomly distributed. Atleast one value of 1_{s}, namely, $l_{s}(2)$ is randomly distributed so according to 4.0.1. S is uniformly distributed.

