
Object Oriented
Programming –
16CS305
Department of Computer Science and Engineering, Dayananda Sagar University, Bengaluru

Module - 03
Inheritance – Types - Derived Class Constructors- Issues in Inheritance –
Virtual base Class – Polymorphism – Virtual functions – Pure virtual functions

Topics

▪ Inheritance Basics

▪ Types of Inheritance

Dept. of CSE, DSU 3

Inheritance
● One of the most powerful features of C++ is the use of inheritance to derive one class from

another.

● Inheritance is the process by which a new class—known as a derived class—is created from
another class, called the base class.

● A derived class automatically has all the member variables and functions that the base class
has, and can have additional member functions and/or additional member variables.

● To inherit from a class, use the : symbol.

● Inheritance in C++ offers the feature of code reusability. We can use the same fragment of
code multiple times. To sum it up, inheritance helps us save our development time, maintain
data in a simplified manner and gives us the provision to make our code extensible.

Dept. of CSE, DSU 4

◆ derived class (child) - the class that inherits from another class

◆ base class (parent) - the class being inherited from

Example of Inheritance

Dept. of CSE, DSU 5

Base and Derived Classes

● A class can be derived from more than one classes, which means it can inherit data and
functions from multiple base classes. To define a derived class, we use a class derivation list
to specify the base class(es). A class derivation list names one or more base classes and has
the form.

● Syntax: class derived-class: access-specifier base-class

● Where access-specifier is one of public, protected, or private, and base-class is the name of
a previously defined class. If the access-specifier is not used, then it is private by default.

● Consider a base class Shape and its derived class Rectangle as follows in example 1−

Dept. of CSE, DSU 6

Dept. of CSE, DSU 7

#include <iostream>

using namespace std;
// Base class
class Shape {
 public:
 void setWidth(int w) {
 width = w;
 }
 void setHeight(int h) {
 height = h;
 }

 protected:
 int width;
 int height;
};
// Derived class
class Rectangle: public Shape {
 public:
 int getArea() {
 return (width * height);
 }
};

int main(void) {
 Rectangle Rect;

 Rect.setWidth(5);
 Rect.setHeight(7);
 // Print the area of the object.
 cout << "Total area: " << Rect.getArea() <<
endl;
 return 0;
}

Output:

Total area: 35

Access Control and Inheritance

● A derived class can access all the non-private members of its base class.

● Thus base-class members that should not be accessible to the member functions of derived
classes should be declared private in the base class.

● It can be summarized as the different access types according to - who can access them in the
following way −

Dept. of CSE, DSU 8

Access Public protected private

Same Class yes yes yes

Derived Class yes yes no

Outside Class yes no no

Access Control and Inheritance

● Here’s a table of all of the access specifier and inheritance types combinations:

Dept. of CSE, DSU 9

Access specifier in
base class

Access specifier
when inherited
publicly

Access specifier
when inherited
privately

Access specifier
when inherited
protectedly

Public Public Private Protected
Protected Protected Private Protected
Private Inaccessible Inaccessible Inaccessible

● A derived class inherits all base class methods with the following exceptions −

− Constructors, destructors and copy constructors of the base class.

− Overloaded operators of the base class.

− The friend functions of the base class.

Dept. of CSE, DSU 10

● WHAT IS INHERITANCE ACCESS CONTROL?

● When creating a derived class from a base class then, you can use different access specifiers
to inherit the data members of the base class.

● The derived class can access all the non-private members of its base class. And the base
class members that are not accessible to the member functions of derived classes should be
declared private in the base class.

● The access specifiers that are used are public, private and protected.

● When deriving a class from a base class, the base class may be inherited through public,
private and protected inheritance.

Dept. of CSE, DSU 11

LET US HAVE A BRIEF DESCRIPTION ABOUT THESE SPECIFIERS:

PUBLIC INHERITANCE:

● When inheriting a class from a public parent class, public members of the parent class
become public members of the child class and protected members of the parent class become
protected members of the child class.

● The parent class private members cannot be accessible directly from a child class but can be
accessible through public and protected members of the parent class.

PRIVATE INHERITANCE:

● When we derive from a private parent class, then public and protected members of the parent
class become private members of the child class.

PROTECTED INHERITANCE:

● When deriving from a protected parent class, then public and protected members of the
parent class become protected members of the child class.

Dept. of CSE, DSU 12

class X
 {
 public:
 int a;

protected:

 int b;

private:

 int c;

};

class Y : public X

{

 // a is public

 // b is protected

 // c is not accessible from Y

};

class Z : protected X

{

 // a is protected

 // b is protected

 // c is not accessible from Z

};

class T : private X // 'private' is default for classes

{

 // a is private

 // b is private

 // c is not accessible from T

};

Dept. of CSE, DSU 13

Types of Inheritance in C++

● There are basically 5 types of inheritance in C++. The classification of inheritance is based on
how the properties of the base class are inherited by the derived class(es).

1) Single Inheritance

■ This type of inheritance in C++ happens when the parent class has only one child class.
In other words, this is only one derived class formed from a base class.

Dept. of CSE, DSU 14

2) Multiple Inheritance

■ This type of inheritance happens when the child class inherits its properties from more than
one base class. In other others, the derived class inherits properties from multiple base
classes.

Types of Inheritance in C++
3) Hierarchical Inheritance

■ When multiple child classes inherit their properties from just a single base class.

Dept. of CSE, DSU 15

5) Hybrid Inheritance

■ This type of inheritance essentially combines more than two forms of inheritance
discussed above. For instance, when a child class inherits from multiple base classes all
of its parent classes and that child class itself serves as a base class for 3 of its derived
classes.

4) Multilevel Inheritance
■ This type of inheritance is the best way to represent the transitive nature of inheritance. In

multilevel inheritance, a derived class inherits all its properties from a class that itself
inherits from another class.

Dept. of CSE, DSU 16

Single Inheritance Example

Dept. of CSE, DSU 17

class Shape
{
protected:
 float width, height;
public:
 void set_data (float a, float b)
 {
 width = a;
 height = b;
 }};
class Rectangle: public Shape
{
public:
 float area ()
 {
 return (width * height);
 }};
class Triangle: public Shape
{
public:
 float area ()
 {
 return (width * height / 2);
 }};

int main ()
{
 Rectangle rect;
 Triangle tri;
 rect.set_data (5,3);
 tri.set_data (2,5);
 cout << rect.area() << endl;
 cout << tri.area() << endl;
 return 0;
}

output :
15
5

Multiple Inheritance Example

Dept. of CSE, DSU 18

#include<iostream>
using namespace std;
class A
{
public:
int A_value;
void A_input()
{
cout<<"Enter the integer value of class A: ";
cin>>A_value;
}};
class B
{
public:
int B_value;
void B_input()
{
cout<<"Enter the integer value of class B: ";
cin>>B_value;
}};

class C : public A, public B //C is a derived class f
rom classes A and B
{
public:
void difference()
{
cout<<"The difference between the two values is: "
<< A_value - B_value<<endl;
}};
int main()
{
C c; // c is an Object of derived class C
c.A_input();
c.B_input();
c.difference();
return 0;
}

Output:
Enter the integer value of class A: 20
Enter the integer value of class B: 8
The difference between the two values is:
12

Hierarchical Inheritance Example

Dept. of CSE, DSU 19

#include <iostream>
using namespace std;
class A
{
public:
int x, y;
void A_input()
{
cout<<"Enter two values of class A: ";
cin>>x>>y;
}
};
class B : public A // B is derived from A
{
public:
void product()
{
cout<<"The Product of the two values is: "<< x * y<<endl;
}
};

class C : public A //C is derived from A
{
public:
void division()
{
cout<<"The Division of the two values is: "<< x / y<<endl;
}
};
int main()
{
B b; // Object b of derived class B
C c; // Object c of derived class C
b.A_input();
b.product();
c.A_input();
c.division();
return 0;
}

Output:
Enter two values of class A: 12 2
The Product of the two values is: 24
Enter two values of class A: 12 2
The Division of the two values is: 6

Multilevel Inheritance Example

Dept. of CSE, DSU 20

#include <iostream>
using namespace std;
class Base
{
public:
int base_value;
void Base_input()
{
cout<<"Enter the integer value of base class: ";
cin>>base_value;
}};
class Derived1 : public Base // Derived class of base class
{
public:
int derived1_value;
void Derived1_input()
{
cout<<"Enter the integer value of first derived class: ";
cin>>derived1_value;
}};

class Derived2 : public Derived1 // Derived
class of Derived1 class
{// private by deafult
int derived2_value;
public:
void Derived2_input()
{cout<<"Enter the integer value of
the second derived class: ";
cin>>derived2_value;
}
void sum()
{cout << "The sum of the three intger values is: " <<
base_value + derived1_value + derived2_value<<endl;
}};

Contd.. in next slide

int main()
{Derived2 d2; // Object d2 of second derived class
d2.Base_input();
d2.Derived1_input();
d2.Derived2_input();
d2.sum();
return 0;
}

Output:
Enter the integer value of base class: 5
Enter the integer value of first derived class: 6
Enter the integer value of the second derived class:
7
The sum of the three intger values is: 18

Hybrid Inheritance Example

Dept. of CSE, DSU 22

#include <iostream>
using namespace std;
class A
{

public:
int A_value;

};
class B : public A
{

public:
B() // Use of a constructor to initialize A_value

{
A_value = 20;
}};
class C
{

public:
int C_value;
C() //Use of a constructor to initialize C_value
{
C_value = 40;
}

};

class D : public B, public C // D is derived from class B and
class C
{
public:
void product()
{
cout<<"The product of the two integer values is: " <<
A_value * C_value<<endl;
}
};
int main()
{
D d; // Object d of derived class D
d.product();
return 0;
}

Output:
The product of the two integer values is: 800

Derived class
constructor

• If base class constructor does not have
parameterised, then the derived class need not
have constructor.

• If any one of the base class contains a
constructor with one or more arguments then it
is mandatory for the derived class to have a
constructor and pass the arguments to the base
class constructor because while applying
inheritance, objects of the derived class are
usually created.

• When both the derived and base classes contain
constructors, the base constructor is executed
first and then the constructor in the derived
class are executed.

▪ There are two major questions that arise relative to constructors and
destructors when inheritance is involved.

▪ First, when are base-class and derived-class constructors and destructors
called?

▪ Second, how can parameters be passed to base-class constructors?

Dept. of CSE, DSU 24

class base {

public:

base() {

cout<<“constructing base”<<endl;

}

base(int x,int y)

{

cout<<x<<y;

}

~base() {

cout<<“destructing base”<<endl;

 }

};

class derived: public base {

public:

 derived() {

 cout<<“constructing derived”;

}

~derived() {

 cout<<“destructing derived”;

}

};

int main() {

derived d;

return 0;

}

Dept. of CSE, DSU 25

Output:
constructing base
constructing derived
destructing derived
destructing base

▪ In the previous example, When an object of a derived class is created,
the base class constructor will be called first, followed by the derived
class constructor.

▪When a derived object is destroyed, its destructor is called first, followed
by the base class' destructor.

▪Constructors are executed in their order of derivation. Destructors are
executed in reverse order of derivation.

Dept. of CSE, DSU 26

▪ In multiple inheritance, the base classes are constructed in the order in which they
appear in the declaration of the derived class.

▪ Ex: class A : public B, public C

 {

 }

Order of execution is B() C() and A()

Dept. of CSE, DSU 27

▪ In multilevel inheritance, the constructors will be executed in the order of their
inheritance.

class A class C: public B {

{ //body of class c }

 //body of class A

} Output :

class B:public A {

//body of class B

}

Dept. of CSE, DSU 28

A()
B()
C()

Passing Parameters to Base class Constructors :

• The derived class is responsible for supplying initial values to its base class.

• The constructor of the derived class receives the entire list of values as its arguments
and passes them on to the base constructors in the order in which they are declared in
the derived class.

• The base class constructors are called and executed before executing the statements in
the body of the derived constructors.

• General form of defining a derived constructor :

Derived constructor(arg-list):base1(arg-list),base2(arg-list)... baseN(arg-list))

{

}

Dept. of CSE, DSU 29

▪ base1 through baseN are the names of the base classes inherited by the
derived class. Notice that a colon separates the derived class' constructor
declaration from the base-class specifications, and that the base-class
specifications are separated from each other by commas, in the case of
multiple base classes.

▪ Ex: D(int a1,int a2,float b1,float b2,int d1): A(a1,a2),B(b1,b2)

 {

 d=d1;

 }

▪ In the main function, class D object is invoked as

 D obj(5,12,2.5,7.54,30)

 Here 5->a1,12->a2,2.5->b1,7.54-b2,30-d1

Dept. of CSE, DSU 30

▪ Derived's constructor is declared as taking two
parameters, x and y. However,

▪ Derived() uses only x.

▪ y is passed along to base(). In general, the derived
class' constructor

▪ It must declare both the parameter(s) that it
requires as well as any required by the base class

▪ As the example illustrates, any parameters
required by the base class are passed to it in the
base class' argument list specified after the colon.

Dept. of CSE, DSU 31

#include <iostream>
using namespace std;
class base {
protected:
int i;
public:
base(int x) {
 i=x; cout << "Constructing base\n"; }
~base() {
cout << "Destructing base\n"; }
};
class derived: public base {
int j;
public:
derived(int x, int y): base(y)
{
j=x;
cout << "Constructing derived\n";
}
~derived() {
 cout << "Destructing derived\n"; }
void show() {
cout << i << " " << j << "\n"; }
};

Dept. of CSE, DSU 32

int main()

{

derived ob(3, 4);

ob.show(); // displays 4 3

return 0;

}

Lets look at an other example that uses multiple base classes

Dept. of CSE, DSU 33

class base1 {
protected:
int i;
public:
base1(int x) {
i=x;
cout << "Constructing base1\n"; }
~base1()
 {
cout << "Destructing base1\n"; }
};
class base2
{
protected:
int k;
public:
base2(int x) {
 k=x;
cout << "Constructing base2\n";
 }
~base2()
{
cout << "Destructing base2`\n"; }
};

Dept. of CSE, DSU 34

class derived: public base1, public base2 {

int j;

public:

derived(int x, int y, int z): base1(y), base2(z)

{ j=x;

cout << "Constructing derived\n";

}

~derived() {

cout << "Destructing derived\n"; }

void show() {

 cout << i << " " << j << " " << k << "\n"; }

};

int main()

{

derived ob(3, 4, 5);

ob.show(); // displays 4 3 5

return 0;

}

Dept. of CSE, DSU 35

▪ Output:

Dept. of CSE, DSU 36

Constructing base1
Constructing base2

Constructing derived
4 3 5

Destructing derived
Destructing base2
Destructing base1

▪ In this program, the derived class' constructor takes no arguments,
but base1() and base2() do:

Dept. of CSE, DSU 37

class base1 {
protected:
int i;
public:
base1(int x) {
 i=x;
cout << "Constructing base1\n"; }
};
class base2 {
protected:
int k;
public:
base2(int x) {
k=x;
cout << "Constructing base2\n"; }
~base2() { cout << "Destructing base2\n"; }
};
class derived: public base1, public base2 {
public:
derived(int x, int y): base1(x), base2(y)
{ cout << "Constructing derived\n"; }
void show() {
 cout << i << " " << k << "\n"; }
};

Dept. of CSE, DSU 38

int main()

{

derived ob(3, 4);

ob.show(); // displays 3 4

return 0;

}

Dept. of CSE, DSU 39

▪ A derived class' constructor is free to make use of any and all parameters that it is declared as
taking, even if one or more are passed along to a base class.

▪ Put differently, passing an argument along to a base class does not preclude its use by the
derived class as well. For example, this fragment is perfectly valid:

class derived: public base {

int j;

public:

derived(int x, int y): base(x, y)

{

j = x*y;

cout << "Constructing derived\n";

}

Dept. of CSE, DSU 40

▪ Why is Base class Constructor called inside Derived class?

▪ Constructors have a special job of initializing the object properly. A Derived class
constructor has access only to its own class members, but a Derived class object also
have inherited property of Base class, and only base class constructor can properly
initialize base class members. Hence all the constructors are called, else object
wouldn't be constructed properly.

Dept. of CSE, DSU 41

ISSUES in INHERITENCE:

Ambiguity in Multiple Inheritance

The most obvious problem with multiple inheritance occurs during function overriding.

Suppose, two base classes have a same function which is not overridden in derived
class.

If you try to call the function using the object of the derived class, compiler shows error.
It's because compiler doesn't know which function to call. For example,

Dept. of CSE, DSU 42

class base1

{

 public:

 void someFunction()

 { }

};

class base2

{

 void someFunction()

 { }

};

class derived : public base1, public base2

{

};

int main()

{

 derived obj;

 obj.someFunction() // Error!

}

Dept. of CSE, DSU 43

This problem can be solved using scope resolution function to specify which function to
class either base1or base2

int main()

{

 obj.base1::someFunction(); // Function of base1 class is called

 obj.base2::someFunction(); // Function of base2 class is called.

}

Dept. of CSE, DSU 44

ISSUES in INHERITENCE:

The diamond problem
The diamond problem occurs when two super classes of a
class have a common base class. For example, in the following
diagram, the TA class gets two copies of all attributes of
Person class, this causes ambiguities.

Dept. of CSE, DSU 45

For example, consider the following program.

▪ #include<iostream>

▪ using namespace std;

▪ class Person {

▪ // Data members of person

▪ public:

▪ Person(int x) { cout << "Person::Person(int) called" << endl; }

▪ };

▪

▪ class Faculty : public Person {

▪ // data members of Faculty

▪ public:

▪ Faculty(int x):Person(x) {

▪ cout<<"Faculty::Faculty(int) called"<< endl;

▪ }

▪ };

▪

▪ class Student : public Person {

▪ // data members of Student

▪ public:

▪ Student(int x):Person(x) {

▪ cout<<"Student::Student(int) called"<< endl;

▪ }

▪ };

▪

▪ class TA : public Faculty, public Student {

▪ public:

▪ TA(int x):Student(x), Faculty(x) {

▪ cout<<"TA::TA(int) called"<< endl;

▪ }

▪ };

▪

▪ int main() {

▪ TA ta1(30);

▪ }

46Dept. of CSE, DSU

Person::Person(int) called
Faculty::Faculty(int) called
Person::Person(int) called
Student::Student(int) called
TA::TA(int) called
In the above program, constructor of ‘Person’ is called two times.
Destructor of ‘Person’ will also be called two times when object ‘ta1’ is destructed.
So object ‘ta1’ has two copies of all members of ‘Person’, this causes ambiguities.
The solution to this problem is ‘virtual’ keyword. We make the classes ‘Faculty’ and
‘Student’ as virtual base classes to avoid two copies of ‘Person’ in ‘TA’ class.

For example, consider the following program.

47Dept. of CSE, DSU

#include<iostream>

using namespace std;

class Person {

public:

 Person(int x) { cout << "Person::Person(int) called" << endl; }

 Person() { cout << "Person::Person() called" << endl; }

};

class Faculty : virtual public Person {

public:

 Faculty(int x):Person(x) {

 cout<<"Faculty::Faculty(int) called"<< endl;

 }

};

class Student : virtual public Person {

public:

 Student(int x):Person(x) {

 cout<<"Student::Student(int) called"<< endl;

 }

};

class TA : public Faculty, public Student {

public:

 TA(int x):Student(x), Faculty(x) {

 cout<<"TA::TA(int) called"<< endl;

 }

};

int main() {

 TA ta1(30);

}

48Dept. of CSE, DSU

Output:

Person::Person() called
Faculty::Faculty(int) called
Student::Student(int) called
TA::TA(int) called
In the above program, constructor of ‘Person’ is called once.
One important thing to note in the above output is, the default constructor of
‘Person’ is called.
When we use ‘virtual’ keyword, the default constructor of grandparent class is
called by default even if the parent classes explicitly call parameterized
constructor.

49Dept. of CSE, DSU

Virtual base class in C++

Virtual base classes are used in virtual inheritance in a way of
preventing multiple “instances” of a given class appearing in an
inheritance hierarchy when using multiple inheritances.

Need for Virtual Base Classes:

Consider the situation where we have one class A .This class is A
is inherited by two other classes B and C. Both these class are
inherited into another in a new class D as shown in figure below.

50Dept. of CSE, DSU

51

• As we can see from the figure that
data members/function of class A are
inherited twice to class D.

• One through class B and second
through class C.

• When any data / function member of
class A is accessed by an object of
class D, ambiguity arises as to which
data/function member would be
called?

• One inherited through B or the other
inherited through C. This confuses
compiler and it displays error.

Dept. of CSE, DSU

Topics Covered

▪ Issues in Inheritance

▪ Virtual Base Class

Dept. of CSE, DSU 52

Issues in Inheritance:
The diamond problem

The diamond problem occurs
when two super classes of a
class have a common base
class. For example, in the
following diagram, the TA
class gets two copies of all
attributes of Person class, this
causes ambiguities.

Dept. of CSE, DSU 53

#include<iostream>

using namespace std;

class Person {

 // Data members of person

public:

 Person(int x) { cout << "Person::Person(int) called" <<
endl; }

};

 class Faculty : public Person {

 // data members of Faculty

public:

 Faculty(int x):Person(x) {

 cout<<"Faculty::Faculty(int) called"<< endl;

 }

};

class Student : public Person {

 public:

 Student(int x):Person(x) {

 cout<<"Student::Student(int) called"<< endl;

 }

};

class TA : public Faculty, public Student {

public:

 TA(int x):Student(x), Faculty(x) {

 cout<<"TA::TA(int) called"<< endl;

 }

};

int main() {

 TA ta1(30);

}

Dept. of CSE, DSU 54

Output:
Person::Person(int) called

Faculty::Faculty(int) called
Person::Person(int) called
Student::Student(int) called TA::TA(int
) called

Dept. of CSE, DSU 55

▪ In the above program, constructor of ‘Person’ is called two
times. Destructor of ‘Person’ will also be called two times
when object ‘ta1’ is destructed. So object ‘ta1’ has two copies
of all members of ‘Person’, this causes ambiguities.

Dept. of CSE, DSU 56

Virtual Base Class

▪ The solution to the problem in previous example is ‘virtual’
keyword. We make the classes ‘Faculty’ and ‘Student’ as
virtual base classes to avoid two copies of ‘Person’ in ‘TA’
class.

Dept. of CSE, DSU 57

#include<iostream>

using namespace std;

class Person {

public:

 Person(int x)
{ cout << "Person::Person(int) called" << endl; }

 Person()
 { cout << "Person::Person() called" << endl; }

};

class Faculty : virtual public Person {

public:

 Faculty(int x):Person(x)
 {
 cout<<"Faculty::Faculty(int) called"<< endl;
}

};

class Student : virtual public Person {

public:

 Student(int x):Person(x) {

 cout<<"Student::Student(int) called"<< endl;

 }

};

class TA : public Faculty, public Student {

public:

 TA(int x):Student(x), Faculty(x) {

 cout<<"TA::TA(int) called"<< endl;

 }

};

int main() {

 TA ta1(30);

}

Dept. of CSE, DSU 58

Output
Person::Person() called

Faculty::Faculty(int) called
Student::Student(int) called
TA::TA(int) called

Dept. of CSE, DSU 59

How to call the
parameterized constructor
of the ‘Person’ class?

#include<iostream>

using namespace std;

class Person {

public:

 Person(int x) { cout << "Person::Person(int) called" << endl; }

 Person() { cout << "Person::Person() called" << endl; }

};

class Faculty : virtual public Person {

public:

 Faculty(int x):Person(x) {

 cout<<"Faculty::Faculty(int) called"<< endl;

 }

}; >>>>>Contd…

The constructor has to be
called in ‘TA’ class.

Dept. of CSE, DSU 60

Note:
In general, it is not allowed to
call the grandparent’s
constructor directly, it has to be
called through parent class. It
is allowed only when ‘virtual’
keyword is used.

class Student : virtual public Person {

public:

 Student(int x):Person(x) {

 cout<<"Student::Student(int) called"<< endl;

 }

};

class TA : public Faculty, public Student {

public:

 TA(int x):Student(x), Faculty(x), Person(x) {

 cout<<"TA::TA(int) called"<< endl;

 }

};

int main() {

 TA ta1(30);

}

Output:

Person::Person(int) called
Faculty::Faculty(int) called
Student::Student(int) called
TA::TA(int) called

Dept. of CSE, DSU 61

Exercise (Predict the Output)
#include <iostream>

using namespace std;

class A {

public:

void show()

{

cout << "Hello form A \n";

}

};

class B : public A {

};

class C : public A {

};

class D : public B, public C {

};

int main()

{

D object;

object.show();

}

Dept. of CSE, DSU 62

Output:
error: request for member 'show' is
ambiguous object.show();

Solution:To resolve this ambiguity when class A is inherited in both class B and class C, it
is declared as virtual base class by placing a keyword virtual as

#include <iostream>

using namespace std;

class A {

public:

int a;

A() // constructor

{

a = 10;

}

};

class B : public virtual A
{

};

class C : public virtual A {

};

class D : public B, public C {

};

int main()

{

D object; // object creation of class d

cout << "a = " << object.a << endl;

return 0;

}

Dept. of CSE, DSU 63

Output:
a = 10

Topics Covered

▪ Polymorphism

Dept. of CSE, DSU 64

Polymorphism
● Polymorphism is crucial feature of Object Oriented Programming.

● The process of representing one form in multiple forms is known as Polymorphism.
Here one form represent original form or original method always resides in base class
and multiple forms represents overridden method which resides in derived classes.

● Polymorphism is derived from 2 Greek words: poly and morphs. The word "poly" means
many and morphs means forms.

● Polymorphism is the ability to create a variable, a function or an object that has more
than one form.

Dept. of CSE, DSU 65

● For example: 1

The + (plus) operator in C++:

4+5 <-- Integer addition

3.14 + 2.0 <-- Floating point addition

s1 + "bar" <-- String concatenation!

2. Real time example of Polymorphism

Suppose if you are in class room that time you behave like a student,
when you are in market at that time you behave like a customer, when
you at your home at that time you behave like a son or daughter, Here
one person have different-different behaviors.

Dept. of CSE, DSU 67

Compile time polymorphism
● In compile time polymorphism, compiler is able to select the appropriate function a

particular call at the compile time.

Example:

#include<iostream> using namespace std;

void sayHi();

int main()

{ sayHi(); // the compiler binds any invocation of sayHi()
// to sayHi()’s entry point.

} void sayHi()
{ cout << ‘‘Hello, World!\n’’;

 }

Dept. of CSE, DSU 68

In C, only compile-time binding is provided.

Output:
Hello, World!

#include <iostream>
using namespace std;
class Add {
public:

 int sum(int num1, int num2){
 return num1+num2;
 }

 int sum(int num1, int num2, int num3){
 return num1+num2+num3;
 }
};
int main() {
 Add obj;
 //This will call the first function
 cout<<"Output: "<<obj.sum(10, 20)<<endl;
 //This will call the second function
 cout<<"Output: "<<obj.sum(11, 22, 33);
 return 0;
}

Output:-

Output: 30

Output: 66

2. Compile time Polymorphism Example for function overloading

Run time polymorphism

•In run time polymorphism, an
appropriate member function is
selected while the program is
running.

•C++ supports run-time binding
through virtual functions.

•Polymorphism is thus implemented
by virtual functions and run-time
binding mechanism in C++. A class is
called polymorphic if it contains
virtual functions.

•Function overriding is an example of
Runtime polymorphism.

•Function Overriding: When child
class declares a method, which is
already present in the parent class
then this is called function overriding,
here child class overrides the parent
class.

•In case of function overriding we
have two definitions of the same
function, one is parent class and one
in child class. The call to the function
is determined at runtime to decide
which definition of the function is to
be called, that is the reason it is
called runtime polymorphism.

#include <iostream>
using namespace std;
class Animal {
 public:
void eat(){
cout<<"Eating...";
 }
};
class Dog: public Animal
{
 public:
 void eat()
 { cout<<"Eating bread...";
 }
};
int main(void) {
 Dog d = Dog();
 d.eat();
 return 0;
}

C++ Runtime Polymorphism Example:
1

Output:
Eating bread...

2. Example of Runtime Polymorphism
#include <iostream>
using namespace std;
class A {
public:
 void disp(){
 cout<<"Super Class Function"<<endl;
 }
};
class B: public A{
public:
 void disp(){
 cout<<"Sub Class Function";
 }
};
int main() {
 //Parent class object
 A obj;
 obj.disp();
 //Child class object
 B obj2;
 obj2.disp();
 return 0;
}

Output:

Super Class Function
Sub Class Function

Differences b/w compile time and run time polymorphism

Compile time polymorphism Run time polymorphism

The function to be invoked is known at the compile time. The function to be invoked is known at the run time.

It is also known as overloading, early binding and static binding. It is also known as overriding, Dynamic binding and late
binding.

Overloading is a compile time polymorphism where more than one
method is having the same name but with the different number of
parameters or the type of the parameters.

Overriding is a run time polymorphism where more than one
method is having the same name, number of parameters and
the type of the parameters.

It is achieved by function overloading and operator overloading. It is achieved by virtual functions and pointers.

It provides fast execution as it is known at the compile time. It provides slow execution as it is known at the run time.

It is less flexible as mainly all the things execute at the compile
time.

It is more flexible as all the things execute at the run time.

Dept. of CSE, DSU 74

BENEFITS OF POLYMORPHISM
• Simplicity: This makes your code easier for you to write and easier for others to

understand.

• Extensibility: Polymorphism design and implements system that are more

extensible.

Dept. of CSE, DSU

Topics to be Covered.
• Virtual Functions
• Pure Virtual Functions

7
5

Dept. of CSE, DSU

Virtual Functions

Virtual function: – Polymorphism in biology means
ability of an organism to assume a variety of
forms.

•In C++, it indicates the form of a member function that can
be changed at run time. Such member function are called
virtual member function and the corresponding class is
called polymorphic class.

•A virtual function is a member function that is declared
within a base class and redefined by a derived class.

•To create a virtual function, precede the function's
declaration in the base class with the keyword virtual.

•When a class containing a virtual function is inherited, the
derived class redefines the virtual function to fit its own
needs.

7
6

Dept. of CSE, DSU

Virtual Functions

•Virtual functions implement the "one interface, multiple
methods" philosophy that underlies polymorphism.

•It is used to tell the compiler to perform dynamic linkage or
late binding on the function

•The object of the polymorphic class, addressed by pointer,
change at run time and respond differently for the same
message. Such a mechanism requires postponement of
binding of a function call to the member function until run
time.

•When the function is made virtual, C++ determines which
function is to be invoked at the runtime based on the type of
the object pointed by the base class pointer.

7
7

•Rules for Virtual Function in C++:

•They are always defined in a base class and overridden in derived class but it is not mandatory to
override in the derived class.

•The virtual functions must be declared in the public section of the class.

•They cannot be static or friend function also cannot be the virtual function of another class.

•The virtual functions should be accessed using a pointer to achieve run time polymorphism.

7
8

Dept. of CSE, DSU

•The virtual functions should be accessed using a pointer to achieve run time polymorphism.

When a base pointer points to a derived object that contains a virtual function, C++ determines which
version of that function to call based upon the type of object pointed to by the pointer. And this
determination is made at run time.

7
9

Dept. of CSE, DSU

80

 #include <iostream>
 using namespace std;
 class base

{
 public:

virtual void vfunc()

{

cout << "This is base's
vfunc().\n";

} };
 class derived1 : public base {
 public:

void vfunc() {
cout << "This is derived1's

vfunc().\n";

} };

class derived2 : public base {
 public:

void vfunc() {
std::cout << "This is derived2's
vfunc().\n";

} };

 int main() {
 base *p, b;
 derived1 d1;
 derived2 d2;

// point to base
p = &b;
p->vfunc(); // access base's

 //vfunc()

// point to derived1
p = &d1;

// access derived1's
vfunc()
p->vfunc();

// point to derived2
p = &d2;
p->vfunc(); // access
derived2's

 //vfunc()

return 0; }

// Use a base class reference parameter.

void f(base &r)

 {

r.vfunc();

}

int main() {
 base b;
 derived1 d1;
 derived2 d2;
 f(b); // pass a base object to f()
 f(d1); // pass a derived1 object to
f()
 f(d2); // pass a derived2 object to
f()

return 0; }

OR

Calling Virtual func through
a base class pointer Calling Virtual function through

 Base class reference

8
1

This is base's vfunc().
This is derived1's vfunc().
This is derived2's vfunc().

Output:

Dept. of CSE, DSU

Note :virtual function must match exactly the prototype specified in the base class.

(This differs from overloading a normal function, in which return types and the number and type of
parameters may differ.)

Although you can call a virtual function in the "normal" manner by using an object's name and the dot
operator, it is only when access is through a base-class pointer (or reference) that run-time
polymorphism is achieved.

For example, assuming the preceding example, this is syntactically valid:
d2.vfunc(); // calls derived2's vfunc()

Although calling a virtual function in this manner is not wrong, it simply does not take advantage of the
virtual nature of vfunc().

Note: Term overriding is used to describe virtual function redefinition by a derived class.

82Dept. of CSE, DSU

The Virtual Attribute Is Inherited (Example)

 #include <iostream>
 using namespace std;

class base {

public:

virtual void vfunc() {

 std::cout << "This is base's vfunc().\n";

}};

class derived1 : public base {

public:

void vfunc() {

 std::cout << "This is derived1's vfunc().\n";

} };

83Dept. of CSE, DSU

84

/* derived2 inherits virtual function
vfunc() from derived1. */

class derived2 : public derived1 {

public:

 // vfunc() is still ////virtual

 void vfunc() {

std::cout << "This is derived2's
vfunc().\n";

 }};

 int main() {

 base *p, b;

 derived1 d1;

 derived2 d2;

// point to base

p = &b;

p->vfunc(); // access base's vfunc()

// point to derived1

p = &d1;p->vfunc(); // access derived1's vfunc()

// point to derived2

p = &d2;

p->vfunc();

return 0;

}

85

Output:This is base's vfunc().

 This is derived1's vfunc().

 This is derived2's vfunc().

Dept. of CSE, DSU

Virtual Functions Are Hierarchical -1

86

#include <iostream>
 using namespace std;
 class base {
 public:

virtual void vfunc() {
std::cout << "This is base's
vfunc().\n";

} };
 class derived1 : public
base {
 public:

void vfunc() {
std::cout << "This is
derived1's vfunc().\n";

} };

class derived2 :
public base
{
 public:
 /* vfunc() not
overridden by
derived2, base's
is used*/
 };

int main() {
 base *p, b;
 derived1 d1;
 derived2 d2;

// point to base
p = &b;
p->vfunc(); // access

 //base’s vfunc()

// point to derived1
p = &d1;
p->vfunc(); // access
derived1’s

 //vfunc()

// point to derived2
p = &d2;
p->vfunc(); // use base's

 //vfunc()

return 0; }

Dept. of CSE, DSU

This is base's vfunc().
This is derived1's vfunc().
This is base's vfunc().

Output

87

Virtual Functions Are Hierarchical -2

8
8

#include <iostream>
 using namespace std;
 class base {
 public:

virtual void vfunc() {
std::cout << "This is base's
vfunc().\n";

} };
 class derived1 : public
base {
 public:

void vfunc() {
std::cout << "This is
derived1's vfunc().\n";

} };

class derived2 :
public derived1
{
 public:
 /* vfunc() not
overridden by
derived2, base's
is used*/
 };

int main() {
 base *p, b;
 derived1 d1;
 derived2 d2;

// point to base
p = &b;
p->vfunc(); // access

 //base’s vfunc()

// point to derived1
p = &d1;
p->vfunc(); // access
derived1’s

 //vfunc()

// point to derived2
p = &d2;
p->vfunc(); // use derived1

 //vfunc()

return 0; }

Note: This means that when a derived class fails to override a virtual
function, the first redefinition found in reverse order of derivation is used.

Dept. of CSE, DSU

Output:This is base's vfunc().

 This is derived1's vfunc().

 This is derived1’s vfunc().

89

Pure Virtual Function
• a base class may not be able to define an object sufficiently to allow a base-class virtual function to be created.

• In some situations you will want to ensure that all derived classes override a virtual function.

 To handle the above two cases, C++ supports the pure virtual function.
• A pure virtual function is a virtual function that has no definition within the base class.

• When a virtual function is made pure, any derived class must provide its own definition. If the derived class fails to
override the pure virtual function, a compile-time error will result.

• To declare a pure virtual function, use this general form:

 virtual type func-name(parameter-list) = 0;

9
0

Dept. of CSE, DSU

9
1

#include <iostream>
using namespace std;
class number {
protected:
 int val;
public:
 void setval(int i)
 { val = i; }
// show() is a pure
//virtual function
 virtual void show() = 0;
};

class hextype : public number {
public:
 void show() {
 std::cout << hex << val << "\n";
 }};

class dectype : public number {
 public:
 void show() {
 cout << val << "\n";
 } };

Pure Virtual Functions Example :

class octtype : public number {
public:
 void show() {
 std::cout << oct<< val << "\n";
} };

Dept. of CSE, DSU

9
2

int main() {
 dectype d;
 hextype h;
 octtype o;
d.setval(20);
d.show(); // displays 20 -
decimal
h.setval(20);
h.show(); // displays 14 -
hexadecimal
o.setval(20);
o.show(); // displays 24 -
octal
return 0;

}

Output:
20
14
24

Dept. of CSE, DSU

Abstract Classes

• A class that contains at least one pure virtual function is said to be
abstract.

• Because an abstract class contains one or more functions for
which there is no definition (that is,
a pure virtual function), no objects of an abstract class may be
created.

• A subclass of an abstract class is also abstract if it does not
provide implementations for all the pure virtual functions in the
superclass

• A class that has all its member functions pure virtual is called an
interface

9
3

Dept. of CSE, DSU

Abstract Classes

• Sometimes implementation of all function cannot be provided in a
base class because we don’t know the implementation. Such a
class is called abstract class.

• For example, let Shape be a base class. We cannot provide
implementation of function draw() in Shape, but we know every
derived class must have implementation of draw(). Similarly an
Animal class doesn’t have implementation of move() (assuming
that all animals move), but all animals must know how to move.

• We cannot create objects of abstract classes.
• A pure virtual function (or abstract function) in C++ is a virtual
function for which we don’t have implementation, we only declare
it. A pure virtual function is declared by assigning 0 in declaration.
See the following example.

• // An abstract class
class Test
{
 // Data members of class
public:
 // Pure Virtual Function
 virtual void show() = 0;

 /* Other members */
};

9
4

Dept. of CSE, DSU

Abstract Classes

• A complete example:

• A pure virtual function is implemented by classes which are derived from a Abstract class. Following is a simple
example to demonstrate the same.

• #include<iostream>

• using namespace std;

•

• class Base

• {

• int x;

• public:

• virtual void fun() = 0;

• int getX() { return x; }

• };

•

• // This class inherits from Base and implements fun()

• class Derived: public Base

• {

• int y;

• public:

• void fun() { cout << "fun() called"; }

• };

•

• int main(void)

• {

• Derived d;

• d.fun();

• return 0;

• }

9
5

Dept. of CSE, DSU

Output:

fun() called

Abstract Classes

Some Interesting Facts:
1) A class is abstract if it has at least one pure virtual function.
• In the following example, Test is an abstract class because it has a
pure virtual function show().

• // pure virtual functions make a class abstract
• #include<iostream>
• using namespace std;
•
• class Test
• {
• int x;
• public:
• virtual void show() = 0;
• int getX() { return x; }
• };
•
• int main(void)
• {
• Test t;
• return 0;
• }

9
6

Dept. of CSE, DSU

Output:

Compiler Error: cannot declare variable 't' to
be of abstract type 'Test' because the
following virtual functions are pure
within 'Test': note: virtual void Test::show()

Abstract Classes

Some Interesting Facts:
2) We can have pointers and references of abstract class type.
For example the following program works fine.
#include<iostream>
using namespace std;

class Base
{
public:
 virtual void show() = 0;
};

class Derived: public Base
{
public:
 void show() { cout << "In Derived \n"; }
};
int main(void)
{
 Base *bp = new Derived();
 bp->show();
 return 0;
}

97Dept. of CSE, DSU

Output:

In Derived

Abstract Classes

Some Interesting Facts:
3) If we do not override the pure virtual function in derived
class, then derived class also becomes abstract class.
The following example demonstrates the same.
#include<iostream>
using namespace std;
class Base
{
public:
 virtual void show() = 0;
};

class Derived : public Base { };

int main(void)
{
 Derived d;
 return 0;
}

98Dept. of CSE, DSU

Compiler Error: cannot declare variable 'd' to
be of abstract type 'Derived' because the
following virtual functions are pure within
'Derived': virtual void Base::show()

Abstract Classes
Some Interesting Facts:
4) An abstract class can have constructors.
For example, the following program compiles and runs fine..
#include<iostream>

using namespace std;

// An abstract class with constructor

class Base

{

protected:

 int x;

public:

 virtual void fun() = 0;

 Base(int i) { x = i; }

};

class Derived: public Base

{

 int y;

public:

 Derived(int i, int j):Base(i) { y = j; }

 void fun() { cout << "x = " << x << ", y = " << y; }

};

int main(void)

{

 Derived d(4, 5);

 d.fun();

 return 0;

}

99Dept. of CSE, DSU

Output:

x = 4, y = 5

Difference between Virtual function and Pure virtual function in C++

1. Virtual Function in C++
A virtual function a member function which is declared within a base
class and is re-defined(Overriden) by a derived class. When you
refer to a derived class object using a pointer or a reference to the
base class, you can call a virtual function for that object and execute
the derived class’s version of the function.
2. Pure Virtual Functions in C++
A pure virtual function (or abstract function) in C++ is a virtual
function for which we don’t have an implementation, we only declare
it. A pure virtual function is declared by assigning 0 in the
declaration.
3. Similarities between virtual function and pure virtual function

1. These are the concepts of Run-time polymorphism.
2. Prototype i.e. Declaration of both the functions remains the same

throughout the program.
3. These functions can’t be global or static.

100Dept. of CSE, DSU

Difference between Virtual function and Pure virtual function in C++

101Dept. of CSE, DSU

VIRTUAL FUNCTION PURE VIRTUAL FUNCTION

A virtual function is a member function of base class which can be
redefined by derived class.

A pure virtual function is a member function of base class whose only
declaration is provided in base class and should be defined in derived
class otherwise derived class also becomes abstract.

Classes having virtual functions are not abstract. Base class containing pure virtual function becomes abstract.

Syntax:

virtual<func_type><func_name>()
{
 // code
}

Syntax:

virtual<func_type><func_name>()
 = 0;

Definition is given in base class. No definition is given in base class.

Base class having virtual function can be instantiated i.e. its object can
be made.

Base class having pure virtual function becomes abstract i.e. it cannot
be instantiated.

If derived class do not redefine virtual function of base class, then it does
not affect compilation.

If derived class do not redefine virtual function of base class, then no
compilation error but derived class also becomes abstract just like the
base class.

All derived class may or may not redefine virtual function of base class. All derived class must redefine pure virtual function of base class
otherwise derived class also becomes abstract just like base class.

Early Binding Versus Late Binding
early binding

• Early binding refers to events that
occur at compile time.

• In essence, early binding occurs when all information
needed to call a function is known at compile time.

• an object and a function call are bound during
compilation.)

• The main advantage to early binding is efficiency.
Because all information necessary to call a function
is determined at compile time, these types of function
calls are very fast.

• Examples of early binding include normal function
calls (including standard library functions),
overloaded function calls, and overloaded operators

102

late binding.
• it relates to C++, late binding refers to function calls that

are not resolved until run time.
• Virtual functions are used to achieve late binding.
• As you know, when access is via a base pointer or

reference, the virtual function actually called is
determined by the type of object pointed to by the
pointer.

• The main advantage of late binding is flexibility.
• Late binding allows you to create programs that can

respond to events occurring while the program executes
without having to create a large amount of "contingency
code."

Dept. of CSE, DSU

Practicle example of”One Interface and Multiple Method”

103

 // Virtual function practical example.
#include <iostream>
using namespace std;
 class convert {
 protected:
 double val1; // initial value
 double val2; // converted value
 public:
 convert(double i) {
 val1 = i;
 }
 double getconv() { return val2; }
 double getinit() { return val1; }
 virtual void compute() = 0;
 };

// approach : use virtual functions,
//abstract classes, and run-time polymorphism.

104

// Liters to gallons.
 class l_to_g : public convert
 {
public:
l_to_g(double i) : convert(i) { }

 void compute() {
 val2 = val1 / 3.7854; }
 };

class f_to_c : public convert {

 public:
 f_to_c(double i) : convert(i) { }
 void compute() {
 val2 = (val1-32) / 1.8; }
 };

int main() {
 convert *p; // pointer to base class
 l_to_g lgob(4);
 f_to_c fcob(70);
 p=&lgob;
 std::cout << p->getinit() << " liters is\n ";

 p->compute();
 std::cout << p->getconv() << " gallons\n”;
 //l_to_g happened
 p = &fcob;
 std::cout << p->getinit() << " in Fahrenheit is “;
 p->compute();
 std::cout << p->getconv() << " Celsius\n";
 // f _to_c happened
return 0; }

105

4 liters is
 1.05669 gallons
70 in Fahrenheit is 21.1111 Celsius

Output:

