IcontinuousIntegration (continuous integration for iOS

applications)

by Alexander Dodatko. 2011-06-07

Table of Contents
AADSITACE .ttt ettt ettt et ettt et s a ettt e e a e bt et e e bt et e et e a e et e et e eh e et e e at e e bt et e et e sae e be et enaeeneeas 2
Selecting a Framework for Unit TeSHNE........cccuvieiieiiieiieeiieceeciecceeeeeeieeete e steesveessaeeaeessaeeveessneeneeas 3
SONTESTINGI L. ceeeueetieeeiiieee ettt e ettt e e ettt e e e st e eessaabe e e e e nabeeessansaeeesenseeesesnnneeessnnsneens 3
GOOGIE TOOIDOX.....eeieiieierieieiieeeiee et et e et e e ete e e ste e e e tae e s taeesbeeessseeesssaaessseeesseesssseesssseesssaeensseeennseens 3
GHUDIL. ..ttt ettt et sa et e b et s a e st et e s a e e bt et e s ae e bt et e est e st enbesaeenbesabesatenseeaee 3
Test Frameworks COMPAIiSSOI.....c.uuiieueeirieeerteeesieeesieeesseeessseeesseesssseessssessssesesssesssssssssssesssssessssseesns 4
Setting Up GHUnit for Continuous INte@ration...........ccceecveerierreeniiernieniesiieesieesieeseessieestesssessssesseesseenns 5
Passing Data to the APPLICAtION......c..iiiiiiiiiieieiie ettt e e ste e erae e s sae e s aaeesbaeessseeessseeesaseasnns 5
RUNNING @ TS ceeiieeeeeiieee ettt et e ettt e e e st e e s s et e e e s e arteeessasseeeseassaeeesnnnnaeesesanneeens 5
Terminating an APPLICAtION.......ciccuitieiiieiiiieeciee ettt et eesre e et e e st eestaeesaeeessseeessseesssseeesssessssseesssees 6
EXtracting TeSt RESUILS......ceccuiiriiieiieiieeieesiteeie ettt ettt e et s e et e s beesaaesbeessaesssaesstessseenssesnsenn 6
Defining the ProjeCt SIUCIUTE.......cc.eiiiieiieeieeieeeteete e et e eee e e e e e e teesteesbeebeessseesseessseeseesssessseesssesnsees 7
Creating a Main Unit TeSt PrOJECT.........utiiiiiuiiieieiieeeeetteeeeciteeeeetee et e e ettt e e s st e s s sareeesesneeeesssnsnaees 8
Adding GHUNIt FrameWOTK.......cciiiiiiiiiieiiiieeiiieeiiee et eeteeeieeessveeesaeeesteeesaseesssseesssseesssseesssseesssseensees 12
Adding a “Plain LiDIary” PIOJECL........cccierieriiiinieeieerieeieeste st et e st esitesbeesseesteesaeessseenssesssessseesssesnseas 16
Creating a “Universal Binary” LiDIary.......ccccocciiieiiiiiiiieieecieeesieeeste et see e sre e iee e sve e s veeessve e e 20
The Purpose of “Universal BiNaries”..........cocveriiriienieiiienieeiteeieeieesee sttt seneste et e ssesssaeseees 20
Creating @ UnivVersal LIDTary........ccueiriiiiiieiiiiieeiieeeiee st eetee et e ssteeesiaeesseaeessaaeessaeeesssaesssseesnsseesnns 20
Using Universal BiNAries.........coccveeieerieriiiinieritestesieesitessteesite st esisesseesaeesseesssesssaesseesssessssesssessseenns 21
Deploying Main ADPPLICAtION.ciccuiiieiieieiieeciee et e et et eesteessteessaaeesseaeesaaeessseeesssaeesssaeessseessssesensseens 23
Creating @ HUudSON JOD.......c.coiiiiiiiieciieeceeeee ettt ettt ettt sae e e st e e st e s be e saesnsaenseans 24

Abstract

The continuous integration process is a common technique in desktop and enterprise software
development process. However, there are some obstacles and challenges for iOS mobile development.

Desktop

iOS

Products can run at the machine they are built

Products can run ONLY at the device or simulator

Explicit input-output control
(test reports, creation, benchmarking, etc.)

Output data is stored at specific locations.
(~/Library/Application Support/

iPhone Simulator/4.3.2/Applications/
31629FD8-DDF0-4E4C-A2D8-

Good integration between build tools and CI
servers.

FC2D2BE2D07D/
Caches/...)
Almost no integration. Xcode batch build

commands must be invoked from command line.

This manual will help you to solve these problems and may give some ideas how to solve other
ones. Here we'll describe the whole process for a simple hello-world program. We'll also cover static
libraries creation and usage (both plain ones and so-called “universal binaries™)

Our build process will be based on the following software:

1. Xcode 4.0.2 (i0S SDK 4.3.3)

2. Xcode 3.2.6 (because Xcode 4 is still has some bugs about project management)

3. GHUnit unit test framework
4. Hudson CI build server

Selecting a Framework for Unit Testing

There are 3 major opportunities for ObjectiveC unit testing. They are:
1. SenTesting Kit
2. Google toolbox
3. GHUnit

SenTestingKit

SenTestingKit is a default framework. It has good integration with and is shipped with xCode.
This tool produces a build failure if some tests are not passed. This feature is one of its main
advantages.

However, it has some disadvantages:
1. Logical tests run ONLY on the simulator.
2. Logical tests cannot be debugged.
NOTE : actually, you can debug them but you have to invoke them manually.
3. Functionality tests run ONLY on the device. They are intended to test the entire
application.
4. The framework does not support UIKit and bundles.

Google Toolbox

Google toolbox has the following advantages :
1. xCode integration.
2. Backward compatibility with SenTesting Kit (and all its advantages)
3. GUI snapshots comparisson (using raster *.png, *.jpeg graphics)
However, it still lacks debugging opportunities, bundles and UIKit support.

GHUnit

On the contrary, GHUnit tests are packaged in a usual iOS application. It has full support of the
ObjC and CocoaTouch framework. You can run it on both the device and simulator. You can even
deploy it to the App Store! However, it lacks xCode integration support.

Test Frameworks Comparisson

You can see a brief comparisson of the testing frameworks in a table below :

SenTest Google GHUnit
Xcode integration + + —
(auto navigate to
failure, fail build
on failed test)
UIKit Support -—- — +
Bundles support --- - +
Xml reports - — +
(lack of support for
hudson CI)
Runs on device +- +- +
(Runtime tests only) (Runtime tests only)
Runs on simulator +- +- +
(logic tests only) (logic tests only)
- +

Debugging (out of box)

UI snapshots comparing

+

In our application we do a lot of network data exchange. Hence, we need some mock test data to

check our protocol related classes. That's why bundles support is critical for us. So, GHUnit is our

choice.

If bundles and debugging are not so important for you, we suggest using google toolbox for
better xCode integration and more balanced features scope.

Setting Up GHUNnit for Continuous Integration.

The main advantage of GHUnit is the fact that tests are packaged into a usual iOS application. It
is easy to run and debug it in an everyday development cycle.

However, it causes some disadvantages for continuous integration. Here are some problems
which are hardly noticeable for desktop applications but are somewhat difficult for iOS :

Desktop

Embedded / Mobile (iOS)

Pass test data to the application

Desktop applications can just
pull the databases and other test
files from a nearby directory on
the file system.

For iOS applications we should
put those files into a bundle or
create a mock web server.

Launch the application

The OS will run it with no
problem

Simulator or device is required
to execute.

Terminate the application

Usually, a unit test is a plain
linear command line program.

IOS applications do not actually
terminate. They just “go to the
background mode” (in no
doubt, for iOS4 and upper)

Collect test results

Just fread an xml
generated after run.

report,

Passing Data to the Application

We use bundles to pass test data to the iOS application.

Running a Test

Each iOS application is executed
in a separate sandbox. So, it may
be a challenge as well

A test can be executed on the simulator with the iphonesim utility.

:~ Oleksandr_Dodatko$ iphonesim
Usage: iphonesim <options> <command> ...

Commands:
showsdks

launch <application path> [sdkversion] [family] [uuid]

These arguments are case sensitive.

Example (legacy Xcode3 style has been used) :
iphonesim launch “$TEST_PROJECTS_PATH/CITest/build/Release-
iphonesimulator/CITest.app” 4.2 ipad

For details please consider “Xcode 4.x command line tools reference” article and GHUnit

documentation.

Terminating an Application

The application, produced by GHUnit, requires some user interaction.

However, there are some configuration flags that allow to execute batch runs.
1. GHUNIT_AUTORUN - starts test runners immediately. Without user interaction,
2. GHUNIT_AUTOEXIT - terminates the app after all tests are executed.
3. WRITE_JUNIT_XML - creates xml report and puts it into the temporary directory.

(** NOTE : GHUNIT_AUTOEXIT does not work for iOS devices because of a bug. Hopefully,
it will be fixed soon. However, we have fixed this issue in a fork located at
https://github.com/dodikk/gh-unit . But you may lose some new features from the official source tree if
you switch to the one mentioned above, since we do not maintain this testing framework. **)

setenv("GHUNIT_AUTORUN", "YES", 1);
setenv("WRITE_JUNIT_XML", "YES", 1);

setenv("GHUNIT_AUTOEXIT" , "YES", 1);

Extracting Test Results

In order to get results, you must :
1. Setup WRITE_JUNIT_ XML flag.
setenv("GHUNIT_AUTOEXIT", "YES", 1);

2. Locate test reports output directory
TEMP_DIR=$(/usr/bin/getconf DARWIN_USER_TEMP_DIR)
TEST DIR_NAME-=test-results
TEST_RESULTS_DIR=$TEMP_DIR$TEST_DIR_NAME

3. Move to this directory and copy files to the desired location
cd "$TEST_RESULTS_DIR"
pwd

cp *.xml "$STEST_PUBLISH_DIR"
cd "SLAUNCH_DIR"

Now let's do some coding fun in the next chapter.

https://github.com/dodikk/gh-unit

Defining the Project Structure

Our project will consist of three parts :

1.
2.
3.

Main project — contains unit tests
Usual library project
Universal binary library project

Main project must be digitally signed to be installed on the device. For our projects we keep
those certificate files under version control as well.

That's why we suggest using the following repository structure :

1.
2.
3.

app — a directory for main sources (there may be more than one main project)

lib — a directory for library sources. It contains only self-written libraries.

frameworks — all third-party libraries go here. It is also used as a directory for universal
binaries deployment.

scripts — a directory for build scripts source code. We prefer using explicit script files
instead of embedding scripts into the *.xcodeproj directory.

tools — a directory for tools, used for continuous integration. It contains only ready-to-use
binaries.

test — contains the code of unit tests. Since the main application is a unit test in itself, we
do not use this one in the current sample project.

certificates — contains Apple provision and developer profiles.

deployment — this directory is NOT supposed to be under version control. It contains
build artifacts that will be deployed by the build server or in some other way.

Name .
&3 app
@3 ClTest
3 build
& ClTest
™ CITest.xcodeproj
=! AUTHORS.txt
i frameworks
[CITest-Model-Universal
[GHUnitlOS.framework
i lib
3 ClTest-Model
3 build
h| ClTest_Model_Prefix.pch
™ CITest-Model.xcodeproj
lh| CITMathCore.h
m CITMathCore.m
& CITest-Model-Universal
[build
h| CITest_Model_Universal_Prefix.pch
™ CITest-Model-Universal.xcodeproj
h| CITUMathCore.h
m| CITUMathCore.m
=] license.txt
| README
&8 scripts
[& BuildRelease.sh
[# BuildUniversalLibrary.sh
[8] CleanTestReports.sh
[#] CopyTestReports.sh
[& KillSimulator.sh
[RunUnitTests.sh
[tools
™ iphonesim

Creating a Main Unit Test Project

Firstly, let's suppose that we have already created a directories structure, described above and
have a built GHUnit framework at the “frameworks” directory. Let's also suppose that we have
deployed our certificates and tools correctly.

Let's create a main CITest project at the app directory.

® Xcode File Edit View Navigate Editor Product Window Help .Q @ YB @D 3 a = ¢ Mnl05S0AM Q
000 [NewsPro - NPAppController.m (=)
= — 000 =
@ W) [NewsPro_en | Pad 4.3 5if = [e1i=) i [=][s]
N 2 d
| = e QO — [e } saior Vew organzer
| e LR s Scheme Breakpoints ditor View Organizer o
|mn @ & = =
© [NewsPro |mn @ A == B8 IR
e Chaose options for your new project:

r it

ntroller"

Product Name |CiTesq

.| Company identifier org.dodi

Bundle Identifier or

Device Family [Uni

ther a unit test bundle should be

4

=i PO

We refused from local git storage as we were going to deploy to github. We suggest using this
option unless you have a reason not to do so.

Source Control: || Create local git repository for this project
xcode will place your project under version control

After that let's set the deployment target to i0S3.2 and compiler to LLVM.

RS B

PROJECT

TARGETS

g ClTest

| Info | Build Settings

¥ Deployment Target

i0% Deployment Target

¥ Configurations

~ Name
» Debug
I Release

;_B_ase_r.l on l._:pryﬁgl._lrat_iq_rp Fi_Ie
Wo Configurations Set
Mo Configurations Set

+ - |

Command-line builds use [Release H

¥ Localizations
Language 'Resources
English 3 Files Localized

Xcode File Edit View Navigate Editor Product Window Help Q < a = 4 Mon10:53 AM
000 - < e e e o =]
800 CiTest ~ ClTest.xcodeproj o =
N ; n = BEas @oo
») (M) (CiTest] iPad 4.3 Simulator 3] [me Xcod = EE O = Ela&) [@Eo[O)
Run Editor View Organizer
o
o " QA== B T - L\c‘rr.s‘-
¥ B3 3targets, i0s S| a . PROJECT Info | Build Settings |
'E It Al | Levels Q-
»] Galleries
e o Setting I Cirest
Ay Cirest v Architectures
o Arcltacwras Standard (arms armv?) &) .
'["j — Base SDK Latest (05 (05 4.3) ¢ ScreenViewController
I vopvi < Code Signing s_bundle_ 1;
@ TopVi ¥ Code Signing Identity. Don't Code Sign ©
@ NewsPr Debug Don't Code Sign &
[m) NewsPi Any i0S SDK § Don't Code Sign ;
[h] NPAPPC Release Don't Code Sign ¢
B NPADD Any i0S SDK ; Den't Cade Sign §
h| AppHe: v Compiler Version
B
[h| AppCor ¥ Deployment lePlain
3 AppcH nstalltion Directory
[h] URLMak Strip Linked Prodluct Yes 4
m| URLMake Targeted Device Family iPhone/iPad §
h] Userseig i0S Deployment Target 05323
m UserSerti Packaging
> (3 ads info.plist File
» i Constanc Product Name
P il Faschalil “VLLVM compiler 2.0 - Cc
P i Lles vor ization Level <Multiple ! 5
i ol pimization Level iiple values >
A Conten None [-00] 2 .
@ Contesd Fisl‘tst Smallest [-Os] &
(5] Content No:
[h| Contents
m] Backgro € Language Dialect GNU99 [-std=gnu39] ;
[h] Backgrot ¥ Other C Flags <Multiple values>
[h Content Debug
[m] Contentl Release -DNS_BLOCK_ASSERTIONS=1
» (] Contentser LLVM compiler 2.0 - Preprocessing
» (] Contentser ¥ Preprocessor Macros. <Multiple values>
» (] Contentse Debug DEBUG
v (2] Contentser T
[Contentt LLVM compiler 2.0 - Warnings
[conten Mismatched Return Type Yes :
[B) e Unused Variables ves ¢
[m Network
[h] Network
[ml Network
[h] Cacheto
[ml Cachelo
[h] DiskRe:
[m] DiskRe: e e
h| DiskWrit . % 1
_B + ORE® Add Target ‘Add Build Setting 3
+ 0OR6 (O 4 7]

-. i 2 O . A B8

In In order to deploy products we have to locate the path to them. As described in “Xcode 4.x
command line tools reference” article, we cannot rely on the “build” directory and its structure. This
directory used to be relative to the project for xCode under 4.0. However, those variables are available
at build time within the scripts, initiated by xCode.

That's why we have to dump those path entries into a temporary file and read them later. We'll
add a “run script” build step to achieve this.

® Xcode File Edit View Navigate Editor Product Window Help Hog > W D 3 A = ¢ Monll0SAM Q
000 CiTest - CTestxcodeproj -
®), @) (e () () Suld CiTest:Succeeded | Today at 1103 A Ela/= (=]

uuuuuuu e e e Editor View Organizer
= —~ T

W< > | Diare

PROJECT [Summary Info BuildSetings | BuildPhases | Build Rules
B cest | aQ

e)

(i Compile Sources (4 items)

h Libraries 3 items) | lewsBundlex) newBundle

dle

® Xcode File Edit View Navigate Editor Product Window Help
800

[CiTest - CiTest.xcodeproj

TR) > © |m|< > Mok
, Ciest Summar Info Build Settings. Build Phases | Build Rules.
P2 targer, 105 50K 4.3 PR;ESV . | ry. os |

| Q

TARGETS

» Target Dependencies (0 items)

» Link Binary With Libraries 3 items)

(
(> Comple Sources 8 tems)
(
(

» Copy Bundle Resources (3 items)

¥ Run Script

shell [7bin/sh

#

#/bin/bash

#

Dump XCode variables

CI_TEST_PRODUCT_DIR_FILE=/tmp/CI_TEST_PRODUCT_DIR.txt
echo $BUILT|PRODUCTS_DIR > "$CI_TEST_PRODUCT_DIR_FILE"

exit 0

& Show environment variables in build log
28) Run script only when installing
Input Files

+ -

Output Files

+ -

+ o086 ® ! Add Target Add Buid phase |

P o NGl T BORLE I SECER G

10

#
#/bin/bash

#
Dump XCode variables

mkdir -p "/tmp/ClITestBuild"
CI_TEST_PRODUCT_DIR_FILE=/tmp/CITestBuild/CI_TEST_PRODUCT_DIR.txt

cd "$BUILT_PRODUCTS_DIR"

cd ..
echo $PWD > "$CI_TEST PRODUCT DIR_FILE"

We should add this step to all projects that will be deployed.

11

Adding GHUnit Framework

GHUnit framewok is added just like any other framework. The only difference is that you have to
specify the path to it manually.

ClTest - ClTest.xcodeproj

(») (@) [citestiirad 43 simuimior 3] (=] Build ClTest: Succeeded | Today at 11:09 AM

Mo tssues

| < > | Mcimest
[p— | Summary info Build Settings | Build Phases Build Rules
Show in Finder st | (a,)

Open with External Editor
Open As » ﬁ v Target Dependencies (0 items}

New File...
New Project...

> ol CiTest
» (] Framew
» (] Products

Add target dependencies here

New Group Aol
New Group from Selection e =)

Add Files to "ClTest" [Link Binary With Libraries (@ items) g)
Delete [Copy Bundie Resources (3 items) =)
Source Control » ¥ Run Script
Project Navigator Help > Shell [7binsh

#

#/bin/bash

#

Dump XCode variables

CI_TEST_PRODUCT_DIR_FILE=/tmp/CI_TEST_PRODUCT_DIR.txt
echo $BUILT_PRODUCTS_DIR > "$CI_TEST_PRODUCT_DIR_FILE"

exit @

10

4 Show environment variables in build log
O Run script only when installing

Input Files

Add input files here

+ -

Output Files

Add output files here

Add Target Add Build Phase

P L srrest = wanestavuuspiyy -

Build CiTest: Succeeded | Today at 11:09 AM

No Issues.

< » | [587= m) [{diContiniousintegration Fq @ D

[} Documents [Date Modified
) Downloads

(] Shared

(] InstallLocal » [certificates

i users v [frameworks

(L] Projects

(] NewsPro

[NewsPro-SVN-EPAM S/18/11
|| NewsPro-SVN-ReadOnly :E:i :::
(] xCode4_commandline w;za o
[Reurersinsider » 3 twols 10:38 AM

(] xCode4_commandline
£ team
¥ SEARCH FOR
(5) Today
(L) Yesterday
(L) Past Week
(3] Al Images
(& Al Movies
(3] All Documents
¥ MEDIA
J3 music
Photos vy
B Movies -

Destination [_| Copy items into destination group's folder (if needed)

Folders (@ Create groups for any added folders
() Create folder references for any added folders

Add to targets [b ClTest

CCaneel) (AT

12

The second step is modifying the “main.m” file. You can find its contents in the GHUnit
examples.

#import <UIKit/UIKit.h>

// If you are using the framework

#import <GHUnitlOS/GHUnit.h>

//' If you are using the static library and importing header files manually
//#import "GHUnit.h"

// Default exception handler
void exceptionHandler(NSException *exception)
{
NSLog(@"%@\n%@", [exception reason], GHUStackTraceFromException(exception));
}

int main(int argc, char *argv[])
{
setenv("GHUNIT_AUTORUN", "YES", 1);
setenv("WRITE_JUNIT_XML", "YES", 1);
setenv("GHUNIT_AUTOEXIT" , "YES", 1); // Not supported in the official GHUNIT
NSSetUncaughtExceptionHandler(&exceptionHandler);

NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

// Register any special test case classes
//[[GHTesting sharedInstance] registerClassName:@"GHSpecialTestCase"];

int retVal = 0;

/I If GHUNIT_CLI is set we are using the command line interface and run the tests
// Otherwise load the GUI app

if (getenv("GHUNIT_CLI"))

{
retVal = [GHTestRunner run];
}
else
{
retVal = UIApplicationMain(argc, argv, nil, @"GHUnitIPhoneAppDelegate");
}

[pool release];
return retVal;

}

13

You must also remove all view controllers and nib files, generated by the wizard. The remaining
files are :
1. main.m

2. *.pch — precompiled headers
3. *-Info.plist

- MName
¥ 3 app
¥ @ ClTest
» [build
¥ @ ClTest
[[] CITest-Info.plist
[k CITest-Prefix.pch
» [en.lproj
[m| main.m
[m| StaticLibraryTest.m

ClTest.xcodeproj
=) AUTHORS..txt

b [frameworks
> @ lib
= license.txt
| README
» @ scripts
b [tools

You'll also have to remove “MainNibFile” entry from the info.plits file

Build CiTest: Succeeded | 5/26/11 at 10:18 AM
No Issues.

v PROJECT

| summary | mfo Build Settings Build Phases Build Rules
ibCiTest Model Test 105 Application Target
| = ST T"c dentifier |org.dedikk CITest \
, i CTest-Model xcodeproj Verson 1o |
| 1 target, i05 SDK 4.3
* e oeves
v [] Supporting Files Gz W
T: it 3.2
CITest-Info.plist m hekes
| InfoPlist.strings - -
[h] CiTest-prefix.pch ilialBkooayfiRnd Denlann st inka,
m] main.m -
|m) StaticLibraryTest.m I Main Interface || = I
» [| Framewarks
» [Preducts - Supported Device Orientations
Portrait Upside Landscape Landscape
Down Left Right

14

Now we are ready to add test cases. A test case is typically stored in a singe *.m file (both
declaration and implementation). It may contain the “-(void)setUp” and “-(void)tearDown” methods to
manage common test context. Test methods are started with the “test” word and should not be declared
at the @interface section. They will be recognized by name, starting with “test”.

For example:

@interface StaticLibraryTest : GHTestCase
@end

@implementation StaticLibraryTest

-(void)testAdd

{
// put test code here

}

15

Adding a “Plain Library” Project

In order to create a library project, just use a wizard within the xCode.

‘ Xcode B Edit View Navigate Editor Product Window Help

New Tab #T
Add Files to “ClTest"... New Window ORT
Open... 10 New File... %N
Open Recent > New Tret.._
Open Quickly... 430 New Project. ..
New Workspace... ~ 3N
Close Window EW
YalibCiTest] Clpse Tab New Group 3N

. CITest-M “ RPN New Group from Selection
> [3 targers, ill E:oﬂe PEITest.xcndeproJ EW [
. ose Project
. m ClTest-Mi) |» Comoile Sources (2 items)
Choose a template for your new project:

m ios
&,
Application r
B T T e

Other
B Mac0S X m

Application
Framework & Library
Application Plug-in
System Plug-in

: Other
K
=
wh
= s

.T:E Cocoa Touch Static Library

This template builds a static library that links against the Foundation framework.
e

(" Previous “ (Mext)

£

16

w product's name.

[Include Unit Tests

Once it has been created, we'll add some sample code and link it to our main project. First of all,
we'll add a subproject.

806

CiTest - ClTest.xcodeproj

Build ClTest: Succeeded | Today at 11:09 AM

Mo tssues

w Summary Info Build Settings | Build Phases Build Rules

Show in Finder k

> o CiTest e @)
» (] Framewt
> produay OPen A2 "

New File...

New Project. ..

Open with External Editor

v Target Dependencies (0 items)

Add target dependencies here

New Group E—
New Group from Selection

[compile Sources 4 items)

(> unk s

ry With Libraries (3 items)

Delete [cCopy Bundie Resources (3 items)
Source Control > + Run Seript
Project Navigator Help > Shell | /bin/sh

#
2| #/bin/bash
#
4 ## Dump XCode variables

¢ CI_TEST_PRODUCT_DIR_FILE=/tmp/CI_TEST_PRODUCT_DIR.txt
| echo $BUILT_PRODUCTS_DIR > "$CI_TEST_PRODUCT_DIR_FILE"

clexit @
10

™ Show environment variables in build log
J Run script only when installing

Input Files

Add input files here
+ -
Output Files

Add output files here
P

+ oRD(> Y Add Target

reey
PG) () (st iraa 2 smusnon] (=

CITest - ClTest.xcodeproj.
Build CITest: Succeeded | Today at 11:09 AM

Mo Issues
h

] (=i m) (@b =) 1Y)

[l Documents - T
& Downloads v [CiTest-Model

(] shared » [build

[InstallLocal [h] CITest_Model_Prefix.pch

B users B CiTest-Model-xcodeproj 10:44 AM

G Projects

{5 NewsPro

) NewsPro-SYN-EPAM
|| NewsPro-SVN-ReadOnly
(1] xCode4_commandline
[Reutersinsider
(] xCodas_commandline
(5 team
7 SEARCH FOR
(5 Today
(5 Yesterday
(D) Past Week
(3] All Images
(&2 All Movies
3] AN Documents
¥ MEDIA
3 Music
[hotos
& Movies It

Destination [_| Copy items into destin:

ion group's folder (if needed)

Folders (@ Create groups for any added folders ‘
) Create folder references for any added folders ‘

Add to targets ¥ s ClTest

a0
|

17

Once added, we'll have to set up the dependencies to it. Dependency types are :
1. Build time dependency — we have to make xCode know that a referenced project should

be built before the main project.
U)

S e]

Build CITest: Succeeded | Today at 11:09 AM

No Issues

ittt il % Choose items to add:

CiTest | PROJECT

“277 target, iDS SDK 4.3
- - ClTest @)
» &= GHUnitl0S.framework
1, ClTest-Model.xcodeproj TARGETS v [citest
¥ [1 target, i05 SDK 4.3 r— e LTI B
» [CITest v [CiTest-Model
» [] Framewaorks arg
-
» [] Products & ClTest-Model

+ -

_Add
ance

A

2. Link dependency — the library must be linked with the main project. Otherwise the
symbols will be inaccessible. Hence, the application will either fail to build or crash at
runtime.

] E ClTest - CiTest.xcodeproj
Build ClTest: Succeeded | Today at 11:09 AM

No Issues

Choose frameworks and libraries to add:

a, Y

PROJECT

1 targer, 105 SDK 4.3
B crrest

» = GHUnitlOS. framework

< TargetDepenad | 7 [Workspace

> ClTest-Model.xcodeproj TARGETS

ES1 1 target, i0S SDK 4.3 7 =
» [CiTest s CiTest-Model 2 libCiTest_Model.a
» [] Frameworks » (05 4.3

» [] Products

+ - |

b Compile Snmg

w Link Binary Witl

= UIKit.framewor

&= Foundation.fra

= CoreGraphics.f

= GH Uniti0s. fran
+ =

» Copy Bundle Ri
» Run Script i

(Add other...) (Cancel) (Add)

18

3. Header files include dependency — we need to access header files with the interface

declarations.
& Xcode File Edit View JZOT Build Run Design SCM Window $ Help Q CY @ D 3% A = ¢ Tue2:11PM

800 Project %0 ‘CommonTestMain
e lausnlb ey Clacs Browser 0%C "
Debe Rename...
Groups & Files | New Group =N s ° a
v [CommonTestMain Gi X %G
e 2‘“ xcodeproj New Smart Group >
RS
I ESBlockRuntime xcodeproj Add to Project... %A Required ¢
libESBlockRuntime.a Add Current File to Project Required ¢
» (] Classes.
» (] Other Sources. New Target.
> Resources Upgrade All Targets in Project to Native
v Frameworks Upgrade Current Target for iPad
:: Irnm»;nmv;mk " New Build Phase > . c.l¢.[®
Foundation.framewor ! S [=ic s m
New Custom Executable... = <
» §5 CoreGraphics.framework No Editor
> (] Products Set Active Target »
'@x'(v"f - Set Active Architecture >
ommonTesthain i DK 5
lockRuntime (from ESBlockRy !
g,ﬂ‘“ oo e ey ™ Set Active Build Configuration >
» [Copy Bundle Resources (2) Set Active Executable ¥

> (53 Compile Sources ()

Edit Project Setting:
& iU Edit Active Target "CommonTestMain” ®E
@ IbEStocktuntime.s Edit Active Executable “CommonTestMain” 36X
» § Foundation framework
» §2 Uikit framework
» § CoreGraphics framework
> Executables
v Find Results.
» (2 Bookmarks
»iscm
@ Project Symbols
» (& Implementation Files
» [inerface Builder Files

Build succeeded @ succeeded

® Xcode File Edit View Project Build Run Design SCM Window & Help e > @D 3 2 A = e Tue2ldbM Q
e 6

5) B CommonTestMain =)
Y T YT = ——————————
[Simulator - 4.2 | Debug | CommonTestM: - %b ® 0 Q- string Matching

overvew Breakpoints_ uldandRun Tasks info search
Groups & s il Name iAlGde | ® [4

¥ 3 CommonTestiain
¥ B8 JFFULxcodeprol

gty Header Search Paths
¥ B3 EsBlockRuntime xcodeproj
ibESBlockRuntime.a. Cor B

0o o
—l

nfiguration: |_All Configurations Bl Recursive _ Path 5 F .

ow: (Allsettings %)
» (] Resources. Setting LA
¥ (] Frameworks ¥ Architectures. I ot

B Uit framework.
» B Foundation.framework

» B CoreGraphics framework ders Cache Path

|
|
|
|

» (3 Products auild Options ‘ |
v@Targets Precompiled Header Uses Fies From il
% Ay CommonTesthain Scan Al Source Fils for Includes
Yrackaging |

5 ESBlockRuntime (from ESBlockRuntime xcodepro))

Inf.plis Preprocessor refx e
86 FFUI (rom JFFULxcodeproj) St

Private Headers Folder Path

> [Copy Bundie Resources (2) Public Headers Folder Path
» 5 Compile Sources (3) search Paths] I
¥ [5 ink Binary With Libraris (5) Aways Search User Paths
& libJFFuLa Framework Search Paths
& libEsslockRuntime. Header Search Paths | I
» § Foundation.framework User Header Search Paths
» 5 Ui tramework LLVM GC 4.2 - Code Generation | i
» § CoreGraphics framework Level of Debug Symbols
> Executables Separate PCH Symbols
v Q Find Resuits VLLVM GCC 4.2 - Language I
b Increase Sharing of Precompiled Headers

recompie Pt Header
e esder
U tandrd Syt Hesder Diectary Set
S GCC 42 Peprocessing i
reprocesso Mactos ot Used n Precon)
VALV G 42 - Warnings
fective C+ + Vilations el
Unknown Pragma

n . Objective-C, G+, or Objective-C-+. Path in them need o be.
properly quoted. [HEADER_SEARCH_PATHS, -I]
Based On: | Nothing BEG)

1 of 16 selected, 231.3 GB available

And that's it! Now we can use code from the library. xCode will now automatically ensure that
library subproject is built at the correct time and that its correct version is linked.

19

Creating a “Universal Binary” Library

The Purpose of “Universal Binaries”

Normally, xCode builds two versions of a library. One is for real devices. The other one is used
for the simulator enabled application builds. It is very different from desktop projects where you have
only one version of the library.

This is not a problem since you have library sources and can compile it by yourself. However, the
library may contain some know-how code you will not want to distribute in a text form.

(** NOTE : we are not covering anti-disassembling and reverse engineering techniques in this
article **).

In this case you may want to distribute it just as you distribute any desktop targeted library. You
provide your customers a set of headers and a binary. Meaning that you can link this to both the device
and the simulator applications.

It is not a good idea to still have two separate library binaries because of some peculiarities for
management of the libraries . xCode just won't handle them properly.

Apple uses the same approach for its “frameworks”. However, frameworks are officially
unavailable for iOS. Still, some libraries are packaged and successfully used in this way. An example is
GHUnit.ftramework.

We won't cover framework deployment in this article. However, we'll show how to make a
universal binary and properly deploy it.

Creating a Universal Library

Firstly, you have to create a plain static library. Just as described above.
The next step is to combine device and simulator versions. We'll use a shell script for this
purpose. The script will:
1. Build a library version for the device.
2. Build a library version for the simulator.
3. Combine them to a single binary
4. Deploy universal library to the “frameworks” directory.
We build device and simulator versions using xcodebuild command line interface.
Device version :
xcodebuild -project CITest-Model-Universal.xcodeproj
-configuration Release -sdk iphoneos4.3 build
Simulator version:
xcodebuild -project CITest-Model-Universal.xcodeproj
-configuration Release -sdk iphonesimulator4.3 build

ClTest-Model-Universal

-target

ClTest-Model-Universal

~target

For details, see “xcode4 command line manual” article. Or just use “man xcodebuild”.

20

Once specific (device/simulator) versions of the library are ready, we need to locate them on the
file system. We do this by reading the path entry, dumped by the xCode script, described above.

LIB_BUILD_DIR=$(cat /tmp/CITestBuild/CI_TEST _UNIVERSAL_LIB_PRODUCT_DIR.txt)

(*** Note : you can safely dump project path entries to any other locations. ***)

Device and simulator library versions are stored at “5jBIsES1SJIRBIIBINVARGERSSlOIES " and
5. 1B_BUILD_DIR/Release-iphonesimulatorgiayadeanyya

In order to combine them into a single binary, we use the following command :
lipo -create "${LIB_BUILD_DIR}/Release-iphoneos/libCITest_Model_Universal.a"
{LIB_BUILD_DIR}/Release-iphonesimulator/libCITest_ Model_Universal.a" -output
"../frameworks/CITest-Model-Universal/Lib/libCITest Model Universal.a"

(*** NOTE: the order of libraries is important here.
A library for the device goes first. The one for the simulator goes next ***)

Now we only need to copy the sources to the location beside the binary.
cd ../ lib/CITest-Model-Universal

cp *.h "../frameworks/CITest-Model-Universal/include"

cd "$LAUNCH_DIR"

Still, you must make sure that your deployment directory exists and the results can be saved in it.

Using Universal Binaries

In order to use a universal binary, you must add the file system path to its headers to the search
list. This path points to the frameworks directory where the library was deployed.

Search Paths

Always Search User Paths Mo :
Framework Search Paths "(Users/Oleksandr_Dodatko/Projects/team/iContiniousintegration-github/app/ClTest/./../frameworks" "/Users /Oleksa...
Header Search Paths f..dlib

User Header Search Paths [[Recursive | Path

GCC 4.2 - Code Generation | o . lib

Level of Debug Symbols I /. /frameworks [CITest-Model-Universal finclude
Separate PCH Symbols

GCC 4.2 - Language

Increase Sharing of Precompiled Heade

Precompile Prefix Header | -

Prefix Header

Use Standard System Header Directory
GCC 4.2 - Preprocessing i

Done

Preprocessor Macros Not Used In Preco...

You should also add the library file to the project and to its linker dependencies.

21

i » £ 2 targets, i05 SDK 4.3
._'mcn_;l... s
v D Supporting Files
[ciTest-Info.plist
D InfoPlist.strings
@ ClITest-Prefix.pch
@ main.m
@ StaticLibraryTest.m
> m Frameworks
» [Products

CITest-Model-Universal.xcodeproj

PROJECT
™ ClTest

TARGETS

Summary Info Build Settings ' Build Phases

Q

-

(v TargetE

\J CITest-Model (CITest-Model)
@ BuildUniversal (CITest-Model-Uni

sal)

F—

‘Compile Sources (2 items).

¥ Link Binary With Libraries (6 items)

.'_] libClTest_Model_Universal.a
Q libCITest_Model.a

= UIKit.framework

&= Foundation.framework

&= CoreGraphics.framework
&= GHUnitlOs. framewark

F—

Drag to reorder frameworks

Alternatively, you could link it with the console linker flag -l<library name>.

For

example,

-ICITest_Model_Universal

Please

note that the filename is

libCITest_Model_Universal.a . So, lib prefix and .a suffix have been omitted.

Perform Single-Object Prelink
Warning Linker Flags
Write Link Map File

wSearch Paths

Framework Search Paths
Library Search Paths

wGCC 4.2 - Language

¥Linking
Display Mangled Names No &
Link With Standard Libraries Yes 5
OpenMP Linker Flags -fopenmp
I Other Linker Flags -0bjC -all_load
¥ Path to Link Map File obiC
Debug ol load
Release

-ICITest_Model_Unive rsal|

[+]-]

22

Deploying Main Application

We deploy our applications for the simulator by sending our testers the *.app bundle, built for the
simulator. It can be launched and tested with the help of the iphonesim utility as described above. It is
produced by the xCode. So, no further steps should be taken.

For the device we must create a digitally signed *.ipa file from the device *.app bundle.

In order to do this, we must do the following things :

1. Build the product.

Just as described above for the universal library.

Locate a bundle on the file system
Once again, we do it by reading the contents of the file, dumped by the xCode script.

BUILD_DIR=$(cat /tmp/CITestBuild/CI_TEST_PRODUCT_DIR.txt)

Prepare the information about provisioning certificates
DEVELOPER_NAME="iPhone Developer: Oleksandr Dodatko (ABCDEFG123456)"
PROVISONING_PROFILE-=../certificates/CITest. mobileprovision

(*** Note : this should be adjusted for your provisioning ***)

Finally — create the *.ipa file
/usr/bin/xcrun -sdk iphoneos PackageApplication -v "${BUILD_DIR}/Release-
iphoneos/CITest.app" -0 "${DEPLOYMENT_DIR}/CITest.ipa" --sign "$
{DEVELOPER_NAME}" --embed "${PROVISONING_PROFILE}"

After successful deployment you should have a directory with similar contents:

» [app
= AUTHORS.txt
» [certificates
¥ [deployment
i+ ClTest.app
[#] CITest.ipa
[Y CITest.zip
» [test-results
[test-results.zip
[frameworks
&3 lib
= license.txt
| README
» [scripts
B test
[tools

L

v 4

23

Creating a Hudson Job

Once you are able to build the project on your local machine, you should set up a job at the build
Server.

@ Chrome File Edit View History Bookmarks Window Help Qe s @ D 3 < A = 4 Sa534PM Q
8006/ 3 “\
€ 5> C ©10280. I AR
For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now. . (] Other Bookmarks.
Hudson L
Hudson » iContiniousIntearation-template i
‘ ‘Back to Dashboard L iContiniousIntegration-template
O, stotus Description /A *hello world" example of unit testing, static libraries and universal binary creation. @
= Changes
& workspace 4
uid Now
. O Discard 01d Builds ®
© oelete protect 0 T b s prameterized @
4 Confiqure Github project ®
‘Set Next Build Number
o Google code webstte)
Build History (trend)
o (3 el Bulks (o e s il b xecutnd unl th prfect s re-embiad) ®
@ #6 Mayv26.201 ase36AM
O Execute concurrent builds if necessar et
@ s May 26, 2011 3:58:15 AM BiBeacite iEbuldsl Iy (bem) L
@ #4 Mav26.2011 3:3005A ‘Advanced Project Options
@+ muanpzze
@ f2 Mavasoouizieseen Source
@ s e 011 1 aM O None
) for all EY for failres| O cvs.
Ot
O Google Code (automatic configuration)
O Mercurial
© subversion
Modules Repository URL -)
Local module directory (optional) ®
Use update ¥
tchecke, R—
Revert
1 checkad, Hudson il do v rvert o dong ‘m update Thi sows & down, but wl prevnt fles belng modii fom buld 10 bk,
Repository browser ((autay
Build Triggers E
(O Build after other projects are built 4

@ Chrome File Edit View History Bookmarks Window Help Mo > @ D % < A mE ¢ Sa534PM Q
2 a
€ 5 C O I A
For quick acces, i now 2 Other Bookmarks
O poll scm ® |
O uild periodically e
Buitd
U Set environment variables
O Execute shel script on remote host using ssh ®
Buitd
Execute shell ®

Command [auncu_p1r=spun

e "spup/seripts”

jca “suauncs_br*

g ——

add

tep ~

Post-build Actions.

O publish Cpptest analysis results

O publish Javadoc

O Aggregate downstream test results
) Publish JUnit test result report

 Archive the artifacts

Files to archive

o000 o

(O Record fingerprints of files to track usage
O Build other projects.

O Activate Chuck Norris

O Plot build data

O Publish testing tools result report

O Git Publisher

0 E-mail Notfication

o008 ®©o

O editable Email Notification

O Growl
3 2abber Notification

ssociate Persona.

24

	Abstract
	Selecting a Framework for Unit Testing
	SenTestingKit
	Google Toolbox
	GHUnit
	Test Frameworks Comparisson

	Setting Up GHUnit for Continuous Integration.
	Passing Data to the Application
	Running a Test
	Terminating an Application
	Extracting Test Results

	Defining the Project Structure
	Creating a Main Unit Test Project
	Adding GHUnit Framework
	Adding a “Plain Library” Project
	Creating a “Universal Binary” Library
	The Purpose of “Universal Binaries”
	Creating a Universal Library
	Using Universal Binaries

	Deploying Main Application
	Creating a Hudson Job

