
IcontinuousIntegration (continuous integration for iOS
applications)

by Alexander Dodatko. 2011-06-07

Table of Contents
Abstract.. 2
Selecting a Framework for Unit Testing.. 3

SenTestingKit.. 3
Google Toolbox... 3
GHUnit.. 3
Test Frameworks Comparisson... 4

Setting Up GHUnit for Continuous Integration... 5
Passing Data to the Application...5
Running a Test...5
Terminating an Application... 6
Extracting Test Results.. 6

Defining the Project Structure..7
Creating a Main Unit Test Project..8
Adding GHUnit Framework.. 12
Adding a “Plain Library” Project...16
Creating a “Universal Binary” Library.. 20

The Purpose of “Universal Binaries”.. 20
Creating a Universal Library...20
Using Universal Binaries...21

Deploying Main Application..23
Creating a Hudson Job... 24

1

Abstract
The continuous integration process is a common technique in desktop and enterprise software

development process. However, there are some obstacles and challenges for iOS mobile development.

Desktop iOS

Products can run at the machine they are built Products can run ONLY at the device or simulator

Explicit input-output control
(test reports, creation, benchmarking, etc.)

Output data is stored at specific locations.
(~/Library/Application Support/
iPhone Simulator/4.3.2/Applications/
31629FD8-DDF0-4E4C-A2D8-
FC2D2BE2D07D/
Caches/...)

Good integration between build tools and CI
servers.

Almost no integration. Xcode batch build
commands must be invoked from command line.

This manual will help you to solve these problems and may give some ideas how to solve other
ones. Here we'll describe the whole process for a simple hello-world program. We'll also cover static
libraries creation and usage (both plain ones and so-called “universal binaries”)

Our build process will be based on the following software:
1. Xcode 4.0.2 (iOS SDK 4.3.3)
2. Xcode 3.2.6 (because Xcode 4 is still has some bugs about project management)
3. GHUnit unit test framework
4. Hudson CI build server

2

Selecting a Framework for Unit Testing
There are 3 major opportunities for ObjectiveC unit testing. They are:

1. SenTesting Kit
2. Google toolbox
3. GHUnit

SenTestingKit

SenTestingKit is a default framework. It has good integration with and is shipped with xCode.
This tool produces a build failure if some tests are not passed. This feature is one of its main
advantages.

However, it has some disadvantages:
1. Logical tests run ONLY on the simulator.
2. Logical tests cannot be debugged.

NOTE : actually, you can debug them but you have to invoke them manually.
3. Functionality tests run ONLY on the device. They are intended to test the entire

application.
4. The framework does not support UIKit and bundles.

Google Toolbox

Google toolbox has the following advantages :
1. xCode integration.
2. Backward compatibility with SenTesting Kit (and all its advantages)
3. GUI snapshots comparisson (using raster *.png, *.jpeg graphics)

However, it still lacks debugging opportunities, bundles and UIKit support.

GHUnit

On the contrary, GHUnit tests are packaged in a usual iOS application. It has full support of the
ObjC and CocoaTouch framework. You can run it on both the device and simulator. You can even
deploy it to the App Store! However, it lacks xCode integration support.

3

Test Frameworks Comparisson

You can see a brief comparisson of the testing frameworks in a table below :

SenTest Google GHUnit

Xcode integration
(auto navigate to
failure, fail build
on failed test)

+ + ---

UIKit Support --- --- +

Bundles support --- --- +

Xml reports --- --- +
(lack of support for

hudson CI)

Runs on device +-
(Runtime tests only)

+-
(Runtime tests only)

+

Runs on simulator +-
(logic tests only)

+-
(logic tests only)

+

Debugging (out of box) --- --- +

UI snapshots comparing --- + ---

In our application we do a lot of network data exchange. Hence, we need some mock test data to
check our protocol related classes. That's why bundles support is critical for us. So, GHUnit is our
choice.

If bundles and debugging are not so important for you, we suggest using google toolbox for
better xCode integration and more balanced features scope.

4

Setting Up GHUnit for Continuous Integration.
The main advantage of GHUnit is the fact that tests are packaged into a usual iOS application. It

is easy to run and debug it in an everyday development cycle.
However, it causes some disadvantages for continuous integration. Here are some problems

which are hardly noticeable for desktop applications but are somewhat difficult for iOS :
Desktop Embedded / Mobile (iOS)

Pass test data to the application Desktop applications can just
pull the databases and other test
files from a nearby directory on
the file system.

For iOS applications we should
put those files into a bundle or
create a mock web server.

Launch the application The OS will run it with no
problem

Simulator or device is required
to execute.

Terminate the application Usually, a unit test is a plain
linear command line program.

IOS applications do not actually
terminate. They just “go to the
background mode” (in no
doubt, for iOS4 and upper)

Collect test results Just fread an xml report,
generated after run.

Each iOS application is executed
in a separate sandbox. So, it may
be a challenge as well

Passing Data to the Application

We use bundles to pass test data to the iOS application.

Running a Test

A test can be executed on the simulator with the iphonesim utility.

:~ Oleksandr_Dodatko$ iphonesim
Usage: iphonesim <options> <command> ...
Commands:
 showsdks
 launch <application path> [sdkversion] [family] [uuid]
These arguments are case sensitive.

Example (legacy Xcode3 style has been used) :
iphonesim launch “$TEST_PROJECTS_PATH/CITest/build/Release-

iphonesimulator/CITest.app” 4.2 ipad

For details please consider “Xcode 4.x command line tools reference” article and GHUnit
documentation.

5

Terminating an Application

The application, produced by GHUnit, requires some user interaction.
However, there are some configuration flags that allow to execute batch runs.

1. GHUNIT_AUTORUN – starts test runners immediately. Without user interaction,
2. GHUNIT_AUTOEXIT – terminates the app after all tests are executed.
3. WRITE_JUNIT_XML – creates xml report and puts it into the temporary directory.

(** NOTE : GHUNIT_AUTOEXIT does not work for iOS devices because of a bug. Hopefully,
it will be fixed soon. However, we have fixed this issue in a fork located at
https://github.com/dodikk/gh-unit . But you may lose some new features from the official source tree if
you switch to the one mentioned above, since we do not maintain this testing framework. **)

 setenv("GHUNIT_AUTORUN" , "YES", 1);
 setenv("WRITE_JUNIT_XML", "YES", 1);
 setenv("GHUNIT_AUTOEXIT" , "YES", 1);

Extracting Test Results

In order to get results, you must :
1. Set up WRITE_JUNIT_XML flag.

setenv("GHUNIT_AUTOEXIT" , "YES", 1);

2. Locate test reports output directory
TEMP_DIR=$(/usr/bin/getconf DARWIN_USER_TEMP_DIR)
TEST_DIR_NAME=test-results
TEST_RESULTS_DIR=$TEMP_DIR$TEST_DIR_NAME

3. Move to this directory and copy files to the desired location
cd "$TEST_RESULTS_DIR"
 pwd
 cp *.xml "$TEST_PUBLISH_DIR"
cd "$LAUNCH_DIR"

Now let's do some coding fun in the next chapter.

6

https://github.com/dodikk/gh-unit

Defining the Project Structure
Our project will consist of three parts :

1. Main project – contains unit tests
2. Usual library project
3. Universal binary library project

Main project must be digitally signed to be installed on the device. For our projects we keep
those certificate files under version control as well.

That's why we suggest using the following repository structure :
1. app – a directory for main sources (there may be more than one main project)
2. lib – a directory for library sources. It contains only self-written libraries.
3. frameworks – all third-party libraries go here. It is also used as a directory for universal

binaries deployment.
4. scripts – a directory for build scripts source code. We prefer using explicit script files

instead of embedding scripts into the *.xcodeproj directory.
5. tools – a directory for tools, used for continuous integration. It contains only ready-to-use

binaries.
6. test – contains the code of unit tests. Since the main application is a unit test in itself, we

do not use this one in the current sample project.
7. certificates – contains Apple provision and developer profiles.
8. deployment – this directory is NOT supposed to be under version control. It contains

build artifacts that will be deployed by the build server or in some other way.

7

Creating a Main Unit Test Project
Firstly, let's suppose that we have already created a directories structure, described above and

have a built GHUnit framework at the “frameworks” directory. Let's also suppose that we have
deployed our certificates and tools correctly.

Let's create a main CITest project at the app directory.

We refused from local git storage as we were going to deploy to github. We suggest using this
option unless you have a reason not to do so.

8

After that let's set the deployment target to iOS3.2 and compiler to LLVM.

9

In In order to deploy products we have to locate the path to them. As described in “Xcode 4.x
command line tools reference” article, we cannot rely on the “build” directory and its structure. This
directory used to be relative to the project for xCode under 4.0. However, those variables are available
at build time within the scripts, initiated by xCode.

That's why we have to dump those path entries into a temporary file and read them later. We'll
add a “run script” build step to achieve this.

10

#
#/bin/bash
#
Dump XCode variables

mkdir -p "/tmp/CITestBuild"
CI_TEST_PRODUCT_DIR_FILE=/tmp/CITestBuild/CI_TEST_PRODUCT_DIR.txt

cd "$BUILT_PRODUCTS_DIR"
cd ..
echo $PWD > "$CI_TEST_PRODUCT_DIR_FILE"

exit 0

We should add this step to all projects that will be deployed.

11

Adding GHUnit Framework
GHUnit framewok is added just like any other framework. The only difference is that you have to

specify the path to it manually.

12

The second step is modifying the “main.m” file. You can find its contents in the GHUnit
examples.

#import <UIKit/UIKit.h>

// If you are using the framework
#import <GHUnitIOS/GHUnit.h>
// If you are using the static library and importing header files manually
//#import "GHUnit.h"

// Default exception handler
void exceptionHandler(NSException *exception)
{
 NSLog(@"%@\n%@", [exception reason], GHUStackTraceFromException(exception));
}

int main(int argc, char *argv[])
{
 setenv("GHUNIT_AUTORUN" , "YES", 1);
 setenv("WRITE_JUNIT_XML", "YES", 1);
 setenv("GHUNIT_AUTOEXIT" , "YES", 1); // Not supported in the official GHUNIT
 NSSetUncaughtExceptionHandler(&exceptionHandler);

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 // Register any special test case classes
 //[[GHTesting sharedInstance] registerClassName:@"GHSpecialTestCase"];

 int retVal = 0;
 // If GHUNIT_CLI is set we are using the command line interface and run the tests
 // Otherwise load the GUI app
 if (getenv("GHUNIT_CLI"))
 {
 retVal = [GHTestRunner run];
 }
 else
 {
 retVal = UIApplicationMain(argc, argv, nil, @"GHUnitIPhoneAppDelegate");
 }

 [pool release];
 return retVal;
}

13

You must also remove all view controllers and nib files, generated by the wizard. The remaining
files are :

1. main.m
2. *.pch – precompiled headers
3. *-Info.plist

You'll also have to remove “MainNibFile” entry from the info.plits file.

14

Now we are ready to add test cases. A test case is typically stored in a singe *.m file (both
declaration and implementation). It may contain the “-(void)setUp” and “-(void)tearDown” methods to
manage common test context. Test methods are started with the “test” word and should not be declared
at the @interface section. They will be recognized by name, starting with “test”.

For example:

@interface StaticLibraryTest : GHTestCase
@end

@implementation StaticLibraryTest

-(void)testAdd
{
 // put test code here
}

15

Adding a “Plain Library” Project
In order to create a library project, just use a wizard within the xCode.

16

Once it has been created, we'll add some sample code and link it to our main project. First of all,
we'll add a subproject.

17

Once added, we'll have to set up the dependencies to it. Dependency types are :
1. Build time dependency – we have to make xCode know that a referenced project should

be built before the main project.

2. Link dependency – the library must be linked with the main project. Otherwise the
symbols will be inaccessible. Hence, the application will either fail to build or crash at
runtime.

18

3. Header files include dependency – we need to access header files with the interface
declarations.

And that's it! Now we can use code from the library. xCode will now automatically ensure that
library subproject is built at the correct time and that its correct version is linked.

19

Creating a “Universal Binary” Library

The Purpose of “Universal Binaries”

Normally, xCode builds two versions of a library. One is for real devices. The other one is used
for the simulator enabled application builds. It is very different from desktop projects where you have
only one version of the library.

This is not a problem since you have library sources and can compile it by yourself. However, the
library may contain some know-how code you will not want to distribute in a text form.

(** NOTE : we are not covering anti-disassembling and reverse engineering techniques in this
article **).

In this case you may want to distribute it just as you distribute any desktop targeted library. You
provide your customers a set of headers and a binary. Meaning that you can link this to both the device
and the simulator applications.

It is not a good idea to still have two separate library binaries because of some peculiarities for
management of the libraries . xCode just won't handle them properly.

Apple uses the same approach for its “frameworks”. However, frameworks are officially
unavailable for iOS. Still, some libraries are packaged and successfully used in this way. An example is
GHUnit.ftramework.

We won't cover framework deployment in this article. However, we'll show how to make a
universal binary and properly deploy it.

Creating a Universal Library

Firstly, you have to create a plain static library. Just as described above.
The next step is to combine device and simulator versions. We'll use a shell script for this

purpose. The script will:
1. Build a library version for the device.
2. Build a library version for the simulator.
3. Combine them to a single binary
4. Deploy universal library to the “frameworks” directory.

We build device and simulator versions using xcodebuild command line interface.
Device version :
xcodebuild -project CITest-Model-Universal.xcodeproj -target CITest-Model-Universal

-configuration Release -sdk iphoneos4.3 build
Simulator version:
xcodebuild -project CITest-Model-Universal.xcodeproj -target CITest-Model-Universal

-configuration Release -sdk iphonesimulator4.3 build

For details, see “xcode4 command line manual” article. Or just use “man xcodebuild”.

20

Once specific (device/simulator) versions of the library are ready, we need to locate them on the
file system. We do this by reading the path entry, dumped by the xCode script, described above.

LIB_BUILD_DIR=$(cat /tmp/CITestBuild/CI_TEST_UNIVERSAL_LIB_PRODUCT_DIR.txt)

(*** Note : you can safely dump project path entries to any other locations. ***)

Device and simulator library versions are stored at “$LIB_BUILD_DIR/Release-iphoneos” and
“$LIB_BUILD_DIR/Release-iphonesimulator” respectively.

In order to combine them into a single binary, we use the following command :
lipo -create "${LIB_BUILD_DIR}/Release-iphoneos/libCITest_Model_Universal.a" "$

{LIB_BUILD_DIR}/Release-iphonesimulator/libCITest_Model_Universal.a" -output
"../frameworks/CITest-Model-Universal/Lib/libCITest_Model_Universal.a"

(*** NOTE: the order of libraries is important here.
A library for the device goes first. The one for the simulator goes next ***)

Now we only need to copy the sources to the location beside the binary.
cd ../ lib/CITest-Model-Universal
 cp *.h "../frameworks/CITest-Model-Universal/include"
cd "$LAUNCH_DIR"

Still, you must make sure that your deployment directory exists and the results can be saved in it.

Using Universal Binaries

In order to use a universal binary, you must add the file system path to its headers to the search
list. This path points to the frameworks directory where the library was deployed.

You should also add the library file to the project and to its linker dependencies.

21

Alternatively, you could link it with the console linker flag -l<library name>.
For example, -lCITest_Model_Universal . Please note that the filename is

libCITest_Model_Universal.a . So, lib prefix and .a suffix have been omitted.

22

Deploying Main Application
We deploy our applications for the simulator by sending our testers the *.app bundle, built for the

simulator. It can be launched and tested with the help of the iphonesim utility as described above. It is
produced by the xCode. So, no further steps should be taken.

For the device we must create a digitally signed *.ipa file from the device *.app bundle.
In order to do this, we must do the following things :

1. Build the product.
Just as described above for the universal library.

2. Locate a bundle on the file system
Once again, we do it by reading the contents of the file, dumped by the xCode script.
BUILD_DIR=$(cat /tmp/CITestBuild/CI_TEST_PRODUCT_DIR.txt)

3. Prepare the information about provisioning certificates
DEVELOPER_NAME="iPhone Developer: Oleksandr Dodatko (ABCDEFG123456)"
PROVISONING_PROFILE=../certificates/CITest.mobileprovision
(*** Note : this should be adjusted for your provisioning ***)

4. Finally – create the *.ipa file
/usr/bin/xcrun -sdk iphoneos PackageApplication -v "${BUILD_DIR}/Release-
iphoneos/CITest.app" -o "${DEPLOYMENT_DIR}/CITest.ipa" --sign "$
{DEVELOPER_NAME}" --embed "${PROVISONING_PROFILE}"

After successful deployment you should have a directory with similar contents:

23

Creating a Hudson Job
Once you are able to build the project on your local machine, you should set up a job at the build

server.

24

	Abstract
	Selecting a Framework for Unit Testing
	SenTestingKit
	Google Toolbox
	GHUnit
	Test Frameworks Comparisson

	Setting Up GHUnit for Continuous Integration.
	Passing Data to the Application
	Running a Test
	Terminating an Application
	Extracting Test Results

	Defining the Project Structure
	Creating a Main Unit Test Project
	Adding GHUnit Framework
	Adding a “Plain Library” Project
	Creating a “Universal Binary” Library
	The Purpose of “Universal Binaries”
	Creating a Universal Library
	Using Universal Binaries

	Deploying Main Application
	Creating a Hudson Job

