
1

The WORM:
a CALDERA plugin

Author: Emilio Panti

Github page: link

https://github.com/EmilioPanti/worm

2

Summary
1 INTRODUCTION ... 3

1.1 Information ... 3

1.2 Why this plugin ... 3

2 WORM DEFINITION ... 3

3 MODELLING WORM IN CALDERA .. 3

3.1 Group registration for new agents.. 3

3.2 Example ... 4

3.3 Problems ... 7

3.4 Solutions.. 8

4 THE WORM PLUGIN .. 8

4.1 WORM plugin goals ... 8

4.2 Requirements and quick start ... 9

4.3 New features ... 9

4.3.1 Goal .. 9

4.3.2 Worm-planners .. 11

4.3.3 Worm-operation .. 11

4.3.4 Report .. 17

4.3.5 Additional agent features .. 17

4.4 HTTP REST API ... 18

4.4.1 PUT ... 18

4.4.2 POST ... 19

5 CONCLUDING REMARKS AND INTEGRATION ... 20

3

1 INTRODUCTION

 1.1 Information
This document describes some extra details the accompanying presentation neglects. This

work is a part of my graduation thesis at Università di Pisa (Italy). My supervisor is professor

Fabrizio Baiardi This material can be used freely by properly referencing my name and

Università di Pisa.

 1.2 Why this plugin
When modeling worm-attacks in the CALDERA system, some problems and inconsistencies

may arise. The WORM plugin aims to solve these problems and it adds useful features to the

worm-attacks simulation, such as the definition of an attack goal and of a policy.

Before presenting the WORM plugin, we define a worm is, its implementation in CALDERA

and the problems that may arise. An example is presented.

2 WORM DEFINITION

A computer-worm (or simply worm) is an autonomous malware program that replicates itself

to spread to other computers.

In CALDERA, a worm is an operation with an adversary profile that aims to automatically

expand and replicate the CALDERA agent in other network computers. In this context, a father

agent denotes the agent that manages to expand/replicate to other hosts, and child agents

are the copies of itself a father agent generates.

3 MODELLING WORM IN CALDERA

 3.1 Group registration for new agents
The simulation of a worm-attack requires the creation of an adversary profile with the abilities

enabling a lateral movement. When a new agent is created, the group to register it should be

chosen. Possible solutions are the father agent group (as recommended by the CALDERA's

creators), or a distinct group.

The latter case is neglected as it clashes with the previous definition of worm: in fact, in order

to continue the worm-attack, a new operation is manually started on each new agent. For

this reason, we will analyze only the former case that can be easily implemented using the

global variable #{group} within the relevant abilities.

https://www.di.unipi.it/en/
http://pages.di.unipi.it/tonelli/baiardi/

4

When we execute such an adversary profile, we expect that all the new agents execute the

same adversary profile automatically and respect the order of its phases. This is what happens

for the father agent. Instead, in practice, this may not happen and inconsistent scenarios are

possible - as shown in the following example.

 3.2 Example
In this example we will use the CALDERA default tools: Sequential Planner and Sandcat agent.

Suppose we have an adversary profile, AD-LM, that executes lateral movements and that

during X phase starts a new agent by registering it in the father agent group.

Use case: we start an operation with AD-LM on the starting group group_1 that includes the

single agent agent_1. In the X phase of this simulation, the agent_1 succeeds in starting a new

agent (agent_2) in a distinct network host.

Graphically:

Phase analysis:

5

Simulation of the operation at the abstract level:

Figure 1: phase 1

Figure 2: phase (x-1)

Figure 3: phase X successful lateral movement

6

Figure 4: Phase (x+1)

Figure 5: phases recovery for agent_2

Figure 6: links generation for agent_2

7

 3.3 Problems
If the phases to be recovered are treated as a single phase the following problems arise:

1. As shown in the previous example, the k links may be executed in an unexpected

order. According to their score, some phase Y links - with 1 <= Y <= X - may be executed

before those of phase (Y+1).

2. The k links are generated by exploiting the facts agent_1 collects in phases 1-X only,

because they are all generated simultaneously.

A first consequence concerns abilities - in phases 1 to (x+1) - that use variables that can be

filled by host-facts. In fact, in phase (x+1), CALDERA will not generate any links from these

abilities set for agent_2, due to the absence of agent_2's host-fact. These abilities – for

agent_2 - will be recovered in the phase (x+2) - if the relevant host-facts were collected in

phase (x+1). Obviously, this delayed recovery can lead to an unexpected execution order and,

if some dependencies exist between the abilities that use host-facts in phases 1 - (x+1), this

situation will also recur in the following phases (x+3, x+4, …) until all dependencies are

resolved.

A second important consequence is the possible repetition of abilities previously executed if

agent_2 collects - in phase (x+1) - some new global-facts that the abilities of previous phases

can exploit from. In this case, CALDERA in phase (x+2) will generate not only the links deriving

from the abilities of phase (x+2), but also all the new potential links of previous abilities by

exploiting the new information the agent_2 collects. This leads to an unexpected execution

order. Furthermore, if some dependencies exist between the repeated abilities and distinct

previous abilities, this situation will also recur in the subsequent phases (x+3, x+4, …) until all

dependencies are resolved. Note that, even when neglecting ordering problems, some

repetitions of abilities could be totally useless if the following abilities are not repeated after

them. Moreover, with respect to the first consequence, these effects may involve all the

agents of the operation.

The last consequence concerns the case where some agents do not execute the entire

adversary profile. New agents created in the last phase of the attack may never start the

operation and new agents created in the final phases (but not in the last) may not execute

some abilities because of dependencies among the abilities to be recovered - this happens

particularly with abilities that use variables that can only be filled with host-facts.

All the problems previously discussed can even be intertwined and increase exponentially

with respect to the number of new agents joining the operation and the number of

dependencies among abilities in distinct phases.

These observations show that convergence to a stable situation is highly complex after a

successful lateral movement.

Moreover, in CALDERA it is complex to establish father/child relationships in attacks with

several agents and it is not possible to define a worm goal – e.g. an agent that satisfies some

conditions.

We can resume the possible problems as follows:

1. new agents:

a. may not execute the "recovery" links in the expected order

8

b. may never start the operation

c. may not execute some abilities/phases

2. the new global-facts the new agents collect during the phases recovery could force all

the agents in the operation to repeat some abilities resulting in violation of the

expected execution order.

3. complex to deduce father/child relationships.

4. no goal can be paired with a worm.

 3.4 Solutions
With the exception of father/child relationships and worm goals, all the problems arise

because of two implementation choices:

1 the operations are driven by the execution phase in the first place and then by the

agents

2 for each agent, the links of all the phases executed up to now are generated -- not just

the current one

The WORM plugin offers a possible solution as it introduces a new operation type with a

distinct logic (worm-operation) and a new class of planners that generate links only for the

current phase of the attack (worm-planners).

4 THE WORM PLUGIN

Github page: WORM plugin.

Currently two project branches:

• worm/master: worm plugin compatible (as far as possible) with the ongoing

CALDERA version

• worm/caldera-v2.3.2: worm plugin compatible with the CALDERA version 2.3.2

 4.1 WORM plugin goals

The main goal of the WORM plugin is to create a system that automatically models worm and

solves the CALDERA problems.

Other goals:

1. generate an agent map to correlate fathers with child agents

2. define a worm goal

3. choose the worm policy: possible solutions are to stop the attack as soon as a goal is

reached or to continue the attack until expansion is possible

4. provide a more detailed report of a worm attack

https://github.com/EmilioPanti/worm
https://github.com/EmilioPanti/worm
https://github.com/EmilioPanti/worm/tree/caldera-v2.3.2

9

5. offer a simple and fast way to split the agents in two groups: those that have fulfilled

the attack goal and the other ones. This simplifies to start subsequent operations in

specific groups of agents only.

 4.2 Requirements and quick start

To work properly, this plugin needs some extra features with respect to the basic CALDERA

version. It is possible to download here the version with these features (for the ongoing

CALDERA version). The two versions differ because of an extra agent property: the father.

This property simplifies the creation of an agents map and the correlation of fathers with child

agents.

This solution changes the CALDERA code and not the WORM plugin for two reasons: it is easier

to implement and simpler and furthermore, it may be useful even for "normal" CALDERA

operations -- therefore this change could be accepted and integrated.

Currently, there are two pull requests open regarding this change: PR/CALDERA and

PR/Sandcat.

Instructions for quick start:

1. Use a CALDERA version that includes the father parameter for agents - like the one

discussed above.

2. Edit the plugins/sandcat/gocat/sandcat.go file following this PR.

3. Download the WORM plugin and insert it into CALDERA plugins folder.

4. Insert the WORM plugin in the CALDERA conf/local.yml configuration file:

 4.3 New features

The WORM plugin introduces the following new features:

1. worm-operation: a new type of operation

2. worm-planners: a new class of planners

3. goal: a new concept

4. a new report for worm-operations

5. some further features for agents

It is possible to use these features both via REST API and GUI.

 4.3.1 Goal

A goal is a formula in Conjunctive Normal Form (CNF); a conjunction of clauses, where the

clauses are a disjunction of literals:

https://github.com/EmilioPanti/caldera/tree/EmilioPanti-AgentFather
https://github.com/mitre/caldera/pull/627
https://github.com/mitre/sandcat/pull/111
https://github.com/mitre/sandcat/pull/111/files

10

A goal is achieved if in any clause at least one condition is satisfied and an agent that satisfies

the goal is called goal-agent. Every literal can be a condition on the properties (namely the

fields of the database core_agent table) of an agent, or on host-facts collected by an agent.

The goal definition is closely related to the adversary profile we would like to execute as it

defines the host-facts the agents can collect.

Goal example:

(host.file.sensitive='fileX') ∧ (platform='linux' ∨ platform='windows')

A goal may by defined by creating a yml file and by saving it in the appropriate data/goals

directory of the WORM plugin or via GUI - the yml file is automatically created in this case.

Building goal by yml file:

Building goal by GUI:

11

Graphical interface to add a literal to a clause:

 4.3.2 Worm-planners

A worm-planner is a module to decide the abilities and their order in a running worm-

operation. As with normal CALDERA operations, custom planners can be used for worm-

operations as well. To load custom planners, insert the .yml file in the data/planners folder.

Worm-planners have to implement two functions:

1. create_links(): given a worm-operation and an agent, it generates all possible links for

the next phase the agent should execute.

2. create_cleanup_links(): given a worm-operation and an agent, it generates the

cleanup links for the phases the agent has executed.

The default planner for worm-operations is the worm_sequential planner and, as its

counterpart for normal operations, it orders the generated links in descending score order.

 4.3.3 Worm-operation

Only the differences with respect to the normal CALDERA operation will be discussed.

Worm-operations are a new operation type with a distinct logic: they are driven in the first

place by the agents and then by the execution phase. In this way, the agents execute the

adversary profile independently (asynchronously) of each other.

Agent independence speeds up both the entire attack and the expansion through lateral

movements. Moreover, it ensures that all agents execute the entire adversary profile and the

resulting phases in the expected order.

With respect to normal CALDERA operations, worm-operations add two additional

parameters :

1. goal: a goal may be set for worm-operations

2. goal-policy: if a goal is set, it is possible to choose one of the following policies:

• first goal-agents: the worm-operation ends as soon as any agent satisfies the

goal or when it will no longer be possible to expand and any agent has

concluded the attack.

12

• maximum expansion: the worm-operation will end only when no expansion is

possible and any agent has concluded the attack.

Both policies may produce distinct goal-agents.

A worm-operation ends for one of the following reasons

1. all agents have executed the entire adversary profile,

2. the user manually stops the worm-operation,

3. at least one goal-agent exists and the user has chosen first goal-agents as the policy.

In the first two cases, the agents may stop before running the entire adversary profile.

Anyway, cleanup links will always be executed for all agents.

The expression "an agent has concluded the attack" implies it executed the clean-up links -

regardless of the phase it has reached.

If a worm-operation is manually stopped, it cannot be restarted - like the normal CALDERA

operation - but it is completely terminated. Furthermore, manual approval is not possible for

worm-operations.

Worm-operation status without goal:

• EXPANSION: at least one agent still has to complete the attack.

• ENDED: all the agents concluded the attack.

• CLOSING: the worm-operation is waiting for all the agents to perform the clean-up

links, in order to conclude the attack.

• STOPPED: all the agents concluded the attack, after a user stop request.

Worm-operation status with goal:

• ONGOING: at least one agent has not completed the attack yet.

o Search: no goal-agent exists yet.

13

o Continuous search: at least one goal-agent exists and the worm-operation

policy is 'maximum expansion'.

• ENDED: all the agents have concluded the attack.

o Success: at least one goal-agent exists.

o Failure: no goal-agent exists.

• CLOSING: the worm-operation is waiting for all link clean ups by the agents, in order

to end the attack.

o Goal-achieved: at least one goal-agent exists and the worm-operation policy is

'first goal-agents'.

o Stopped by user: the user has stopped the worm-operation.

• STOPPED: all the agents concluded the attack due to a user stop request.

o Success: at least one goal-agent exists.

o Failure: no goal-agent exists.

The GUI also offers some new features during a running worm-operation. In addition to the

timeline links, it can build a view of agents family tree – a minimal reconstruction of the

father/child relationships of the agents – and orphan agents - a list of agents for which no

father agent was found.

To build the agents family tree the abilites that performs lateral movements have to include

the father parameter to the delivery command for new agents. This is supported by the global

variable #{paw}.

Example:

A correct use of the father parameter guarantees that no orphan agent exists.

do curl -sk -X POST -H 'file:sandcat.go' -H 'platform:linux' #{server}/file/download > /tmp/sandcat-linux &&

chmod +x /tmp/sandcat-linux && /tmp/sandcat-linux -server #{server} -group #{group} -father #{paw};

14

Some GUI screens:

Figure 7: Interface with all the configurations (and options) to start a worm-operation

Figure 8: Interface at the end (or during the execution) of a worm-operation

15

Figure 9: Interface at the end (or during the execution) of a worm-operation

The presentation of all the elements of worm-operations simplify the understanding of the

life cycle - and of the logic - of worm-operations.

Life cycle of a worm-operation using the worm_sequential planner:

16

Links generation for ready-agents:

Generates links for the next phase that the agent should execute:

Note: worm-operations offer an alternative approach to the execution of an adversary profile.

Hence, it may be used for any type of adversary profile, even if it does not perform lateral

movements.

17

 4.3.4 Report

Even for worm-operations it is possible to download (and view by GUI) the report that

summarizes the execution.

With respect to normal operations, these reports include:

• goal: if set one, it shows the name and description

• policy: if the worm-operation had a goal, it shows the chosen policy.

• goal-agents: percentage of goal-agents and list of their paw.

The database level mapping between a worm-operation and participating agents guarantees

that any report information remains consistent even if some agents change groups after the

end of the worm-operation. In normal operations, this is not assured because the information

on the operation agents is recovered according to the group of each agent.

Figure 10: Report GUI

 4.3.5 Additional agent features

After the end of a worm-operation, it is possible to see the list of the involved agents and

which of them are goal-agents, compare the results of a finished worm-operation with other

goals - associated with the executed adversary profile – and split the participating agents into

the goal-agents and the no-goal-agents – into two distinct groups.

18

Figure 11: additional features for agents GUI

 4.4 HTTP REST API
Note: the addresses shown later must be added to the CALDERA server address.

 4.4.1 PUT

Create worm-operation:

Address: /plugin/worm/rest

It is possible to create new worm-operations by sending a request with the following:

Create goal:

Address: /plugin/worm/rest

It is possible to create new goals by sending a request with the following:

{
 "index":"worm",
 "name": name,
 "group": group,
 "adversary_id": 1,
 "planner": 1,
 "jitter": "4/8",
 "sources": [1, …],
 "allow_untrusted": 0,
 "goal_id": 1,
 "stop_at_first_goals": 1
}

19

Stop running worm-operation:

Address: /plugin/worm/stop

It is possible to stop running worm-operation by sending a request with the

following:

Split agents:

Address: /plugin/worm/agents/split

It is possible to assign two distinct lists of agents to two distinct groups by sending a

request with the following:

 4.4.2 POST

The address for all POST requests is /plugin/worm/rest

Get worm-operations/goals details:

It is possible to execute a POST request to get details about the two database tables

“worm” and “goal”.

A request would need the following POST data, which would read all data from the

given tableName:

{"index": tableName}

Optionally, it is possible to pass a key/value pair to filter your results. A sample

request to view a specific worm-operation, by the id column, would look like:

{"index": "worm", "id": 1}

{

 "index":"goal",

 "name": name,

 "group": group,

 "adversary_id": UUID-adversary-identifier,

 "clauses": [{"clause": 1, "type": type, "name": name, "value": value}, …],
 "i": UUID-goal-identifier

}

{

 "index":"worm",

 "id": 1

}

{
 "index": "split_agent",
 "goal_agents": [1, …],
 "no_goal_agents": [2, …],
 "goal_group": name-goal-group,
 "no_goal_group": name-no-goal-group
}

20

Get worm-operations report:

It is possible to execute a POST request to get a worm-operation report - json string

containing information of the worm-operation execution - by sending a request with

the following:

{"index": "worm_report", "worm_id": 1}

Relate worm-operations to distinct goals:

It is possible to execute a POST request to relate the results of worm-operations to

distinct goals by sending the following request:

{"index": "relate_worm_goal", "worm_id": 1, "goal_id": 3}

The response to this request includesthe list of agents which participated in the

worm-operation, specifying which of them are goal-agents with respect to the

chosen goal.

The goal must be related to the same adversary profile executed in the worm-

operation.

5 CONCLUDING REMARKS AND INTEGRATION
The worm-operations have a more rigorous and confined behavior than normal operations:

all the participating agents execute all the phases in the expected order . Furthermore, the

WORM plugin offers a set of useful and supportive features for simulating worm-attacks.

The WORM plugin could be completely integrated with the CALDERA core system and the

CHAIN plugin by:

1. introducing the father parameter for agents (PR)

2. extending the concept of goals also to normal operations

3. adding the agent-map section even to normal operations

4. enabling the choice of one of two distinct logics when running an adversary profile:

• assign a larger priority to the phases than to the agents --> normal CALDERA

operations logic

• assign a larger priority to the agents than to the phases--> worm-operations logic

https://github.com/mitre/caldera/pull/627

