
CALDERA:
an automated adversary

emulation system

Emilio Panti

• I am Emilio Panti, computer science student at the Università di Pisa (Italy).

• My github page: link

• This presentation is informative only and it has been devoloped in the

framework of my gradutation thesis at Università di Pisa (Italy). My

supervisor is professor Fabrizio Baiardi.

• Presentation outline:

1. CALDERA (version 2.3.2) structure, its operation model and how it operates.

2. Our extension to define the WORM plugin and integrate it in CALDERA.

Introduction

https://github.com/EmilioPanti
https://www.di.unipi.it/en/
http://pages.di.unipi.it/tonelli/baiardi/

PART ONE: CALDERA
• An automated adversary emulation system defined in the MITRE

ATT&CK™ framework.

• Developed by the MITRE Corporation.

• An actively developed project (github page: mitre/caldera).

• Last stable version: 2.3.2

• Minimal installation time

• Highly and easily customizable

• Low overhead – run it on a laptop

• Multiplatform: Windows, Linux, OSX

• Requirements: Python 3.5.3+

https://attack.mitre.org/
https://www.mitre.org/
https://github.com/mitre/caldera#planning-system

CALDERA Philosophy

Adversary emulation “post compromise”:

• the adversary already has an initial foothold on a network (or in one host)

• focus on actions after the initial compromise – in this way CALDERA exercises network
defence areas that are commonly weak and untested

Because of “post compromise” it neglects:

• how an adversary “gets in”.

• precursors such as

• vulnerability scanning,

• intelligence gathering,

• spearphising.

How to emulate an adversary

• Knowledge base needed matrix MITRE ATT&CK

• MITRE ATT&CK matrix:

• A knowledge base of adversary tactics (subdivided into techniques) based on
real-world observations

• 12 tactics

• ~ 250 techniques

a part of the ATT&CK matrix

What is an adversary?

MATRIX ATT&CK

• ADVERSARY = collection of techniques

• TECHNIQUE = specific behavior to achieve a
goal and that may be a single step in a string of
activities to complete the attacker's mission

CALDERA

• ADVERSARY = collection of abilities

• ABILITY = specific ATT&CK technique
implementation (procedure) stored in YML
format

PRACTICAL / EXECUTABLE CONCEPTMORE "ABSTRACT" CONCEPT

Distinct CALDERA abilities can implement the same ATT&CK technique

Example of a yml file describing a CALDERA ability ->

Example of a technique description in MITRE ATT&CK

• CALDERA maps an adversary profile into a chain of actions.

• A planner:

• creates the chain to simulate the adversary behavior

• is a module to choose the abilities and their execution order in a running operation

• CALDERA default planner -> the Sequential planner

Action 1

...

Action N

ADVERSARY (described
as a collection of

CALDERA abilities)

CALDERA's planner
CHAIN of executable

actions to emulate the
adversary

• An open plugin architecture on top of a core.

CORE

Adversary

Custom ?

• Core: the basic functionalities (database
management, authentication, etc.) and
services

• Plugin:

• separate git repository that plugs new
features into the core system.

• It resides in the plugins directory and is
loaded into CALDERA through a
configuration file.

CALDERA Server:

Terminal

Mock

Chain

Caltack

Stockpile

SSL

Sandcat

GUI

CALDERA: Key concepts (1)

• Agent: an individual computer running a RAT/agent that connects to CALDERA
in order to get instructions, executes them and returns the results.

• Trusted/untrusted agents: an agent becomes untrusted if it remains silent for more than a
configurable time interval.

• Group: a collection of agents to support concurrent operations against multiple
computers rather than sequential one.

• Ability: an implementation of a specific ATT&CK technique (procedure).

• Currently supported platforms (and executors): Linux/Darwin (sh), Windows (psh/cmd/pwsh).

• The ability command section may contain variables, identified as #{variable}, which can be
filled with facts.

• The ability output can be parsed into facts.

CALDERA: Key concepts (2)

• Fact: an identifiable piece of information (with a score) about a computer:

• Host-fact: fact where the property major component = host (e.g.
host.user.name). Operations with multiple agents can substitute the variable in the abilities
only with the facts the specific agent has collected.

• Global-facts: any fact that is not a host-fact. Used by all operation agents.

• Link: a (unique) variant of an ability where distinct fact combinations have
replaced variables and are ready to be executed.

• Adversary: a threat profile contains a set of abilities, that may be grouped into
phases to enable a user to choose their execution order.

• Operation: it starts when pointing an adversary at a group to run all capable
abilities.

My proposals

1. Trusted/untrusted agents: this enables a running operation to choose whether
to allow or not untrusted agents.

• This prevents an entire operation from stopping as it waits for the results of a "dead"
agent.

2. Host-facts, and the following distinction with respect to the global-facts, are the
evolution of private-facts, a concept I have introduced and implemented.

• Private facts: same concept of host-facts but defined by the key word "private" in the
property field (e.g. host.file.private)

• from version 2.3.1: private-facts -> host-facts

MITRE Corporation has accepted both proposals and incorporated in its
implementation.

"Ingredients" of an operation:

phase 1

...

phase N

ADVERSARY
"OPERATION's
KNOWLEDGE"

GROUP

Collection of agents
partecipating in the

operation

Collection of all collected
facts, both host-facts and

global-facts.

Before starting an operation,
some optional configurations

may provide a "pre-
knowledge" by attaching a

source of facts.

Abilities in
phase 1

Abilities in
phase N

.

.

.

.

.

.

Life cycle of an operation (using the default sequential planner):

no more agents
For each AGENT (in the group)

"operation's
knowledge"

no more phases
For each PHASE (in the adversary)

waits that all agents have
executed all of their links

FINISH
START

Cleanup-links generation (same
process of link generation)

Links generation (see the
next slide)

1) Is it compatible with the agent's OS?
2) Can all the variables in the ability be replaced by at least one fact

combination?

3) Create a distinct link for each fact combination with a score that is the
sum of the scores of the combined facts

4) Discard the links already executed
5) Sort remaining links in a decreasing order of their scores

Get the next
agent

AGENT

yes

For each ABILITY (from phase 1 to the current
phase)

parsing of results (if facts have been collected,
knowledge is updated)

no

no more ability

Links generation:

Worm: some definitions

• Computer-worm (or simply worm): an autonomous malware program that
replicates itself to spread to other computers.

• Worm in CALDERA: operation with an adversary profile that aims to
automatically expand and replicate the CALDERA agent in other
computers by lateral movements.

• Father agent: agent that manages to expand/replicate to other hosts.

• Child agents: the copies of itself a father agent generates.

Modeling worm in CALDERA: problems

• New agents joining the operation after successful lateral movements:

• may not execute the attack phases in the expected order - due to the forced recovery of
the phases already executed (by the father-agents) as if they were a single phase.

• may never start the operation - if they join in the last phase,

• may not execute some abilities - due to the possible dependencies between them.

• The new global-facts the new agents collect during the recovery of the phases
could force all the agents in the operation to repeat some abilities resulting in
violation of the expected execution order.

• Complex to deduce father/child relationships.

• Impossible to define a worm goal (eg an agent that satisfies some conditions).

• LOCATE PROBLEMS most problems arise because of two implementation
choices:

1. the operations are mainly driven in the first place by the execution phase and then
by the agents

2. for each agent, the links of all the phases executed up to now are generated -- not
just the current one

• SOLUTIONS:

1. worm-operation : a new operation type with a distinct logic.

2. worm-planners: a new class of planners that generate links for the current phase of
the attack only.

WORM PLUGIN

PART TWO: WORM PLUGIN

• Github page: WORM plugin.

• Plugin goals:

1.Create a system that solve CALDERA problems to automatically models worm;.

2.Generate an agents map to correlate fathers and child agents.

3.Define a worm goal and a worm policy:

• stop the attack as soon as a goal is reached.

• continue the attack until expansion is possible.

4.Return a more detailed report of a worm attack.

5.Supports a simple and fast way to split the agents in two groups:

• those that have fulfilled the attack goal

• the other ones

https://github.com/EmilioPanti/worm

To be noticed

• To work properly, this plugin needs some extra features with respect to the
basic CALDERA version.

• You can download here the version with these features.

• The two versions differ because of a further agent property: the father.

• The father parameter makes it possible to generate an agents map and
correlate fathers with child agents.

• Why change the CALDERA code rather than the WORM plugin?

1. Easier to implement and clearer -- only 10 lines of code.

2. It may be useful even for "normal" CALDERA operations -- therefore this change
could be accepted and integrated (two open pull request PR/Caldera and PR/Sandcat)

https://github.com/EmilioPanti/caldera/tree/EmilioPanti-AgentFather
https://github.com/mitre/caldera/pull/627
https://github.com/mitre/sandcat/pull/111/files

Goal

• A formula in Conjunctive Normal Form (CNF): a conjunction of
clauses, where the clauses are a disjunction of literals. Every literal can be a
condition:

1. on the properties (namely the fields of the db core_agent table) of an agent.

2. on host-facts collected by an agent.

Example: (host.file.sensitive='fileX') ∧ (platform='linux' ∨ platform='windows')

• The goal definition is closely related to the adversary profile we would like to
execute as it defines the host-facts the agents can collect.

• A goal is achieved if in ANY clause at least ONE condition is satisfied.

• Goal-agent: an agent that satisfies the goal.

Worm-planners

• New class of planners.

• Worm-planner: a module to decide the abilities a running worm-operation should
use and their execution order .

• Worm-operation planners have to implement two functions:

1. create_links(): given a worm-operation and an agent, it generates all possible links
for the next phase the agent should execute.

2. create_cleanup_links(): given a worm-operation and an agent, it generates the
cleanup links for the phases the agent has executed.

• Default worm-planner: the worm_sequential planner:

• as its counterpart for normal operations, it orders generated links according in
descending score order.

Worm-operation: basic logic

• New operation type with a distinct logic.

• This operations type is driven by the agents in the first place and then
by the execution phase.

• This implies the agents execute the adversary profile independently
(asynchronously) of each other.

e.g. agent X can be in phase 1 while agent Y is in phase 4.

• Agent independence:

1. speeds up both the entire attack and the expansion through lateral movements

2. guarantees that all agents execute the ENTIRE adversary profile and the phases in
the EXPECTED ORDER

Worm-operation: agent map & goal

Optional parameters added (with respect to normal CALDERA operations):

• goal: it is possible to set a goal for worm-operations

• goal-policy: if a goal is set, it is possible to choose one of the following :

1. first goal-agents: the worm-operation ends as soon as any agent satisfies the goal or
when no expansion is possible and any agent has concluded the attack.

2. maximum expansion: the worm-operation will end only when no expansion is possible
and any agent has concluded the attack.

Note: Both policies may produce distinct goal-agents.

During a running worm-operation, the GUI can build a view of:

• "agents family tree": minimal reconstruction of the father / child relationships of the
agents

• "orphan agents": list of agents for which no father agent was found

WORM plugin: new features (summary)

1. Worm-operation: a new type of operation.

2. Worm-planners: a new class of planners.

3. Goal: a new concept.

4. A new report for worm-operations with additional information regarding: goal,
worm-policy and percentage of goal-agents.

5. Some further features for agents. After the end of a worm-operation, it is possible to:

• compare the results of a finished worm-operation with other goals - associated with the
executed adversary profile

• split the participating agents into the goal-agents and the no-goal-agents

It is possible to use these features both via REST API and GUI.

Concluding remarks & possible integration

• All set plugin goals are met.

• The worm-operations have a clearer and more confined behavior than normal
operations. All phases are performed in the expected order and for all participating
agents.

• The WORM plugin could be completely integrated with CALDERA by:

1.introducing the father parameter for agents (PR)

2.extending the concept of goals also to normal operations

3.adding the agent-map section even to normal operations

4.Enabling the choice of one of two distinct logics when running an adversary
profiles:

• assign a larger priority to the phases than to the agents --> normal CALDERA operations logic

• assign a larger priority to the agents than to the phases--> worm-operations logic

https://github.com/mitre/caldera/pull/627

