CALDERA:.
an automated adversary
emulation system

Emilio Panti

UNIVERSITA DI P1sA



Introduction

| am Emilio Panti, computer science student at the Universita di Pisa (ltaly).

My github page: link

This presentation is informative only and it has been devoloped in the

framework of my gradutation thesis at Universita di Pisa (ltaly). My

supervisor is professor Fabrizio Baiardi.

Presentation outline:

1. CALDERA (version 2.3.2) structure, its operation model and how it operates.

2. Ourextension to define the WORM plugin and integrate it in CALDERA.


https://github.com/EmilioPanti
https://www.di.unipi.it/en/
http://pages.di.unipi.it/tonelli/baiardi/

PART ONE: CALDERA

An automated adversary emulation system defined in the MITRE
ATT&CK™ framework.

Developed by the MITRE Corporation.

An actively developed project (github page: mitre/caldera).

Last stable version: 2.3.2

Minimal installation time

Highly and easily customizable

Low overhead —run it on a laptop
Multiplatform: Windows, Linux, OSX
Requirements: Python 3.5.3+



https://attack.mitre.org/
https://www.mitre.org/
https://github.com/mitre/caldera#planning-system

CALDERA Philosophy

Adversary emulation “"post compromise”:
® the adversary already has an initial foothold on a network (or in one host)

® focus on actions after the initial compromise — in this way CALDERA exercises network
defence areas that are commonly weak and untested

Because of "post compromise” it neglects:
® how an adversary “getsin”.

® precursors such as
® wvulnerability scanning,
® intelligence gathering,

® spearphising.



How to emulate an adversary

® MITRE ATT&CK matrix:

® Knowledge base needed ‘ matrix MITRE ATT&CK

® A knowledge base of adversary tactics (subdivided into techniques) based on

Privilege Lateral

real-world observations

® 12 tactics

® ~ 250 techniques

Drive-by
Compromise

Exploit Public-
Facing Applicaticn

External Remote

Services

Hardware

Additions

Replication
Through
Removable Media

Spearphishing
Attachment
Spearphishing
Link

Spearphishing via

Service

Supply Chain
Compromise

AppleScript

CMSTP

Command-Line
Interface

Compiled HTML File

Control Panel ltems

Dynamic Data
Exchange

Executicn through
AP

Execution through
Module Load

Exploitation for
Client Execution

_bash_profile and
.bashrc

Accessibility Features

AppCert DLLs

Applnit DLLs

Application Shimming

Authentication Package

BITS Jobs

Bootkit

Access Token

Manipulaticn
Accessibility

Features

AppCert DLLs

Applnit DLLs

Application
Shimming

Bypass User
Account Control

DLL Search Order
Hijacking
Dylib Hijacking

Exploitation for
Privilege
Escalation

Access Token

Manipulation

Binary Padding

BITS Jobs

Bypass User Account
Control

Clear Command History

CMSTP

Code Signing

Compile After Delivery

Compiled HTML File

Account

Manipulaticn

Bash History

Brute Force

Credential
Dumping

Credentials in Files

Credentials in
Registry
Exploitation fo
Credential Acce

Forced

Authentication

Hoecking

a part of the ATT&CK matrix

r
55

Account Discovery AppleScript

o ) Application
Application Window
Discovery Deployment
e Software
Distributed

Browser Bockmark

Component
Object el

Exploitation of
Domain Trust Discovery P )
Remote Services

File and Directory
Legeon Scripts

Discovery

Network Service Scanning Pass the Hash

Metwork Share Discovery  Pass the Ticket

Remote De
Pro

ktop

Wetwork Sniffing |

s

Password Policy
’ ! Remete File Copy

Discovery



What is an adversary?

MATRIX ATT&CK CALDERA
® ADVERSARY = collection of techniques ® ADVERSARY = collection of abilities
® TECHNIQUE = specific behavior to achieve a ® ABILITY = specific ATT&CK technique

goal and that may be a single step in a string of implementation (procedure) stored in YML
activities to complete the attacker's mission format

il U

MORE "ABSTRACT" CONCEPT PRACTICAL | EXECUTABLE CONCEPT

Distinct CALDERA abilities can implement the same ATT&CK technique




Example of a technique description in MITRE ATT&CK
File and Directory Discovery

Adversaries may enumerate files and directories or may search in specific locations of a host or network share for

ID: T1083
Tactic: Discovery
W|ndOWS Platform: Linux, macOS, W

certain information within a file system

Example utilities used to obtain this information are dir and tree Custom tools may also be used to gather file System Requirements. Sor

and directory information and interact with the Windows AP require AGmMIniSirato;

Mac and Linux
Permissions Required: User, Administrator,

QVETFE
Yo IlEM

In Mac and Linux, this kind of discovery is accomplished with the 1s, find, and locate commands

Data Sources: File monitoring, Process

i

nonitoring, Process commant

Version: 1.0

Mitigations

This type of attack technique cannot be easily mitigated with preventive controls since it is based on the abuse of system features

nsl -Force;

Example of a yml file describing a CALDERA ability ->




® CALDERA maps an adversary profile into a chain of actions.

® Aplanner:
® creates the chain to simulate the adversary behavior
® isamodule to choose the abilities and their execution order in a running operation

® CALDERA default planner -> the Sequential planner

ADVERSARY (described CHAIN of executable
as a collection of CALDERA's planner actions to emulate the
CALDERA abilities) adversary




CALDERA Server:

® An open plugin architecture on top of a core.

Terminal ® Core: the basic functionalities (database
} { o management, authentication, etc.) and

services
Adversary

Custom? .
' ® Plugin:
® separate git repository that plugs new
features into the core system.

A Sandcat ® It resides in the plugins directory and is
loaded into CALDERA through a

configuration file.
Caltack

Stockpile



CALDERA: Key concepts (1)

® Agent: an individual computer running a RAT/agent that connects to CALDERA
in order to get instructions, executes them and returns the results.

® Trusted/untrusted agents: an agent becomes untrusted if it remains silent for more than a
configurable time interval.

® Group: a collection of agents to support concurrent operations against multiple
computers rather than sequential one.

® Ability: an implementation of a specific ATT&CK technique (procedure).

® Currently supported platforms (and executors): Linux/Darwin (sh), Windows (psh/cmd/pwsh).

® The ability command section may contain variables, identified as #{variable}, which can be
filled with facts.

® The ability output can be parsed into facts.




CALDERA: Key concepts (2)

® Fact: an identifiable piece of information (with a score) about a computer:

® Host-fact: fact where the property major component = host (e.g.
host.user.name). Operations with multiple agents can substitute the variable in the abilities
only with the facts the specific agent has collected.

® Global-facts: any fact that is not a host-fact. Used by all operation agents.

® Link: a (unique) variant of an ability where distinct fact combinations have
replaced variables and are ready to be executed.

® Adversary: a threat profile contains a set of abilities, that may be grouped into
phases to enable a user to choose their execution order.

® Operation: it starts when pointing an adversary at a group to run all capable
abilities.




My proposals

1. Trusted/untrusted agents: this enables a running operation to choose whether
to allow or not untrusted agents.

® This prevents an entire operation from stopping as it waits for the results of a "dead"

agent.

2. Host-facts, and the following distinction with respect to the global-facts, are the
evolution of private-facts, a concept | have introduced and implemented.

Private facts: same concept of host-facts but defined by the key word "private" in the
property field (e.g. host.file.private)

from version 2.3.1: private-facts -> host-facts

MITRE Corporation has accepted both proposals and incorporated in its
implementation.



"Ingredients" of an operation:

ADVERSARY

| Abilities in
phase 1

| Abilities in
phase N

GROUP

Collection of agents
partecipatingin the
operation

"OPERATION's
KNOWLEDGE"

Collection of all collected
facts, both host-facts and
global-facts.

Before starting an operation,
some optional configurations
may provide a "pre-
knowledge" by attaching a
source of facts.




START

l

For each PHASE (in the adversary)

no more phases

Life cycle of an operation (using the default sequential planner):

"operation's

FINISH knowledge"

T

C

For each AGENT (in the group)

Cleanup-links generation (same
process of link generation) <

no more agents

y y

Links generation ( see the
next slide)

waits that all agents have Z
executed all of their links




Links generation:

AGENT

i

parsing of results (if facts have been collected,
knowledge is updated)

—{{

y

For each ABILITY (from phase 1 to the current no more ability X Get the next
q phase) ~ agent
o 1) Is it compatible with the agent's OS?

2) Can all the variables in the ability be replaced by at least one fact
combination?
lyes
A 4

3) Create a distinct link for each fact combination with a score that is the
sum of the scores of the combined facts
4) Discard the links already executed

5) Sort remaining links in a decreasing order of their scores




Worm: some definitions

Computer-worm (or simply worm): an autonomous malware program that
replicates itself to spread to other computers.

Worm in CALDERA: operation with an adversary profile that aims to
automatically expand and replicate the CALDERA agent in other
computers by lateral movements.

Father agent: agent that manages to expand/replicate to other hosts.

Child agents: the copies of itself a father agent generates.



Modeling worm in CALDERA: problems

New agents joining the operation after successful lateral movements:

® may not execute the attack phases in the expected order - due to the forced recovery of
the phases already executed (by the father-agents) as if they were a single phase.

® may never start the operation - if they join in the last phase,

® may not execute some abilities - due to the possible dependencies between them.

The new global-facts the new agents collect during the recovery of the phases
could force all the agents in the operation to repeat some abilities resulting in
violation of the expected execution order.

Complex to deduce father/child relationships.

Impossible to define a worm goal (eg an agent that satisfies some conditions).



® LOCATE PROBLEMS most problems arise because of two implementation
choices:

1. the operations are mainly driven in the first place by the execution phase and then
by the agents

2. for each agent, the links of all the phases executed up to now are generated -- not
just the current one

® SOLUTIONS:

1. worm-operation : a new operation type with a distinct logic.

2. worm-planners: a new class of planners that generate links for the current phase of

the attack only.

WORM PLUGIN



PART TWO: WORM PLUGIN

® Github page: WORM plugin.

® Plugin goals:
1.Create a system that solve CALDERA problems to automatically models worm;.

2 .Generate an agents map to correlate fathers and child agents.

3.Define a worm goal and a worm policy:
® stop the attack as soon as a goal is reached.

® continue the attack until expansion is possible.
/4 .Return a more detailed report of a worm attack.

5.Supports a simple and fast way to split the agents in two groups:

® those that have fulfilled the attack goal

® the other ones


https://github.com/EmilioPanti/worm

To be noticed

To work properly, this plugin needs some extra features with respect to the
basic CALDERA version.

You can download here the version with these features.

The two versions differ because of a further agent property: the father.

{

The father parameter makes it possible to generate an agents map and
correlate fathers with child agents.

Why change the CALDERA code rather than the WORM plugin?

1. Easiertoimplement and clearer -- only 10 lines of code.

2. ltmay be useful even for "normal" CALDERA operations -- therefore this change
could be accepted and integrated (two open pull request PR/Caldera and PR/Sandcat)



https://github.com/EmilioPanti/caldera/tree/EmilioPanti-AgentFather
https://github.com/mitre/caldera/pull/627
https://github.com/mitre/sandcat/pull/111/files

Goal

® Aformulain Conjunctive Normal Form (CNF): a conjunction of
clauses, where the clauses are a disjunction of literals. Every literal can be a
condition:

1. onthe properties (namely the fields of the db core_agent table) of an agent.
2. onhost-facts collected by an agent.

Example: (host.file.sensitive='fileX") A (platform="linux' v platform="windows")

® The goal definition is closely related to the adversary profile we would like to
execute as it defines the host-facts the agents can collect.

® Agoalis achieved if in ANY clause at least ONE condition is satisfied.

® Goal-agent: an agent that satisfies the goal.



Worm-planners

New class of planners.

Worm-planner: a module to decide the abilities a running worm-operation should
use and their execution order .

Worm-operation planners have to implement two functions:

1. create_links(): given a worm-operation and an agent, it generates all possible links
for the next phase the agent should execute.

2. create_cleanup_links(): given a worm-operation and an agent, it generates the
cleanup links for the phases the agent has executed.
Default worm-planner: the worm_sequential planner:

® asits counterpart for normal operations, it orders generated links according in
descending score order.



Worm-operation: basic logic

® New operation type with a distinct logic.

® This operations type is driven by the agents in the first place and then
by the execution phase.

® This implies the agents execute the adversary profile independently
(asynchronously) of each other.

e.g. agent X can be in phase 1 while agentY is in phase 4.

® Agent independence:
1. speeds up both the entire attack and the expansion through lateral movements

2. guarantees that all agents execute the ENTIRE adversary profile and the phases in
the EXPECTED ORDER



Worm-operation: agent map & goal

During a running worm-operation, the GUI can build a view of:

® "agents family tree": minimal reconstruction of the father / child relationships of the
agents

® "orphan agents": list of agents for which no father agent was found

Optional parameters added (with respect to normal CALDERA operations):
® goal: itis possible to set a goal for worm-operations

® goal-policy: if a goal is set, it is possible to choose one of the following :

1. first goal-agents: the worm-operation ends as soon as any agent satisfies the goal or
when no expansion is possible and any agent has concluded the attack.

2. maximum expansion: the worm-operation will end only when no expansion is possible
and any agent has concluded the attack.

Note: Both policies may produce distinct goal-agents.




WORM plugin: new features (summary)

. Worm-operation: a new type of operation.
- Worm-planners: a new class of planners.

. Goal: a new concept.

~ W N R

. A new report for worm-operations with additional information regarding: goal,
worm-policy and percentage of goal-agents.

5. Some further features for agents. After the end of a worm-operation, it is possible to:

® compare the results of a finished worm-operation with other goals - associated with the
executed adversary profile

® split the participating agents into the goal-agents and the no-goal-agents

It is possible to use these features both via REST APl and GUI.




Concluding remarks & possible integration

® All set plugin goals are met.

® The worm-operations have a clearer and more confined behavior than normal

operations. All phases are performed in the expected order and for all participating
agents.

® The WORM plugin could be completely integrated with CALDERA by:
1.introducing the father parameter for agents (PR)
2 .extending the concept of goals also to normal operations

3.adding the agent-map section even to normal operations

/4 .Enabling the choice of one of two distinct logics when running an adversary
profiles:

® assign a larger priority to the phases than to the agents --> normal CALDERA operations logic

® assign a larger priority to the agents than to the phases--> worm-operations logic


https://github.com/mitre/caldera/pull/627

