Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time

Joint Body Parsing & Pose Estimation Network (JPPNet)

Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin, "Look into Person: Joint Body Parsing & Pose Estimation Network and A New Benchmark", T-PAMI 2018.


JPPNet is a state-of-art deep learning methord for human parsing and pose estimation built on top of Tensorflow.

This novel joint human parsing and pose estimation network incorporates the multiscale feature connections and iterative location refinement in an end-to-end framework to investigate efficient context modeling and then enable parsing and pose tasks that are mutually beneficial to each other. This unified framework achieves state-of-the-art performance for both human parsing and pose estimation tasks.

This distribution provides a publicly available implementation for the key model ingredients reported in our latest paper which is accepted by T-PAMI 2018.

We simplify the network to solve human parsing by exploring a novel self-supervised structure-sensitive learning approach, which imposes human pose structures into the parsing results without resorting to extra supervision. There is also a public implementation of this self-supervised structure-sensitive JPPNet (SS-JPPNet).

Look into People (LIP) Dataset

The SSL is trained and evaluated on our LIP dataset for human parsing. Please check it for more model details. The dataset is also available at google drive and baidu drive.

Pre-trained models

We have released our trained models of JPPNet on LIP dataset at google drive and baidu drive.


  1. Download the pre-trained model and store in $HOME/checkpoint.
  2. Prepare the images and store in $HOME/datasets.
  3. Run for pose estimation and for human parsing.
  4. The results are saved in $HOME/output


  1. Download the pre-trained model and store in $HOME/checkpoint.
  2. Download LIP dataset or prepare your own data and store in $HOME/datasets.
  3. For LIP dataset, we have provided images, parsing labels, lists and the left-right flipping labels (labels_rev) for data augmentation. You need to generate the heatmaps of pose labels. We have provided a script for reference.
  4. Run to train the JPPNet with two refinement stages.
  5. Use and to generate the results or evaluate the trained models.
  6. Note that the LIPReader class is only suit for labels in LIP for the left-right flipping augmentation. If you want to train on other datasets with different labels, you may have to re-write an image reader class.


If you use this code for your research, please cite our papers.

  title={Look into Person: Joint Body Parsing \& Pose Estimation Network and a New Benchmark},
  author={Liang, Xiaodan and Gong, Ke and Shen, Xiaohui and Lin, Liang},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},

  author = {Gong, Ke and Liang, Xiaodan and Zhang, Dongyu and Shen, Xiaohui and Lin, Liang},
  title = {Look Into Person: Self-Supervised Structure-Sensitive Learning and a New Benchmark for Human Parsing},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {July},
  year = {2017}

Related work

  • Self-supervised Structure-sensitive Learning SSL, CVPR2017
  • Instance-level Human Parsing via Part Grouping Network PGN, ECCV2018
  • Graphonomy: Universal Human Parsing via Graph Transfer Learning Graphonomy, CVPR2019


Code repository for Joint Body Parsing & Pose Estimation Network, T-PAMI 2018







No releases published


No packages published